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0.1 Kinematics

0.1 Kinematics

In general, for a particle described with coordinates z#, we have the action S[z#(\)] with an

associated Lagrangian density, given by

S[x*(N)] = L{z*, "]d\, (1)

. . . M
where overdot means derivative respect to an affine parameter \: * = %.

The variation of the action yields to

Example 0.1.1: The Euler-Lagrange equations

Aoy o
dX\ \ 9+ dxh

Pee. Let us consider the motion of a massive particle between points A and B, displayed in

Figure 1, the action is given by
B
S=m / ds, (2)
A

with boundary conditions defined as

Figure 1: Free particle

where the interval in a generic space is ds* = g,,, dz*dz”, and hence

Slat(N] = m/o (9w ()] /2 dA. (4)

The canonical momenta p,, are the derivatives of the Lagrangian with respect to the coordinate

velocities. Computing the derivatives of the density Lagrangian L = m(g,,x*2")*/?, and for



convenience making m = 1':

oL 1 S —1/2 ozt |, s
Do = % = 3 (gl“,mﬂml’) X Guw pretd + it 950
= L 19+ 508] = - [gand” + Guad] = - guai” (5)
2L pv [Yq a 2L av Qo L o )
oL 1 v
870‘ = ﬁaagl“,x“x . (6)
By using the interval ds, we have
ds\ 2 dat da” d d
=) =¢g——— =1L dh — = L—. 7
(d)\> I~ ax dn andhience N T Vs (7)

Writing the Einstein-Lagrange equations in terms of the interval ds, they yield to

d ( dm“) 1 dzt dzv

35 \Ine gy ) ~ g0egm g5 = 0. (8)

Expanding the first term in the previous expression

dz? dx* d?zt 1 dxt dzx¥
0 a5 a7 5 T gYalur—; =0, 9
[ Ay ] ds + o sz 2999 g5 g ©)
where the first term that contains dgg,« can be replaced by %(3[; Gua +8,nga)%%. Reorder-
ing, we get
Pzt 1 dzP dz# 1 dzt dx”

=0 (10)

L Opgua + Opgpe) B L,
Ine” g2 +2( s9ue + Ougpa) ds ds  29°9" 7 gs Tds

By contracting with the inverse metric, relabelling indices and using the Christoffel definition

we find the

Geodesic equation
d?xH , o dx” daP _

ds2 T ey ds

Considering the particle has a four-velocity u* = %, from the geodesic equation we have

du*

no,a, B
using the chain rule
d dz® Out out
Rl 1y e — — < _ 12
ds " (%(s)) ds 0z " Qg (12

1 oY _ cu
where we have used 5iF = ‘;u'



0.1 Kinematics

so, we get
out
u® (x + rgﬁuﬁ> =0. (13)
We notice the quantity within parenthesis defines the covariant derivative

Vau! = 0qu* + I‘Zﬁuﬁ, (14)

and therefore, we have that u®V,u* = 0 (same result obtain in GR using parallel transport).

Putting back the mass, and using the four-momentum of the particle p* = —mu* [Pee], it yields
to
op*
P = —Thpp”. (15)



Example 0.1.2: The Einstein-Hilbert action.

Let us consider the Einstein-Hilbert action, given by

Seu= [ day=gR = [ oy =GRuug".
where, as usual, the g is the determinant of the metric g, and R is the Ricci scalar.
In General Relativity the metric g,, is the dynamical variable, whereas the Ricci scalar
is the product of the metric and its derivatives, hence the integral contains all the
dynamical variables that conform the Lagrangian [add Palatini formalism]. Therefore,

to minimise the action — by using the variational principle —, we perform the variation
of the action equal to zero:

5SE'H = 6/d"a:\/ —gR =0.
Then

0SEH

/d"m\/—gg"”éRW—l—/d"aj\/—gRWég””—i—/d"xR,“,g””(S\/—g
= 051+ 65 +38S;5.

We compute separately the variation for each term S; with ¢+ = 1,2, 3.
For S7, we first use the definition of the Christoffel symbols

Ry =R, =0\, — 9,1\ +T, I, —T7, I,
Then, the corresponding variation is

SRy, = O\0L), — 0,00, + 6T TS, + T30, — 0T I, — T 01%,

At vp vel px
= (Oa0T}, + T30, — T6\0T5, — L5561,
—(0,0T )y 4+ T 0T\ — T3, 005 — L5\6T,).
Using the covariant derivative
Veblgy = 00Ty, + 6,014, — T6.6T5, — Th,, 0T6,,
in order to write the previous expression as

SRy, = V0L, — V,00),.
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Example 0.1.3:

The first part of the action, Sy, results in the following form:

58, = / d*z/=gg" (VAOT), — V,00,)
- / d*z/=g[Va(g"oL},) — 6T, Vagh” =V, (g" 00y ) + 000, Vg™ ).

Because the covariant derivative of the metric vanishes, thus the previous equation be-
comes:

551 = / d'wy/=g[Va(g""ory,) — Vu(g"6T),)]
_ / Ay /=gVA[gh oT, — ghAaTY, . (16)

Let be J* = g’“’(SI‘I);V — g’”‘éI‘ZV, a vectorial field defined over a region M with frontier

3. Using the Stokes theorem:

/ dhar/[g[V T = / dar/Tglna
M >

with ny is a unitary normal vector to the hyper-surface ¥. In infinity J* becomes zero
on the surfaces due to the variations in g,, that tend to zero far away from the sources,
and the variation of the Christoffel symbols are proporcional to the variations of the
metric and its derivatives. Therefore, we have S; = 0, that is, the first term does not
contribute to the variation of the Einstein-Hilbert action.

To compute the variations of Sy y S3, let us analyse the behaviour of the metric tensor
under their own variations. First, consider that g»,g"” = 6y Then, assuming the metric
tensor has inverse, hence it exists a tensor A”# such that:

g = l(Al“’)T — lAuu’
g g

where g is the determinant of g,,. From the two previous expressions, we have g =
9u AP . From which we may infer that the partial derivative of the determinant is:
9y

=AM,
0w

Therefore

9 v
69 = a_g(sgw/ = ij(s.gw/ =49 Nég;w-
Guv

and given that g"¥ is symetric, then:

09 = 99" 69 -




Example 0.1.4:

With the previous calculations in mind, we are able to compute the variation of the

v/—g term:

1
ovV—g = Wy Tgég
1 g .
= = Y0gu- 17
2 /__gg Iu ( )

We need d¢g"” instead of 6g,,; to do that, we consider the following:

66,5 =6(gung™) = 0
969009 = 0
P Ogun = —gundg

Multiplying both terms of the equation by g,., we have:

gl/eg)\s(sgu)\ = _guegp)\(SgAG
51)/\5.9;0\ = _gueg;bx\(s.g)\€
59/w = _gukgue(Sge)‘- (18)

Substituting the last results into equation 17:

V=g = —%\/—_gg””smgye5sfA
= —%x/—_gfﬁgyeficfA
= 5V (19)
Renaming the indices, then:

1
6\/__ = _5\/__.99”1/59[“/'

Using that S7 = 0 along with equations 18 and 19, finally we’ve got:

1
0Sgg = /d4m\/—gR,w69’“’ — §/d4R\/—ggm,59"”
1
= /d4w\/—g[Rw — igwR]ég’“’.

Notice the terms within brackets correspond to the definition of the Einstein tensor:

1
GHV = RHV — EgWR.
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Modifications to the Einstein-Hilbert action.
The action of the f(R) models is given by

Sme :/d"x\/jgf(R).

to find the solutions.

Also, see [5] for a Brane-World Gravity review, where the action to take into account is

Sgravity = W

/d4ddy —(4+d) g [(4+d)R — 20404/,
4+d

where d is the number of extra dimensions and 3 +q is the gravitation coupling constant.

See [2], where the equations of motion are (2.15)-(2.16) and the dynamical system (4.63)-(4.66)

0.1.1 Geodesics in the FRW metric

The FRW metric (??) is written in the following way

ds® = 2dt* — R*(t)v;jda'da’. (20)

HW 0.1: Compute the Christoffel symbols to get

: i _ Ry i1
Y, = RRyij, Lo; = E(sj, k=737 059kt + Okt — D)

otherwise zero [put back c].

The homogeneity of FRW implies that 9;p* = 0 and hence only survives a = 0. From the

geodesic equation (15), we have

o dp"
dt

—Th pp? (21)

— (200" + Thp" )’ (22)

The implications of the expressions above are:

e A massive particle at rest - in the comoving frame - p/ = 0, will stay at rest

dp*

J =
b dt

0. (23)



e Considering the case p = 0, we have that the first Christoffel vanishes (ng = 0), and

hence )
dE o R

E— = —T9.pipt = ——p2, 24

i oy 7P (24)

where we have written p° = FE and the physical three-momentum p? = —g;;p'p’ =

szyij p'p’, and the components of the four momentum satisfy the constraint g,,, p"p” = m?

or E? — p? = m2. Using the fact that EdE = pdp, then the equation can be written as

. - 1
P X o par (25)

the three momentum of any particle (either massive or massless) decays with the expansion

of the universe.
— For massless particle- The energy decays with the expansion of the scale factor
p=FE x1/R. (26)

— For massive
muv 1

= — X —,
P= TR

= dx'/dt is the comoving peculiar velocity of the particles and v? =

(27)
where v’

R%y;v%07. The freely-falling particles left on their own will converge onto the Hubble

flow.

0.1.2 Redshift

The light emitted can be viewed either quantum mechanically as a free-propagating photons,

or classically propagating electromagnetic waves

e Quantum.

The wavelength A = h/p and since

P X % — A x R(t). (28)

Light emitted at time ¢; with wavelength A; will be observed at t;, with

Ao = Ar. (29)

Since R(tg) > R(t1) (with t9 > 1), then the wavelength of the light increases Ag > Ay,
that is, is red-shifted otherwise blue-shifted.
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e Classical waves.
[add Figure]. Consider a galaxy at fixed comoving distance d. At a time 7, the galaxy
emits a signal of short conformal duration An. According to the geodesics An = Ay
(??) the light arrives at our telescope at time 7. The conformal duration of the signal
measured by the detector is the same as the source, but the physical time intervals are

different at the points of emission and detection.
Aty =R(m)An & Aty = R(no)An. (30)

If At is the period of the light wave, the light is emitted with wavelength \; = Aty, but

it is observed with wavelength \g = Atg, so that

Ao R(mo)
N R 8D

For convenience, we express the fractional shift in wavelength of a photon emitted by a

distant galaxy at time ¢; with wavelength A; and the observer on Earth today (t), as:

Cdo-M
Z:—

==, (32

and therefore the gravitational redshift in terms of the scale factor is

Example 0.1.5: Cosmological redshifts

In general it is shown (see [3]) that the redshift z can be computed given the conformal
Killing vector field, giving

| gap(yM)EX(y)ER (y7)
the= \/ Jap (@€ (27)EP (27)"

The redshift is used to refer to the time at which the scale factor was a fraction 1/(1 + z) of

its present value. It is also used to refer to the distance that light has travelled since that time [4].
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Figure 2: Redshift.

Example 0.1.6: Times in the Universe

Some particular times in the history of the Universe

R = Ry, z=0, t = 13.8Gys,
R - O, z = OO) t = 05
R = Rp/1101, z = 1100, t = 380, 000ys.

0.1.3 Hubble and Deceleration parameter

Let us expand the scale factor as a power series about the present epoch tg

R(t) = Rlto— (to—t)] = R[to — A

. 1 ;
R(tg) — (to — t)R|i=¢, + 5(150 — )2 Rty — -

R{to) (1~ (to — t)H (to) ~ & (to — 1*q(t0) H*(t0) — - | (3)

HW: use simpy (Part IT of the course).

The expansion rate of the universe is characterised by the Hubble parameter defined as
H(t) = ==, (34)
(t)

where the present expansion rate, being H(t = ty), is called the Hubble constant Hy. Because
the Hubble constant is still not known with great accuracy, it is conventional to denote it

through the dimensionless parameter h, such that Hy = 100 A kms~*Mpc~! = h/3000 Mpc~1.

-10-
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Figure 3: Hubble parameter.

On the other hand, the deceleration parameter ¢(¢), is defined by

q(t) = ———=——. (35)

As the name suggests, it describes whether the expansion of the universe is slowing down
(¢ > 0) or speeding up (¢ < 0). If the Taylor expansion keeps on going there come out several

parameters, for instance the next two ones are

R’R R*R
—, and snap §= ———.
R3 R4

The coefficients in the power series of the expansion of the scale factor are known as the

jerk : j=

cosmography; see for instance [1].

Now, let us write the redshift parameter in terms of the look-back time t — ty. First, we expand

the inverse of the scale factor (using expression (33)):

1 -1
= 1-— (to — t)Ho — §(t0 — t)zqug — :| ~ [1 - 5$]71 (36)
1
~ 14 (to—t)Ho + 5(150 — )% qoHg + (to — t)2Hg — -+ . (37)
assuming |to — t| < to (very close to today). Then, we have

z= Ij%((tto)) —1=(to —t)Ho + (to — t)° <1+ ;qo> H - (38)

Since z is an absolute quantity (observable), then the look-back time ¢ty — ¢ can be written in

terms of z. For z < 1, from the above equation, we have

-11-



(to —t)Hy = z — (to — t)? (1+;q0) H 4. (39)

and using the fact, at first order that (tg — t)Hy = z, therefore

1
to—t:Holz—Hol(1+2q0)z2+---. (40)

The approximations depend only on the present-day values of Hy and qg, and no knowledge of

the complete expansion history R(t) of the universe.

On the other hand, the radial X coordinate (Eq. ??) of the emitting galaxy

X/t(’]c%(it)0351/t°[1(t0t)[.[0+,,,]1dt, (41)

assuming |tg — t| < tg, expanding the terms and then integrating, we have
1
X:cRo_l[(to—t)+§(t0—t)2H0—|—-~-]. (42)

using the expression (40), and assuming z < 1,

c

— e S W) ] (43)

X
2

which only depends on Hy and gy and not on the full expansion R(t).
The proper distance d,, of the emitting galaxy at cosmic time g is d = R(to)X, thus for

nearby galaxies d &~ cz/Hy. Moreover, using that the cosmological redshift can be written as a

Doppler shift due to recession velocity v of the emitting galaxy

v =cz = Hod.

The galaxies appear to recede from us with a recesion speed proportional to their distance:
Hubble’s law. The Hubble constant has the dimensions of the inverse time and 1/Hj gives the
age of the universe. It is important not to confuse the expansion redshift with a kinematic

redshift. Also the redshift, taking into account relativistic velocities, becomes

_ 1+w/c
14+2z= —ojc (44)

Combining the derivative of Eqn. (33) and its inverse to get an expression for the Hubble

parameter about the present epoch tg:

-12-
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H(z) = Ho[l+ (1+qo)z — -] (45)

Example 0.1.7: Hubble expansion

The Hubble expansion is a natural property of a homogeneous an isotropic universe. All
observers see galaxies with the same Hubble law. For example, consider two observers/-
galaxies

Ua = Hy - Ta, g = Hy - 7', (46)

Upa = Up — Ua = Hofp — HoF'a = Ho(TB — 7a). (47)

In a homogeneous universe every particle moving with the substratum has a purely
radial velocity proporcional to its distance from the observer. Quiz: what would happen
if Hubble would have found the velocity behaves differently, i.e. v = Hyr2?

0.1.4 Integrales

In [1]: import numpy as np
from sympy import *

from gravipy import *

In [11]: init_printing()

a, rho, R = symbols (’a, \\rho, R’, positive=True) #Asignamos nuestros simbolos a 1

e = Rational(1,2) #Al no poder pomer el simbolo 1/2, utilizamo esta forma para pode

o
I

a / (a*x2 - rho**2)**e #La funcion que vamos a tintegrar

-13-



integrate(D, (rho,0,R))
#integrate (D, rho)

Out[11]:

“(2)
aasim | —
a

2m
C7:./p Rd¢
0

In [5]: phi = symbols (’\\phi’)

integrate(C, (phi,0,2*pi))

OQut [5] :

2TR

27 R a
A= / / T pdpde
o Jo (a*—-p?)2

In [149]: A = a / (a**2 - rho**2)**e*rho
simplify(integrate(4, (rho,0,R), (phi,0,2%pi)))

Out [149] :

2mwa (—-V/:???15554—x/E5>

- [ o]
_HO 0 Qm,O“‘(l_Qm,O)m

In [42]: H_O, Omega, x, a = symbols (’H_O, \\Omega_{mO}, x, a’)

Nl=

t dx

t = (1/H.0) * (x / (Omega + (1-Omega)*x))**e
t_1 = t.subs(Omega,l)

integrate(t_1, (x,0,a))

-14-
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Out [42] :

3
2a2

3Hy

In [151]: #Para Omega > 1

H_O, Omega, x, a = symbols (’H_O, \\Omega_{mO}, x, a’)
psi = symbols (’psi’)

x1 = Omega / (Omega - 1)*sin(psi/2)**2 # con [0/pi] llamamos nuestra wvariable zl1 g
t_x1 = (1/H_0) * (x / (Omega + (1-Omega)*x))**e

t = factor(t_x1.subs(x,x1))

#integrate(t, (psi,0,pt))

Out[151]:

sin2 (%)
—Qmo sin? (§)+Qmo+sin? (§)-1
Hy

In [154]: # Para Omega < 1
H_O, Omega, x, a = symbols (’H_O, \\Omega_{mO}, x, a’)
psi = symbols (’psi’)
x2 = Omega / (1 - Omega) *sinh (psi/2)**2

t_x2 = (1/H_0) * (x / (Omega + (1-Omega)*x))**e

t = factor(t_x2.subs(x,x2))

#integrate(t, (psi,0,p3))

Out[154] :

sinh? ( L )
—Qmo sinh? (§)—Qmo+sinh? (§)+1
H,

-15-



In [126]:

Out[126] :

In [156]:

Out [156] :

In [144]:

t—if v
HO 0 \/QT,O + (1 - QT,O)J"Z

H_O, Omega_r0, x, a = symbols (’H_O, \\Omega_{r0}, x, a’)
t = 1/H_O* x/sqrt((Omega_r0 + (1 - Omega_r0)*x**2))
t_1 = t.subs(Omega_r0,1)

integrate(t_1,(x,0,a))

2H,

# Para Omega < 1
H_O, Omega_rO, x, a = symbols (’H_O, \\Omega_{r0}, x, a’)
t = 1/H_0* x/sqrt((Omega_r0 + (1 - Omega_r0)*x**2))

integrate(t, (x,0,a))

\/Qir()\/l + a2 polar,lgi(()—flm-i-l) 0o
Ho (o —1) Ho (o —1)

1 @ T
t:—/—————m
Ho Jo /Qmor+ Qo

H_O, Omega_m, Omega_r, x, a = symbols (’H_O, \\Omega_{m0}, \\Omega_{r0} x, a’)

#hactendo

y = Omega_m * x + Omega_r

t = 1/H_0 * (x/(sqrt(y)))

t_1 = simplify(integrate(t, (x,0,a)))

factor (t_1)

-16-
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Out[144]:

24/ Q0 (Qmoa,/ Qétooa +1- ZQTON/ Qénr%a + 14+ QQT(])

3H)02,,

=L /a ° d
= — X
HO 0 1-— QA70 + QA@LEB

In [191]: H_O, Omega_l, x, a , y = symbols (’H_O, \\Omega_{\\LambdaO},x, a ,y’)

t = 1/H_O*sqrt(x/(1-Omega_l + Omega_l * x**3))

#Hactendo

y2 = x**3*abs(Omega_1)/(1-Omega_1)

Ht

2/ (3*(abs(Omega_1)))*1/(sqrt(l + y*x*2))

integrate (Ht, (y,0,y2))

Out [191]:

2 asinh (7:”31{3‘;'1)
31Qn0]

In [192]: H_O, Omega_l, x, a , y = symbols (’H_O, \\Omega_{\\LambdaO},x, a ,y’)

t = 1/H_O*sqrt(x/(1-Omega_l + Omega_l * x**3))

#Hactvendo

y2 = x**3*abs(Omega_1)/(1-Omega_1)

Ht = 2/(3*(abs(Omega_1)))*1/(sqrt(l - y**2))

integrate (Ht, (y,0,y2))

Out[192] :

—Qao+1

310

3
Qashl(ZEIQAO‘)

-17-
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