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0.1 Kinematics

0.1 Kinematics

In general, for a particle described with coordinates xµ, we have the action S[xµ(λ)] with an

associated Lagrangian density, given by

S[xµ(λ)] ≡ L[xµ, ẋµ]dλ, (1)

where overdot means derivative respect to an affine parameter λ: ẋµ ≡ dxµ

dλ .

The variation of the action yields to

Example 0.1.1: The Euler-Lagrange equations

d

dλ

(
∂L

∂ẋµ

)
− ∂L

∂xµ
= 0.

Pee. Let us consider the motion of a massive particle between points A and B, displayed in

Figure 1, the action is given by

S = m

∫ B

A

ds, (2)

with boundary conditions defined as

λ(A) ≡ 0, λ(B) ≡ 1, (3)

Figure 1: Free particle

where the interval in a generic space is ds2 = gµνdx
µdxν , and hence

S[xµ(λ)] = m

∫ 1

0

[gµν(x)ẋµẋν ]1/2dλ. (4)

The canonical momenta pµ are the derivatives of the Lagrangian with respect to the coordinate

velocities. Computing the derivatives of the density Lagrangian L = m(gµν ẋµẋν)1/2, and for
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convenience making m = 11:

pα ≡
∂L

∂ẋα
=

1

2

(
gµν ẋµẋν

)−1/2 × gµν
[
∂ẋµ

∂ẋα
ẋν + ẋµ

∂ẋν

∂ẋα

]
=

1

2L
gµν [δµαẋ

ν + ẋµδνα] =
1

2L
[gαν ẋ

ν + gµαẋ
µ] =

1

L
gµαẋ

µ, (5)

∂L

∂xα
=

1

2L
∂αgµν ẋ

µẋν . (6)

By using the interval ds, we have(
ds

dλ

)2

= gµν
dxµ

dλ

dxν

dλ
= L2 and hence

d

dλ
→ L

d

ds
. (7)

Writing the Einstein-Lagrange equations in terms of the interval ds, they yield to

d

ds

(
gµα

dxµ

ds

)
− 1

2
∂αgµν

dxµ

ds

dxν

ds
= 0. (8)

Expanding the first term in the previous expression[
∂βgµα

dxβ

ds

]
dxµ

ds
+ gµα

d2xµ

ds2
− 1

2
∂αgµν

dxµ

ds

dxν

ds
= 0, (9)

where the first term that contains ∂βgµα can be replaced by 1
2 (∂βgµα+∂µgβα)dx

β

ds
dxµ

ds . Reorder-

ing, we get

gµα
d2xµ

ds2
+

1

2
(∂βgµα + ∂µgβα)

dxβ

ds

dxµ

ds
− 1

2
∂αgµν

dxµ

ds

dxν

ds
= 0, (10)

By contracting with the inverse metric, relabelling indices and using the Christoffel definition

we find the

Geodesic equation
d2xµ

ds2
+ Γµαβ

dxα

ds

dxβ

ds
= 0.

Considering the particle has a four-velocity uµ ≡ dxµ

ds , from the geodesic equation we have

duµ

ds
+ Γµαβu

αuβ = 0, (11)

using the chain rule
d

ds
uµ(xα(s)) =

dxα

ds

∂uµ

∂xα
= uα

∂uµ

∂xα
, (12)

1where we have used ∂ẋν

∂ẋµ
= δνµ.
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0.1 Kinematics

so, we get

uα
(
∂uµ

∂xα
+ Γµαβu

β

)
= 0. (13)

We notice the quantity within parenthesis defines the covariant derivative

∇αuµ ≡ ∂αuµ + Γµαβu
β , (14)

and therefore, we have that uα∇αuµ = 0 (same result obtain in GR using parallel transport).

Putting back the mass, and using the four-momentum of the particle pµ = −muµ [Pee], it yields

to

pα
∂pµ

∂xα
= −Γµαβp

αpβ . (15)
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Example 0.1.2: The Einstein-Hilbert action.

Let us consider the Einstein-Hilbert action, given by

SEH =

∫
dnx
√
−gR =

∫
dnx
√
−gRµνgµν ,

where, as usual, the g is the determinant of the metric gµν and R is the Ricci scalar.

In General Relativity the metric gµν is the dynamical variable, whereas the Ricci scalar
is the product of the metric and its derivatives, hence the integral contains all the
dynamical variables that conform the Lagrangian [add Palatini formalism]. Therefore,
to minimise the action – by using the variational principle –, we perform the variation
of the action equal to zero:

δSEH = δ

∫
dnx
√
−gR = 0.

Then

δSEH =

∫
dnx
√
−ggµνδRµν +

∫
dnx
√
−gRµνδgµν +

∫
dnxRµνg

µνδ
√
−g

= δS1 + δS2 + δS3.

We compute separately the variation for each term Si with i = 1, 2, 3.
For S1, we first use the definition of the Christoffel symbols

Rµν = Rλµλν = ∂λΓλµν − ∂νΓλµλ + ΓλλεΓ
ε
νµ − ΓλνεΓ

ε
µλ.

Then, the corresponding variation is

δRµν = ∂λδΓ
λ
µν − ∂νδΓλµλ + δΓλλεΓ

ε
νµ + ΓλλεδΓ

ε
νµ − δΓλνεΓεµλ − ΓλνεδΓ

ε
µλ

= (∂λδΓ
λ
µν + ΓλλεδΓ

ε
νµ − ΓεµλδΓ

λ
νε − ΓενλδΓ

λ
µε)

−(∂νδΓ
λ
µλ + ΓλνεδΓ

ε
µλ − ΓενµδΓ

λ
λε − ΓενλδΓ

λ
µε).

Using the covariant derivative

∇cδΓcab = ∂cδΓ
c
ab + ΓccdδΓ

d
ba − ΓdacδΓ

c
bd − Γdbc, δΓ

c
ad,

in order to write the previous expression as

δRµν = ∇λδΓλµν −∇νδΓλµλ.
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0.1 Kinematics

Example 0.1.3:

The first part of the action, S1, results in the following form:

δS1 =

∫
d4x
√
−ggµν(∇λδΓλµν −∇νδΓλµλ)

=

∫
d4x
√
−g[∇λ(gµνδΓλµν)− δΓλµν∇λgµν −∇ν(gµνδΓλµλ) + δΓλµλ∇νgµν ].

Because the covariant derivative of the metric vanishes, thus the previous equation be-
comes:

δS1 =

∫
d4x
√
−g[∇λ(gµνδΓλµν)−∇ν(gµνδΓλµλ)]

=

∫
d4x
√
−g∇λ[gµνδΓλµν − gµλδΓνµν ]. (16)

Let be Jλ = gµνδΓλµν − gµλδΓνµν , a vectorial field defined over a region M with frontier
Σ. Using the Stokes theorem:∫

M

d4x
√
|g|∇λJλ =

∫
Σ

d3x
√
|g|nλJλ,

with nλ is a unitary normal vector to the hyper-surface Σ. In infinity Jλ becomes zero
on the surfaces due to the variations in gµν that tend to zero far away from the sources,
and the variation of the Christoffel symbols are proporcional to the variations of the
metric and its derivatives. Therefore, we have S1 = 0, that is, the first term does not
contribute to the variation of the Einstein-Hilbert action.

To compute the variations of S2 y S3, let us analyse the behaviour of the metric tensor
under their own variations. First, consider that gλµg

µν = δ νλ Then, assuming the metric
tensor has inverse, hence it exists a tensor Aνµ such that:

gµν =
1

g
(Aµν)T =

1

g
Aνµ,

where g is the determinant of gµν . From the two previous expressions, we have g =
gµνA

µν . From which we may infer that the partial derivative of the determinant is:

∂g

∂gµν
= Aµν .

Therefore

δg =
∂g

∂gµν
δgµν = Aµνδgµν = ggνµδgµν .

and given that gµν is symetric, then:

δg = ggµνδgµν .
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Example 0.1.4:

With the previous calculations in mind, we are able to compute the variation of the√
−g term:

δ
√
−g = − 1

2
√
−g

δg

=
1

2

g√
−g

gµνδgµν . (17)

We need δgµν instead of δgµν ; to do that, we consider the following:

δδ ε
µ = δ(gµλg

λε) = 0

gλεδgµλδg
λε = 0

gλεδgµλ = −gµλδgλε.

Multiplying both terms of the equation by gνε, we have:

gνεg
λεδgµλ = −gνεgµλδgλε

δλν δgµλ = −gνεgµλδgλε

δgµν = −gµλgνεδgελ. (18)

Substituting the last results into equation 17:

δ
√
−g = −1

2

√
−ggµνgµλgνεδgελ

= −1

2

√
−gδνλgνεδgελ

= −1

2

√
−ggλεδgελ. (19)

Renaming the indices, then:

δ
√
−g = −1

2

√
−ggµνδgµν .

Using that S1 = 0 along with equations 18 and 19, finally we’ve got:

δSEH =

∫
d4x
√
−gRµνδgµν −

1

2

∫
d4R
√
−ggµνδgµν

=

∫
d4x
√
−g[Rµν −

1

2
gµνR]δgµν .

Notice the terms within brackets correspond to the definition of the Einstein tensor:

Gµν = Rµν −
1

2
gµνR.
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0.1 Kinematics

Modifications to the Einstein-Hilbert action.

The action of the f(R) models is given by

SMG =

∫
dnx
√
−gf(R).

See [2], where the equations of motion are (2.15)-(2.16) and the dynamical system (4.63)-(4.66)

to find the solutions.

Also, see [5] for a Brane-World Gravity review, where the action to take into account is

Sgravity =
1

2κ2
4+d

∫
d4ddy

√
−(4+d)g

[
(4+d)R− 2Λ4+d

]
,

where d is the number of extra dimensions and κ2
4+d is the gravitation coupling constant.

0.1.1 Geodesics in the FRW metric

The FRW metric (??) is written in the following way

ds2 = c2dt2 −R2(t)γijdx
idxj . (20)

HW 0.1: Compute the Christoffel symbols to get

Γ0
ij = RṘγij , Γi0j =

Ṙ

R
δij , Γijk =

1

2
γil(∂jγkl + ∂kγjl − ∂lγjk),

otherwise zero [put back c].

The homogeneity of FRW implies that ∂ip
µ = 0 and hence only survives α = 0. From the

geodesic equation (15), we have

p0 dp
µ

dt
= −Γµρβp

ρpβ (21)

= −(2Γµ0jp
0 + Γµijp

i)pj . (22)

The implications of the expressions above are:

• A massive particle at rest - in the comoving frame - pj = 0, will stay at rest

pj = 0 → dpµ

dt
= 0. (23)
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• Considering the case µ = 0, we have that the first Christoffel vanishes (Γ0
0j = 0), and

hence

E
dE

dt
= −Γ0

ijp
ipj = − Ṙ

R
p2. (24)

where we have written p0 = E and the physical three-momentum p2 = −gijpipj =

R2γijp
ipj , and the components of the four momentum satisfy the constraint gµνp

µpν = m2

or E2 − p2 = m2. Using the fact that EdE = pdp, then the equation can be written as

ṗ

p
= − Ṙ

R
→ p ∝ 1

R
, (25)

the three momentum of any particle (either massive or massless) decays with the expansion

of the universe.

– For massless particle- The energy decays with the expansion of the scale factor

p = E ∝ 1/R. (26)

– For massive

p =
mv√
1− v2

∝ 1

R
, (27)

where vi = dxi/dt is the comoving peculiar velocity of the particles and v2 ≡

R2γijv
ivj . The freely-falling particles left on their own will converge onto the Hubble

flow.

0.1.2 Redshift

The light emitted can be viewed either quantum mechanically as a free-propagating photons,

or classically propagating electromagnetic waves

• Quantum.

The wavelength λ = h/p and since

p ∝ 1

R(t)
→ λ ∝ R(t). (28)

Light emitted at time t1 with wavelength λ1 will be observed at t0 with

λ0 =
R(t0)

R(t1)
λ1. (29)

Since R(t0) > R(t1) (with t0 > t1), then the wavelength of the light increases λ0 > λ1,

that is, is red-shifted otherwise blue-shifted.

-8-



0.1 Kinematics

• Classical waves.

[add Figure]. Consider a galaxy at fixed comoving distance d. At a time η1, the galaxy

emits a signal of short conformal duration ∆η. According to the geodesics ∆η = ∆χ

(??) the light arrives at our telescope at time η0. The conformal duration of the signal

measured by the detector is the same as the source, but the physical time intervals are

different at the points of emission and detection.

∆t1 = R(η1)∆η & ∆t0 = R(η0)∆η. (30)

If ∆t is the period of the light wave, the light is emitted with wavelength λ1 = ∆t1, but

it is observed with wavelength λ0 = ∆t0, so that

λ0

λ1
=
R(η0)

R(η1)
. (31)

For convenience, we express the fractional shift in wavelength of a photon emitted by a

distant galaxy at time t1 with wavelength λ1 and the observer on Earth today (t0), as:

z ≡ λ0 − λ1

λ1
, (32)

and therefore the gravitational redshift in terms of the scale factor is

1 + z =
R(t0)

R(t1)
.

Example 0.1.5: Cosmological redshifts

In general it is shown (see [3]) that the redshift z can be computed given the conformal
Killing vector field, giving

1 + z =

√
gαβ(yγ)ξα(yγ)ξβ(yγ)

gαβ(xγ)ξα(xγ)ξβ(xγ)
.

The redshift is used to refer to the time at which the scale factor was a fraction 1/(1 + z) of

its present value. It is also used to refer to the distance that light has travelled since that time [4].
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Figure 2: Redshift.

Example 0.1.6: Times in the Universe

Some particular times in the history of the Universe

R = R0, z = 0, t = 13.8Gys,

R = 0, z =∞, t = 0,

R = R0/1101, z = 1100, t = 380, 000ys.

0.1.3 Hubble and Deceleration parameter

Let us expand the scale factor as a power series about the present epoch t0

R(t) = R[t0 − (t0 − t)] = R[t0 −∆]

= R(t0)− (t0 − t)Ṙ|t=t0 +
1

2
(t0 − t)2R̈|t=t0 − · · ·

= R(t0)

[
1− (t0 − t)H(t0)− 1

2
(t0 − t)2q(t0)H2(t0)− · · ·

]
. (33)

HW: use simpy (Part II of the course).

The expansion rate of the universe is characterised by the Hubble parameter defined as

H(t) ≡ Ṙ(t)

R(t)
, (34)

where the present expansion rate, being H(t = t0), is called the Hubble constant H0. Because

the Hubble constant is still not known with great accuracy, it is conventional to denote it

through the dimensionless parameter h, such that H0 = 100h km s−1Mpc−1 = h/3000 Mpc−1.

-10-



0.1 Kinematics

Figure 3: Hubble parameter.

On the other hand, the deceleration parameter q(t), is defined by

q(t) ≡ − R̈(t)R(t)

Ṙ2(t)
. (35)

As the name suggests, it describes whether the expansion of the universe is slowing down

(q > 0) or speeding up (q < 0). If the Taylor expansion keeps on going there come out several

parameters, for instance the next two ones are

jerk : j ≡ R2
...
R

Ṙ3
, and snap s ≡ R3

....
R

Ṙ4
.

The coefficients in the power series of the expansion of the scale factor are known as the

cosmography ; see for instance [1].

Now, let us write the redshift parameter in terms of the look-back time t− t0. First, we expand

the inverse of the scale factor (using expression (33)):

R(t0)

R(t)
=

[
1− (t0 − t)H0 −

1

2
(t0 − t)2q0H

2
0 − · · ·

]−1

≈ [1− δx]−1 (36)

≈ 1 + (t0 − t)H0 +
1

2
(t0 − t)2q0H

2
0 + (t0 − t)2H2

0 − · · · . (37)

assuming |t0 − t| � t0 (very close to today). Then, we have

z =
R(t0)

R(t)
− 1 = (t0 − t)H0 + (t0 − t)2

(
1 +

1

2
q0

)
H2

0 + · · · . (38)

Since z is an absolute quantity (observable), then the look-back time t0 − t can be written in

terms of z. For z � 1, from the above equation, we have

-11-



(t0 − t)H0 = z − (t0 − t)2

(
1 +

1

2
q0

)
H2

0 + · · · . (39)

and using the fact, at first order that (t0 − t)H0 ≈ z, therefore

t0 − t = H−1
0 z −H−1

0

(
1 +

1

2
q0

)
z2 + · · · . (40)

The approximations depend only on the present-day values of H0 and q0, and no knowledge of

the complete expansion history R(t) of the universe.

On the other hand, the radial χ coordinate (Eq. ??) of the emitting galaxy

χ =

∫ t0

t

c dt

R(t)
= c R−1

0

∫ t0

t

[1− (t0 − t)H0 + · · · ]−1dt, (41)

assuming |t0 − t| � t0, expanding the terms and then integrating, we have

χ = c R−1
0 [(t0 − t) +

1

2
(t0 − t)2H0 + · · · ]. (42)

using the expression (40), and assuming z � 1,

χ =
c

R0H0
[z − 1

2
(1 + q0)z2 + · · · ], (43)

which only depends on H0 and q0 and not on the full expansion R(t).

The proper distance dp of the emitting galaxy at cosmic time t0 is d ≡ R(t0)χ, thus for

nearby galaxies d ≈ cz/H0. Moreover, using that the cosmological redshift can be written as a

Doppler shift due to recession velocity v of the emitting galaxy

v ≡ cz = H0d.

The galaxies appear to recede from us with a recesion speed proportional to their distance:

Hubble’s law. The Hubble constant has the dimensions of the inverse time and 1/H0 gives the

age of the universe. It is important not to confuse the expansion redshift with a kinematic

redshift. Also the redshift, taking into account relativistic velocities, becomes

1 + z =

√
1 + v/c

1− v/c
. (44)

Combining the derivative of Eqn. (33) and its inverse to get an expression for the Hubble

parameter about the present epoch t0:

-12-



0.1 Kinematics

H(z) = H0[1 + (1 + q0)z − · · · ] (45)

Example 0.1.7: Hubble expansion

The Hubble expansion is a natural property of a homogeneous an isotropic universe. All
observers see galaxies with the same Hubble law. For example, consider two observers/-
galaxies

~vA = H0 · ~rA, ~vB = H0 · ~rB , (46)

~vBA = ~vB − ~vA = H0~rB −H0~rA = H0(~rB − ~rA). (47)

In a homogeneous universe every particle moving with the substratum has a purely
radial velocity proporcional to its distance from the observer. Quiz: what would happen
if Hubble would have found the velocity behaves differently, i.e. v = H0r

2?

0.1.4 Integrales

In [1]: import numpy as np

from sympy import *

from gravipy import *

D =

∫ R

0

a

(a2 − ρ2)
1
2

dρ

In [11]: init_printing()

a, rho, R = symbols (’a, \\rho, R’, positive=True) #Asignamos nuestros simbolos a las variables

e = Rational(1,2) #Al no poder poner el simbolo 1/2, utilizamo esta forma para poder poner el simbolo y que funcione con cualquier función

D = a / (a**2 - rho**2)**e #La funcion que vamos a integrar

-13-



integrate(D,(rho,0,R))

#integrate(D,rho)

Out[11]:

a asin

(
R

a

)

C =

∫ 2π

0

Rdφ

In [5]: phi = symbols (’\\phi’)

C = R

integrate(C,(phi,0,2*pi))

Out[5]:

2πR

A =

∫ 2π

0

∫ R

0

a

(a2 − ρ2)
1
2

ρdρdφ

In [149]: A = a / (a**2 - rho**2)**e*rho

simplify(integrate(A,(rho,0,R),(phi,0,2*pi)))

Out[149]:

2πa
(
−
√
−R2 + a2 +

√
a2
)

t =
1

H0

∫ a

0

[ x

Ωm,0 + (1− Ωm,0)x

] 1
2 dx

In [42]: H_0, Omega, x, a = symbols (’H_0, \\Omega_{m0}, x, a’)

t = (1/H_0) * (x / (Omega + (1-Omega)*x))**e

t_1 = t.subs(Omega,1)

integrate(t_1,(x,0,a))

-14-



0.1 Kinematics

Out[42]:

2a
3
2

3H0

In [151]: #Para Omega > 1

H_0, Omega, x, a = symbols (’H_0, \\Omega_{m0}, x, a’)

psi = symbols (’psi’)

x1 = Omega / (Omega - 1)*sin(psi/2)**2 # con [0/pi] llamamos nuestra variable x1 que es la que vamos sustituir por x

t_x1 = (1/H_0) * (x / (Omega + (1-Omega)*x))**e

t = factor(t_x1.subs(x,x1))

t

#integrate(t,(psi,0,pi))

Out[151]:

√
sin2 (ψ2 )

−Ωm0 sin2 (ψ2 )+Ωm0+sin2 (ψ2 )−1

H0

In [154]: # Para Omega < 1

H_0, Omega, x, a = symbols (’H_0, \\Omega_{m0}, x, a’)

psi = symbols (’psi’)

x2 = Omega / (1 - Omega) *sinh (psi/2)**2

t_x2 = (1/H_0) * (x / (Omega + (1-Omega)*x))**e

t = factor(t_x2.subs(x,x2))

t

#integrate(t,(psi,0,pi))

Out[154]:

√
sinh2 (ψ2 )

−Ωm0 sinh2 (ψ2 )−Ωm0+sinh2 (ψ2 )+1

H0

-15-



t =
1

H0

∫ a

0

x√
Ωr,0 + (1− Ωr,0)x2

In [126]: H_0, Omega_r0, x, a = symbols (’H_0, \\Omega_{r0}, x, a’)

t = 1/H_0* x/sqrt((Omega_r0 + (1 - Omega_r0)*x**2))

t_1 = t.subs(Omega_r0,1)

integrate(t_1,(x,0,a))

Out[126]:

a2

2H0

In [156]: # Para Omega < 1

H_0, Omega_r0, x, a = symbols (’H_0, \\Omega_{r0}, x, a’)

t = 1/H_0* x/sqrt((Omega_r0 + (1 - Omega_r0)*x**2))

integrate(t,(x,0,a))

Out[156]:

−

√
Ωr0

√
1 + a2 polar lift (−Ωr0+1)

Ωr0

H0 (Ωr0 − 1)
+

√
Ωr0

H0 (Ωr0 − 1)

t =
1

H0

∫ a

0

x√
Ωm,0x+ Ωr,0

dx

In [144]: H_0, Omega_m, Omega_r, x, a = symbols (’H_0, \\Omega_{m0}, \\Omega_{r0} x, a’)

#haciendo

y = Omega_m * x + Omega_r

t = 1/H_0 * (x/(sqrt(y)))

t_1 = simplify(integrate(t,(x,0,a)))

factor (t_1)
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Out[144]:

2
√

Ωr0

(
Ωm0a

√
Ωm0a
Ωr0

+ 1− 2Ωr0

√
Ωm0a
Ωr0

+ 1 + 2Ωr0

)
3H0Ω2

m0

t =
1

H0

∫ a

0

√
x

1− ΩΛ,0 + ΩΛ,0x3
dx

In [191]: H_0, Omega_l, x, a , y = symbols (’H_0, \\Omega_{\\Lambda0},x, a ,y’)

t = 1/H_0*sqrt(x/(1-Omega_l + Omega_l * x**3))

#Haciendo

y2 = x**3*abs(Omega_l)/(1-Omega_l)

Ht = 2/(3*(abs(Omega_l)))*1/(sqrt(1 + y**2))

integrate(Ht,(y,0,y2))

Out[191]:

2 asinh
(
x3|ΩΛ0|
−ΩΛ0+1

)
3 |ΩΛ0|

In [192]: H_0, Omega_l, x, a , y = symbols (’H_0, \\Omega_{\\Lambda0},x, a ,y’)

t = 1/H_0*sqrt(x/(1-Omega_l + Omega_l * x**3))

#Haciendo

y2 = x**3*abs(Omega_l)/(1-Omega_l)

Ht = 2/(3*(abs(Omega_l)))*1/(sqrt(1 - y**2))

integrate(Ht,(y,0,y2))

Out[192]:

2 asin
(
x3|ΩΛ0|
−ΩΛ0+1

)
3 |ΩΛ0|
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