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0.1 The Einstein Tensor

0.1 The Einstein Tensor

0.1.1 Christo↵el symbols

The coe�cients �a
bc are known as the a�ne connection, or traditionally called as the Christof-

fel symbol (of the second kind). It can be easily shown that �a
bc do not transform as the

components of a tensor, however

T a
bc = �a

bc � �a
cb, (1)

is indeed a third-rank tensor, namely the torsion tensor. For convenience we can assume

torsion free T a
bc = 0, that is, the a�ne connection is symmetric in its covariant indices, i.e.

�a
bc = �a

cb. (2)

Assumption 0.1.1:

Torsion free: T a
bc = 0 ) �a

bc = �a
cb .

We will use the ansatz that the covariant derivative of the metric tensor vanishes

gab;c = 0. (3)

The covariant derivative (expressed by r or ; ) of a tensor is

Aab;c = Aab,c � �d
acAdb � �d

bcAad.

By cyclically permuting the three indices of Eqn. (3), summing them all over, and using the

covariant derivative of a tensor, we get

�a
bc =

1

2
gad(@cgdb + @bgdc � @dgbc)

=
1

2
gad(gdb,c + gdc,b � gbc,d). (4)

Then, for the torsionless case, the quantity on the right hand side of Eqn. (4) is properly called

the metric connection and often denoted by the symbol { a
bc}. In a torsionless manifold the

a�ne and metric connections are equivalent.

The quantity �abc, traditionally known as the Christo↵el symbol of the first kind, is given

by

�abc ⌘ gad�
d
bc

=
1

2
(@cgab + @bgac � @agbc). (5)
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Adding �abc to �bac gives

gab,c = �abc + �bac, (6)

which relates partial derivatives of the metric components to the connection coe�cients. The

contraction of the connection coe�cients, leads to

�a
ab = @b ln

p
|g| = 1p

|g|
@b
p

|g|. (7)

where the derivative of the determinant g of gab is

g,c = ggabgab,c,

= 2g�a
ac. (8)

HW 0.1.a: Show that the components of �a
bc do not transform as the components of a

tensor, but T a
bc do.

HW 0.1.b: Prove (4), (6) and (8).

0.1.2 The curvature tensor

The curvature tensor (or the Riemann-Christo↵el tensor) is defined in terms of the metric

tensor gab and its first and second derivatives.

Ra
bcd ⌘ �a

bd,c � �a
bc,d + �e

bd�
a
ec � �e

bc�
a
ed. (9)

In a flat space-time, �a
bc and its derivatives are zero, and hence

Ra
bcd = 0. (10)

The curvature tensor possesses a number of symmetries and satisfies certain identities, that are

most easily derived in terms of its covariant components. An alternative way, and useful for

this purpose, is the lowered version

Rabcd = gaeR
e
bcd, (11)

and after considerable algebra, we have

Rabcd =
1

2
(gbc,ad � gac,bd + gad,bc � gbd,ac)� gef (�eac�fbd � �ead�fbc) , (12)
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0.1 The Einstein Tensor

and the symmetries can be expressed as follow

Rabcd = �Rbacd, (13)

= �Rabdc,

= Rcdab.

From the first set of symmetries, we notice that for a = b or c = d all the components of

the Riemann tensor are zero. Then, we may easily deduce the cyclic identity (or 1st Bianchi

identity)

Rabcd +Radbc +Racdb = 0, (14)

which may be written as Ra[bcd] = 0. The conditions (13) and (14) reduce the number of

independent components from N4 to N2(N2 � 1)/12 [do the math]. In general, considering

several dimensions, we have:

No. of dimensions 2 3 4

No. of independent components of Rabcd 1 6 20

You can see from this table that in four dimensions the number of independent components is

reduced from a possible 256 to 20.

Another useful relation we will need is the 2nd Bianchi identity

Rabcd;e +Rabde;c +Rabec;d = 0, (15)

and it can be written in the compact cyclic form Rab[cd;e].

HW 0.1.c: Show the validity of the expressions (13), (14) and (15).

0.1.3 Ricci tensor

From the symmetry properties, raising the index a and then contracting on the first two indices,

gives

Ra
acd = 0. (16)
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Example 0.1.1: Show that Ra
acd=0.

Take the expression (11)

Rabcd = gaeR
e
bcd,

multiply ⇥gab both sides

gabRabcd = gabgaeR
e
bcd,

because the mood indices, we can interchanged a $ b on the right hand side to get

gba gbeR
e
acd| {z }

contraction

= gbaRbacd = gabRbacd = �gabRabcd,

where we have used the symmetry gba = gab and the anti-symmetric relation in (13).
Therefore Ra

acd = 0.

Contracting on the first and third indices, however, gives in general a non-zero result and this

leads to a new tensor, the Ricci tensor (the trace of the Riemann tensor):

Rab ⌘ Rc
acb = gcdRcadb. (17)

By raising the index a in the cyclic identity and contracting with d, one may easily show that

the Ricci tensor is symmetric, Rb
a = R b

a , and hence we can denote both by Rb
a. A further

contraction gives the Ricci scalar, also known as the curvature scalar, which is the trace of

the Ricci tensor:

R ⌘ Ra
a = gabRab = gabgcdRcadb. (18)

Example 0.1.2: Show that Rab=Rba.

First, we write the cyclic expression (14) and multiply it by gcd to get

gcdRdacb + gcdRdcba + gcdRdbac = 0,

notice the second term (gcdRdcba) vanishes by the first identity in (13). To then

gcdRdacb + gcdRdbac = 0,

Rc
acb � gcdRdbca = 0,

Rc
acb �Rc

bca = 0,

Rab = Rba.
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0.1 The Einstein Tensor

pb. The traceless part of the tensor Rabcd is defined by the equation

Rabcd =
1

2
(gacRbd � gadRbc � gbcRad + gbdRac) (19)

�1

6
(gacgbd � gadgbc)R

+Cabcd.

The expressions in the first two lines have the symmetries of the curvature tensor, and Cabcd

is called the Weyl tensor. The coe�cients in the first two lines are chosen so the contraction of

the Weyl tensor vanishes,

Ca
bac = 0.

The Weyl tensor will be helpful in simplifying the optical equation for the distortion in an

inhomogeneous universe.

Another scalar that can be constructed from the Riemann tensor is the Kretschmann scalar :

K = RabcdR
abcd. (20)

For a Schwarzschild black hole of mass M , the Kretschmann scalar is

K =
48G2M2

c4r6
,

which is not infinite at the event horizon r = 2M , hence we can tell immediately that the event

horizon is a coordinate singularity not a real one. Likewise we can tell immediately that there

is a real singularity at r = 0.

0.1.4 Einstein tensor

Taking the Bianchi identities (15), and raising a and contracting with c (i.e. ⇥gac) gives

reRbd +rcR
c
bde +rdR

c
bec = 0, (21)

which, on using the antisymmetry property in the third term, gives the Ricci tensor

reRbd +rcR
c
bde �rdRbe = 0. (22)

If we now raise b and contract with e (⇥gbe), we find

reR
e
d +rcR

ce
de �rdR = 0, (23)
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Using the antisymmetry properties of Ricci tensor we may write the second term as

rcR
ce

de = rcR
ec

ed = rcR
c
d = reR

e
d, (24)

so the first and secod terms in (23) are identical and we obtain

2reR
e
d �rdR = re(2R

e
d � �edR) = 0. (25)

Finally, raising the index d (⇥gdb), we obtain the important result

ra(R
ab � 1

2
gabR) = 0. (26)

The term in parentheses is called the Einstein tensor

Gab ⌘ Rab � 1

2
gabR. (27)

It is clearly symmetric Gab = Gba and thus possesses only one independent divergence raGab

which vanishes.

HW 0.1.d: Show that raGab = 0.

Hint: by contracting the second Bianchi identities, show that Ra
b;a = 1

2R;b.

The trace

gabGab = gabRab �
1

2
gabgabR, (28)

G = R� 1

2
nR,

G =
2� n

2
R.

The special case of n = 4 dimensions gives the trace of the Einstein tensor as the negative

of the Ricci tensor’s trace, i.e. G = �R. Thus another name for the Einstein tensor is the

trace-reversed Ricci tensor.
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0.1 The Einstein Tensor

Example 0.1.3: The 2D sphere.

Let us get back to the metric of the surface of a sphere, with radius a, in spherical polar
coordinates.

ds2=a2d✓2 + a2 sin2 ✓d�2.

Then, we have the metric and its inverse

gab =

✓
a2 0
0 a2 sin2 ✓

◆
gab =

✓
1/a2 0
0 1/a2 sin2 ✓

◆

Therefore, g✓✓ = a2, g�� = a2 sin2 ✓, g✓✓ = 1/a2, g�� = 1/a2 sin2 ✓. In two dimensions
there are only six (23 minus the symmetric part) independent connection coe�cients,

�✓✓✓, �✓✓�, �✓��, ��✓✓, ��✓�, ����.

and the only derivative di↵erent from zero is g��,✓ = 2a2 sin ✓ cos ✓. Therefore the
Christo↵el symbols are given by

�✓✓✓ = 0, �✓✓� = 0, �✓�� = � sin ✓ cos ✓,

���� = 0 ��✓✓ = 0, ��✓� = cot ✓.

In two dimensions the Riemann tensor has only one independent non zero component,
due to all the symmetries it satisfies: R✓�✓� = R�✓�✓ = �R✓��✓ = �R�✓✓�. And accord-
ing to previous calculations:

R✓�✓� = @✓�
✓
�� � @��

✓
�✓ + �i

���
✓
i✓ � �i

�✓�
✓
i�.

Since there are no � derivatives, the second term vanishes. Since �✓i✓ = 0, the first
double � term vanishes too. Therefore, we get

R✓�✓� = @✓�
✓
�� � ���✓�

✓
�� � �✓�✓�

✓
✓�

= @✓(� sin ✓ cos ✓)� (cot ✓)(� sin ✓ cos ✓)

= sin2 ✓ � cos2 ✓ + cos2 ✓ = sin2 ✓.

Therefore R✓�✓� = g✓iRi
�✓� = sin2 ✓ and

R�✓�✓ = g��R�✓�✓ =
1

sin2 ✓
sin2 ✓ = 1.
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Example 0.1.4: The 2D sphere.

The Ricci tensor is then:

R✓✓ = Ri
✓i✓ = R✓✓✓✓ +R�✓�✓ = 1.

R�� = Ri
�i� = R✓�✓� +R���� = sin2 ✓.

R✓� = R�✓ = Ri
✓i� = R✓✓✓� +R�✓�� = 0.

The Ricci scalar is:

R = gabRab = g✓✓R✓✓ + g��R�� =
1

a2
+

✓
1

a2 sin2 ✓

◆
(sin2 ✓) =

2

a2
.

The resulting Einstein tensor:

Gab = Rab �
1

2
Rgab = 0,

for all a, b 2 [✓,�]. Thus the Gaussian curvature K (defined later) of a spherical surface
is given by

K =
R1212

|g| =
a2 sin2 ✓

a4 sin2 ✓
=

1

a2
.
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0.1 The Einstein Tensor

Alternatives to GR

“In general relativity (GR) it is assumed, without empirical support, that torsion vanishes

identically. Of course, one may claim that the experimental success of GR justifies the vanishing-

torsion hypothesis. However, as it is argued below, all GR tests are compatible with a non-

vanishing torsion, and, as a basic assumption of the theory, it is paramount to experimentally

test it.”[? ] Furthermore, another important hypothesis is the fact that c,G, and ↵ are constant,

nevertheless, some important cosmological implications emerge when these are not. In this paper

some models where all this standard assumptions may change are discussed.

Einstein-Cartan theory

The theory was first proposed by Élie Cartan in 1922 [? ] and expounded in the following few

years. This model states that GR must be extended in order to include an a�ne torsion, which

in contrast with GR, allows the possibility of having an asymmetric Ricci tensor. Nowadays,

this theory that extend the Riemannian geometry in that direction is better known as Riemann-

Einstein-Cartan geometry and is determined by the following features:

• A specific choice of the metric tensor.

• A specific a�ne torsion tensor.

• Parallel transport must preserve lengths and angles as in the usual Riemannian geometry.

The corresponding equations of motion derived from the action variation are given by:

Rak � 1

2
gakR =

8⇡G

c4
Pak,

Sk
ab =

8⇡G

c4
�k
ab,

where �k
ab is the spin tensor of the source. Sk

ab = T k
ab + gkaT

m
bm � gkb T

m
am is the modified torsion

tensor. And, finally T k
ab is the a�ne torsion tensor that characterised these models. In the

first equation one can see that it has the same structure than the usual Einstein’s equations.

Meanwhile, the second equation expresses the angular momentum conservation considering the

spin-orbit interaction. Therefore, GR can be understood as a limit of the more general Riemann-

Einstein-Cartan theory of gravity. Moreover, it is expected that this theory will prove to be a

better classical limit of a future quantum theory of gravitation than the theory without torsion

[? ].
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Variable c and G

In contrast with what know from GR, the idea of a variable (non-constant) speed of

light (VSL) has been considered over the years. Actually, Einstein itself thought seriously

this idea in 1911 [? ], where he assumed that clocks in a gravitational field run slower,

whereby the corresponding frequencies are influenced by the gravitational potential. Later, in

1915 he concluded that light speed is constant when gravity does not have to be considered

but that the speed of light cannot be constant in a gravitational field with variable strength [? ].

Nowadays, this idea is still present but in cosmological models such as the alternative to

inflation proposed by Jean-Pierre Petit, John Mo↵at, Andreas Albrecht and JoÃ£o Magueijo

[? ? ? ], where also the Newton’s constant G is no longer a constant. In the minimally coupled

theory one then simply replaces c by a field in a preferred frame. Hence, the action is given by

S =

Z
d4x

✓p
�g

✓
 (R+ 2⇤)

16⇡G
+ Lmat

◆
+ L 

◆
,

where  (xµ) = c4. One can solve the cosmological field equations that define it for general

power-law variations of “c” and “G”. This allows us to determine the rate and sense of the

changes required in “c” if the flatness, horizon, and cosmological constant problems are to be

solved. The period when “c” varies is expected to happen only during the very early universe,

therefore its observational remnants should be observable through the CMB fluctuations.

Variable ↵

It has been suggested by some astronomical observation that perhaps ↵, the fine structure

constant, should not be strictly a constant, and this idea led to a serious consideration of a

variable ↵ by Jacob Bekenstein in 1981 [? ]. However, one big consequence is that Maxwell’s

equations must be modified, but in order to test the viability of this conception, purely

electromagnetic experiments are not enough. On the other hand, since the cosmological

perspective, the framework predicts an ↵̇
↵ which can be compatible with the astronomical

constraints; hence, these are too insensitive to determine any possible variability. In VSL

theories a varying ↵ is interpreted as c / h / ↵�1/2 and e is constant, Lorentz invariance is

broken, and so by construction there is a preferred frame for the formulation of the physical laws.

-10-



0.1 The Einstein Tensor

Thus, so far, this idea cannot be ruled out with the experimental evidence, and more future

tests are needed in order to determine its viability.

Some model with torsion and c,G and ↵ varying has been discussed. Although most of these

theories are not in contradiction with observational evidence, sometimes the framework looks

more complicated than the ordinary one. Nevertheless, they are a valid and consistent approach

that could be helpful to solve for example some cosmological problems.
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