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1
Statistics in Cosmology

In the previous chapter we have developed the main equations to describe the evolution of

the background and perturbed universe. We noticed, however, that the whole structure of the

CMB, matter power spectrum and luminosity distance depend strongly on the initial conditions

emerging from the inflationary era (PR,T ), on the matter-energy content (Ωi,0), and on the

expansion rate history (H0). This chapter seeks to give a brief introduction of such quantities

used to describe the properties of the universe. We show current and future experimental results

used throughout the analysis: CMB, SNe and LSS amongst many others. It also includes a short

description of the Bayesian analysis to perform the parameter estimation and model selection.

Finally, at the end of the chapter, by making use of the theoretical, observational and statistical

tools included in this work, we examine the standard ΛCDM model (spatially flat and non-flat),

and present the current constraints on the cosmological parameters.

1.1 The Cosmological Parameters

1.1.1 Base parameters

These parameters, commonly called standard parameters, are considered as the principal quan-

tities used describe the universe. They are not, however, predicted by any fundamental theory,

rather we have to fit them by hand in order to determine which combination best describes the

current astrophysical observations [34, 38]. Variations of these parameters affect the amplitude

and shape of the spectra as well as the background evolution in many different ways, yield-

ing to very different universes. They are classified depending on whether they characterise the

background or the perturbed universe:
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Figure 1.1: Dependence of the temperature power spectrum for three fundamental quantities:

Curvature (Ωk), Baryons (Ωb) and Dark energy in the form of a cosmological constant (ΩΛ).

Background parameters

The present description of the homogeneous universe can be given in terms of the density

parameters Ωi,0 and the Hubble parameter H0, through the Friedmann equation (??):

H2 = H2
0

[
(Ωγ,0 + Ων,0) a−4 + (Ωb,0 + Ωdm,0) a−3 + Ωk,0a

−2 + ΩX,0a
−1 + ΩΛ,0

]
, (1.1)

From these parameters the radiation contribution is accurately measured, for instance by the

WMAP satellite, corresponding to Ωγ,0 = 2.469 × 10−5h−2 for Tcmb = 2.725K. Similarly

for neutrinos, while taken as relativistic, they can be related to the photon density through

(??). However, variations of the rest of the parameters imprint different signatures on the

background history and evolution of perturbations, observed through the CMB spectrum as it

is illustrated in Figure 1.1. We observe that the first peak (and the most prominent, at l ≈ 200)

is particularly related to the spatial geometry Ωk,0; the relative heights of the intermediate

peaks probe the baryon density; the largest scales are mainly affected by the dark energy

component.
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Figure 1.2: Theoretical values of the distance modulus µ for three different models; with various

combinations of matter Ωm,0 and dark energy in the form of a cosmological constant ΩΛ,0.

Figure 1.3: Cosmic Degeneracy

These base parameters also play a key role on measurements of the distance modulus µ,

through the luminosity distance (??). Figure 1.2 shows the theoretical values of the distance

modulus for three different models with various combinations of Ωm,0 and ΩΛ,0. Note that

objects appear to be further away (dimmer) in a universe with cosmological constant than one

dominated by only matter today.

The existence of strong degeneracies amongst different combinations of parameters is also

noticeable. In particular the well-known geometrical degeneracy involving Ωm, ΩΛ and the cur-

vature parameter Ωk = 1− Ωm − ΩΛ.

To reduce degeneracies it is common to introduce a combination of the cosmological pa-
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1. STATISTICS IN COSMOLOGY

rameters such that they have orthogonal effects on the power spectrum [32]. For instance, a

standard parameterisation is based on the physical energy-densities of cold dark matter Ωdmh
2,

and baryons Ωbh
2, and the ratio of the sound horizon to the angular diameter distance at

decoupling time:

θ =
rs(adec)

DA(adec)
. (1.2)

There is an extra parameter that accounts for the reionisation history of the universe, the

optical depth to scattering τ (i.e. the probability that a given photon scatters once), given by

τ = σT

∫ t0

tr

ne(t)dt, (1.3)

where σT is the Thompson cross-section and ne(t) is the electron number density as a function

of time.

Inflationary parameters

After the horizon exit, H and φ̇ have small variations during few e-folds. Thus, the scalar (??)

and tensor (??) spectra are nearly scale independent. The standard assumption is therefore to

parameterise each of the spectra in terms of a power-law

PR(k) = As

(
k

k0

)ns−1

, (1.4)

PT (k) = At

(
k

k0

)nt

. (1.5)

where As, At are the spectral amplitudes, and ns, nt the spectral indices or tilt parameters, for

both scalar and tensor perturbations respectively; k0 denotes an arbitrary scale at which the

tilted spectrum pivots, usually fixed to k0 = 0.002 Mpc−1. A scale-invariant spectrum, called

Harrison-Zel’dovich (HZ), has constant variance on all length scales and it is characterised by

ns = 1, nt = 0. Small deviations from scale-invariance are also considered as typical signatures

of inflationary models [40]. The spectrum of perturbations is said to be blue if ns > 0 (more

power in ultraviolet), and red if ns < 0 (more power in infrared). The spectral indices, ns and

nt, and the tensor-to-scalar ratio r can be expressed in terms of the slow-roll parameters εv and

ηv (??), as:

ns − 1 ' −6 εv(φ) + 2 ηv(φ), (1.6)

nt ' −2 εv(φ), (1.7)

r ' 16 εv(φ). (1.8)
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Figure 1.4: Variations of the CTT scalar spectrum for different values of the spectral index ns

(left), and variations of the CBB tensor spectrum with respect to the tensor-to-scalar ratio r

(right).

These parameters are not completely independent each other, but the tensor spectral index

is proportional to the tensor-to-scalar ratio r = −8nt [12]. This expression is considered as

the consistency relation for slow-roll inflation. Any single-field inflationary model can hence

be described, to the lowest order in slow-roll, in terms of three independent parameters: the

amplitude of density perturbations As, the scalar spectral index ns, and the tensor-to-scalar

ratio r. Variations of the CMB T -spectrum over different values of ns are shown in the left

panel of Figure 1.4.

In addition to the temperature T and polarisation E spectra, produced by scalar perturba-

tions, there is also the B-mode polarisation only produced by tensor perturbations. Therefore,

measurements of B-modes are important tests for the existence of primordial gravitational

waves. Unfortunately, there is no observational evidence of tensor perturbations yet, and r is

commonly set to zero. The next generation of CMB polarisation experiments will substantially

improve these limits (see Section 1.2.2). Variations of the CBB tensor spectrum with respect

to the tensor-to-scalar ratio r are displayed in the right panel of Figure 1.4.

1.1.2 Nuisance parameters

We do not have particular interest on these type of parameters, however they may influence

the rest of the parameter-space constraints. These type of parameters may be related to insuffi-

ciently constrained aspects of physics, or uncertainties in the measuring process [? ]. Therefore,
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1. STATISTICS IN COSMOLOGY

considering their uncertainty is important in order to obtain accurate error-estimates on the

physical parameters we are seeking to determine. Examples of nuisance parameters are, for

instance, the bias factor in galaxy surveys b, calibrations and beams uncertainties, galactic

foregrounds. The new ACT measurements (three seasons of data [59]) incorporate nine param-

eters describing secondary emissions. Nuisance parameters also control the stretch α and colour

β corrections on measurements of distance modulus of SNe Type Ia [43].

1.1.3 Derived parameters

The standard set of parameters, introduced previously, provide an adequate description of the

cosmological models in agreement with observational data. However, it is not unique and other

parameterisations may be as good as this one. Some parameterisations make use of knowledge

about physics or sensitivity of observations and are hence more naturally interpreted. In general

we could have used different parameters to describe the universe, those include: the age of the

universe, the present neutrino background temperature, the epoch of matter-radiation equality,

the reionisation epoch, the baryon to dark matter density ratio, or some other combinations of

parameters, i.e. the overall amplitude of the CMB anisotropy exp(−2τ)As [? ]. In the ΛCDM

model, to ameliorate degeneracies, we use as base parameters the physical energy densities

Ωdm,0h
2 and Ωb,0h

2, and the ratio of the sound horizon to the angular diameter distance θ; we

consider as derived quantities the density parameters Ωi,0 and Hubble parameter H0.

1.1.4 Beyond the concordance ΛCDM

The best model in agreement with data, at present time, is given by the concordance ΛCDM

model. However, this model might not be the final one and several extensions have already been

implemented. A non-exhaustive list of candidates beyond the standard cosmological model is

shown in Table 1.1. The definite answer on how many parameters we must include or which set

of parameters represents the most plausible will be given by high-quality cosmological observa-

tions in the coming years. In the same table, we have highlighted the models studied in detail

throughout this work.

1.2 Observations

Rapid advance in the development of powerful observational-instruments has led to the es-

tablishment of precision cosmology. In particular, experiments employed to measure CMB

-6-



1.2 Observations

Table 1.1: Candidate parameters used to describe models beyond the concordance ΛCDM. The

highlighted models are studied in detail throughout this work.

αRn Modifications to gravity

[or more complex theories]

ds̃2 Anisotropic universe

dα/dz, dG/dz Variations of fundamental constants

fNL Non-gaussianity

nrun Running of the scalar spectral index

kcut Large-scale cut-off in the spectrum

[or a more complex parameterisation of PR(k)]

r + 8nt Violation of the inflationary consistency relation

nt,run Running of the tensor spectral index

[or a more complex parameterisation of PT (k)]

Piso CDM isocurvature perturbations

Ωk,0 Spatial curvature

ΩX,0 Additional components

mdm Warm dark matter mass

[or scalar field dark matter]

mνi Neutrino mass for species ‘i’

wDE Dark energy equation-of-state

[or a more complex parameterisation of w(z)]

ρα Polytropic equation of state

Γ Interacting fluids

anisotropies, luminosity distances and large-scale structure. In this section, we highlight these

type of experiments used to impose constraints on the cosmological parameters.

1.2.1 Current observations

CMB experiments

A number of experiments over the past decade or so have been very successful in measuring

the anisotropies of the CMB. They include the Cosmic Background Explorer satellite [COBE;

45] as the pioneer of detecting the anisotropy. Nowadays with highly-improved experiments it

is possible to find accurate measurements of the temperature and polarisation CMB spectrum

from:
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1. STATISTICS IN COSMOLOGY

Satellite experiments:

• The Wilkinson Microwave Anisotropy Probe [WMAP; 31, 35], with CMB T -spectrum

measurements over the multipoles (2 < l < 1200). Recently the WMAP collaboration has

released the 9-year of observations [22].

Ground-based telescopes:

• The Background Imaging of Cosmic Extragalactic Polarization [BICEP; 11], probes in-

termediate scales (21 ≤ l ≤ 335).

• The Quest (Q and U Extra-Galactic Sub-mm Telescope) at DASI (Degree Angular Scale

Interferometer) [QUAD; 9], improve polarisation constraints, whose primary aim is high

resolution measurements (154 ≤ l ≤ 2026) of the polarisation signals.

• The Cosmic Background Imager [CBI; 60], constrains the CMB spectrum in the range

(300 ≤ l ≤ 1700).

• The Atacama Cosmology Telescope [ACT; 15], observes the small angle CMB T -spectrum

from l= 300 to l=10000, and recently released the three seasons of data [59].

• The South Pole Telescope [SPT; 29], with CMB T -measurements between (650 < l <

9500), and recent improved data from the 2500-square-degree SPT-SZ survey [63].

Ballon-borne experiments:

• Balloon Observations Of Millimetric Extragalactic Radiation AND Geophysics

[BOOMERanG; 28], measures CMB temperature fluctuations over the multipole range

50 ≤ l ≤ 1500.

Figure 1.5 summarises the current status of some experiments constraining the temperature

(TT ), polarisation (EE) and cross-correlation (T -E) CMB power spectra. In particular the

CMB T -power spectrum is now well-constrained over a wide range of scales. For example,

WMAP and BICEP observations provide good constraints on the late-time ISW effect arising

at the largest scales on the first three acoustic peaks, whilst ACT and SPT data accurately

measure the power of higher acoustic peaks and damping tail. Intermediate scales are well

constrained by QUAD and CBI experiments, and the overlapping of all of them. In addition

to T,E and T -E CMB spectra, Figure 1.6 shows the theoretical B-mode spectrum predicted

from a power-law parameterisation, with r = 0.1, along with 1σ constraints obtained from
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Figure 1.5: Current status of temperature (TT ), polarisation (EE) and cross-correlation (T -E)

measurements of the CMB power spectra, by various observational probes.

current observations: WMAP, BICEP and QUAD.

At this point it is worthwhile mentioning the existence of an intrinsic uncertainty in the

cosmological measurements. This limitation comes from the fact that we have to do statistics

with only one universe. For a given multipole l, we expect to have a variance, called the cosmic

variance, of the Cl’s given by

(∆Cl)
2 =

2

2l + 1
C2
l . (1.9)

In real experiments, the error is increased due to the limited sky coverage by f−1
sky.

CMB measurements by themselves cannot, however, place strong constraints on all the pa-

rameters because the existence of parameter degeneracies, such as the τ −As and the geomet-

rical degeneracy. Nevertheless, when CMB observations are combined with other cosmological

probes, they together increase the constraining power and considerably weaken degeneracies.
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Figure 1.6: WMAP, BICEP and QUaD constraints for the B-mode power spectrum. The solid

line represents the theoretical prediction of a r = 0.1.

Figure 1.7: Current status of measurements of the Hubble diagram of Type Ia supernovae.

Reprinted from the Union 2.1 compilation [65].

Supernovae observations

Throughout the past two decades supernovae observations have provided decisive evidence that

the present expansion of the universe is accelerating. In particular studies of Type Ia supernovae

as standard candles: they have the same intrinsic magnitude with high accuracy, up to a rescaling

factor, e.g. Perlmutter et al. [50], Riess et al. [57]. Hence, the current acceleration suggests the

existence of an exotic component or alternative theories which would produce such an effect, as

we will see in Chapters ?? and ??. Branch and Tammann [7] provides a brief introduction to

Type Ia supernovae (SNe Ia) as standard candles, and ? ] shows their use in cosmology. Some

samples of supernovae Type Ia worth mentioning include:

• The Sloan Digital Sky Survey-II [SDSS-II; 19], discovered and measured multi-band
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Fig. 5.— The reconstructed matter power spectrum: the stars show the power spectrum from combining ACT and WMAP data (top
panel). The solid and dashed lines show the nonlinear and linear power spectra respectively from the best-fit ACT ΛCDM model with
spectral index of ns = 0.96 computed using CAMB and HALOFIT (Smith et al. 2003). The data points between 0.02 < k < 0.19 Mpc−1

show the SDSS DR7 LRG sample, and have been deconvolved from their window functions, with a bias factor of 1.18 applied to the data.
This has been rescaled from the Reid et al. (2010) value of 1.3, as we are explicitly using the Hubble constant measurement from Riess et al.
(2011) to make a change of units from h−1Mpc to Mpc. The constraints from CMB lensing (Das et al. 2011), from cluster measurements
from ACT (Sehgal et al. 2011), CCCP (Vikhlinin et al. 2009) and BCG halos (Tinker et al. 2011), and the power spectrum constraints
from measurements of the Lyman–α forest (McDonald et al. 2006) are indicated. The CCCP and BCG masses are converted to solar mass
units by multiplying them by the best-fit value of the Hubble constant, h = 0.738 from Riess et al. (2011). The bottom panel shows the
same data plotted on axes where we relate the power spectrum to a mass variance, ∆M/M, and illustrates how the range in wavenumber k
(measured in Mpc−1) corresponds to range in mass scale of over 10 orders of magnitude. Note that large masses correspond to large scales
and hence small values of k. This highlights the consistency of power spectrum measurements by an array of cosmological probes over a
large range of scales.

Friday, 15 February 2013

Figure 1.8: Current status of the perturbation power spectrum as measured by different experi-

ments. Figure reproduced from [23].

lightcurves for 327 spectroscopically confirmed Type Ia supernovae in the redshift range

0.05 < z < 0.35.

• The Equation of State: SupErNovae trace Cosmic Expansion program [ESSENCE; 47],

discovered and analysed 60 Type Ia supernovae over the redshift interval 0.15 < z < 0.70,

• The Supernova Legacy Survey 3-year sample [SNLS; 64], presented 252 high redshift Type

Ia supernovae (0.15 < z < 1.1).

• The Hubble Space Telescope [HST; 55], discovered 21 Type Ia supernovae at z ≥ 1.

• Recently the compilation of data from all the above, namely the ‘Union’ [33], ‘Union 2’

[3] and ‘Union 2.1’ [65].

Supernovae measurements can be plotted on a Hubble diagram with distance modulus vs.

redshift (as seen in Figure 1.7), and then be used to fit the best cosmological parameters, for

instance those shown in Figure 1.2.

LSS measurements

The matter power spectrum is nowadays one of the most important measures of large-scale

structure. Many observations have been made to infer the spectrum:

• The sample of Luminous Red Galaxies (LRGs) from the Sloan Digital Sky Survey Seventh

Data Release (DR7) [54], provides measurements on the matter spectrum between 0.02 <
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1. STATISTICS IN COSMOLOGY

k < 0.19Mpc−1. Nowadays with improved measurements, one has the ninth data released

(DR9) of the SDSS-III [1].

• Measurements of the transmitted flux in the Lyα forest probe the smallest scales in the

matter power spectrum [46].

An illustration of the matter power spectrum of density fluctuations is shown in Figure 1.8

(see [23] and references therein).

1.2.2 Future surveys

An impressive array of ambitious projects have been implemented, or are underway, to provide

high resolution measurements of the physical properties of the universe, and hence the search

for possible signatures of new cosmology. The Planck satellite [52] will improve measurements

on the E and B polarisation modes. Along with Planck satellite there will be several experi-

ments aiming to provide measurements of small-scale fluctuations and polarisations, such as

the E and B EXperiment [EBEX; 49], Q-U-I JOint TEnerife CMB experiment [QUIJOTE; 58]

and Spider [13]. Besides CMB experiments, the Euclid satellite [16] will explore the expansion

history of the universe and the evolution of cosmic structures over a very large fraction of the

sky. The Dark Energy Survey [DES; 66] is designed to probe the origin of the accelerating

universe and help uncover the nature of dark energy.

Previously we have shown current constraints of the temperature and polarisation CMB

spectra. Here, we aim to explore future constraints coming from Planck satellite and CMB-Pol

experiments. Performance assumptions for Planck and CMB-Pol are taken from [52] and [5]. In

order to do this we need to simulate these experiments by generating mock data of the Ĉl
XY

’s

from a χ2
2l+1 distribution with variances [53]:

(∆ĈXXl )2 =
2

(2l + 1)fsky

(
CXXl +NXX

l

)2
, (1.10)

(∆ĈTEl )2 =
2

(2l + 1)fsky

[(
CTEl

)2
+
(
CTTl +NTT

l

) (
CEEl +NEE

l

)]
, (1.11)

where X = T,E and B label the temperature and polarisations; fsky is the fraction of the

observed sky. The CXYl ’s represent the theoretical spectra and NXY
l the instrumental noise

spectra for each experiment. In experiments with multiple frequency channels c, the noise

spectrum is approximated [6] by

-12-
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Figure 1.9: Polarisation noise power spectra of forthcoming experiments. Note that these curves

include uncertainties associated with the instrumental beam. The red line shows the B-mode power

spectrum for the standard inflationary model with r = 0.1.

NX
l =

(∑
c

1

NX
l,c

)−1

, (1.12)

where the noise spectrum of an individual frequency channel, assuming a Gaussian beam, is

NX
l,c = (σpix θfwhm)2 exp

[
l(l + 1)

θ2
fwhm

8 ln 2

]
δXY . (1.13)

The pixel noise from temperature and polarisation maps are considered as uncorrelated. The

noise per pixel σXpix (and σPpix =
√

2σTpix) depends on the instrumental parameters; θfwhm is the

full width at half maximum (FHWM) of the Gaussian beam.

For the Planck experiment, we include three channels with frequencies (100 GHz, 143 GHz,

217 GHz) and noise levels per beam (σTpix)2= (46.25 µK2, 36 µK2, 171 µK2). The FHWM of

the three channels are θfwhm =(9.5, 7.1, 5.0) arc-minute. These figures are taken from the values

given in [52]. We combine three channels for the CMBPol experiment [5] with frequencies (100

GHz, 150 GHz, 220 GHz), noise levels (σTpix)2 = (729 nK2, 676 nK2, 1600 nK2) and θfwhm =

(8, 5, 3.5) arc-minute. Sky coverages of fsky = 0.65, 0.8 are respectively assumed and integration

time of 14 months. In Figure 1.9, we show the noise levels for these experiments as a function

of multipole number l. The blue line corresponds to the B-mode power spectrum using the

standard power-law parameterisation with r = 0.1. The lensed CBl is also shown in the same

figure, which can be treated as a part of the total noise power spectrum NB
l as well as the

instrumental noise power spectra [51]. For more information of the noise and beam profile of

each frequency channel, refer to [42].
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1. STATISTICS IN COSMOLOGY

1.3 Bayesian Analysis

Over the last decade or so, the vast amount of information coming from a wide range of

sources, including CMB, SNe and LSS, has increased amazingly. We would like to translate this

experimental/observational information into constraints of our model(s), summarised by the

estimation of the cosmological parameters involved. The concordance ΛCDM model, previously

described, depends on a set of cosmological parameters shown in Section 1.1. A primary goal

concerning observational cosmology is to determine best-fit parameter values for a given model,

as well as to decide which model is in best-agreement with observational data. To do this we

focus on Bayesian inference. Some excellent reviews of Bayesian statistics applied to cosmology

are given by Heavens [21], Liddle [39], Liddle et al. [41], Verde [67, 68], von Toussaint [69? ],

and the textbook for data analysis Sivia and Skilling [61].

1.3.1 Parameter estimation

A Bayesian analysis provides a consistent approach to estimating the values of the param-

eters Θ within a model M , which best describe the data D. The method is based on the

assignment of probabilities to the quantities of interest, and then the manipulation of these

probabilities given a series of rules, in which Bayes’ theorem plays the main role [39]. Bayes’

theorem states that

P (Θ|D,M) =
P (D|Θ,M) P (Θ|M)

P (D|M)
. (1.14)

In this expression, the prior probability P(Θ|M) ≡ π represents what we thought the

probability of Θ was before considering the data. This probability is modified through

the likelihood P(D|Θ,M) ≡ L. The posterior probability P(Θ|D,M) represents the state of

knowledge once we have taken the experimental data D into account. The normalisation

constant in the denominator is the marginal likelihood or Bayesian evidence P(D|M) ≡ Z,

as is normally called in cosmology. Since this quantity is independent of the parameters Θ, it

is commonly ignored in parameter estimation but it takes the central role for model comparison.

The central step for parameter estimation is to construct the likelihood function L for the

measurements, and then the exploration of the region around its maximum value Lmax. A

simple chi-squared function is often used χ2 = −2 lnL. when the distributions are Gaussian.

However, some current problems in cosmology present obstacles for carrying out this procedure
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1.3 Bayesian Analysis

straightforwardly (some of them discussed by Liddle [39]). Fortunately, models of our interest

can be easily tackled by numerical techniques developed on statistical fields, in particular the

methods known as Markov Chain Monte Carlo (MCMC). There have been developed different

codes employing MCMC techniques to carry out the exploration of the cosmological parameter-

space, for instance CosmoMC [36], CosmoHammer [2], CMBEASY [14]. Although some of

them use a simple Metropolis-Hasting algorithm by default, nowadays improved algorithms

have been adapted to explore complex posterior probability distributions.

Discriminating among models and determining which of them is the most plausible given

some data is a task for model comparison techniques, whose application is discussed in the next

section.

1.3.2 Model selection

There is nowadays a rich diversity of models trying to describe the vast amount of cosmological

information. Some of them might involve complex interactions or introduce a high number

of parameters, but provide just as good fit as the standard ΛCDM model (see Table 1.1).

So, how can we perform an objective comparison between them and choose the appropri-

ate model?. The solution was proposed by William of Occam: the simplest model which

covers all the facts ought to be preferred. That is, a complex model that explains the data

slightly better than a simple one should be penalised by the inclusion of extra parameters,

because this additional information reflects a lack of predictability in the model. Moreover,

if a model is too simple, it might not fit certain data equally well, then it can be discarded [41? ].

Many attempts have been performed to translate Occam’s razor into a mathematical

language for model selection. Two major types have been used so far: Bayesian evidence and

Information criteria; where the latter one can be used as an useful approximation when the

Bayesian evidence cannot be computed.

Information criteria is based on some simplifying approximations to the full Bayesian

evidence. The method considers the best-fit values and attaches a penalty term for more complex

models:

• The Akaike Information criterion (AIC), introduced by Hirotugu Akaike has the form

AIC ≡ −2 lnLmax + 2k, (1.15)
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where the penalty term is induced by the number of free parameters k to be estimated.

• The Bayesian Information Criterion (BIC), was derived by Gideon E. Schwarz and it is

given by

BIC ≡ −2 lnLmax + k lnN, (1.16)

where N is the number of datapoints. It follows from a Gaussian approximation of the

Bayesian evidence for a large number of samples.

• The Deviance Information Criterion (DIC), was proposed by David J Spiegelhalter. It is

a generalization of the AIC and BIC written as

DIC ≡ −2D̂KL + 2Cb, (1.17)

where the former term is the estimated KL divergence and the latter one is the effective

number of parameters.

An extended discussion of the different information criteria can be found in [38, 41? ].

Bayesian evidence. This is the primordial tool for the model selection we focus on. It

applies the same type of analysis as in parameter estimation, but now at the level of models

rather than parameters. The Bayesian evidence is the key quantity to bear in mid as it

balances the complexity of cosmological models and then, naturally, incorporates Occam’s

razor. It has been applied to a wide diversity of cosmological contexts, see for example [24, 27? ].

Let us consider several models M , each of them with prior probability P (M). Bayes’ theorem

for model selection is

P (M |D) =
P (D|M)P (M)

P (D)
. (1.18)

The left-hand side denotes the probability of the model given the data, which is exactly what

we are looking for in model selection. We need, therefore, to obtain an expression that allows

us to compute the Bayesian evidence in terms of the information we already have. As we pre-

viously mentioned, the Bayesian evidence is simply the normalisation constant of the posterior

distribution expressed by

Z =

∫
L(D|Θ)π(Θ)dNΘ. (1.19)
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Table 1.2: Jeffreys guideline scale for evaluating the strength of evidence when two models are

compared.

|Bi,j | Odds Probability Strength

< 1.0 < 3 : 1 < 0.750 Inconclusive

1.0-2.5 ∼ 12 : 1 0.923 Significant

2.5-5.0 ∼ 150 : 1 0.993 Strong

> 5.0 > 150 : 1 > 0.993 Decisive

whereN is the dimensionality of the parameter space. More explicitly, it is the average likelihood

weighted by the prior for a specific model choice:

Evidence =

∫
(Likelihood× Prior)dNΘ. (1.20)

A model containing wider regions of prior parameter-space along with higher likelihoods will

have a high evidence and vice versa. Therefore, the Bayesian evidence does provide a natural

mechanism to balance the complexity of cosmological models and then, elegantly incorporates

Occam’s razor.

When comparing two models, Mi and Mj , the important quantity to bear in mind is the

ratio of the posterior probabilities, or posterior odds, given by

P (Mi|D)

P (Mj |D)
=
Zi
Zj

P (Mi)

P (Mj)
, (1.21)

where P (Mi)/P (Mj) is the prior probability ratio for the two models, usually set to unity. The

ratio of two evidences Zi/Zj (or equivalently the difference in log evidences lnZi − lnZj) is

often termed the Bayes factor Bi,j :
Bi,j = ln

Zi
Zj
. (1.22)

Then, the quantity Bi,j measures the relative probability of how well model i may fit the

data when is compared to model j. Jeffreys [26] provided a suitable guideline scale on

which we are able to make qualitative conclusions (see Table 1.2). In this work, we refer

to positive (negative) values of Bi,j when the i model being favoured (disfavoured) over model j.
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The calculation of the integral in Equation (1.19) is a very computationally demanding pro-

cess, since it requires a multidimensional integration over the likelihood and prior. For many

years much progress has been made in the construction of efficient algorithms to allow faster

and more accurate computation of the Bayesian evidence. Until recently, algorithms such as

simulating annealing or thermodynamic integration [8], required around 107 likelihood eval-

uations making the procedure hardly treatable. A powerful algorithm was recently invented

by Skilling [62], known as nested sampling algorithm, which has been proven to be ten times

more efficient than previous methods. The first computationally-efficient code to compute the

Bayesian evidence in cosmology, named CosmoNest, was implemented by Mukherjee et al.

[48]. In this work we incorporate into the CosmoMC software [36] a substantially improved

and fully-parallelized version of the nested sampling algorithm, called the Multinest algo-

rithm, initially proposed by Feroz & Hobson [17, 18]. The MultiNest algorithm increases the

sampling efficiency for calculating the evidence and allows one to obtain posterior samples even

from distributions with multiple modes and/or pronounced degeneracies between parameters.

There is also CosmoPMC which is based on an adaptative importance sampling method called

Population Monte Carlo [30]. For more complex models with high number of parameters, there

also exist improved codes to increase the speed of the whole process by employing, for instance,

neuronal networks: CosmoNet [4]. BAMBI is an algorithm that combines the benefits of both

the nested sampling and artificial neural networks [20].

1.3.3 Dataset consistency

Combining multiple datasets to obtain tight constraints on the cosmological parameters has

been a very common practice. Marshall et al. [44] established a test to quantify the consistency

of different cosmological datasets analysed under the same model (see also Hobson et al. [25]).

The Bayesian consistency analysis relies on partitioning the full combined dataset D into its

constituent parts Di (i = 1, . . . , n), namely CMB, SNe, LSS data, so on, and analyses the model

with each dataset independently. The evidence ratio is defined as

R =
Pr(D|H)∏n
i=1 Pr(Di|H)

, (1.23)

where the hypothesis H denotes the model under study. This ratio compares the probability

that all the datasets were generated from a cosmological model characterised by the same

parameter values, with the probability that each dataset was generated from an independent
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Parameters Description Prior range

Background

Ωb,0h
2 Physical baryon density [0.01, 0.03]

Ωdm,0h
2 Physical cold dark matter density [0.01, 0.3]

θ Ratio of the sound horizon to

the angular diameter distance [1, 1.1]

τ Reionization optical depth [0.01, 0.3]

Inflationary

log[1010As] Curvature perturbation amplitude [2.5, 4]

ns Spectral scalar index [0.5, 1.2]

Secondary

ASZ Sunyaev-Zel’dovich amplitude [0, 3]

Ac Total Poisson power [0, 20]

Ap Amplitude of the clustered power [0, 30]

Table 1.3: Parameter description along with the flat-uniform priors assumed on the standard

ΛCDM.

set of cosmological parameters. Thus, one expects R > 1 if the datasets are all consistent, and

R < 1 otherwise. The Bayes factor for data sets is given by BR = lnR.

1.4 The concordance ΛCDM model

In this section, we make use of the theoretical (Section 1.1), Observational (Section 1.2.1)

and Statistical (Section 1.3) tools to examine the standard cosmological model. The minimal

form of the standard cosmological model, in agreement with several independent observations,

considers a FRW background, purely Gaussian adiabatic scalar perturbations and neglect

tensor contributions. It also assumes a flat universe fill up with baryons, cold dark matter

and a dark energy component in the form of a cosmological constant Λ. The key aspects that

describe the standard model here, and throughout the work, are specified by:

- Theory/Parameters

Base parameters: the physical baryon and dark matter densities Ωb,0h
2 and Ωdm,0h

2, 100×
the ratio of the sound horizon to angular diameter distance at last scattering surface θ, the

optical depth at reionisation τ , the amplitude of the primordial spectrum As and the spectral

index ns defined at a pivot scale k0 = 0.002 Mpc−1. Aside from the base parameters, recent

observations include additional secondary parameters: the Sunyaev-Zel’dovich (SZ) amplitude
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ASZ , the total Poisson power Ap at l = 3000 and the amplitude of the clustered power Ac.

The parameters, along with the flat priors, are shown in Table 1.3.

-Observations/Experiments:

To compute posterior probabilities for each model in the light of temperature and polarisation

measurements, we use WMAP 7-year data release [31] and the ACT observations [15]. In

addition to CMB data, we include distance measurements of 557 Supernovae Type Ia from the

Union 2 compilation [33]. We also incorporate large-scale structure data from the SDSS-DR7

[54] power spectrum. We consider baryon density information from BBN [10] and impose a

Gaussian prior on H0 using measurements from the HST [56]. This compromises our dataset I.

In addition to dataset I, we include recent results from QUaD [9] and BICEP [11] experiments.

Together these observations make up our dataset II.

-Analysis/Codes:

The computation of the CMB spectrum is perform by a modified version of the CAMB code

[37] to include any additional components and calculate the predicted power spectra of CMB

anisotropies and matter perturbations. The exploration of the parameter-space is carried out

by using the CosmoMC software [36] with the addition of the Multinest algorithm [17]. The

latter is included to the perform the calculation of the Bayesian evidence.

We have analysed a standard flat ΛCDM model and, for pedagogical purposes, also the

same model but with the addition of curvature, with priors Ωk,0 = [−0.1, 0.1]. The top panel

of Figure 1.10 shows 1D marginalised posterior distributions of the base and some relevant

derived parameters, for both models: flat and non-flat ΛCDM. At the top of the same figure, we

have included the Bayes factor comparing both of them. For the non-flat model, we notice that

the marginalised posteriors of Ωdm,0h
2, H0 and the Age of the universe have broadened due

to correlations created by the inclusion of Ωk,0. These correlations can be observed in the 2D

marginalised posterior distribution shown in the bottom panel of Figure 1.10. The constraints

on the cosmological parameters are displayed in Table 1.4 along with 1σ confidence levels. In

this Table, both models assume the presence of ΛCDM with a scalar power spectrum described

by a power-law and no tensor contributions. The first set of rows show the base parameters

whereas the second set some derived parameters. Current cosmological observations provide,

in general terms, a strong support for a nearly-flat accelerating universe dominated by 72% of
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Figure 1.10: Top: 1D marginalised posterior distributions on the standard ΛCDM parameters

using current cosmological observations. Bottom: 2D marginalised posterior distributions of non-

flat ΛCDM parameters; constraints are plotted with 1σ and 2σ confidence contours.

dark energy in the form of a cosmological constant, 24% of non-baryonic dark matter and 4%

of baryon contributions; the primordial spectrum is red (ns < 1) with the Harrison-Zel’dovich

excluded with high confidence level. On the other hand, the Bayes factor between these two

models, BΛ,Λ+Ωk
= +1.90±0.35, indicates a significant preference for a flat universe, according

to the Jeffreys guideline. The last row of Table 1.4 shows that both models are consistent with

the full combined dataset I.

Throughout the rest of the chapters we incorporate features beyond the standard ΛCDM

model in the search of a better description of cosmological observations. In Chapter ??, with

the use of present data, we determine the structure of the primordial scalar spectrum by im-

plementing an optimal model-free reconstruction. Our aim is to consider models that slightly
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Table 1.4: The constraints on the cosmological parameters using our dataset II. We report the

mean of the marginalised posterior distribution and 1σ confidence levels. The Bayes factor for

models BΛ,Λ+Ωk , and for datasets BR are also included.

Description Flat ΛCDM Non-flat ΛCDM

Ωb,0h
2 0.02206± 0.00042 0.0221± 0.00043

Ωdm,0h
2 0.1130± 0.0028 0.112± 0.0041

Base θ 1.039± 0.0019 1.039± 0.0020

parameters τ 0.082± 0.013 0.083± 0.014

ns 0.956± 0.010 0.957± 0.011

log[1010As] 3.21± 0.035 3.21± 0.039

Ωk,0 - −0.0022± 0.0058

Ωm,0 0.282± 0.015 0.285± 0.018

Derived ΩΛ,0 0.717± 0.015 0.717± 0.016

parameters H0 69.2± 1.27 68.7± 2.13

Age(Gyrs) 13.84± 0.086 13.93± 0.27

−2 lnLmax 8240.46 8240.80

Bayes factor BΛ,Λ+Ωk
+1.6± 0.4 -

Dataset consistency BR +5.06± 0.4 +5.07± 0.4

deviate from the simple power-law form. Then, in Chapter ??, we incorporate tensor contri-

butions to the analysis and present current and future constraints on the scalar spectrum.

Chapter ?? explores the possibility of a dynamical behaviour of dark energy. Here, the dark

energy equation-of-state wde(z) is modelled as a linear interpolation between a set of ‘nodes’

with varying amplitudes and redshifts, similarly to the approach used in Chapter ??. In the

search of mechanisms or candidates to explain the mild time-dependence of wde(z), in Chapter

?? we remain focussed on the ΛCDM model but now include a second dark energy compo-

nent ΩX with equation-of-state wX . Finally, in Chapter ?? the Einstein-Hilbert Lagrangian is

considered as a limit case of a more general form of it, namely Modified Gravity. We explore

these models as an alternative to the dark energy component. The summary of the work done

throughout this dissertation is sketched in Figure 1.11.
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Figure 1.11: Summary of the work performed throughout this dissertation. The top panel of

the Figure displays the features beyond the concordance ΛCDM model considered through the

following chapters.
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