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1
Bayesian Statistics

Bayesian statistics and MCMC (Markov Chain Monte Carlo) algorithms have found their place

in the field of Cosmology. They have become important mathematical and numerical tools,

especially in parameter estimation and model comparison. In this paper we review some of

the fundamental concepts to understand Bayesian statistics, to then introduce the MCMC al-

gorithms and samplers that allow us to perform the parameter inference procedure. We also

provide a general description of the standard cosmological model, known as the ΛCDM model,

along with several alternatives to it; and current datasets coming from astrophysical and cosmo-

logical observations. Finally, with the tools acquired we use a MCMC algorithm implemented

in python -called SimpleMC- to test the cosmological models and find out the combination of

parameters that best describes the universe.

1.1 Introduction

The beginning of the standard cosmology as it is known today emerged after 1920 when the

Shapley-Curtis debate was carried out [? ]. This debate was held between the astronomers

Harlow Shapley and Heber Curtis, resulting in a revolution for astronomy at that time by

reaching an important conclusion: “The universe had a larger scale than the Milky Way”.

Several observations at that epoch established that the size and dynamics of the cosmos could

be explained by Einstein’s General Theory of Relativity. In its childhood, cosmology was a

speculative science based only on a few data sets, and it was characterized by a dispute between

two cosmological models: the steady state model and the Big Bang (BB) theory. It was not

until 1990 when the amount of data increased enough to discriminate and rule out compelling
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1. BAYESIAN STATISTICS

theories, being the BB model awarded as the most accepted theory. During the same decade,

David Schramm heralded the “Golden Age of Cosmology” at a National Academy of Sciences

colloquium [? ].

Once the new age of cosmological observations arrived with a large variety of data, it was

necessary to confront the cosmological models with such data. This was usually done through

statistics. It is important to notice that, since we have only one universe, we cannot rely on a

frequentist interpretation of statistics (we are not able to create multiple universes and make

a frequentist inference of our models). An alternative interpretation to help us in our task is

Bayesian statistics. In Bayesian statistics the probability is interpreted as a “degree of belief”

and it may be useful when repetitive processes are complicated to reproduce.

The main aim of this work is to provide an introduction of Bayesian parameter inference and

its applications to cosmology. We assume the reader is familiarized with the basic concepts of

statistics, but not necessarily with Bayesian statistics. Then, we provide a general introduction

to this subject, enough to work out some examples. This review is written in a generic way

so the reader interested on the parameter inference may apply the theory to any subject, in

particular we put into practice the Bayesian concepts on the cosmology branch of physics.

The paper is organized as follows. We start in Section 1.2 by pointing out the main dif-

ferences between the Bayesian and Frequentist approaches to statistics. Then, in Section 1.3

we explain the basic and necessary mathematical concepts in Bayesian statistics to perform

the parameter estimation procedure for a given model. Once we have the mathematical back-

ground, we continue in Section 1.4 with some of the numerical resources available to simplify

our task, such numerical tools may become important given the fact that, in general, it is not

possible to derive analytical results, specially when a model contains several parameters that

need to be confronted with data. We then provide an example of some of these methods and

tools applied to the simple problem of fitting a straight line in Section 1.5. In Section ?? we

present an introduction to cosmology and applications of the tools given in previous sections

in cosmology, then in Section ?? the focus is in some of the codes available to perform this

work. Then, in Section ??, we apply these techniques to constrain the parameter space that

describes the standard cosmological model, namely the ΛCDM model, and several alternatives

to it. Finally, in Section ?? we present our conclusions.
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1.2 Bayesian vs Frequentist statistics

1.2 Bayesian vs Frequentist statistics

Fundamentally, the main difference between Bayesian and Frequentist statistics is on the def-

inition of probability. From a Frequentist point of view, probability has meaning in limiting

cases of repeated measurements

P =
n

N
, (1.1)

where n denotes the number of successes and N the total number of trials. Frequentist statistics

defines probability as the limit for the number of independent trials going to infinity. Then,

for Frequentist statistics, probabilities are fundamentally related to frequencies of

events. On the other hand, in Bayesian statistics the concept of probability is extended to

cover degrees of certainty about a statement. For Bayesian statistics, probabilities are

fundamentally related to our knowledge about an event.

Here we introduce some key concepts to understand the consequences this difference entails;

for an extended review see [? ? ? ? ? ]. Let x be a random variable related to a particular

event and P (x) its corresponding probability distribution, for both cases the same rules of

probabilities apply1:

P (x) ≥ 0, (1.2a)

∫ ∞
−∞

dxP (x) = 1. (1.2b)

For mutually exclusive events we have

P (x1 ∪ x2) = P (x1) + P (x2), (1.2c)

but in general

P (x1 ∪ x2) = P (x1) + P (x2)− P (x1 ∩ x2).

These rules are summed up as follow. The first condition (1.2a) is necessary due to the

probability of having an event is always positive. The second rule (1.2b) is a normalized relation,

which tells us that we are certain to obtain one of the possible outcomes. Now, in the third

point (1.2c) we have that the probability of obtaining an observation, from a set of mutually

exclusive events, is given by the individual probabilities of each event. Finally, and in general,

1These rules are defined for a continuous variable; however, the corresponding discrete definition can be

given immediately by replacing
∫
dx→

∑
.
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1. BAYESIAN STATISTICS

if one event occurs given the occurrence of another then the probability that both x1 and x2

happen is equal to the probability of x1 times the probability of x2 given that x1 has already

happened

P (x1 ∩ x2) = P (x1)P (x2|x1). (1.2d)

If two events x1 and x2 are mutually exclusive then

P (x1 ∩ x2) = 0 = P (x2 ∩ x1). (1.3)

The rules of probability distributions must be fulfilled by both Frequentist and Bayesian

statistics. However, there are some consequences derived by the fact these two scenarios have a

different definition of probability, as we shall see.

1.2.1 Frequentist statistics

Any frequentist inferential procedure relies on three basic ingredients: the data, the model and

an estimation procedure. The main assumption in Frequentist statistics is that the data has a

definite, albeit unknown, underlying distribution to which all inference pertains.

The data is a measurement or observation, denoted by X, that can take any value from a

corresponding sample space. A sample space of an observation X can be defined as a measur-

able space (x, B̂) that contains all values that X can take upon measurement. In Frequentist

statistics it is considered that there is a probability function P0 : B̂ → [0, 1] in the sample space

(x, B̂) representing the “true distribution of the data”

X ∼ P0.

Now there is the model. For Frequentist statistics the model Q is a collection of probability

measurements Pθ : B̂ → [0, 1] in the sample space (x, B̂). The distributions Pθ are called model

distributions, with θ as the model parameters; in this approach θ is unchanged. A model Q is

said to be well-specified if it contains the true distribution of the data P0, i.e.

P0 ∈ Q.

Finally, we need a point-estimator (or estimator) for P0. An estimator for P0 is a map

P̂ : x→ Q, representing our “best guess” P̂ ∈ Q for P0 based on the data X.

-4-



1.2 Bayesian vs Frequentist statistics

Frequentist Bayesian

Data are a repeatable random Data are observed from the

sample. There is a frequency. realized sample.

Underlying parameters remain Parameters are unknown and

constant during this repeatable described probabilistically.

process.

Parameters are fixed. Data are fixed.

Table 1.1: Main differences between the Bayesian and Frequentist interpretations.

Hence, the Frequentist statistics is based on trying to answer the following questions: “what

the data is trying to tell us about P0?” or “considering the data, what can we say about the

mean value of P0?”.

1.2.2 Bayesian statistics

In Bayesian statistics, data and model are two elements of the same space [? ], i.e. no formal

distinction is made between measured quantities X and parameters θ. One may envisage the

process of generating a measurement’s outcome Y = y as two draws, one draw for Θ (where

Θ is a model with associated probabilities to the parameter θ) to select a value of θ and a

subsequent draw for Pθ to arrive at X = x. This perspective may seem rather absurd in view of

the definitions for a Frequentist way of thinking, but in Bayesian statistics where probabilities

are related to our own knowledge, it results natural to associate probability distributions to our

parameters. In this way an element Pθ of the model is interpreted simply as the distribution of

X given the parameter value θ, i.e. as the conditional distribution X|θ.

1.2.3 Comparing both descriptions

Table 1.1 provides a short summary of the most important differences between the two

statistics. To understand these differences let us review a typical example. Here we present

an experiment and, since we are interested in comparing both descriptions, we show only the

basic results from both points of view: Frequentist and Bayesian.

Example.- Let us assume we have a coin that has a probability p to land as heads and a

probability 1− p to land as tails. In the process of trying to estimate p (which must be p = 0.5

-5-



1. BAYESIAN STATISTICS

since we have only two possible states) we flip the coin 14 times, obtaining heads in 10 of

the trials. Now we are interested in the next two possible events. To be precise: “What is the

probability that in the next two tosses we will get two heads in a row?”.

• Frequentist approach. As mentioned previously, in Frequentist statistics probability is

related to the frequency of events, then our best estimate for p is P (head) = p =

# of heads
# of events = 10/14. So, the probability of having 2 heads in a row is P (2heads) =

P (head)P (head) ' 0.51.

• Bayesian approach. In Bayesian statistics p is not a value, it is a random variable with its

own distribution, and it must be defined by the existing evidence. In this example a good

distribution for p is a binomial distribution

P (D|p) =

(
14

10

)
p10(1− p)4, (1.4)

where D is our data set (14 trials and 10 successes). Then, by considering a non-

informative prior (beforehand we do not know anything about p) and averaging over

all possible values of p we have that the probability of having two heads is

P (2heads|D) =
B(13, 5)

B(11, 5)
= 0.485, (1.5)

where B(x, y) is the beta function. This Bayesian example will be expanded in detail dur-

ing the following section, but for now we just want to stress out that both approximations

arrive at different results.

In the Frequentist approach, since we adopt the probability as a frequency of events (the

probability of having a head was fixed by p = 10/14), hence the final result was obtained

by only multiplying each of these probabilities (since we assume the events are independent

of each other). On the other hand, in the Bayesian framework it was necessary to average

over all possible values of p in order to obtain a numerical value. However, in both cases, the

probability differs from the real one (P (2heads) = 0.25) because we don’t have enough data for

our estimations.

Note: If you are unfamiliar with Bayesian statistics, do not be scared of the last example.

In the next section we review the basic concepts and get back to this example to use the new

tools learned.
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1.3 A first look at Bayesian statistics

1.3 A first look at Bayesian statistics

Before we start with the applications of Bayesian statistics in cosmology it is necessary to

understand the most important mathematical tools in the Bayesian procedure. In this section,

we present an informal revision but encourage the reader to look for the formal treatment in

the literature, cited in each section.

1.3.1 Bayes theorem, priors, posteriors and all that stuff

When anyone is interested on the Bayesian framework, there are several concepts to understand

before presenting the results. In this section we quickly review these concepts and then we take

back the example about the coin toss given in the last section.

The Bayes theorem. The Bayes theorem is a direct consequence of the axioms of proba-

bility shown in Eqs. (1.2). From Eqn. (1.2d), without loss of generality, it must be fulfilled that

P (x1 ∩ x2) = P (x2 ∩ x1). In such case the following relation applies

P (x2|x1) =
P (x1|x2)P (x2)

P (x1)
. (1.6)

As already mentioned, in the Bayesian framework data and model are part of the same space.

Given a model (or hypothesis) H, considering x1 → D as a set of data, and x2 → θ as the

parameter vector of said hypothesis, we can rewrite the above equation as

P (θ|D,H) =
P (D|θ,H)P (θ|H)

P (D|H)
. (1.7)

This last relation is the so-called Bayes theorem and the most important tool in a Bayesian

inference procedure. In this result, P (θ|D,H) is called the posterior probability of the model.

P (D|θ,H) ≡ L(D|θ,H) is called the likelihood and it will be our main focus in future sections.

P (θ|H) ≡ π(θ) is called the prior and expresses the knowledge about the model before acquiring

the data. This prior can be fixed depending on either previous experiment results or the theory

behind. P (D|H) ≡ Z is the evidence of the model, usually referred as the Bayesian Evidence.

We notice that this evidence acts only as a normalizing factor, and is nothing more than the

average of the likelihood over the prior

P (D|H) =

∫
dNθP (D|θ,H)P (θ|H), (1.8)

where N is the dimensionality of the parameter space. This quantity is usually ignored, for prac-

tical reasons, when testing the parameter space of a unique model. Nevertheless, the Bayesian
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1. BAYESIAN STATISTICS

|B0,1| Odds Probability Strength

< 1.0 < 3 : 1 < 0.750 Inconclusive

1.0-2.5 ∼ 12 : 1 0.923 Significant

2.5-5.0 ∼ 150 : 1 0.993 Strong

> 5.0 > 150 : 1 > 0.993 Decisive

Table 1.2: Jeffreys guideline scale for evaluating the strength of evidence when two models are compared.

evidence plays an important role for selecting the model that best “describes” the data, known

as model selection. For convenience, the ratio of two evidences

K ≡ P (D|H0)

P (D|H1)
=

∫
dN0θ0 P (D|θ0, H0)P (θ0|H0)∫
dN1θ1 P (D|θ1, H1)P (θ1|H1)

=
Z0

Z1
, (1.9)

or equivalently the difference in log evidence lnZ0− lnZ1 if often termed as the Bayes factor

B0,1:

B0,1 = ln
Z0

Z1
, (1.10)

where θi is a parameter vector (with dimensionality Ni) for the hypothesis Hi and i = 0, 1. In

Eqn. (1.10), the quantity B0,1 = lnK provides an idea on how well model 0 may fit the data

when is compared to model 1. Jeffreys provided a suitable guideline scale on which we are able

to make qualitative conclusions (see Table 1.2).

We can see that Bayes theorem has an enormous implication with respect to a statistical

inferential point of view. In a typical scenario we collect some data and hope to interpret it

with a given model, however, we usually do the opposite. That is, first we have a set of data

and then we can confront a model considering the probability that our model fits the data.

Bayes theorem provides a tool to relate both scenarios. Then, thanks to the Bayes theorem, in

principle, we are able to select the model that best fits the data.

Example.- We go back to the example shown in the last section: the coin toss. We are

interested in the probability of obtaining two heads in a row given the data P (2heads|D) (D =

the previous 14 coin tosses acting as data). First of all let us assume that we have a model with

parameter p to define the probability of obtaining the two heads given our model P (2heads|p).

This parameter will have a probability distribution P (p|D) depending on the data we already

-8-



1.3 A first look at Bayesian statistics

have. Therefore the probability can be obtained by averaging over all the possible parameters

with its corresponding density distribution

P (2heads|D) =

∫ 1

0

P (2heads|p)P (p|D)dp. (1.11)

For simplicity we do not update p between the two tosses and we assume that both are inde-

pendent from each other. With this last assumption we have

P (2heads|p) = [P (head|p)]2, (1.12)

where P (head|p) is the probability of obtaining a head given our model. We assume a simple

description of P (head|p) as

P (head|p) = p ⇒ P (2heads|p) = p2. (1.13)

On the other hand, notice that we do not know a priori the quantity P (p|D) but P (D|p) (i.e.

we know the probability of obtaining a dataset by considering a model as correct). A good

choice for experiments that have two possible results is a binomial distribution

P (x|p, n) =

(
n

x

)
px(1− p)n−x, (1.14)

with n the number of trials (this case = 14) and x the number of successes (here =10). Hence,

we have an expression for P (D|p) [Eqn. (1.4)]. Now we need to compute P (p|D). Using the

Bayes formula we have

P (p|D) =
P (D|p)P (p)

P (D)
. (1.15)

A very convenient prior distribution for this scenario is the beta distribution Beta(p; a, b)1

defined as

Beta(p; a, b) =
Γ(a+ b)

Γ(a)Γ(b)
pa−1(1− p)b−1, (1.16)

where Γ is the gamma function. So

P (p) = Beta(p; a, b). (1.17)

We are interested in the explicit form of P (p|D) and in such case we need to compute P (D).

Plugging Eqn. (1.4) and Eqn. (1.17) into the integral of Eqn. (1.8) we have

P (D) = B(10 + a, 4 + b) ≡ Γ(10 + a)Γ(4 + b)

Γ((10 + a) + (4 + b))
, (1.18)

1It is chosen because it describes several statistical distributions, in particular the normal distribution defined

as the non-informative one.

-9-



1. BAYESIAN STATISTICS

Figure 1.1: The coin example: blue figure displays the prior distribution P (p) which is updated, using

the data, to get the posterior distribution P (p|D), (red). The vertical black line corresponds to the real

value, p = 0.5.

and therefore

P (p|D) =
p10+a−1(1− p)4+b−1

B(10 + a, 4 + b)
. (1.19)

Now we need to know the values of a and b. If we assume that we know nothing about p,

then we can assume the prior as an uniform distribution, this means a = b = 1. Notice from

Fig. 1.1 that our posterior result (Red figure) described by Eqn. (1.19) does not exactly agree

with the real value of p (black dashed vertical line). We would expect the posterior distribution

be centered at p = 0.5 with a very narrow distribution. Nevertheless this value is recovered by

increasing the experimental data.

Finally, solving the integral in Eqn. (1.11) using (1.13) and (1.19) we arrive at the result

obtained in the previous section

P (2heads|D) =
B(13, 5)

B(11, 5)
= 0.485. (1.20)

1.3.2 Updating the probability distribution

As seen in the coin example, we weren’t able to get the real value of p because the lack of

enough data. If we want to be closer, we would have to keep flipping the coin until the amount

of data becomes sufficient. Let us continue with the example: suppose that after throwing the

coin 100 times we obtain, let’s say, 56 heads, while after throwing it 500 times we obtain 246

heads. Then, we expect to obtain a thinner distribution with center close to p = 0.5 (see Fig.

-10-



1.3 A first look at Bayesian statistics

Figure 1.2: Posterior distributions P (p|D), when the data is increased. Notice that while we continue

increasing the experimental results, the posterior distribution starts to be more localized near by the real

value p = 0.5.

1.2). Given this, it is clear that in order to confront a parameter model and be more accurate

about the most probable (or “real”) value, it is necessary to increase the amount of data (and

the precision) in any experiment. That is, if we take into account the 500 tosses – with 246

heads – the previous result is updated to P (2heads|D) = 0.249, much closer to the real value.

Then, we have some model parameters that have to be confronted with different sets of

data. This can be done in two alternative ways: (a) by considering the sum of all datasets we

have; or (b) by taking each data set as the new data, but our prior information updated by the

previous information. The important point in Bayesian statistics is that it is indeed equivalent

to choose any of these two possibilities. In the coin toss example it means that it is identical

to start with the prior given in Fig. 1.2-a and then by considering the 500 datapoints we can

arrive at the posterior in Fig. 1.2-d, or similarly start with the posterior shown in Fig. 1.2-c as

our prior and consider only the last 400 datapoints to obtain the same posterior, displayed in

Fig. 1.2-d.

In fact, if we rewrite Bayes theorem so that all probabilities are explicitly dependent on

-11-



1. BAYESIAN STATISTICS

some prior information I [? ]

P (θ|DI,H) =
P (θ|I,H)P (DI|θ,H)

P (D|I,H)
, (1.21)

and then we consider a new set of data D′, letting the old data become part of the prior

information I ′ = DI, we arrive at

P (θ|D′I ′, H) =
P (θ|I,H)P (DD′I|θ,H)

P (DD′|I,H)
= P (θ|[DD′]I,H), (1.22)

where we can explicitly see the equivalence of the two different options.

1.3.3 About the Likelihood

We mentioned that the Bayesian evidence is usually set apart when doing any inference pro-

cedure in the parameter space of a single model. Then, without loss of generality, we can fix

it to P (D|H) = 1. If we ignore the prior1 we can identify the posterior with the likelihood

P (θ|D,H) ∝ L(D|θ,H) and thus, by maximizing it, we can find the most probable set of pa-

rameters for a model given the data. However, having ignored P (D|H) and the prior, we are

not able to provide an absolute probability for a given model, but only relative probabilities. On

the other hand, it is possible to report results independently of the prior by using the Likelihood

ratio. The likelihood at a particular point in the parameter space can be compared with the

best-fit value, or the maximum likelihood Lmax. Then, we can say that some parameters are

acceptable if the likelihood ratio

Λ = −2 ln

[
L(D|θ,H)

Lmax

]
, (1.23)

is bigger than a given value.

Let us assume we have a Gaussian posterior distribution, which is single-peaked. We consider

that θ̂ is the mean of the distribution

θ̂ =

∫
dθθP (θ|D,H). (1.24)

If our model is well-specified and the expectation value of θ̂ corresponds to the real or most

probable value θ0, we have

〈θ̂〉 = θ0, (1.25)

1It is expected that the real value of any given parameter for a large enough dataset is independent of the

prior.
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1.3 A first look at Bayesian statistics

then we say that θ̂ is unbiased. Considering a Taylor expansion of the log likelihood around its

maximum

lnL(D|θ) = lnL(D|θ0) +
1

2
(θi − θ0i)

∂2 lnL

∂θi∂θj
(θj − θ0j) + ..., (1.26)

where θ0 corresponds to the parameter vector of the real model. In this manner, we have that

the likelihood can be expressed as a multi-variable likelihood given by

L(D|θ) = L(D|θ0) exp

[
−1

2
(θi − θ0i)Hij(θj − θ0j)

]
, (1.27)

where

Hij = −∂
2 lnL

∂θi∂θj
, (1.28)

is called the Hessian matrix and it controls whether the estimates of θi and θj are correlated.

If it is diagonal, these estimates are uncorrelated.

The above expression for the likelihood is a good approximation as long as our posterior

distribution possesses a single-peak. It is worth mentioning that, if the data errors are normally

distributed, then the likelihood for the data will be a Gaussian function as well. In fact, this

is always true if the model is linearly dependent on the parameters. On the other hand, if the

data is not normally distributed we can resort to the central limit theorem. In this way, the

central limit theorem tell us that the resulting distribution will be best approximated by a

multi-variate Gaussian distribution [? ].

1.3.4 Letting aside the priors

In this section we present an argument for letting aside the prior in the parameter estimation.

For this, we follow the example given in [? ]. In this example there are two people, A and B, that

are interested in the measurement of a given physical quantity θ. A and B have different prior

beliefs regarding the possible value of θ. This discrepancy could be given by the experience,

such as the possibility that A and B have made the same measurement at different times. Let

us denote their priors by P (θ|Ii), (i = A,B), and assume they are described by two Gaussian

distributions with mean µi and variance Σ2
i . Now, A and B make a measurement of θ together

using an apparatus subject to a Gaussian noise with known variance σ. They obtain the value

θ0 = m1. Therefore they can write their likelihoods for θ as

L(D|θ,HI) = L0 exp

[
−1

2

(θ −m1)2

σ2

]
. (1.29)

-13-



1. BAYESIAN STATISTICS

By using the Bayes formula, the posterior of the model A (and B) becomes

P (θ|m1) =
L(m1|θIi)P (θ|Ii)

P (m1|Ii)
, (1.30)

where we have skipped writing explicitly the hypothesis H and used the notation given in

Eqn. (1.21). Then, the posterior of A and B are (again) Gaussian with mean

µ̂i =
m1 + (σ/Σi)

2µi
1 + (σ/Σi)2

, (1.31)

and variance

τ2i =
σ2

1 + (σ/Σi)2
, (i = A,B). (1.32)

Thus, if the likelihood is more informative than the prior i.e. (σ/Σi)� 1 the posterior mean of

A (and B) will converge towards the measured value, m1. As more data are obtained one can

simply replace the value of m1 in the above equation by the mean 〈m〉 and σ2 by σ2/N . Then,

we can see that the initial prior µi of A and B will progressively be overridden by the data. This

process is illustrated in Figure 1.3 where the green (red) curve corresponds to the probability

distribution of θ for person A (B) and the blue curve corresponds to their likelihood.

1.3.5 Chi-square and goodness of fit

We mentioned the main aim of parameter estimation is to maximize the likelihood in order to

obtain the most probable set of model parameters, given the data. If we consider the Gaussian

approximation given in Eqn. (1.27) we can see the likelihood will be maximum if the quantity

χ2 ≡ (θi − θ0i)Hij(θj − θ0j), (1.33)

is minimum. The quantity χ2 is usually called chi-square and is related to the Gaussian

likelihood via L = L0e
−χ2/2. Then, we can say that maximizing the Gaussian likelihood is

equivalent to minimizing the chi-square. However, as we mentioned before, there are some

circumstances where the likelihood cannot be described by a Gaussian distribution, in these

cases the chi-square and the likelihood are no longer equivalent.

The probability distribution for different values of χ2 around its minimum, is given by

the χ2 distribution for v = n −M degrees of freedom, where n is the number of independent

data points and M the number of parameters. Hence, we can calculate the probability that

an observed χ2 exceeds by chance a value χ̂ for the correct model. This probability is given
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Figure 1.3: Converging views in Bayesian inference (taken from [? ]). A and B have different priors P (θ|Ii)
for a value θ (panel (a)). Then, they observe one datum with an apparatus subject to a Gaussian noise and

they obtained a likelihood L(θ;HI) (panel (b)), after which their posteriors P (θ|m1) are obtained (panel

(c)). Then, after observing 100 data, it can be seen how both posteriors are practically indistinguishable

(panel (d)).

by Q(v, χ̂) = 1 − Γ(v/2, χ̂/2) [? ], where Γ is the incomplete Gamma function. Then, the

probability that the observed χ2 (even the correct model) is less than a given value χ̂2 is 1−Q.

This statement is strictly true if the errors are Gaussian and the model is a linear function of

the likelihood, i.e., for Gaussian likelihoods.

If we evaluate the quantity Q for the best-fit values (minimum chi-square) we can have a

measure of the goodness of fit. If Q is small (small probability) we can interpret it as:

• The model is wrong and can be rejected.

• The errors are underestimated.

• The error measurements are not normally distributed.

On the other hand, if Q is too large there are some reasons to believe that:

• Errors have been overestimated.

-15-



1. BAYESIAN STATISTICS

∆χ2

σ p M = 1 M = 2 M = 3

1 68.3% 1.00 2.30 3.53

2 95.4% 4.00 6.17 8.02

3 99.73% 9.00 11.8 14.20

Table 1.3: ∆χ2 for the conventional 68.3%, 95.4% and 99.73% as a function of the number of parameters

(M) for the joint confidence level.

• Data are correlated or non-independent.

• The distribution is non-Gaussian.

1.3.6 Contour plots and confidence regions

Once the best fit parameters are obtained we would like to know the confidence regions where

values could be considered good candidates for our model. The most logical election is to take

values inside a compact region around the best fit value. Then, a natural choice are regions

with constant χ2 boundaries. When the χ2 possesses more than one minimum, it is said that

we have non-connected confidence regions, and for multi-variate Gaussian distributions (as

the likelihood approximation in Eqn. (1.27)) these are ellipsoidal regions. In this section we

exemplify how to calculate the confidence regions, following [? ].

We consider a little perturbation from the best fit of chi-square ∆χ2 = χ2 − χ2
best. Then

we use the properties of χ2 distribution to define confidence regions for variations on χ2 to

its minimum. In Table 1.3 we see the typical 68.3%, 95.4% and 99.73% confidence levels as a

function of number of parameters M for the joint confidence level. For Gaussian distributions (as

likelihood) these correspond to the conventional 1, 2 and 3 σ confidence levels. As an example

we plot in Figure 1.4 the corresponding confidence regions associated to the coin example.

The general recipe to compute constant χ2 confidence regions is as follows: after finding the

best fit by minimizing χ2 (or maximizing the likelihood) and checking that Q is acceptable for

the best parameters, then:

1. Let M be the number of parameters, n the number of data and p be the confidence limit

desired.

-16-



1.3 A first look at Bayesian statistics

2. Solve the equation:

Q(n−M,min(χ2) + ∆χ2) = p. (1.34)

3. Find the parameter region where χ2 ≤ min(χ2)+∆χ2. This defines the confidence region.

1.3.7 Marginalization

It is clear that a model may (in general) depend on more than one parameter. However, some

of these parameters θi may be of less interest. For example, they may correspond to nuisance

parameters like calibration factors, or it may be the case that we are interested in only one of

the parameter constraints rather than the joint of two or more of them simultaneously. Then

we marginalize over the uninteresting parameters by

P (θ1, ..., θj , H|D) =

∫
dθj+1...dθmP (θ,H|D), (1.35)

where m is the total number of parameters in our model and θ1,...,θj denote the parameters we

are interested in.

1.3.8 Fisher Matrix

Once we have a dataset it is important to know the accuracy for which we can estimate pa-

rameters. Fisher suggested a way 70 years ago [? ]. In this section we review the main results

of his work.

First of all, consider again a Gaussian likelihood. As we notice, the Hessian matrix Hij has

information on the parameter errors and their covariance. More specifically, when all parameters

are fixed except one (e.g. the i-th parameter), its error is 1/
√
Hii. These errors are called

conditional errors, although they are rarely used.

A quantity to forecast the precision of a model, that arises naturally with Gaussian likeli-

hoods, is the so-called Fisher information matrix

Fij = −
〈

∂2L
∂θi∂θj

〉
, (1.36)

where

L = lnL. (1.37)

It is clear that F = 〈H〉, where the average is made with observational data.

As we can see from Eqn. (1.2c), for independent data sets the complete likelihood is the

product of the likelihoods, and the Fisher matrix is the sum of individual Fisher matrices.
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A pedagogical and easy case is having one-parameter θi with a Gaussian likelihood. In this

scenario

∆L =
1

2
Fii(θi − θ0i)2, (1.38)

when 2∆L = 1 and identifying the ∆χ2 corresponding to 68% confidence level, we notice that

1/
√
Fii yields the 1− σ displacement for θi. In the general case

σ2
ij ≥ (F−1)ij . (1.39)

Thus, when all parameters are estimated simultaneously from the data, the marginalized error

is

σθi ≥ (F−1)
1/2
ii . (1.40)

The beauty of the Fisher matrix approach is that there is a simple prescription for setting it

up by only knowing the model and measurement uncertainties, and under the assumption of a

Gaussian likelihood the Fisher matrix is the inverse of the covariance matrix. So, all we have

to do is set up the Fisher matrix and then invert it to obtain the covariance matrix (that is,

the uncertainties on the model parameters). In addition, its fast calculations also enables one

to explore different experimental setups and optimize the experiment.

The main point of the Fisher matrix formalism is to predict how well the experiment will be

able to constrain the parameters, of a given model, before doing the experiment and perhaps

even without simulating it in any detail. We can then forecast the results of different exper-

iments and look at trade-offs such as precision versus cost. In other words, we can engage in

experimental design. The inequality in Eqn. (1.39) is called the Kramer-Rao inequality. One

can see that the Fisher information matrix represents a lower bound of the errors. Only when

the likelihood is normally distributed, the inequality is transformed into an equality. However

as we saw in Sec. 1.3.3 a Gaussian likelihood is only applicable to some circumstances, being

generally impossible to be applied, so the key is to have a good understanding of our theoretical

model in such a way that we can construct a Gaussian likelihood.

1.3.8.1 Constructing Fisher Matrices: A simple description

Let us construct Fisher matrices in a simple way. Suppose we have a model that depends of N

parameters θ1, θ2, ..., θN . We consider M observables f1, f2, ..., fM each one related to the model
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parameters by some equation fi = fi(θ1, θ2, ..., θN ). Then the elements of the Fisher matrix can

be computed as

Fij =
∑
k

1

σ2
k

∂fk
∂θi

∂fk
∂θj

, (1.41)

where σk are the errors associated to each observable and we have considered them Gaussianly

distributed.

Here, instead of taking the real data values (which could be unknown) it is possible to

recreate the data with a fiducial model. The errors associated to the mock data can be taken

as the expected experimental errors, and then be possible to calculate the above expression.

To complement the subject, there is also the Figure of Merit used by the Dark Energy

Task Force (DETF) [? ] which is defined as the reciprocal of the area in the plane enclosing the

95% confidence limit of two parameters. The larger the figure of merit the greater accuracy one

has measuring said parameters. As an example let us take a look at Figure ?? and right panel

of Figure ??, the area of the error ellipse with only Hubble Data (HD) is clearly bigger than the

error ellipse using HD plus several data sets. Then, for this case the figure of merit would be

bigger than with only HD data since its area is smaller, making it more accurate for measuring

the parameters Ωm and h. The DETF figure of merit can also be used to see how different

experiments break degeneracies. It can also be used to predict accuracy in future experiments

(experimental design).

1.3.9 Importance Sampling

We call Importance Sampling (IS) to different techniques of determining properties of a

distribution by drawing samples from another one. The main request of this idea, is that the

distribution one samples from should be representative of the distribution of interest (for a

larger number of samples). In such case, we should infer different quantities out of it. In this

section we review the basic concepts necessary to understand the IS, following [? ].

Suppose we are interested in computing the expectation value µf = Ep[f(X)], where f(X)

is a probability density of a random variable X and the sub-index p means average over the

distribution p. Then, if we consider a new probability density q(x) that satisfies q(x) > 0

whenever f(x)p(x) 6= 0, we can rewrite the mean value µf as

µf =

∫
f(x)p(x)dx =

∫
f(x)

p(x)

q(x)
q(x)dx = Eq[f(X)w(x)], (1.42)
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where w(x) = p(x)/q(x), and now we have an average over q. So, if we have a collection of

different draws x(1), ..., x(m) from q(x), we can estimate µf using these draws as

µ̂f =
1

m

m∑
j=1

w(x(j))f(x(j)). (1.43)

If p(x) is known only up to a normalizing constant, the above expression can be calculated as

a ratio estimate

µ̂f =

∑m
j=1 w(x(j))f(x(j))∑m

j=1 w(x(j))
. (1.44)

For the strong law of large numbers, in the limit when m→∞ we will have that µ̂f → µf .

Another useful quantity to compute in Bayesian analysis is the ratio between evidences for

two different models

P ′(D)

P (D)
= E

[
P ′(θ,D)

P (θ,D)

]
P (θ|D)

' 1

N

N∑
n=1

P ′(D|θn)P ′(θn)

P (D|θn)P (θn)
, (1.45)

where the samples {θn} are drawn from P (θ|D).

An important result for importance sampling is that, if we have a new set of data which is

broadly consistent with the current data (in the sense that the posterior only shrinks), we can

make use of importance sampling in order to quickly calculate a new posterior including the

new data.

1.3.10 Combining datasets: Hyperparameter method

Suppose we are dealing with multiple datasets {D1, ..., DN}, coming from a collection of

different surveys {S1, ..., SN}. Sometimes it is difficult to know, a priori, if all our data are

consistent with each other, or whether there could be one or more that are likely to be

erroneous. If we were sure that all datasets are consistent, then it should be enough to update

the probability as seen in Sec. 1.3.2 in order to calculate the new posterior distribution for the

parameters we are interested in. However, since there is usually an uncertainty about this, a

way to know how useful a data may be is by introducing the hyperparameter method. This

method was initially introduced by [? ? ] in order to perform a joint estimation of cosmological

parameters from combined datasets. This method may be used as long as every survey is

independent from each other. In this section we review the main steps necessary to understand

the hyperparameter method. If the reader is interested in a more extended explanation, we
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encourage to consult [? ? ].

The main feature of this process is the introduction of a new set of “hyperparameters” α

in the Bayesian procedure to allow extra freedom in the parameter estimation. These hyperpa-

rameters are equivalent to nuisance parameters in the sense that we need to marginalize over

them in order to recover the posterior distribution, i.e.

P (θ|D,H) =
1

P (D|H)

∫
P (θ|α,H)P (α|D,H)dα, (1.46)

where we have used the Bayes theorem. Now, for the method it is necessary to assume the hyper-

parameters α and the parameters of interest θ are independent, i.e. P (θ, α,H) = P (α)P (θ,H),

it is also necessary to assume that each hyperparameter αk is independent from each other, i.e.

P (α) = P (α1)P (α2)...P (αN ). In this way we can rewrite the above expression as

P (θ|D,H) =
P (θ,H)

P (D|H)

[
N∏
k=1

∫
P (Dk|θ, αk, H)P (αk)dαk

]
. (1.47)

Here, the quantity inside the square brackets is the marginalized likelihood over the hy-

perparameters. We can identify the quantity inside the integration as the individual likeli-

hood L(Dk|θ, αk, H), for every αk and the data set Dk; P (D|H) is the evidence and, simi-

larly to a parameter inference procedure, it works as a normalizing function, i.e. P (D|H) =∫
dθP (θ,H)L(D|θ,H). Notice that, by considering P (αk) = δ(αk− 1), we rely on the standard

approach, where no hyperparameters are used.

We add these αk in order to weight every dataset and take away the data that does not seem

to be consistent with other ones. Then, we would like to know whether the data supports the

introduction of hyperparameters or not. A way to address this point is given by the Bayesian

evidence K defined in Eqn. (1.9). If we consider a Gaussian likelihood with maximum entropy

prior, and assuming that in average the hyperparameters’ weight are unity, we can rewrite the

marginalized likelihood function L(D|θ,H1) for model H1 as

P (D|θ,H1) =

N∏
k=1

2Γ(nk

2 + 1)

πnk/2|Vk|1/2
(χ2
k + 2)−(nk

2 +1), (1.48)

obtaining an explicit functional form for K, given by

K =

N∏
k=1

2nk/2+1Γ(nk/2 + 1)

χ2
k + 2

e−χ
2
k/2. (1.49)
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Here, χ2
k is given by (1.33) for every dataset and nk is the number of points contained in Dk.

In equation (1.48) Vk is the covariance matrix for the k-data. Suppose we have two models,

one with hyperparameters, called H1, and a second one without them, called H0. The Bayesian

evidence P (D|Hi) is the key quantity for making a comparison between two different models.

In fact, by using the Bayes factor K from Eqn. (1.49) we can estimate the necessity to introduce

the hyperparameters to our model using the criteria given in Table 1.2. Notice that, if we have a

set of independent samples for H0, we can compute an estimate for K with the help of equation

(1.45).

1.4 Numerical tools

In typical scenarios it results very difficult to compute the posterior distribution analytically. For

these cases the numerical tools available play an important role during the parameter estimation

task. There exist several options to carry out this work, nevertheless in this section we focus only

on the Markov Chain Monte Carlo (MCMC) with the Metropolis Hastings algorithm (MHA).

Additionally, in this section we present some useful details we take into account to make more

efficient our computation.

1.4.1 MCMC techniques for parameter inference

The purpose of a MCMC algorithm is to build up a sequence of points (called “chain”) in a

parameter space in order to evaluate the posterior of Eqn. (1.7). In this section we review the

basic results for this procedure in a simplistic way, but for curious readers it is recommendable

to check [? ? ? ? ] for the Markov chain theory.

A Monte Carlo simulation is assigned to algorithms that use random number generators to

approximate a specific quantity. On the other hand, a sequence X1, X2, ... of elements of some

set is a Markov Chain if the conditional distribution of Xn+1 given X1, ..., Xn depends only

on Xn. In other words, a Markov Chain is a process where we can compute subsequent steps

based only in the information given at the present. An important property of a Markov Chain

is that it converges to a stationary state where successive elements of the chain are samples

from the target distribution, in our case it converges to the posterior P (θ|D,H). In this way

we can estimate all the usual quantities of interest out of it (mean, variance, etc).

The combination of both procedures is called a MCMC. The number of points required to

get good estimates in MCMCs is said to scale linearly with the number of parameters, so this
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method becomes much faster than grids as the dimensionality increases.

The target density is approximated by a set of delta functions

p(θ|D,H) ' 1

N

N∑
i=1

δ(θ − θi), (1.50)

being N the number of points in the chain. Then, the posterior mean is computed as

〈θ〉 =

∫
dθθP (θ,H|D) ' 1

N

N∑
i=1

θi, (1.51)

where ' follows because the samples θi are generated out of the posterior by construction.

Then, we can estimate any integrals (such as the mean, variance, etc.) as

〈f(θ)〉 ' 1

N

N∑
i=1

f(θi). (1.52)

As mentioned before, in a Markov Chain it is necessary to generate a new point θi+1 from

the present point θi. However, as it is expected, we need a criteria for accepting (or refusing)

this new point depending on whether it turns out to be better for our model or not. If this new

step is worse than the previous one, we may accept it, since it could be the case that, if we

only accept steps with better probability, we could be converging into a local maximum in our

parameter space and, therefore, not completely mapping all of it. The simplest algorithm that

contains all this information in its methodology is known as the Metropolis-Hastings algorithm.

1.4.1.1 Metropolis-Hastings algorithm

In the Metropolis-Hastings algorithm [? ? ] it is necessary to start from a random initial

point θi, with an associated posterior probability pi = p(θi|D,H). We need to propose a candi-

date θc by drawing from a proposal distribution q(θi, θc) used as a generator of new random

steps. Then, the probability of acceptance the new point is given by

p(acceptance) = min

[
1,
pcq(θc, θi)

piq(θi, θc)

]
. (1.53)

If the proposal distribution is symmetric the algorithm is reduced to the Metropolis algorithm

p(acceptance) = min

[
1,
pc
pi

]
. (1.54)

In this way the complete algorithm can be expressed by the following steps:

1. Choose a random initial condition θi in the parameter space and compute the posterior

distribution.

-23-



1. BAYESIAN STATISTICS

2. Generate a new candidate from a proposal distribution in the parameter space and com-

pute the corresponding posterior distribution.

3. Accept (or not) the new point with the help of the Metropolis-Hastings algorithm.

4. If the point is not accepted, repeat the previous point in the chain.

5. Repeat steps 2-4 until you have a large enough chain.

1.4.1.2 A first example of parameter inference

In order to exemplify the numerical tools learned in this section, let us go back to the coin toss

example seen in Sec. 1.3.1. Since our main interest is that the reader understands the basic

procedure given in this section, let us try to estimate the value of p (or region of values for p)

that best matches our data (hence, we assume only the 14 times that the coin was thrown). To

calculate the posterior distribution (1.17) we use the MHA.

As mentioned before, we consider a likelihood given by a binomial distribution (1.4) and a

normal distributed prior (1.16) (a = b = 1). As our first “guess” for p we consider pi = 0.1. We

generate a new candidate pc as pc = pcu +G(pcu, σ̂), where G(pcu, σ̂) is our proposed Gaussian

distribution centered at pcu with variance σ̂ = 0.1; pcu is the current value of p, for our first step

is pcu = pi. Then, we introduce the MHA in a Python code, as can be seen in Appendix ??.

Our final result, (shown in Fig. 1.4), is a posterior distribution that matches very well with the

results calculated analytically (shown in Figure 1.1). Numerically we obtained p = 0.695+0.123
−0.107,

where the upper and lower values for p correspond to the 1σ standard deviation. Notice that

we have plotted the width of our 1σ, 2σ and 3σ confidence regions in the same figure.

To complement the example we also show in the right panel of Figure 1.4 the Markov Chain

generated by our code where we have considered 5000 steps in our chain. It is easy to see that

the chain oscillates with a large amplitude around a middle value. This amplitude is expected

because we do not have enough data to constrain more accurately the value of p.

Remark: In appendix ?? we include the MCMC algorithm using an explicit code for the

MCMC process. However, in Python there are some modules that can simplify this task. For

example, PyMC3 [? ] is a Python module that implements statistical models and fitting al-

gorithms, including the MCMC algorithm. We use this module at the end of this section by

applying the tools already learned.
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Figure 1.4: Left panel: 1D posterior distribution for our example. We plot the prior distribution (red),

true posterior (dashed-black) and the posterior calculated by the MHA (blue). We plot 1,2 and 3σ confi-

dence regions for the estimation of p. Right panel: associated Markov chain. We use pi = 0.1 as our first

“guess” for p.

1.4.1.3 Convergence test

It is clear that we need a test to know when our chains have converged. We need to verify that

the points in the chain are not converging to a “false convergent point” or to a local maximum

point. In this sense, we need that our algorithm takes into account this possible difficulty. The

simplest way (the informal way) to know if our chain is converging to a global maximum is

by running several chains starting with different initial proposals for the parameters we are

interested in. Then, if we see by naked eye, that all the chains seem to converge into a single

region of the possible value for our parameter, we may say that our chains are converging to

that region.

Taking yet again the example of the coins, we can run several chains for the above example

and try to estimate if the value (region) of p that we found is a stationary value. In Figure 1.5

we plot 5 different Markov chains with initial “guess” conditions p = 0.2, 0.3, 0.5, 0.7, 0.9. As we
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expected from the analytical result, after several steps all the chains seem to concentrate near

by the same value.

The convergence method used above is very informal and we would like to have a better way

to ensure that our result is correct. The usual test is the Gelman-Rubin convergence criterion

[? ? ]. That is, by starting with M chains with very different initial points and N points per

chain, if θji is a point in the parameter space of position i and belonging to the chain j, we need

to compute the mean of each chain

〈θj〉 =
1

N

N∑
i=1

θji , (1.55)

and the mean of all the chains

〈θ〉 =
1

NM

N∑
i=1

M∑
j=1

θji . (1.56)

Then, the chain-to-chain variance B is

B =
1

M − 1

M∑
j=1

(〈θj〉 − 〈θ〉)2, (1.57)

and the average variance of each chain is

W =
1

M(N − 1)

N∑
i=1

M∑
j=1

(θji − 〈θ
j〉)2. (1.58)

If our chains converge, W and B/N must agree. In fact we say that the chains converge when

the quantity

R̂ =
N−1
N W +B(1 + 1

M )

W
, (1.59)

which is the ratio of the two estimates, approaches unity. A typical convergence criteria is when

0.97 < R̂ < 1.03.

1.4.1.4 Some useful details

The proposal distribution. The choice of a proposal distribution q is crucial for the efficient

exploration of the posterior. In our example we used a Gaussian-like distribution with a variance

(step) σ̂ = 0.1. This value was taken because we initially explored, by hand, different values for

σ̂ and we select the quickest that approaches the analytic posterior distribution of p. However, if

the scale of q is too small compared to the scale of the target (in the sense that the typical jump

is small), then the chain may take very long to explore the target distribution which implies

that the algorithm will be very inefficient. As we can see in Figure 1.6 (left panel), considering
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Figure 1.5: Multiple MCMC. We use five Markov Chains to estimate the convergence.

an initial step pi = 0.6 and a variance for the proposal distribution σ̂ = 0.002, the number of

points are not enough for the system to move to its “real” posterior distribution. On the other

hand, if the scale of q is too large, the chain gets stuck and it does not jump very frequently

(right panel of the figure with σ̂ = 0.8) so we will have different “peaks” in our posterior.

In order to fix this issue in a more efficient way, it is recommendable to run an exploratory

MCMC, compute the covariance matrix from the samples, and then re-run with this covariance

matrix as the covariance of a multivariate Gaussian proposal distribution. This process can be

computed a couple of times before running the “real” MCMC.

The burn-in. It is important to notice that at the beginning of the chain we will have a

region of points outside the stationary region (points inside the ellipse in the right panel of

Figure 1.4). This early part of the chain (called “burn-in”) must be ignored, this means that

the dependence on the starting point must be lost. Thus, it is important to have a reliable

convergence test.

Thinning. There are several Bayesian statisticians that usually thin their MCMC, this

means that they do not prefer to save every step given by the MCMC; instead, they prefer to

save a new step each time n steps have taken place. An obvious consequence of thinning the

chains is that the amount of autocorrelation is reduced. However, as long as the chains are

thinned, the precision for the estimated parameters is reduced [? ]. Thinning the chains can

be useful in other kind of circumstances, for example, if we have limitations in memory. Notice

that thinning a chain does not yield incorrect results; it yields correct results but less efficient
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Figure 1.6: Two Markov Chains considering different variance for our Gaussian proposal distribution.

Left panel corresponds to σ̂ = 0.002, while right panel corresponds to σ̂ = 0.8.

than using the full chains.

Autocorrelation probes. A complementary way to look for convergence in a MCMC

estimation is by looking for the autocorrelation between the samples. The autocorrelation lag k

is defined as the correlation between every sample and the sample k steps before. It can be

quantified as [? ? ]

ρk =
Cov(Xt, Xt+k)√
V ar(Xt)V ar(Xt+k)

=
E[(Xt −X)(Xt+k −X)]√
E[(Xt −X)2]E[(Xt+k −X)2]

, (1.60)

where Xt is the t-th sample and X is the mean of the samples. This autocorrelation should

become smaller as long as k increases (this means that samples start to become independent).

More samplers

Gibbs sampling. The basic idea of the Gibbs sampling algorithm [? ] is to split the mul-

tidimensional θ into blocks and sample each block separately, conditional on the most recent

values of the other blocks. It basically breaks a high-dimensional problem into low-dimensional

problems.

The algorithm reads as follows:

1. θ consists of k blocks θ1, ..., θk. Then, at step i

2. Draw θi+1
1 from p(θ1|θi2, ..., θik)

3. Draw θi+1
2 from p(θ2|θi+1

1 , θi3, ..., θ
i
k)
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4. ...

5. Draw θi+1
k from p(θk|θi+1

1 , θi+1
2 , ..., θi+1

k−1)

6. Repeat the above steps for the wished iterations with i→ i+ 1.

The distribution p(θ1|θ2, ..., θk) = p(θ1,...,θk)
p(θ2,...,θk)

is known as the full conditional distribution of

θ1. This algorithm is a special case of MHA where the proposal is always accepted.

Metropolis Coupled Markov Chain Monte Carlo (MC3). It is easy to see that it

could be a little problematic if our likelihood has local maxima. The MC3 is a modification of

the standard MCMC algorithm that consists of running several Markov Chains in parallel to

explore the target distribution for different “temperatures”. This simplifies the way we sample

our parameter space and help us to avoid this local maxima. Here we exemplify the basic idea of

this algorithm, however if you are interested in a more extensive explanation, or a modification

to make the temperature of the chains dynamical, please consult the reference [? ].

We consider a tempering version of the posterior distribution P (θ, T |D,H)

P (θ, T |D,H) ∝ L(θ,D)1/TP (θ,H), (1.61)

where L is the likelihood and P (θ,H) the prior. Notice that, for higher T , individual peaks

of L become flatter, making the distribution easier to sample with a MCMC algorithm. Now,

we have to run N chains with different temperatures assigned in a ladder T1 < T2 < ... < TN ,

usually taken with a geometrically distributed division, with T1 = 1. The coldest chain T1

samples the posterior distribution more accurately and behaves as a typical MCMC. Then, we

define this chain as the main chain. The rest of the chains are running such that they can cross

local maximum likelihoods easier and transport this information to our main chain.

The chains explore independently the landscape for a certain number of generations. Then, in

a pre-determined interval, the chains are allowed to “swap” its actual position with a probability

Ai,j = min

{(
L(θi)

L(θj)

)1/Tj−1/Ti

, 1

}
. (1.62)

In this way, if a swap is accepted, chains i and j must exchange their current position in the

parameter space, then chain i has to be in position θj and chain j has to move to position θi.

We can see that, since the hottest chain Tmax can access easier to all the modes of

P (θ,H, Tmax|D), then it can propagate its position to colder chains, to be precise, it can
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propagate its position to the coldest chain T = 1. At the same time, the position of colder

chains can be propagated to hotter chains, allowing them to explore the entire prior volume.

Affine Invariant MCMC Ensemble Sampler. The main property of this algorithm

relies on its invariance under affine transformations. Let’s consider a highly anisotropic density

p(x1, x2) ∝ exp

(
−(x1 − x2)2

2ε
− (x1 + x2)2

2

)
, (1.63)

which is difficult to calculate for small ε. But by making the affine transformation

y1 =
x1 − x2√

ε
, y2 = x1 + x2, (1.64)

we can rewrite the anisotropic density into the easier problem

p(y1, y2) ∝ exp

(
−(y21 + y22)

2

)
. (1.65)

A MCMC sampler has the form X(t+ 1) = R(X(t), ψ(t), p), where X(t) is the sample after

t iterations, R is the sampler algorithm, ψ is the sequence of independent identically distributed

random variables and p is the density. A sampler is said to be affine invariant if, for any affine

transformation Ax+ b,

R(AX(t) + b, ψ(t), pA,b) = AR(X(t), ψ(t), p) + b. (1.66)

There are already several algorithms that are affine invariant, one of the easiest is known

as the stretch move [? ]. An algorithm fully implemented in Python under the name EMCEE

[? ] is also affine invariant, and there are also some other algorithms that can be found in [? ].

Even more samplers. The generation of the elements in a Markov chain is probabilistic

by construction and it depends on the algorithm we are working with. The MHA is the easiest

algorithm used in Bayesian inference. However, there are several algorithms that can help

us to fulfill our mission. For instance, some of the most popular and effective ones, are the

Hamiltoninan Monte Carlo (see e.g. [? ? ]) or the Adaptative Metropolis-Hastings (AMH) (see

e.g. [? ]).
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Figure 1.7: Datasets D1 and D2 measured by our straight-line theory. Case 1 (left) and case 2 (right).

1.5 Fitting a straight-line

In this section we apply the tools learned so far to the simplest example: fitting a straight-line.

That is, we assume that we have a certain theory where our measurements should follow a

straight line. Then, in order to apply our techniques, we simulate several datasets along this

line. One of the principal topics we want to analyse is the hyperparameter method and how it

works, so we will apply our analysis to two different cases (Figure 1.7):

1. Consider two datasets taken from the same straight-line but with different errors.

2. Consider two datasets but now we simulate both of them from different straight-lines and

different errors.

In our analysis we used the PyMC3 module implemented in Python. Our complete code can

be downloaded from the git repository [? ]. This code is simple to use and can be modified easily

for any model to be tested. We recommend to use the file called “new model” where the reader

can find a blank project. Here the data and model can be added up and, by running all the
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Figure 1.8: Left panel: 1D marginalized posterior distributions for our samples and the Markov chains

for model H0. Right panel: 2D marginalized posterior distributions along with 1-4 confidence regions for

our parameters for model H0. The red point corresponds to the true value.

notebook, obtain all the analysis we present in this section. One can find as well several notes

that will help in programming the model with PyMC3, even if the model contains functions

that are not defined in PyMC3.

1.5.1 Case 1

In this example we start by considering that our measurements for a given theory (a

straight-line y = a + bx) are given by the data shown in left panel of Figure 1.7. These two

datasets, D1 and D2, were generated from the line y = 3 + 2x, adding a gaussian error to

each point. For D1 we add an error with a standard deviation σ1 = 0.3, while for D2 we use

σ2 = 0.2. Then, we would like to estimate the parameters of the model, i.e. a and b. We will

analyse this data with and without the hyperparameter method and discuss in detail our results.
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Without hyperparameters. Model H0.

Before we make a Bayesian estimation, it is necessary to specify our priors. As we have seen,

a good prior is a non informative one. Suppose we only know some limits for a and b (we can

see them by eye in our data). Then we consider the flat priors

a ∝ U [0, 5] and b ∝ U [0, 3], (1.67)

where U [α, β] are uniform distributions with lower limit α and upper limit β.

From equation (1.27) we can write our likelihood as

L(D; line) ∝ exp

[
−
∑
d

(yd − y)2

2σ2
d

]
, (1.68)

where yd is our data taken from the dataset D = D1 +D2 and σd its errors.

We use the MHA to generate our MCMC. In our analysis we ran 5 chains with 10,000 steps

for each one. We ran each chain with a temperature T = 2 and we thinned them every 50

steps. The results we obtained correspond to a = 2.982±0.047 and b = 1.994±0.013, and their

posterior distributions are plotted in Figure 1.8. Notice that there are some regions where the

frequency of events in our sample is increased. So we can say that such parameter regions seem

to more likely match the data. Additionally we compute the Gelman-Rubin criterion for each

variable in order to verify that our results converged, i.e. for a is 1.000017 and for b is 1.000291.

We see that this number is very close to 1, so our convergence criterion is fulfilled. Right panel

of Figure 1.8 displays the 1 − 4 σ confidence regions. We also add a point in red to show the

real value for our parameters. The real value for a and b are inside of the curve corresponding

to one standard deviation of our estimations in the inferential method.

We continue with the autocorrelation plots. As we mentioned, we need these plots to be

small as k increases in order to consider that our analysis is converging. We see in Figure 1.9

such plots and notice that our convergence criteria is fulfilled. Then, in Case 1 we can see that

the model H0 looks to be a very good estimation procedure.

With hyperparameters. Model H1.

Now let us consider the Hyperparameter method. In this case our likelihood can be written

as Eq. (1.48). Similarly to the last procedure, we compute the posterior with flat priors and

using 5 chains with 10,000 steps for each one, and check for autocorrelations. Our results are as
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Figure 1.9: Autocorrelation plots for model H0.

followed: a = 2.97± 0.038 with Gelman-Rubin of 1.000113 and b = 1.995± 0.010 with Gelman-

Rubin 1.000155. Comparing both procedures we observe they provide similar results. In fact,

the confidence regions for both approximations, Fig. 1.8 and left panel of Figure 1.10, are similar

as well. So, which method is better? We could say that the method with hyperparameters is

as good as the one without them, but in order to be sure we compute the evidence ratio K

between both models. We obtained from Eqn. (1.49)

K = 3. (1.69)

Then, comparing with Table 1.2 we can say that the evidence for H1 to be better than H0 is

weak. In such case it should be equally better to work with H0 as to H1, as we explained before.

Finally, in order to exemplify our results, let us plot in the right panel of Figure 1.10 our

data with the straight-line inferred by the mean parameters of both models. As we expected

our estimation fits well the data for both cases.

1.5.2 Case 2

Here we consider that we have the same theory for the straight-line but different measurements.

The data points are given in the right panel of Figure 1.7. These correspond to our dataset D1

and D2, but now changing D2 by 16 new points generated around the line y = 3.5 + 1.5x with

a Gaussian noise and standard deviation σ = 0.5. So, our datasets are not auto-consistent with

each other. Let us make again a parameter estimation for the parameters a and b and look for
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Figure 1.10: Left panel: confidence regions for the parameters in model H1. Right panel: the best-fit for

the straight-lines inferred by the data.

the differences in both procedures.

Without hyperparameters. Model H0.

We follow the same procedure as in Case 1. We computed our posterior and verified that

our results converged with the help of the Gelman-Rubin criterion and the autocorrelation

plots. Our results are the following: a = 3.528± 0.056 and b = 1.795± 0.014. Then we plotted

our 1− 4σ confidence regions in left panel of Figure 1.11. It is easy to see that our estimation

differs so much from the real parameters in our datasets (red points). Of course this is because

we are trying to fit a model with non auto-consistent datasets and therefore we arrive at

incorrect results. Now, let us see what happens in the hyperparameters procedure.
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With hyperparameters. Model H1.

In the top right panel of Figure 1.11 we plotted our posterior distribution. We see imme-

diately that both approximations are very different. While for model H0 we obtained a single

region far away of the real values of our data, for model H1 we obtained two local maximum

regions near the real values for our datasets (red dots). For this example we do not calculate

the typical mean and standard deviation for our results.

As the last example we compare both methods. Given the fact that we know a priori the

real values of our parameters for this example, we could immediately say that the method with

hyperparameters is a better approximation than the case without them. However, we confirm

this assumption by calculating the ratio K between both models. We obtain

K = 37, (1.70)

which means that we have a very strong evidence that H1 is better that H0.

Finally, we can plot the straight-line inferred by model H0 and the two inferred by model H1.

Considering parameters inside the two regions in the top right panel of Figure (1.11) we obtain

the bottom panel of Figure 1.11.
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Figure 1.11: Top left panel: confidence regions for the parameters in model H0. Top right panel: confi-

dence regions for the parameters in model H1. Bottom panel: Best-fit values for the straight-lines for Case

2 inferred by our with data.
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