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1
CMB

1. Cosmic Microwave Background – Observational cosmology, history.

Recombination, Decoupling, Last Scattering – Pettini

Black body radiation

2. Stats

Perturbations

Acoustic peaks

Polarization, Tensor perturbations

3. Observations

Physical Implications, Cosmology

Codes

What else, Non-gaussianity, Primordial Gravitational waves

The cosmic microwave background (CMB) is the thermal radiation left over from the ”Big

Bang”, also known as ”relic radiation”. It is fundamental to observational cosmology because

it is the oldest light in the universe, dating to the epoch of recombination. With a traditional

optical telescope, the space between stars and galaxies (the background) is completely dark.

However, a sufficiently sensitive radio telescope shows a faint background glow, almost exactly

the same in all directions, that is not associated with any star, galaxy, or other object. This

glow is strongest in the microwave region of the radio spectrum.

The CMB is a snapshot of the oldest light in our Universe, imprinted on the sky when the

Universe was just 380,000 years old. It shows tiny temperature fluctuations that correspond to

1



1. CMB

regions of slightly different densities, representing the seeds of all future structure: the stars

and galaxies of today.

1.1 Isotropic CMB

The Cosmic Microwave Background radiation was discovered in 1965 by two American radio

astronomers, Arno Penzias and Robert Wilson, while trying to identify sources of noise

in microwave satellite communications at Bell Laboratories in New Jersey. Their discovery

was announced alongside the interpretation of the CMB as relic thermal radiation from the

Big Bang by Robert Dicke and collaborators working at the nearby Princeton University.

Interestingly, the possibility of a cosmic thermal background were first entertained by Gamow,

Alpher and Herman in 1948 as a consequence of Big Bang nucleosynthesis, but the idea was

so beyond the experimental

Figure 1.1: Discovery of the CMB.

The original detection by Penzias and Wilson was at a wavelength of 73.5 mm, this being

the wavelength of the telecommunication signals they were working with; this wavelength is

two orders of magnitude longer than λpeak = 1.1mm of a T = 2.7255K blackbody.

At any angular position (θ, φ) on the sky, the spectrum of the CMB is a near-perfect black-

body (see Figure 1.2). The CMB is in fact the closest approximation we have to an ideal black-
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1.1 Isotropic CMB

Figure 1.2: Blackbody radiation.

body. With T (θ, φ) denoting the temperature at a given point on the sky, the mean temperature

averaged over the whole sky is

〈T 〉 =
1

4π

∫
T (θ, φ) sin θdθdφ = 2.7255± 0.0006K (1.1)

The deviations from this mean temperature from point to point on the sky are tiny. Defining

the dimensionless T fluctuations:

δT

T
(θ, φ) =

T (θ, φ)− 〈T 〉
〈T 〉 (1.2)

is found that

〈(
δT

T

)〉1/2

= 1.1× 10−5 (1.3)

Such deviations were first reported in 1992 by the COBE team. Subsequent CMB missions

(WMAP and Planck) have significantly improved the angular resolution and precision in the

mapping of the CMB sky, as illustrated in Figure 1.3.
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1. CMB

Figure 1.3: CMB seen by Planck.
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2
The Boltzmann equation

Figure 2.1: Interactions between the different forms of matter in the universe.

The Boltzmann equation

df

dη
= C[f ] (2.1)

The expansion of the Universe is slow compared to the microwave frequency of the CMB. It is

hence adiabatic, as far as the photons are concerned. The distribution function of the cosmic

microwave background with temperature T̄ is

f̄ =

[
exp

(
E

T̄

)
− 1

]−1

. (2.2)

5



2. THE BOLTZMANN EQUATION

We see that f̄ depends just upon the energy E of a photon. Writing T = T0a
−1, we see that

f̄ is a function of aE only:

f̄(aE) =

[
exp

(
aE

T̄0

)
− 1

]−1

. (2.3)

To make the connection, we note that in General Relativity, the energy of a photon is given by

E = −uµpµ, (2.4)

and for observers in the unperturbed background at rest, i.e. uµ = a(1, 0, 0, 0), we haven

then E = −a p, where p ≡ |p| =
√
pipjδij , in the background p0 = p.

Them f̄ depends solely of P = a2p, and therefore use P as an argument for f .

The full distribution function is naively a function of (xµ, pµ). Yet, the physics governing the

evolution of f respects the mass shell condition pµp
µ = m2. Therefore, f is a function f(xµ, pi)

only. Use p0 as a function of pi right from the start. In order to do this, let us split the spatial

momentum

pi ≡ pni (2.5)

into its magnitude p and the unit vector of photon momentum n, so δijn
inj = 1. Hence, we

arrive at our final set of variables for f

f = f(η,x, P,n) (2.6)

The complete distribution function for each species can be split into background plus a

perturbation part:

f(η,x, P,n) = f̄(P ) + F (η,x, P,n), (2.7)

Useful relations, got them from gµνp
µpν = 0

p0 = p(1−Ψ− Φ) (2.8)

p0 = −a2p(1 + [Ψ− Φ]) (2.9)

pi = a2pni(1− 2Φ) (2.10)

√−g = a4(1 + Ψ− 3Φ) (2.11)

and µ = k·n
k , and a useful formula

∂p

∂pi
=
∂
√
δmnpmpn

∂pi
=

1

2

2pi
p

= ni (2.12)

-6-



2.1 Collisionless Part

2.1 Collisionless Part

The evolution of perturbations in the universe is quantified by the Boltzmann equation:

(
∂f

∂η

)

P

+
∂f

∂xi
∂xi

∂η
+
∂f

∂P

∂P

∂η
+
∂f

∂ni
∂ni

∂η
= C[f,G], (2.13)

which relates the effects of gravity on the photon distribution function f to the rate of

interactions with other species, given by the collision term C[f,G]. The previous distribution

applies to polarization as well by simply replacing F → G (we use G to denote the linear

polarization distribution function) and f̄ = f̄ ′ → 0

On the Boltzmann equation the last term vanishes, because it is of second order in perturba-

tion theory: f̄ does not depend on ni and hence ∂f/∂ni is a perturbation. In addition ∂ni/∂η,

is a change in photon direction that can only come from a spatially inhomogeneous scattering

process. So all in all the last term is of second order and we can safely discard it.

The most difficult term is the third one.

∂P

∂η
=

∂

∂η
a2p (2.14)

= 2
ȧ

a
a2p+ a2 ∂p

∂η
(2.15)

and using the equation

∂p

∂η
=

∂p

∂pi
∂pi

∂η
= ni

∂pi

∂η
(2.16)

The third term can be computed from the geodesic equation

p0 ∂p
i

∂η
+ Γiαβp

αpβ = 0 (2.17)

then

ni
∂pi

∂η
= −(p0)−1niΓ

i
αβp

αpβ (2.18)

Collecting all the terms, we have

niΓ
i
βγp

βpγ = 2
a′

a
p0p+ p2 [iµk(Ψ− Φ)− 2Φ′] (2.19)

-7-



2. THE BOLTZMANN EQUATION

∂f

∂P

∂P

∂η
= −P f̄,P {iµk[Φ + Ψ] + 2Φ′}, (2.20)

and the spatial part

∂f

∂xi
∂xi

∂η
= iµkF (η,x, P,n). (2.21)

Collecting the terms involving the background only

(
∂f

∂η

)

P

= 0 (2.22)

The change in a distribution function of massless particles which depends solely on P is zero:

the preservation of the background black body spectrum.

As far as the perturbed distribution is concerned, it is much more exciting:

(
∂F

∂η

)

P

+ iµkF − P f̄,P {iµk[Φ + Ψ] + 2Φ′} = C[f,G] (2.23)

Finally, making the substitution F → G, f̄ ′ → 0, we get the simple evolution equation for

the linear polarization G (
∂G

∂η

)

P

+ iµkG = CG[f,G] (2.24)

where CG[f,G] is the collision term for G.

2.1.1 Perturbed temperature

Writing the temperature function T in terms of the photon brightness temperature perturbation

∆ ≡ ∆T/T̄ , we have

T (η,x,n) = T̄ (η)[1 + ∆(η,x,n)], (2.25)

f = f̄

(
P

1 + ∆

)
= f̄ +

∂f̄

∂P

[
P

1 + ∆
− P

]
(2.26)

= f̄ +
∂f̄

∂P
P

(
1

1 + ∆
− 1

)

= f̄ +
∂f̄

∂P
P (1−∆− 1)

= f̄ − ∂f̄

∂P
P∆

-8-



2.2 The Collision Term from Compton Scattering

and therefore F and ∆ are connected via

F (η,x, P,n) = −P ∂f̄

∂P
∆(η,x,n). (2.27)

So,

G(η,x, P,n) = −P ∂f̄

∂P
Q(η,x,n). (2.28)

Then, the simplify Boltzmann equation becomes

∆′ + ikµ∆ = −iµk[Φ + Ψ]− 2Φ′ + Ĉ[f,G] (2.29)

where Ĉ[f,G] ≡ C[f,G]/(P f̄,P )

2.2 The Collision Term from Compton Scattering

The dominant term for the coupling of photons to the baryons is via inverse Compton scattering

e−(q) + γ(p) 
 e−(q′) + γ(p′) (2.30)

where we are interested how the photon distribution as a function of momentum p changes

[Thomson scattering is the low-energy limit of Compton scattering]. The amplitude can be

calculated from the Feynman rules.

C[f,G] = aneσT f̄,PP

{
iµvb + ∆(η,x,n)− 1

4

∫ 1

−1

∆(η,x,n′)[P2(λ)P2(µ) + 2]dλ (2.31)

−1

4

∫ 1

−1

Q(η,x,n′)P2(µ)[−2
√

6π52Y
0
2 (λ)]dλ

}
(2.32)

The expansion of the temperature perturbation (∆) and polarisations (Q and U), in terms

of the spherical harmonics Y ml (n), are

∆(η,x,n) =
∑

l

(−i)l∆l(k, η)Pl(k̂ · n), (2.33)

(Q± iU)(η,x,n) =
∑

l=2

(−i)l(E0
l ± iB0

l )

√
4π

2l + 1
∓2Y

0
l (n), (2.34)

where E and B are the electric and magnetic modes and the Pl’s represent the Legendre

polynomials. So

C[f,G] = aneσT f̄,PP

{
iµvb + ∆(η,k,n) +

1

10
∆2P2(µ)−∆0 −

√
6

10
[E2 −∆2]

}
(2.35)

-9-



2. THE BOLTZMANN EQUATION

The Boltzmann equation thus yields to the evolution equation of temperature perturbations

[5]:

∆′+ ikµ∆+κ′∆ = −iµk[Φ+Ψ]−2Φ′+κ′
{

1

4
δγ − Φ− iµvb +

1

10
P2(µ)[

√
6E2 −∆2]

}
. (2.36)

Q′ + ikµQ+ κ′Q =
κ′

10
{P2(µ)− 1}

[√
6E2 −∆2

]
. (2.37)

Note that the temperature perturbation ∆(n) is a function of either ∆(η,x,n) or, in Fourier

space, ∆(η,k,n); κ′ ≡ aneσT is the differential optical depth and µ = k−1k · n the direction

cosine.

We have use the expressions for the first few moments of the distribution function

Tµν =

∫ √−g p
µpν
|p0|

f(p, x)d3p (2.38)

δ = 4Φ +
1

π

∫
∆(n)dΩ (2.39)

We notice that (2.36) is not manifestly gauge-invariant, however by defining the gauge

invariant temperature perturbation M = ∆ + 2Φ, and its multipole decomposition

M(η,x,n) =
∑

l

(−i)lMl(η,k)Pl(n), (2.40)

the evolution equation (2.36), in gauge-invariant components, becomes:

M′ + ikµM+ κ′M = iµk[Φ−Ψ] + κ′
{

1

4
Dγ
g − iµvb +

1

10
P2(µ)

[√
6E2 −M2

]}
. (2.41)

The procedure is as follows: For each Legendre polynomials Pl

• replace M(η, µ) by its multipole expansion

• multiply by Pl(µ)

• integrate both l.h.s. and r.h.s. of the new equation over µ :
∫ 1

−1
dµ

• use the orthogonality relation
∫ 1

−1
dµPl(µ)Pn(µ) = 2δln/(2l + 1)

-10-



2.2 The Collision Term from Compton Scattering

After integrating (2.41) for each l and applying orthogonality relations of the Legendre poly-

nomials, the hierarchy for M is hence given by [6]:

M′0 = −k
3
Vγ , (2.42)

M′1 = κ′(Vb − Vγ) + k(Ψ− Φ) + k

(
M0 −

2

5
M2

)
, (2.43)

M′2 = −κ′(M2 − C) + k

(
2

3
Vγ −

3

7
M3

)
, (2.44)

M′l = −κ′Ml + k

(
l

2l − 1
Ml−1 −

l + 1

2l + 3
Ml+1

)
, l > 2, (2.45)

and similarly for the polarisation

E′2 = −k
√

5

7
E3 − κ′(E2 +

√
6C), (2.46)

E′l = k

(
2κl

2l − 1
El−1 − 2κl+1

2l + 3
El+1

)
− κ′El, l > 2. (2.47)

Here C =M2 −
√

6E2/10 and 2κl =
√
l2 − 4 are combinatorial factors.

Massless neutrinos follow the same multipole hierarchy asM, however without polarisation

and Thompson scattering. Hence, the perturbed neutrino distribution N satisfies [5]:

N ′0 = −k
3
Vν , (2.48)

N ′0 = k(Ψ− Φ) + k

(
N0 −

2

5
N2

)
, (2.49)

N ′l = k

(
l

2l − 1
Nl−1 −

l + 1

2l + 3
Nl+1

)
, l > 1. (2.50)

For completeness, we quote the hierarchy for the tensor multipoles, temperature ∆̃T
l , polar-

isation ∆̃P
l and cross-correlation ∆̃T,P

l [5, 12]:

∆̃T
0 = −k∆̃T

1 − κ′[∆̃T
0 − ψ]− h′, (2.51)

∆̃P
0 = −k∆̃T

2 − κ′[∆̃T
1 + ψ], (2.52)

∆̃T,P
l =

k

2l + 1

[
l∆̃T,P

l−1 − (l + 1)∆̃T,P
l+1

]
− κ′∆̃T,P

l ; l ≥ 1, (2.53)

where h is the longitudinal-scalar part of tensor decomposition in (??), and ψ is given by

ψ =
1

10
∆̃T

0 +
1

7
∆̃T

2 +
3

70
∆̃T

4 −
3

5
∆̃P

0 +
6

7
∆̃P

2 −
3

70
∆̃P

4 . (2.54)

The Boltzmann hierarchy is nowadays solved numerically with software packages such as

CMBFAST [11] to produce the CMB spectrum. Also, a widely used implementation is the

-11-



2. THE BOLTZMANN EQUATION

CAMB code [8], often embedded in the analysis package CosmoMC. Different codes have also

been implemented to compute the CMB spectrum, i.e. CMBEASY is fully object oriented C++

[4], CLASS is written in C [7], and CMBquick is written in Mathematica, but is unavoidably

slow [9].

2.3 The Line of Sight Strategy

So usually, we are interested in M(η0, µ). It turns out that there is a clever way to obtain this

that even highlights the different contributions towards the final anisotropy. Let us develop this

Line of Sight strategy. Inspecting, one notices that the l.h.s can be written as

e−iµkηe−κ(η)L̇ (2.55)

where

L ≡ eiµkηeκ(η)M (2.56)

Hence, the Boltzmann equation translates into

L̇ = eiµkηeκ(η)

[
iµk(Φ−Ψ) + κ′

(
1

4
Dγ
g − iµVb −

1

2
(3µ2 − 1)C

)]
(2.57)

and integrated over conformal time

L(η0) =

∫ η0

0

dηeiµkηeκ(η)

[
iµk(Φ−Ψ) + κ′

(
1

4
Dγ
g − iµVb −

1

2
(3µ2 − 1)C

)]
(2.58)

The photon perturbation today is given by

M(µ, η0) =

∫ η0

0

dηeiµk(η−η0)eκ(η)−κ(η0) ×
[
iµk(Φ−Ψ) + κ′

(
1

4
Dγ
g − iµVb −

1

2
(3µ2 − 1)C

)]

(2.59)

The product g ≡ κ′ exp(κ(η)− κ(η0)) plays an important role and is called the visibility

function. Its peak defines the epoch of recombination.

Each term in the above Equation containing factors of µ, can be integrated by parts, in

order to get rid of µ. Applying this procedure to all terms involving µ yields

M(µ, η0) =

∫ η0

0

eıµk(η−η0)ST (k, η)dη (2.60)

-12-



2.3 The Line of Sight Strategy

Figure 2.2: Visibility function. Its peak at about η ≈ 300Mpc defines the epoch of last scattering.

where the source is

ST = −eκ(η)−κ(η0)[Φ′ −Ψ′] + g′
[
Vb
k

+
3

k2
C′
]

+ g′′
3

2k2
C

+ g

[
1

4
Dγ
g +

V ′b
k
− (Φ−Ψ) +

C
2

+
3

2k2
C′′
]
, (2.61)

Let us examine in more detail the temperature perturbations. The density contrast Dγ
g is

the main contribution, driving the spectrum towards the oscillatory behaviour. It can be seen as

an intrinsic temperature variation over the background last-scattering surface: δT/T ∝ Dγ
g /4.

The Doppler shift, Vb-term, describes the blueshift caused by last scattering electrons moving

towards the observer. The term involving time derivatives of the potentials, (Φ′−Ψ′), is known

as the integrated Sachs-Wolfe effect (ISW) [10]. It describes the change of the CMB photon

energy due to the evolution of the potentials along the line of sight. The terms involving C and

its derivatives describe polarisation effects and are far less important than the Dγ
g term. Finally,

the (Φ−Ψ) term arises from the gravitational redshift when climbing out of the potential well

at last scattering. The combination Dγ
g /4 − (Φ − Ψ) is known as the ordinary Sachs-Wolfe

effect (SW). This gives the main contribution on scales that at decoupling were well outside the

horizon [2, 5].

-13-



2. THE BOLTZMANN EQUATION

Figure 2.3
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3
Statistics of Random Fields

The density contrast δ, introduced in the previous section, can be considered statistically as a

random field with zero mean, 〈δ(x)〉 = 0. The measure of the clustering degree in the spatial

direction r is determined by the correlation function ξ, which is defined as the product of the

density contrast at two separate points, x and x + r:

ξ(r) ≡ 〈δ(x)δ(x + r)〉. (3.1)

Because of statistical homogeneity and isotropy of a random field, the two-point correlator

depends only on the distance r = |r| between the two points. On the other hand, the amplitude

of fluctuations on different lengths are described by the power spectrum P(k), which is simply

the inverse Fourier transform of the correlation function ξ:

〈δ̂(k)δ̂(k′)〉 =
2π2

k3
P(k)δD(k− k′), (3.2)

where δ̂ is the Fourier transform of the density contrast δ. The Dirac’s delta distribution δD

guarantees that modes relative to different wave-numbers are uncorrelated in order to preserve

homogeneity; P(k) has dependency only on the magnitude of the momenta no on k direction

because of isotropy. The normalisation factor 2π2/k3 in the definition of the power spectrum is

conventional and has the virtue of making P(k) dimensionless if δ(x) is.

3.0.1 CMB power spectrum

The primary anisotropies carried out by physical effects before the recombination epoch, en-

coded in the fractional temperature perturbation, are expanded in terms of the spherical har-

15



3. STATISTICS OF RANDOM FIELDS

monics on the surface of last scattering by

∆T

T̄
(η0,x0,n) =

∑

l,m

almYlm(n), (3.3)

where the alm’s define the multipoles of the CMB anisotropy; x0 is our position and η0 the

present conformal time. Assuming the al,m’s are Gaussian random fields, the two-point corre-

lator gives

〈alma∗l′m′〉 = Clδll′δmm′ . (3.4)

The angular CMB power spectrum CTTl is computed through the two-point correlation function

(3.1) by

C(θ) ≡
〈

∆T (n)

T̄

∆T (n′)

T̄

〉
=
∑

l

2l + 1

4π
ClPl(n · n′). (3.5)

where n ·n′ = cos θ, and we have used the addition theorem for spherical harmonics to express

the sum of products of Ylm’s in terms of the Legendre polynomials. We consider initial conditions

in terms of the conformal Newtonian gauge potential Φini = R. Because the evolution equations

for ∆ are independent of the direction k, we may write

∆l(η0,k,n) = Φini(k)∆l(η0, k,n). (3.6)

Therefore the Cl’s are found to be

CXYl =
4π

(2l + 1)2

∫
d3k

(2π)3
PR(k) ∆X

l (k)∆Y
l (k), (3.7)

where X and Y represent the temperature (T ) and polarisations (E or B); PR(k) is the power

spectrum of the initial curvature perturbations

PR(k) = As

(
k

k0

)ns−1

(3.8)

and As the initial scalar amplitude, quoted at a reference scale k0 (one chooses k0 = 0.05Mpc)

and the spectrum is a featureless power law with scalar spectral index ns.

The moments obtained from the line of sight integration method [11], in terms of the spher-

ical Bessel functions jl, are given by

∆T
l = (2l + 1)

∫
dηjl(k[η − η0])ST (k, η), (3.9)

∆E
l = (2l + 1)

√
(l − 2)!

(l + 2)!

∫ η0

0

dηSE(k, η)jl(x), (3.10)

-16-



with the sources

ST = −eκ(η)−κ(η0)[Φ′ −Ψ′] + g′
[
Vb
k

+
3

k2
C′
]

+ g′′
3

2k2
C

+ g

[
1

4
Dγ
g +

V ′b
k
− (Φ−Ψ) +

C
2

+
3

2k2
C′′
]
, (3.11)

SE =
3gC
4x2

, (3.12)

where we have used x ≡ k(η0 − η) and the visibility function g ≡ κ′ exp(κ(η)− κ(η0)).

For completeness, we quote the hierarchy for the tensor multipoles, temperature ∆̃T
l , polar-

isation ∆̃P
l and cross-correlation ∆̃T,P

l [5, 12]:

Ctens
XY ;l =

4π

(2l + 1)2

∫
d3k

(2π)3
PT (k) ∆tens

X;l (k)∆tens
Y ;l (k), (3.13)

where PT (k) is the initial tensor power spectrum, and the moments:

∆tens
T ;l =

√
(l + 2)!

(l − 2)!

∫ η0

0

dηStens
T (k, η)

jl(x)

x2
, (3.14)

∆tens
E,B;l =

∫ η0

0

dηStens
E,B(k, η)jl(x), (3.15)

with the sources (using (3.22)):

Stens
T (k, η) = h′ exp(−κ) + gψ, (3.16)

Stens
E (k, η) = g

{
ψ − ψ′′

k2
+

2ψ

x2
− ψ′

kx

}

−g′
{

2ψ′

k2
+

4ψ

kx

}
− 2g′′

ψ

k2
, (3.17)

Stens
B (k, η) = g

{
4ψ

x
+

2ψ′

k

}
+ 2g′

ψ

k
. (3.18)

∆̃T
0 = −k∆̃T

1 − κ′[∆̃T
0 − ψ]− h′, (3.19)

∆̃P
0 = −k∆̃T

2 − κ′[∆̃T
1 + ψ], (3.20)

∆̃T,P
l =

k

2l + 1

[
l∆̃T,P

l−1 − (l + 1)∆̃T,P
l+1

]
− κ′∆̃T,P

l ; l ≥ 1, (3.21)

where h is the longitudinal-scalar part of tensor decomposition in (??), and ψ is given by

ψ =
1

10
∆̃T

0 +
1

7
∆̃T

2 +
3

70
∆̃T

4 −
3

5
∆̃P

0 +
6

7
∆̃P

2 −
3

70
∆̃P

4 . (3.22)

The slow way would be to get the Cl’s directly from the (vast) multipole hierarchy of the

photon distribution and the multipole hierarchy up to l ≡ 3000. In contrast, the line of sight
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3. STATISTICS OF RANDOM FIELDS

FIGURE 4. Temperature (black), E-mode (green), B-mode (blue) and T -E cross-correlation (red)

CMB power spectra from scalar perturbations (left) and tensor perturbations (gravitational waves; right).

The amplitude of the tensor perturbations is shown at the maximum amplitude allowed by current data

(r= 0.22 [44]). The B-mode spectrum induced by weak gravitational lensing is also shown in the left-hand
panel (blue; see Sec. 6.1.2).

to constrain gravitational waves since the sampling variance of the dominant scalar

perturbations is large at low l. Fortunately, CMB polarization provides an alternative

route to detecting the effect of gravitational waves on the CMB which is not limited by

cosmic variance [45, 46]; see Sec. 3.

2.7.4. Isocurvature modes

Adiabatic fluctuations are a generic prediction of single-field inflation models. How-

ever, multiple scalar fields typically arise in models inspired by high-energy physics,
such as the axion model [47], curvaton [48] and multi-field inflation [49, 50]. In such

models, if the fields decay asymmetrically and the decay products are unable to reach

chemical equilibrium with each other, an isocurvature contribution to the primordial

perturbation will result. The simplest, and best-motivated, possibility is an isocurva-

ture mode where initially the dominant fractional over-density is in the CDM, with a

compensating (very small) fractional fluctuation in the radiation and baryons [51]. The

amplitude of the CDM isocurvature mode is quantified by the gauge-invariant quantity

S ≡ !c−3!"/4, where !c is the CDM fractional over-density. Generally,S can be cor-

related with the curvature perturbation R, for example in the curvaton and multi-field
models.

In the CDM mode, the photons are initially unperturbed, as is the geometry: !"(0) =
0= #(0) and vb = 0. The different equations of state of the CDM and radiation lead to

the generation of a curvature perturbation. On large scales, R grows like a in radiation

Lecture notes on the physics of cosmic microwave background anisotropies March 30, 2009 18
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Figure 3.1: CMB spectra for all the contributions: Temperature, E-mode, B-mode and T -E

cross-correlation. The left-hand-side displays the scalar perturbations whereas the right-hand-side

tensor perturbations (gravitational waves). Figure reprinted from Challinor [3]

integration gets the ∆l’s by folding the source term S with the spherical Bessel functions jl.

While the Bessel functions oscillate rapidly in this convolution, the source term is most of the

time rather slowly changing. It thus suffices to calculate the sources at few (cleverly chosen)

points and interpolate between.

Figure 3.1 shows the adiabatic CMB spectra for all the contributions: Temperature,

E-mode, B-mode and T -E cross-correlation. The left-hand-side of the panel displays the

CMB spectra for scalar perturbations, whereas the right-hand-side tensor perturbations

(gravitational waves). All of them in units of l(l + 1)/2π[µK]2.

3.1 Codes

The Boltzmann hierarchy is nowadays solved numerically with software packages such as CMB-

FAST [11] to produce the CMB spectrum. Also, a widely used implementation is the CAMB

code [8], often embedded in the analysis package CosmoMC. Different codes have also been

implemented to compute the CMB spectrum, i.e. CMBEASY is fully object oriented C++

[4], CLASS is written in C [7], and CMBquick is written in Mathematica, but is unavoidably

slow [9].
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3.1 Codes

Figure 3.2: a
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Part-III Cosmology 50

Figure 6: Contribution of the various terms in Eq. (3.4.22) to the temperature-
anisotropy power spectrum from adiabatic initial conditions: δγ/4+ψ (denoted SW for
Sachs-Wolfe; magenta); Doppler effect from vb (blue); and the integrated Sachs-Wolfe
effect (ISW; green).

behaviour arises since modes with wavenumbers that are not perpendicular to the line
of sight project to angles larger than 2π/(kχ∗).

If we make use of the standard integral

∫ ∞

0

j2
l (x) dx =

1

2l(l + 1)
(3.4.32)

for l > 0, we see that a scale-invariant primordial spectrum, for which PR(k) = As is
a constant, gives a scale-invariant angular power spectrum

l(l + 1)Cl

2π
=

1

25
As . (3.4.33)

More generally, a primordial spectrum that varies as a power-law in k (with some
spectral index ns − 1) gives an angular power spectrum going like

Cl ∼ Γ(l + ns/2 − 1/2)

Γ(l − ns/2 + 5/2)
, (3.4.34)

where Γ(x) is the Gamma function. We see that the CMB power spectrum on large
scales is directly related to the amplitude and slope of the primordial power spectrum11.

11Things are actually a little more complicated because of the integrated Sachs-Wolfe effect.

Tuesday, 19 February 2013

Figure 3.3: Total CMB temperature-spectrum and its different contributions: Sachs-Wolfe (SW)

Dγ
g /4 − (Φ − Ψ); Doppler effect V γb ; and the integrated Sachs-Wolfe effect (ISW) coming from

evolution of the potential along the line of sight. Figure from Challinor [3]

3.2 Description of fluctuations

• The l = 0 term of the correlation function (the monopole) vanishes if the mean tempera-

ture has been defined correctly.

• The l = 1 (the dipole) reflects the motion of the Earth through space. What we are seeing

is the effect of the Earth’s motion relative to the local comoving frame of reference. The

Earth is moving with a velocity v = 369kms−1 towards a point on the boundary of the

constellations of Crater and Leo.

• The Sachs-Wolfe effect (l < 100) - The gravitational effects are the dominant contributions

at large angular scales. Cl ∝
∫
d ln kPR(k)j2

l (k[η−η0]), and if we make use of the integral

∫ ∞

0

j2
l (x)dx =

1

2l(l + 1)
(3.23)

and assume a nearly scale-invariant scalar spectrum ns ≈ 1, then

l(l + 1)Cl
2π

=
1

25
As (3.24)

is approximately constant, shown as a flat plateau at low multipoles. More generally, a

primordial spectrum that varies as a power-law in k gives an angular power spectrum

going like

Cl ∼
Γ(l + ns/2− 1/2)

Γ(l − ns/2 + 5/2)
(3.25)
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3.2 Description of fluctuations

• Intermediate scales (100 < l < 1000) - Perturbations inside the horizon have evolved

causally and produced the anisotropy at the last scattering epoch (lhor ≈ 200). The

balance between the gravitational force and radiation pressure is presented as series of

characteristic peaks called acoustic oscillations.

• Small scales (l > 1000) - The thickness of the last scattering surface leads to a damping

of CTl ∼ l−4 at the highest multipoles, commonly called the Silk effect. The total mean-

squared distance that a photon will have moved by such a random walk by the time η∗ is

therefore ∫ η∗

0

dη′

aneσT
∼ 1

k2
D

(3.26)

which defines a damping scale k−1
D .

At these scales, important contributions are also provided by secondary anisotropies:

gravitational lensing, Rees-Sciama effect (RS), Sunyaev-Zel’dovich effect (SZ), kinetic

Sunyaev-Zel’dovich effect, Ostriker-Vishniac effect (OV), foregrounds from discrete

sources [1].
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Figure 3.4
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