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Initial conditions from inflation

From quantum to classical

5®(t,7) = (¢, %) — (). (1.1)
e Quantum fluctuations induce a non-zero variance in the amplitudes of these oscillations
<|5<1>k|2> = (0/6,|20) . (1.2)
e Then inflationary expansion stretches these fluctuations to super horizon scales.
e At horizon crossing, k = aH, switch from inflation fluctuations 6® to fluctuations in the
conserved curvature perturbation R. [In spatially flat gauge ¢ = E = 0].
R=—-¢— éVQE +H(B+v) — H(B+wv) zero curvature gauge,

compare to the stress tensor of a scalar field

/

- )
5T = g*0,90;00 = ¢* 0, 20;6® = —0;00
recall 6TJQ —(p+p)0;(B+w), (1.3)
5P
h B ==
ence +v Y
and R = —%5@. (1.4)

For the Energy momentum tensor, using the unperturbed FRW metric

S = /drd3 [ c1>’2 (V<I>)2> - a4V(<I>)] : (1.5)



1. INITTAL CONDITIONS FROM INFLATION

in the background ® = ®(n) is homogeneous
Fluctuations in ®: ® = & + = where u = ad®

expanding the fluctuations in u, the term in square brackets becomes

_ _ 1 1 1 1
ad®u —a' 'y —|—§u’2 —u'uH + ZuPH? - 5(Vu)2 —ad*uVg —§a2u2‘/7¢q>.

2

s 51 5(1)

(1.6)

Looking only the terms marked with §(), the first term can be integrated by parts and dropping

the boundary term, we have
s = _/d7d3$ [(®'a) +d'® +a’Ve]u,
expanding
s = —/de3xa[<f” + 2HP + a*V.plu,

where

"+ 2HP +a*Ve =0 Klein-Gorden for the background field

hence, we need to go to the second order in the action

1
52 — 5 / drd®z [(u)? — (Vu)? — 2Huu' + (H? — a®Vge) u?],

1
using  wu' = §(u2)’,
and then by parts, we have
1 a//
53 = 3 /deSx [(u')2 — (Vu)? + (a - a2Vq>q>) uﬂ .
During slow-roll inflation we have

Voo _ 3Mp2V,<I><I>
H2 =V

=3y <1,

since ' = a?H, H ~ constant, deriving
1

a
— ~2d'H =2a*H?* > a*Vps,
a

. 1 a//
53 = /drddxi [(u')2 + —u? — (Vu)ﬂ .
a
Applying £ — L

"
W — —u—Vu=0 Mukhanov-Sasaki equation.
a

and for each Fourier mode

(1.7)

(1.8)

(1.9)

(1.10)

(1.11)

(1.12)

(1.13)

(1.14)

(1.15)

(1.16)



1.1 Canonical quantization

1.1 Canonical quantization

Follow the quantization of the harmonic oscillator.

Define the momentum conjugate to u

promote 7 and u to operator-valued, commutation relations

[i(T, %), 7 (T, 7)) = i6(F — ) Heinsenberg picture

0%t a' 9.
P

Quantum oscillators &L, ap creation and annihilation operators

The general solution to the equation

in Fourier

1.2 Power spectrum

(1.17)

(1.18)

(1.19)

(1.20)

(1.21)

Power spectrum P, (k) by computing the two-point correlator of the field « in Fourier space

<o|a(7, Ryat(r, 125’)|o> = TP (k)e(k—F)

after some algebra

(Ola(r, Byi (. K )[0) = ux(r)?8(F — F)

the power spectrum is thus P, (k) = %mk ()| since u = ad®
B () |
Pso(k) = —
e () 272 | a(n)

we requiere more detailed solutions.

During slow-roll inflation, H ~ constant, or Hj, for few e-folds, integrating

(1.22)

(1.23)

(1.24)



1. INITTAL CONDITIONS FROM INFLATION

a 1
— = =aH = = ——
H arly a HkT
2 a” 2
G — = 1.25
“ Hyr3 = a T2 ( )
vy (k- 2 =0 1.26
Uk + —-;5 U = (. )
with solutions
u (T)—e_ikT(l—i) (1.27)
k vV2k kT ’
few e-folds after Hubble exit (super horizon)
e~ kT up(t)  iHpe T
ug(7) ~ — = R 1.28
e BT BT :2%)
Form the modes that have excited the Hubble radius
Hy\”
Pso(k)=—) . 1.2
seh) = (32 (1.20)
A light scalar field in quasi the Sitter spacetime acquires an almost-scale-invariant spectrum of
fluctuations ) )
H H?
H=[—) P = _ . 1.30
Prik) (@/) ® <27r<1>/) (1.30)
Using slow-roll
1 _ =
H? ~ V(P 3H® = -V 1.31
iz (@) o (1.31)
g2\ s\ (/M2 s vt 1
Pr(k)=(—=) =~ = A = — (1.32)
21D 2V 32m)2(Ve) 3\ V8rM, | ev

CMB obs. constrain Pr (k) ~ 2 x 107°.

1.3 Primordial perturbations from inflation

e Slow-roll inflation produces a spectrum of curvature perturbations that is almost scale-

invariant (Harrison-Zeldovich)

e We can quantify small departures from scale-invariance, by parameterizing

k ns—1
Pr = A, () , (1.33)
ko



1.3 Primordial perturbations from inflation

ns(k) spectral index ng(k) — 1 = dl’;ﬁ’:‘k(k) in terms of the potential
d dt do d
= —_— 1.34
dlnk dlnk dt d® ( )
at Hubble exit
dlnk OtH
“ dt ( UE ) (1.35)
OH 3 (p+ P
H2 2 p
3 (0,®)? _ 1 (3HO;®)?
T2 vV 2 3HY
M? (Vg\? dnk
p , P
~—— == ~H(1 - 1.
2 (%) e GEam0-@) (1.36)
< ldod
dink = H dt d®
Vo d 2 Ve d 9 d
—_—— - M2 ~—M:\2ey — 1.
3H? dd PV dd PVEV D (1.37)
——
1stFriedmann 2ndFriedmann
differenciate the spectrum
d
ns—1= —Mp\/QEV%(IDV —Iney)
Vv
= —M,\Zey <‘I> - GV‘D> (1.38)
14 €y
second term
dlney _ Voo Vo
de % v
V2 (v
~ Y2 -9 1.39
v (2 -2y (1.39)
ng — 1 =2ny(P) — ey (D). (1.40)
— ddl’flsk second-order in slow roll (running parameter).
e Gravitational waves from inflation
Tensor modes
ds* = a*[dr? — (65 + 2E£)da:idxj] (1.41)



1. INITTAL CONDITIONS FROM INFLATION

remember EJj trace-free and 09y E]; = 0, there are two degrees of freedom associated —

behave like massless scalar fields

M2 :
S — ?p /drdozgaz[(Eg; )2 - (VEZ;)%

define ; s
M2 1 + x 0
“raEl = S 0
¥}
2 AV

1 (LH
CEEED> / drdl(u)? — (Vur ) + ad]

I=+.,x

two copies for the action u = ad®P

using the slow-roll inflation

defines the tensor-to-scalar ratio

The tensor spectral index

_dlnP(k) _dlnV Vo
S ok amk VIS
v 2€
:—Mp\/26v MV
p
= —2€V

Note that r ~ —8ny, the first consistency relation.

1.4 The matter power spectrum
The distribution of matter is a key cosmological observable

-

MPS Pam(n; k) is defined by

S - 2 -
< A (1, k)AL (T, K) >= EPA’” (1,k)o(k — k')

(1.42)

(1.43)

(1.44)

(1.45)

(1.46)

(1.47)

(1.48)

(1.49)



1.4 The matter power spectrum

is dimensionless, but frequently

2
Pn,, (7, k) = ki;mm (1, k). (1.50)

e Real-space measures of matter clustering, og.

— the variance of A,, averaged in spheres of radius R, equivalent to the variance of A,,

convolved with

30(R — |z)
W, (1.51)
normalized spherical top hat, which in Fourier space is W (kR)
3
W(z) = ﬁ(sinx — I CcosT) (1.52)
2 Pk
oh = Gn) W=2(kR)Pa,, (k). (1.53)

Historically R = 8h~! Mpc is chosen

Makes the scale at which perturbation theory breaks down and non-linear effects become im-
portant.

Where lineal perturbation holds
A (7, k) = T(7, K)R(0, k). (1.54)

T(7, k) transfer function that relates the primordial curvature perturbation to the comoving
matter perturbation. [Sometimes you will find it as §(k,7) ~ ¢pD1(7)T'(k), with the growth

function

Di(a) o H(a) / M;l&))g (1.55)

The primordial curvature power spectrum is almost scale-free so it contributes with a factor of
k3.
o First k < keg.

Relates relate A, to ¢ via the poisson equation

Ay, ~ k2o o(n, k) = —gR(O, k) matter domination

= T(nk)xk?
4

Papm (k) 7 k on large scales.



1. INITTAL CONDITIONS FROM INFLATION

o For k > keq
The newtonian-gauge J,. is constant in time until horizon entry §.(0,%) o< ¢(0,k) o< R(0, k).

Then, the Meszaros effect operates inside the horizon and 4. grows logarithmically with proper
time
Sc(tegs k)

M&mﬁd+m(%> (1.56)

ty

at time of horizon entry a(ty)H (tx) = k and a o« t!/? in radiation domination = t; o 7

k
~1+21n< > k> keq
Eeq

ﬂﬂ@dh(é)

P'Amo<k—31n2<’c
keg

) k>> ke (1.57)

- — ——
- large scales small scales
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Figure 1.1: Evolution of perturbations.
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