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Relativistic Perturbation Theory

Scales larger than the Hubble radius and for relativistic fluids (Newton is inadequate), so now

we use the basic idea:
e Perturb the metric.
e Perturb the stress-energy tensor.
e In Einstein equations, for linear perturbations, drop products of small quantities.

Gy = 8TGOT,y, + ASgyu-

3.1 Perturbed Spacetime
Let us start by perturbing the metric of the space-time.
Guv = Guv + 0Gpw,
where the background metric corresponds to the spatially-flat FLRW
ds? = a®(7)(dr? — 6;;dx"'dx?) = a1, dztdx” (3.1)
with Friedmann equations, in conformal time,

1
H? = ga2(87er+A), (3.2)

1
H = 6a2 [2A — 877G (p + 3P)], (3.3)
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3. RELATIVISTIC PERTURBATION THEORY

with H' = 0ra/a = aH. The most general perturbation to the background metric is:
ds® = a®(7) {(1 + 2¢)dr? — 2B;dz’dr — [(1 — 2¢)8;; + 2E;j]da’da’ } . (3.4)

e ¢, 1 are scalar functions of 7 and z*.

e B; transforms like a three-vector

= 2", B —

Oxd
oz’ B;.

e E;; is symmetric (E;; = Ej;) and trace-free (6 E;; = 0) three-tensor

. . oz ozt
? N /3 s
xz x-, EZ] 9zt Ozl kls

latin indices on spatial vectors and tensors are raised and lowered with &;; — B' = ¢ B;,

Bl = 6" Ey;.

3.2 Scalar, vector and tensor decomposition
A formal proof can be found in J.M. Stewart, Class. Quantum Grav. 7 (1990) 1169.

B; = 0;B + Bl .

; B
S~~~ ~—~
scalar  vector
The vector part is transverse (divergence free) 6% 0; BT =0, whereas the tensor component
E;; = 3(¢5j>E+5(iEjT) + EZ; .
—— Y—— =
scalar vector tensor

the scalar part is trace-free and satisfies
_ 1 2
the vector part E is transverse: §70; E] = 0, with

N =

and the tensor E}; is symmetric, trace-free and transverse (5ik8kEi7;- =0.

Number of degrees of freedom from each contribution:

e Scalar - one degree of freedom E(7,Z), and they are ¢, ¢, E, B: 4 degrees of freedom.
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3.3 Orthogonal frame vectors

e Vector - two degrees of freedom, E! - three components but one constraint (divergence-

vanishes). They are E;, B;, then 4 degrees of freedom.

e Tensors - two degrees fo freedom, EZT] - five components (6: symmetric - 1 for being trace-
free), but 60y, EZ; are three constraints.
Total 4 + 4 + 2 = 10 degrees of freedom (number of equations we need - minus the

coordinates).

3.3 Orthogonal frame vectors

Remember the stress-energy tensor for a perfect fluid is

™", = (p+ P)u"u, — Ps". (3.5)
where @, = a(52, u = a~14} for a comoving observer, with u* = dfi”:.
guwutu” =1, and guuta” =1 (3.6)

dat dz”
I =at ~dt

dr\? dzt da”
G

dt) dr dr

_ (N g, et datda?
= Nae) |90 70 TG ar ar |
\w—/ \W_/

0(2) e

where v = % is the coordinate velocity - small perturbation.
ar\ > dr\ >
= 1=(- =a?(142¢) | —
(dt) 900 a(+¢)(dt>,

dr 1

P Gk O (3.7)

and, at linear order

Therefore, the fluid 4-velocity is u* = a~![1 — 1, v¢], and

up = goou” + gosut = a2(1 + 21/))(1*1(1 — )+ 0(2) =a(l +), (3.8)

u; = giou’ + giju! = —a?Bia (1 — ) — a*[6;; + O(D)]a ') = —a(B; +vi). (3.9)
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3. RELATIVISTIC PERTURBATION THEORY

We need to construct explicitly an orthonormal frame of 4-vectors (Ey)* and (E;)* in the
perturbed metric. Since u* is the perturbed 4-velocity of an observer at rest, relative to the
coordinate system, in the perturbed metric

e Timelike (Ep)* - Then, perturbing (3.6):
dguutu” + 2u,0u” = 0.
Using @ = a=16} and dgoo = 2a?1, then — du’ = —pa~!. Therefore
(o) = (1 — )3}, (3.10)
Check orthogonality: g, (Eo)"(Eo)” = gooa 2(1 —2¢) + 0 = a?(1 + 2¢)a"2(1 — 2¢) = 1.
e Spacelike (E;)* -
(B = a (Bl + (1 + $)0F — B3V, (3.11)

Check orthogonality: g#V(Eo)‘U’(Ei)V = goya71(1 — ’L/))(El)u = CL72(1 - 1/1)[g00BZ + 901(1 + ¢) -

HW: check
Guv (E)" (E;)" = —6i;. (3.12)

3.4 Matter perturbations

We can derive the perturbed expressions by using (3.5) with
TW =TF+ 0TF,

6T = (6p + 6P)utu, + (p + P)(6u"u, + utdu,) — 6P} — 114,

In an orthonormal frame

70 — p(T) + dp, energy density.
T — q, momentum density.
T = [P(1) 4+ 6P)6Y —T1¥, momentum flux,
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3.4 Matter perturbations

where I/ is the trace-free anisotropic stress. If there're several contributions T, = >, T/,
I L Sl PR Syt
I

and apply the SVT decomposition for g;, II;;.
e Construct the coordinate components of the energy-momentum tensor in terms of the 4-

vectors (3.10) and (3.11), with TH = (Ea)”(EB)”TdB,

T = (Eo)*(Eo)’T" +2(Ey)* (E)°T + () (E;)°T%
= a*(1-2¢)p(1+6) +0(2) + O(2)
— a2p(1 — 2 + ). (3.13)
T = (Eo)"(Eo)'T™ + (Eo)° (B;)'T% + (E;)(Eo) T + (E;)°(By) 17"

= 0+a 8¢ +0+ a"2B;d; Py*

= a *(¢' + PB"). (3.14)

T = (Bo) (Bo)' T + (o) (BT + (By)' (o) T + (Bx)! (B TV

040+0+a2[(1+ ) — Eill(1 + ¢)d] — EJ|[(P + 6P)5" — 1%

a"2[P§Y + (2P + 6P)6Y — 2PEY — 11]. (3.15)

Things look neater in mixed coordinate components

78 = guoT™ = gooT + go:T”
= (1 +2¢)a”?p(1 - 2¢ + ) + O(2)

= p(1+9). (3.16)

Peculiar velocity of the matter, using eqn. (3.5) with the components v* and u,,

¢ =T, = (p+ P)u'ug— P&,
= (p+Plaa(l+¢) = (p+ P)'. (3.17)
HW:
=4

Tj = —(P + 6P)&; +1I;.
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3. RELATIVISTIC PERTURBATION THEORY

3.5 The gauge problem

The metric perturbations aren’t uniquely defined, but depend on our choice of coordinates or
the gauge choice.

e We implicitly chose a specific time slicing of the spacetime and specific spatial coordinate on
these slices.

= Making a different choice of coordinates can change the values of the perturbation variables
and may even introduce fictitious perturbations.

i.e. FRW spacetime, change the spatial coordinates
= 4 (T, D),
=dzt = di'— 9,.64dr — 9pEtdi".

sometimes we’ll use 8% =" such that & = 0-&;. Then

ds® = a®(7)[dr? — 26/dE"dT — (8,5 + 20:€;))dE' da].
We apparently have introduced metric perturbations, but these are just fictitious gauge modes

that can be removed by going back to the old coordinates.

Similarly, we can change our time slicing 7 — 7 + £%(7, Z):

p(r) = p(r+ (0, @) = p(r) + p'¢".

Even in an unperturbed universe a change of coordinates can introduce a fictitious density
perturbation. Therefore, we need a more physical way to identify true perturbations — define

them in such a way the don’t change under change of coordinates.

3.6 Gauge transformations

Consider small changes in coordinates z# — Z# = z# + £H(1, T)
F=71+T(r,2") ="+ L' (1, 27).

where T and L' are arbitrary functions still to be defined. For a Lorentz scalar field ® (i.e.

inflation), the new perturbation at the same event is (remember ® is homogeneous)

b =
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3.6 Gauge transformations

to first order

60 =60 — T’ (3.18)

For metric perturbations
Remember g,,,, is the metric in the background

5§W = g;w - gﬁw(%a fl)
dz® OzP e
= EYan @gaﬂ - g;w(Tv xz )
&ED‘ 6$B _ i _ ~ ~3
= @@[@aﬂ + Gap(1,2")] = G (7, T")
0z Oa” - i - i in. - i
= 0gu + (&E/‘ o 63(55) Gap(T,2") = TG, (1,2") = L'0; g (7, "),

where for the first term we have that dg.p is a perturbation, hence taking only the 0-order of

g;z. We still need to know the inverse of ggi, to linear order.

The matrix of derivates

oz (oFjor oFfor\ (14T T
oxn — \0i'/or 0i'/ox’ N d-L' 0L+ 0;L')"

The inverse of matrix with form 1 4+ A is 1 — A, to first order in A, then

9z (87’/87: 87/83~3i> _ (1—T’ —8iT>

ik Oz /OF  0x'/0F —0.L' i — ;L
Substituting
N o~ 928 _ _ ia -
dgoo = 0goo + (8? 97 6 55) Gap — TG0 — L'Digoo-
Therefore
~ or 01 ot ozt Ox' Oxd
2 2 ey - il i 2
207Y 2079 + (a% o7 1> Joo + 255z 57 J0i + 5z gz 9 — T0ra
= 2a*) —2T"a® + O(2) + O(2) — 2THa?.
o= =T —HT. (3.19)
HWZ - 1 .
¢ = o+HT+ gaiLl. (3.20)
Bi = B;+0T—1L,. (3.21)
Nij = Eij —0<ily>. (3.22)
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3. RELATIVISTIC PERTURBATION THEORY

3.7 Gauge invariant perturbations
SVT - decomposition and considering only the scalar modes

T=7+T, =1+ 60;L.

We have
O = p—T —HT. (3.23)
¢ = ¢+HT+§V2L. (3.24)
B = B+T-1L. (3.25)
E = E-L. (3.26)

4 functional degrees of freedom and 2 gauge functions (T and L) = construct two gauge invariant
quantities (do not change under gauge transformation).

Bardeen variables

U = +HB-E)+B -E" (3.27)
= ¢—HB-FE)+ %VQE. (3.28)

HW: show that &, ¥, ®, don’t change under a coordinate transformation.

3.7.1 Gauge fixing

An alternative solution to the gauge problem is to fix the gauge and keep track of all pertur-

bations i.e. use the freedom of T" and L to set two scalar metric perturbations to zero.
Newtonian gauge (conformal)

Choose T and L such that

E=B=0.
ds® = a*(7)[(1 + 2¢)dr? — (1 — 2¢)0;dx" dz?].

U =, d=9 Bardeen potentials.

The physics appears simple since:
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3.8 Perturbations of the Stress-Energy tensor

Hypersurfaces of constant time are orthogonal to the observers at rest (B = 0).

Induced geometry of the constant-time hypersurfaces is isotropic (E = 0).

In the absence of anisotropic stress ¥ = .

Similarity of the metric to the usual weak-field limit of GR about Minkowski.

U plays the role of the gravitational potential (will see).

Therefore, the preferred gauge for studying the formation of large-scale structures and CMB

anisotropies.

Spatially flat gauge

¢=FE=0.
Convenient for computing inflationary perturbations. Fluctuations in the inflaton field.

Synchronous gauge

See: Ma and Betschinger.

3.8 Perturbations of the Stress-Energy tensor

Repeat the analysis (more convenient with mixed components):

- P OB _ ) )
5T — %%Tg—T#(T—FT,x’—&-L’)
Ot 9z _ - . )
— o Q) g 7 7
920 95 [cSTﬁ +T5} TH(r+T,2' + L")
0t OxP _ _ .
= 0TV + (om0 — 0RO | TS — TO, T — L'O;TY.
STH + (89:0‘ 55 6a(5,,> S — T, T} O;T"
For T) = p+ dp
o7 dxP . :
op = 5p—‘,—(ax7; aq;_ —(52(55) TE—T@Tﬁ—L’(’)iﬁ
ot ot o7 0 o
= 5“(@7@%1)’)%%’3@'“

= 6p+[(1+THA-T)-1)p—-02)-Tp.
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3. RELATIVISTIC PERTURBATION THEORY

S op=0p—Tp. (3.30)
HW: - -

6P = 6P-TP. (3.31)
i = q¢+(p+P)L. (3.32)
I, = 1 (3.33)

3.9 Gauge invariant perturbations

One useful combination
pA = dp+p(v+B)

= dp—3H(p+p)(B +v), (3.34)

where ¢; = (p + p)0;v, A comoving-gauge density perturbation

HW: A is gauge-invariant.

3.10 Gauge fixing

Define the gauge in the matter sector.

Uniform density gauge

Use the freedom in the time-slicing to set the total density perturbation to zero
op=0.

Comoving gauge

Scalar momentum density to vanish

q=0.

naturally connected to the inflationary initial conditions.
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3.11 Adiabatic fluctuations

3.11 Adiabatic fluctuations

e Simple inflation models predict initial fluctuations that are adiabatic.
= Energy densities of all species are constant on hypersurfaces and all species have the same
peculiar velocities.

The quantity
) )
O P (3.35)
pr+Pr p;+ Py
is gauge invariant since 6p; — 6p; —T'p%, I and J labelled the species, and p'; = —3H(p+ P)[=
—(1 4 wi)pi.

Moreover, it vanished for adiabatic fluctuations since then all dp; = 0, in a gauge for which

the constant-time hypersurfaces coincide with those of uniform total density

6:@7(%{1 N o1 9y

= for all species I and J. 3.36
Py T+w  1+wy pect (3.36)

For adiabatic perturbations, matter (wy, ~ 0), radiation (w, = %) obey 6, = %5,11 and the

total density perturbation

dptot = ProtOtot = Zﬁﬂsl, (3.37)
I

is dominated by the especies that is dominated in the background since all the §; are comparable.

3.12 Isocurvature fluctuations

Adiabatic perturbations correspond to a change in the total energy density.

Isocurvature perturbations only correspond to perturbation betwen the different components

_ 6 07
T 14wy 1—|—wj7

51 (3.38)

single-field inflation predicts that the primordial perturbations are purely adiabatic ;5 = 0
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3. RELATIVISTIC PERTURBATION THEORY
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