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2
Applications to cold-Dark matter

2.1 Solutions in an Einstein -de Sitter universe (P̄ ⇡ 0, k =

⇤ = 0)

Large scales, after matter-radiation equality, but before dark energy dominates.

) Einstein -de Sitter model P̄ ⇡ 0 and zero curvature and ⇤ = 0.

The fractional overdensity in the baryons �b approaches the CDM �c, and the matter behaves

like a single pressure-free fluid whit total density contrast

�m =
⇢̄b�b + ⇢̄c�c

⇢̄b + ⇢̄c
⇡ �c,

cs = 0 for linearized CDM fluctuations, k2 ⌧ a
2 and, at this stage, H2 / ⇢̄ / a

�3, a / t
2/3 )

H = 2
3t and 4⇡G⇢̄ = 2

3t2 .

• Scales of cosmological interest are much larger than Jean’s scale (k2 ⌧ a
2), for baryons

and CDM fluctuations the Jean’s equation (1.19) becomes

) @
2
t
�m +

4

3t
@t�m � 2

3t2
�m = 0,

assuming �m ⇠ t
p we get that �m / t

�1 / a
�3/2, and �m / t

2/3 / a. The growing-mode !

grows like scale factor.

In an expanding universe ! power law-growth of �. Exponential growth predicted in a

non-expanding universe though (middle term cancels out).

• The Poisson equation
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2. APPLICATIONS TO COLD-DARK MATTER

From (1.17), we observe the gravitational potential is constant

�k
2
� = 4⇡G ⇢̄|{z}

a�3

�|{z}
a

a
2 = constant.

For �r we need relativistic perturbation theory.

2.2 The Meszaros e↵ect

CDM grows only logarithmically on scales inside the sound horizon during radiation domination

@
2
t
�i + 2H@t�i � 4⇡G

X

j

⇢̄j�j �
1

a2⇢̄i
r2

�Pi = 0,

for radiation perturbations, i = r we shall show it properly when we develop relativistic per-

turbation theory. For CDM:

@
2
t
�c + 2H@t�c � 4⇡G

X

j

⇢̄j�j = 0,

radiation fluctuations oscillates as sound waves, vanishing the density contrast, then, in the

radiation domination epoch a / t
1/2, H = 1

2t , thus

@
2
t
�c +

1

t
@t�c � 4⇡G⇢̄c�c = 0,

�c evolves on cosmological timescales, then

@
2
t
�c ⇠ H@t�c ⇠ H

2
�c ⇠

8⇡G

3
⇢̄r�c � 4⇡G⇢̄c�c,

since ⇢̄r � ⇢̄c during radiation domination. Therefore

@
2
t
�c +

1

t
@t�c = 0,

that has solutions: �c =constant, and the growing mode �c / ln t.

The e↵ectively unclustered radiation reduces the growth of �c to only logarithmically.

Need to wait until matter-domination so the DM density fluctuations grow significantly.

2.3 Late-time suppression of structure formation by ⇤

Dark matter doesn’t cluster on the last stages of the universe.

@
2
t
�m + 2H@t�m � 4⇡G⇢̄m�m = 0,

-14-



2.4 Evolution of baryon fluctuations after decoupling

when ⇤ dominates a / e
t

p
⇤/3, H ' constant, and 4⇡G⇢̄m ⌧ H

2 ⇠
�
⇤
3

�
⇠ 8⇡G⇢⇤

3 , then

) @
2
t
�m + 2H@t�m ' 0,

which has solutions �m =constant, and �m / e
�2t

p
⇤/3 / a

�2, ⇤ suppresses the growth of

structure [matter fluctuations].

Gravitational potential

�k
2
� = 4⇡G ⇢̄|{z}

a�3

�a
2 / a

�1
. (2.1)

This a↵ects the integrated Sachs-Wolfe e↵ect as we shall see later.

2.4 Evolution of baryon fluctuations after decoupling

The coupled dynamics of the baryon and CDM fluids after decoupling is described by the

following two equations:

@
2
t
�b +

4

3t
@t�b = 4⇡G(⇢̄c�b + ⇢̄c�c),

@
2
t
�c +

4

3t
@t�c = 4⇡G(⇢̄c�b + ⇢̄c�c).

Substituting � ⌘ �c � �b, we have

@
2
t
�+

4

3t
@t� = 0,

which has solutions � = constant or � / t
�1/3 while �m has solutions t�1, t2/3, therefore

�c

�b
=

⇢̄m�m + ⇢̄b�

⇢̄m�m � ⇢̄c�
! �m

�m
= 1.
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