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1
Thermal history of the Universe

1.1 Introduction

At the beginning of this review, we considered the homogeneous and isotropic universe, and

now it is time to take care about its composition, that is, how the formation of light elements

was carried out at initial stages.

Some books: The first three minutes, Weinberg’s. Baryogenesis, James M. Cline. Baryogenesis,

Csaba Balazs (2014). The early universe, Turner.

1.2 History

Highly Speculative.

• T ∼ 1019GeV, t ∼ 10−43sec.

String theory?, quantum gravity?, super gravity?, quantum birth of the Universe?.

At these, very high, temperatures the energy density is so high that the classical treatment

of GR is no longer reliable, and perhaps the necessity of a Quantum theory of Gravity.

• T ∼ 1016GeV, t ∼ 10−38sec.

Grand Unified Theories (GUT) phase transition occurs.

Strong and electroweak interactions are indistinguishable.

• T ∼ 1014GeV, t ∼ 10−34sec.

Inflation, Monopoles.
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1. THERMAL HISTORY OF THE UNIVERSE

Figure 1.1: Theory of everything

Baryogenesis: Origin of matter-antimatter asymmetry.

Relativistic QFT requires the existence of antiparticles e+ + e− → γ + γ.

• T ∼ 1012GeV, t ∼ 10−30sec.

Peccei-Quinn phase transition. Why QCD does not break CP-symmetry?.

• LHC - 13 TeV (Energies that can be reach).

• T ∼ 100GeV, t ∼ 10−10sec.

Electroweak phase transition.

Particles receive their masses through the Higgs mechanism (125 GeV).

• T ∼ 10′s− 100′sGeV, t ∼ 10−8sec.

If dark matter is made up of SUper SYmmetric (SUSY) particles or WIMPs, this is the

time when their interactions freeze out and their cosmological abundance is fixed.

• T ∼ 100− 300MeV, t ∼ 10−5sec.

Quark-hadron phase transition.

QCD, theory of strong force, which describes the binding of quarks by gluons to first

became particles, such as neutrons and protons (baryons - 3 quarks, mesons → q + q̄).

This is also when axions are produced (if they exist and form the dark matter) – Pretty

sure this must have happened.
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1.2 History

• T ∼ 0.1− 10MeV, t ∼ secs-mins.

Big Bang Nucleosynthesis (BBN) started

no and p+ first combine to form D, 3He,4He,7 Li.

The theory agrees very impressively with observations.

• T ∼ 0.8MeV, t ∼ 1000sec.

Neutrino decoupling.

Neutrino only interacts with the primordial plasma through weak interaction.

• T ∼ 3eV, t ∼ 104−5yrs.

Before the matter radiation equality → energy density is dominated by radiation.

Perturbations in the dark-matter density can begin to grow.

• T ∼eV, t ∼ 400′000yrs.

Recombination: e− + p+ → H + γ.

e− and p+ combine to form hydrogen atoms.

γ decouple and CMB happens→ photons are tightly coupled to the baryon fluid through

Thompson scattering from free e−. CMB observations.

• T ∼ 101−2eV, t ∼ millions of years.

Baryon drag ends → baryons are still coupled to the CMB photons so perturbations in

the baryon cannot grow.

• T ∼ 10−3eV, t ∼ 109yrs.

The first stars and (small) galaxies begin to form.

• T ∼ 0.33meV, t ∼ 9Gyr.

Dark energy-matter equality.

• T ∼ 10−4eV, t ∼ 1010yrs.

Baryons and CMB are entirely decoupled.

Stars and galaxies have been around for a long time.

Clusters of galaxies (∼ 1000s) are becoming common.

• Dark Energy domination.

-3-



1. THERMAL HISTORY OF THE UNIVERSE

Figure 1.2: Thermal History of the Universe [redo this figure].

1.2.1 The Hot Big Bang

The key quantity to understand the thermal history of the universe is the comparison between

the rate of interactions Γ and the rate of expansion H. When Γ� H, that is, when the time-

scale of particle interactions tc is much smaller than the characteristic expansion time-scale tH ,

such that

tc ≡
1

Γ
� tH ≡

1

H
, (1.1)

then, local thermal equilibrium is reached before the effect of expansion becomes relevant.

As the universe cools down, the rate of interactions may decrease faster than the expansion

rate. When tc ∼ tH is reach, particles decouple from the thermal bath. Different particles may

decouple at different times depending of its features, as we shall see below.
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1.2 History

Figure 1.3: Thermal History of the Universe [redo this figure].

Figure 1.4: Thermal History of the Universe [redo this figure].
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1. THERMAL HISTORY OF THE UNIVERSE

1.2.2 Local Thermal equilibrium

Standard model ' 100GeV.

The rate of particle interactions can be defined as

Γ ≡ nσv. (1.2)

where

• n: the number density of particles.

• σ: the interaction cross section.

• v: the average velocity of the particles.

For such temperatures (T ≥ 100GeV), particles are ultra-relativistic → v ∼ 1. The particle

mass can be ignored and therefore n ∼ T 3. Interactions are mediated by gauge bosons, which

are massless → the cross sections for strong and electroweak interactions is

σ ∼ α2

T 2
, (1.3)

where α ≡ g2A
4π is the generalised structure constant associated to the gauge boson A.

Figure 1.5: A Feynman diagram.

Then

Γ = nσv ∼ T 3 × α2

T 2
= α2T, (1.4)

compare to the Hubble rate H ∼ √ρ/MPl with ρ ∼ T 4.

H ∼ T 2

M2
Pl

. (1.5)

Then
Γ

H
∼ α2MPl

T
∼ 1016GeV

T
, (1.6)

with α ∼ 0.01. Below T ∼ 1016GeV but above 100GeV the condition is therefore satisfied, and

hence the standard model is indeed in thermal equilibrium.

-6-



1.2 History

1.2.3 Equilibrium Thermodynamics

From CMB observations we observe that the early universe was in local thermal equilibrium.

Statistical mechanics: Turning the microscopic laws to understand the macroscopic world,

and its description is based on the distribution function f(t, ~x, ~p):

• Homogeneity → f is independent of position ~x.

• Isotropy → momentum dependence is only in terms of its magnitude p = |~p|.

Therefore the particle density in phase space is then the density of states times the distribution

function
g

(2π)3
× f(p), (1.7)

where g represents the internal degrees of freedom (i.e. spin). The number density of particles

(in real space) is then

n =
g

(2π)3

∫
d3pf(p). (1.8)

The energy density of a gas of particles ρ, assuming that the particles in the early universe were

weakly interactions →, that is, ignore interactions densities. Using E(p) =
√
p2 +m2, we get

ρ =
g

(2π)3

∫
d3pf(p)E(p), (1.9)

P =
g

(2π)3

∫
d3pf(p)

p2

3E
. (1.10)

A system is said to be in kinetic equilibrium if the particles exchange energy and mo-

mentum efficiently. In this case, the type of particles can be differentiated by the Fermi-Dirac

(+) and Bose-Einstein (−) distributions at temperature T

f(p) =
1

e(E−µ)/T ± 1
, (1.11)

where µ is the chemical potential. At low temperatures (E − µ) > T both reduce to Maxwell-

Boltzmann distribution

f(p) ≈ e−(E−µ)/T . (1.12)

If a specie i is in chemical equilibrium, then its chemical potential µi is related to the

chemical potential µj of the other species it interacts with. Chemical equilibrium implies

that

-7-



1. THERMAL HISTORY OF THE UNIVERSE

µ1 + µ2 = µ3 + µ4. (1.13)

Since the number of photons is not conserved (i.e. double compton e− + γ 
 e− + γ + γ) 1

hence µγ = 0. If the chemical potential of a particle X is µX and its corresponding anti-particle

is X̄, then µX̄ = −µX :

X + X̄ 
 γ + γ. (1.14)

Therefore thermal equilibrium is achieved for species that are both in kinetic and chemical

equilibrium, that is, they share a common temperature Ti = T (‘Temperature of the Universe’).

1.2.4 Densities and Pressure

Combining the previous equations, using that µ can be neglected (for now), we have

n =
g

2π2

∫ ∞
0

dp
p2

exp[
√
p2 +m2/T ]± 1

, (1.15)

ρ =
g

2π2

∫ ∞
0

dp
p2
√
p2 +m2

exp[
√
p2 +m2/T ]± 1

, (1.16)

P =
g

6π2

∫ ∞
0

dp
p4(p2 +m2)−1/2

exp[
√
p2 +m2/T ]± 1

. (1.17)

These integrals have to be evaluated numerically, however in the (ultra) relativistic and

non-relativistic limits, we can get analytical results.

Some useful integrals: ∫ ∞
0

dξ
ξn

eξ − 1
= ζ(n+ 1)Γ(n+ 1),∫ ∞

0

dξξne−ξ
2

=
1

2
Γ

(
1

2
(n+ 1)

)
,∫ ∞

0

dξ
ξ

eξ + 1
=

π

12
,

with ζ(z) is the Riemann zeta-function, and

1

eξ + 1
=

1

eξ − 1
− 2

e2ξ−1

1Compton is the Thompson low energy limit.
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1.2 History

HW: In the relativistic limit (T � m) show that:

n =
ζ(3)

π2
gT 3

1 bosons

3
4 fermions,

(1.18)

ρ =
π2

30
gT 4

1 bosons

7
8 fermions,

(1.19)

P =
ρ

3
. (1.20)

Using the current temperature of the Universe T0 = 2.73K, we have

nγ,0 =
2ζ(3)

π2
T 3

0 ≈ 410 photons cm−3.

ργ,0 =
π2

15
T 4

0 ≈ 4.6× 10−34g cm−4 → Ωγ,0h
2 ≈ 2.5× 10−5.

If we add the chemical potential, the excess of fermion species over its antiparticle, assuming

µ+ = −µ− (X + X̄ 
 γ + γ). The net particle number for T � m (an exact result) is

HW: Show that the net particle number for T � m and T � |µ| is

n− n̄ =
g

2π2

∫ ∞
0

dpp2

(
1

e(p−µ)/T + 1
− 1

e(p+µ)/T + 1

)
=

1

6π2
gT 3

[
π2
(µ
T

)
+
( µ
T 3

)3
]
. (1.21)

hint: expand the expression over |µ| ∼ 0.

HW: Show that, in the non-relativistic limit (m� T ):

n = g

(
mT

2π

)3/2

e−m/T . (1.22)

Therefore, massive particles are exponentially rare at low temperature (m � T ). In this limit

E(p) =
√
p2 +m2 ≈ m and from the expressions (1.15) and (1.16) we have ρ ≈ mn

P = nT � nm = ρ, (1.23)

therefore P � ρ, non-relativistic gas of particles behaves as a pressurless matter or dust.

-9-



1. THERMAL HISTORY OF THE UNIVERSE

P = nT - ideal gas law (or PV = NkBT ), and adding the chemical potential

n = g

(
mT

2π

)3/2

e−(m−µ)/T , (1.24)

n− n̄ = 2g

(
mT

2π

)3/2

e−m/T sinh
(µ
T

)
. (1.25)

The excess of fermion species in the non-relativistic limit, n0, e−, p+, fall exponentially (are

Boltzmann supressed) as the temperature drops below the mass of the particle.

Interpretation of the annihilation of X + X̄: At high energies the annihilation occurred but

they are balanced by X, X̄ production. At low temperatures the thermal particle energies are

not sufficient for pair production.

1.2.5 Effective number of Relativistic Species

Let us consider the temperature of the photon gas as T . Then, the total radiation density (1.19)

is the sum over the energy densities of all relativistic species

ρr =
∑

ρi =
π2

30
g∗(T )T 4, (1.26)

where g∗(T ) is the effective number of relativistic degrees of freedom at temperature T . There

are two contributions:

• Relativistic species in thermal equilibrium with photons, Ti = T � mi

gther
∗ (T ) =

∑
i=b

gi +
7

8

∑
i=f

gi. (1.27)

• Relativistic species not in thermal equilibrium with photons Ti 6= T � mi

gdec
∗ (T ) =

∑
i=b

gi

(
Ti
T

)4

+
7

8

∑
i=f

gi

(
Ti
T

)4

. (1.28)

• At T '100 GeV, all particles of the Standard model are relativistic

gb = 28, gf = 90→ g∗ = gb +
7

8
gf = 106.75. (1.29)

• As the temperature T drops, various species became non-relativistic and annihilate

-10-



1.2 History

Figure 1.6: Thermal History of the Universe [redo this table].

• The heaviest particles (top q)1 annihilate first at T ∼ 30GeV (1
6mt), and the effective

number of relativistic species is reduced

g∗ = 106.75− 7

8
× 12 = 96.25. (1.30)

• W±, Z0, Higgs boson (Gauge bosons) annihilate next, T ∼ 10GeV

g∗ = 96.25− (1 + 3× 3) = 86.25. (1.31)

• b quarks follow

g∗ = 86.25− 7

8
× 12 = 75.75. (1.32)

1top q decays (99.8%) into W-boson, bottom, and less likely into strange or down. Its mean lifetime is about

∼ 5× 10−25s.
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1. THERMAL HISTORY OF THE UNIVERSE

• and finally c, τ quarks

g∗ = 75.75− 7

8
× (12 + 4) = 61.75. (1.33)

• Before the strange annihilates the matter undergoes to the QCD phase transition T ∼

150MeV. Quarks combine into baryons (p+, n0) and mesons (pions). All particles except

pions (π±, π0) are non-relativistic below the temperature phase transition, TQCD. Thus

the only particle species left are pions, e−, µ, ν, γ, therefore

g∗ = 2︸︷︷︸
γ

+3 +
7

8
× (4 + 4 + 6) = 17.25. (1.34)

• Next, e− & e+ annihilate and we need the Entropy.

Figure 1.7: Thermal History of the Universe [redo this figure].

1.2.6 Conservation of Entropy

It is useful to track a conserved quantity. To a good approximation we can therefore treat the

expansion of the universe as adiabatic, so the total entropy stays constant [even beyond the

equilibrium].

HW: Show that
∂P

∂T
=
ρ+ P

T
. (1.35)

-12-



1.2 History

Consider the second law of Thermodynamics

TdS = dU + PdV,

Using U = ρV

dS =
1

T
(d[(ρ+ P )V ]− V dP )

=
1

T
d [(ρ+ P )V ]− V

T 2
(ρ+ P )dT

= d

(
ρ+ P

T
V

)
Let us show the conservation of entropy

dS

dt
=

d

dt

[
ρ+ P

T
V

]
=

V

T

[
dρ

dt
+

1

V

dV

dt
(ρ+ P )

]
+
V

T

[
dP

dt
− ρ+ P

T

dT

dt

]
= 0.

The first term in equation resembles the continuity equation, while the second term is given by

the homework, Eqn. (1.35). We just showed the conservation of entropy whilst in equilibrium.

It is convenient to work with the entropy density s = S/V . From dS we see that

s =
ρ+ P

T
, (1.36)

from ρ and P , we have (still in relativistic limit)

s =
∑ ρi + Pi

Ti
≡ 2π2

45
g∗S(T )T 3. (1.37)

1.2.7 Effective number of degrees of freedom in entropy

Similarly to pervious calculations, we split the contribution in thermal equilibrium and when

the particles decoupled from the thermal bath

g∗S(T ) = gth
∗S(T ) + gdec

∗S (T ), (1.38)

notice that in thermal equilibrium, the two quantities coincide

gth
∗S(T ) = gth

∗ (T ). (1.39)

On the other hand, for decoupled species

gdec
∗S (T ) ≡

∑
i=b

gi

(
Ti
T

)3

+
7

8

∑
i=f

gi

(
Ti
T

)3

6= gdec
∗ (T ). (1.40)

-13-



1. THERMAL HISTORY OF THE UNIVERSE

Conservation of entropy has two consequences

1. The number of particles in a comoving volume (N ≡ V n) is defined as the number density

ni divided by the entropy density Ni ≡ ni

s . If no particles are produced or destroy (with

s ∝ a−3) then ni ∝ a−3 and Ni is constant. i.e. baryon number after baryogenesis

nB
s
≡ (nb − nb̄)

s

2. It implies

sV ∼ g∗S(T )T 3a3 = const, or T ∝ g−1/3
∗S a−1. (1.41)

Away from the particle mass thresholds, g∗S is approximately constant and hence T ∝ a−1,

as expected and used in previous chapters.

Using the previous eqn, T ∝ g−1/3
∗S a−1, into the Friedmann equation

H =
1

a

da

dt
'
(

ρr
3M2

P

)1/2

' π

3

( g∗
10

)1/2 T 2

MP
,

for a radiation dominated universe a ∝ t1/2 and for T ∝ t−1/2.

T

1MeV
' 1.5g

−1/4
∗

(
1 sec

t

)1/2

(1.42)

The temperature of the Universe one second after the Big Bang was about 1MeV.

1.2.8 Neutrino decoupling

Neutrinos are coupled to the thermal bath via weak interactions processes like

νe + ν̄e 
 e+ + e−,

e− + ν̄e 
 e− + ν̄e.

The cross section for these interactions is σ ∼ G2
FT

2 and hence Γ ∼ G2
FT

5. As the temperature

decreased, the interaction rate dropped much more rapidly than the Hubble rate H ∼ T 2/MP

Γ

H
∼
(

T

1 MeV

)3

. (1.43)

Therefore, neutrinos decoupled around 1MeV (more accurately Tdec ∼ 0.8MeV).

After decoupling, neutrinos moved freely along geodesics and preserved the relativistic Fermi-

Dirac distribution. The neutrino number density (and particle number conservation) requires

nν ∝ a−3 and therefore Tν ∝ a−1.

-14-



1.2 History

1.2.9 Electron-Positron Annihilation

Shortly after neutrinos decouple, T drops below the electron mass and electron positron anni-

hilation occurs:

e+ + e− 
 γ + γ.

The energy density and entropy of the electron and positron are transferred to the photons,

therefore the photons are thus ‘heated’.

Consider the change in the effective number of degrees of freedom in entropy

gth
∗S =

{
2 + 7

8 × 4 T & me

2 T < me

(1.44)

equation (1.41), gth
∗S(aTγ)3, remains constant, therefore aTγ increases after e+ + e− annihilation

by a factor
(

4
11

)1/3
, while aTν remains the same. Hence, the temperature of neutrinos after the

e+ + e− annihilation is slightly lower

Tν =

(
4

11

)1/3

Tγ . (1.45)

For T � me, the effective number of relativistic species (in energy density and entropy) becomes

g∗ = 2 +
7

8
× 2Neff

(
4

11

)4/3

= 3.36,

g∗S = 2 +
7

8
× 2Neff

(
4

11

)
= 3.94,

with Neff is the effective number of neutrino species. It explains the previous plot.

If neutrino decoupling was instantaneous, then Neff = 3. Also that neutrino spectrum, after

decoupling, deviates slightly from Fermi-Dirac distribution, hence Neff = 3.046. Planck satellite

constraints are Neff = 3.36± 0.34.

1.2.10 Cosmic Neutrino Background

Tν =

(
4

11

)1/3

Tγ , (1.46)

holds until the present day. Tν,0 = 1.95K = 0.17meV, lower than the CMB.

The number density of neutrinos is

nν =
3

4
Neff ×

4

11
nγ , (1.47)
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1. THERMAL HISTORY OF THE UNIVERSE

Figure 1.8: Thermal History of the Universe [redo this fig].

using nγ,0 implies 112 neutrinos cm−3 per flavour. If neutrinos are massless

ρν =
7

8
Neff

(
4

11

)4/3

ργ → Ωνh
2 ≈ 1.7× 10−5. (1.48)

However, neutrino oscillation experiments show that ν do have mass and the minimum value

is
∑
mν,i > 60meV. Massive neutrinos behave as radiation like particles in the early universe,

and as matter-like particles in the late universe.

For massive neutrinos

Ωνh
2 ≈

∑
mν,i

94 eV
. (1.49)

Observation of the CMB and SNIa constrain
∑
mν,i < 1eV , 25 times the energy density of

photons but still subdominant 0.001 < Ων < 0.02.

Once Big Bang Nucleosynthesis is over, at time t ∼ 300s and temperature T ∼ 8 × 108K,

the Universe is in a thermal bath of photons, protons, electrons, in addition to neutrinos and

the unknown dark matter particle(s). The energy density is dominated by the relativistic

component, photons and neutrinos.
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1.2 History

Figure 1.9: Thermal History of the Universe [redo this fig].

Introduction

Does antimatter feel gravitational interaction in the same way than ordinary matter does? Even

though this question might be in principle easy to answer with the obvious response: It does,

since if they are massive, they must feel the gravitational interaction in the same way ordinary

matter do. Nevertheless, there is still no experimental evidence to determine how antiparticles

behave according to the gravitational interaction. In this paper some theoretical ideas and

experimental attempts to answer this question are discussed.

Attraction under gravitational interaction

The first idea that someone might conjecture is that the behaviour of antimatter under the

gravitational interaction shall be the same than the ordinary matter, i.e., an attractive behaviour

among particles. This idea has been supported by arguing that otherwise (repulsion) it would

violate CPT invariance (a fundamental symmetry of every physical theory) since C-symmetry

does not modify the gravitational behaviour (mass) of particles/antiparticles. Moreover, energy

conservation would not be hold leading to vacuum instability because in the case that matter

and antimatter responded oppositely to a gravitational field, one could take advantage of the

fact that no energy would be needed to move a pair particle-antiparticle. However all these

ideas were later turned down in 1991[? ].

-17-



1. THERMAL HISTORY OF THE UNIVERSE

Repulsion under gravitational interaction

In contrast, due to no experimental evidence has been found to confirm that antimatter should

act attractively, some ideas have been proposed to support the thought that antimatter with

repulsive behaviour should be valid. Therefore, one main idea in this direction is distinguished

and was formulated by Kowitt’s [? ]. Inpired by Dirac’s ideas about his propose of a particles

sea, Kowitt proposed that a positron should act as hole within the sea of electrons of negative

energy but possitive mass. Notice that this entails a modification on how C-inversion acts on

particles/antiparticles,i.e., this would imply that a positron has positive energy but negative

gravitational mass leading to gravitational repulsion.

Experimental tests

Since at high energies (small distances) the gravity is negligible, it is difficult to directly observe

gravitational forces at the particle level, for instance, electromagnetic force dominates over the

gravitational one for charged particles since this latter is much more weaker at these scales.

However, some experiments such as cold neutral anti-hydrogen experiments have been realised

[? ], taking advantage of the fact that anti-hydrogen is electrically neutral, which open the pos-

sibility of a direct measurement about the attractive/repulsive nature of antimatter, however

no overwhelming results were obtained. Therefore, some recent experiments with a better accu-

racy have been done recently in this direction [? ], with the goal in mind of finding a definitive

answer about this dilemma.

Conclusion

Since no experimental evidence about the nature of antimatter under gravitational interac-

tion has been found, some ideas arguing a repulsive/attractive behaviour of antiparticles have

been discussed. Finally, the ultimate theory describing antiparticles gravitational nature is still

unclear and will be determined until overwhelming experimental evidence is found.

Hoyle-Narlikar theory of gravity

In cosmology, some alternatives to the Big Bang Theory of the evolution of the universe have

been proposed. Among these alternative one can find the steady state model where the density

of matter in the expanding universe remains unchanged due to a continuous creation of matter.

-18-



1.2 History

Then, the Hoyle-Narikar theory of gravity is based upon this idea, and will be discussed on

this paper.

Once we know what the Mach’s principle says, we can define the Hoyle-Narlikar model as

[1] a Machian and conformal theory of gravity proposed by Fred Hoyle and Jayant Narlikar

that originally fits into the quasi-steady state model of the universe. This theory can be derived

from the action

S =
∑
a

∑
b

∫ ∫
G(a, b) da db , a 6= b.

where G(a, b) is the Green function that holds the equation:

�G(x, y) +
1

6
RG(x, y) =

δ(x− y)√
−g

,

where g is the determinant of the spacetime metric.

On the other hand, although the Einstein’s theory of relativity has been very successful,

one can realise that since it does not provide boundary conditions, a whole family of possible

solutions to describe our Universe is in general possible. In contrast, in the Hoyle-Narlikar

theory of gravity one can find exactly that, a boundary condition. Interestingly, S. Hawking

showed [? ] that this boundary condition prohibits the existence of a solution type FLRW that

is the best model that we have so far to describe our Universe. However, at that time the

accelerating expansion of the universe was unknown, and this may allow the existence of such

solutions. Furthermore, recently it has been shown[? ] that in the limit of a smooth fluid model

of particle distribution constant in time and space, the model can be reduced to Einstein’s

general relativity, and thus, FLRW Universe can be recovered.

Conclusion

The main ideas and features of the Hoyle-Narlikar theory of gravity have been discussed. Despite

this model can recover Einstein’s theory of gravity at a certain limit, perhaps the main problem

is still its nature as a quasi-steady state model, since these kind of models do not fit into the

observational data of WMAP [? ], and thus, its approach as a phenomenological model is still

no viable.
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