
javazquez@icf.unam.mx

Jun 13th, 2019

Stats …

J.A. Vázquez

ICF - UNAM

in Cosmology

mailto:javazquez@icf.unam.mx


Roberto Trotta 

Bayesian inference chain

• Select a model (parameters + priors)

• Compute observable quantities as a function of parameters

• Compare with available data 

• derive parameters constraints: PARAMETER INFERENCE 

• compute relative model probability: MODEL COMPARISON 

• Go back and start again 
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The 3 levels of inference

LEVEL 1 
I have selected a model M

and prior P(!|M)

LEVEL 2 
Actually, there are several 

possible models: M0, M1,...

Parameter inference

(assumes M is the true 
model)

Model comparison

What is the relative 
plausibility of M0, M1,... 

in light of the data?

odds = P(M0|d)
P(M1|d)

LEVEL 3 
None of the models is clearly 

the best

Model averaging

What is the inference on 
the parameters 

accounting for model 
uncertainty?

P (�|d) =
�

i P (Mi|d)P (�|d, Mi)P (�|d, M) = P (d|�,M)P (�|M)
P (d|M)
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3.1. Bayes theorem, priors, posteriors and all that stu↵

When anyone is interested on the Bayesian framework, there are several concepts to understand
before presenting the results. In this section we quickly review these concepts and then we take
back the example about the coin toss given in the last section.

The Bayes theorem. The Bayes theorem is a direct consequence of the axioms of probability
shown in Eqs. (2). From Eqn. (2d), without loss of generality, it must be fulfilled that P (x1\x2) =
P (x2 \ x1). In such case the following relation applies

P (x2|x1) =
P (x1|x2)P (x2)

P (x1)
. (6)

As already mentioned, in the Bayesian framework data and model are part of the same space. Given
a model (or hypothesis) H, considering x1 ! D as a set of data, and x2 ! ✓ as the parameter
vector of said hypothesis, we can rewrite the above equation as

P (✓|D,H) =
P (D|✓, H)P (✓|H)

P (D|H)
. (7)

This last relation is the so-called Bayes theorem and the most important tool in a Bayesian
inference procedure. In this result, P (✓|D,H) is called the posterior probability of the model.
P (D|✓, H) ⌘ L(D|✓, H) is called the likelihood and it will be our main focus in future sections.
P (✓|H) ⌘ ⇡(✓) is called the prior and expresses the knowledge about the model before acquiring
the data. This prior can be fixed depending on either previous experiment results or the theory
behind. P (D|H) ⌘ Z is the evidence of the model, usually referred as the Bayesian Evidence.
We notice that this evidence acts only as a normalizing factor, and is nothing more than the average
of the likelihood over the prior

P (D|H) =

Z
d
N
✓P (D|✓, H)P (✓|H), (8)

whereN is the dimensionality of the parameter space. This quantity is usually ignored, for practical
reasons, when testing the parameter space of a unique model. Nevertheless, the Bayesian evidence
plays an important role for selecting the model that best “describes” the data, known as model
selection. For convenience, the ratio of two evidences

K ⌘ P (D|H0)

P (D|H1)
=

R
d
N0✓0 P (D|✓0, H0)P (✓0|H0)R

dN1✓1 P (D|✓1, H1)P (✓1|H1)
=

Z0

Z1
, (9)

or equivalently the di↵erence in log evidence lnZ0 � lnZ1 if often termed as the Bayes factor
B0,1:

B0,1 = ln
Z0

Z1
, (10)

where ✓i is a parameter vector (with dimensionality Ni) for the hypothesis Hi and i = 0, 1. In
Eqn. (10), the quantity B0,1 = lnK provides an idea on how well model 0 may fit the data when
is compared to model 1. Je↵reys provided a suitable guideline scale on which we are able to make
qualitative conclusions (see Table II).

We can see that Bayes theorem has an enormous implication with respect to a statistical in-
ferential point of view. In a typical scenario we collect some data and hope to interpret it with a
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Ferozmente discutida desde 
entonces, la teoría de Bayes tuvo un 

papel decisivo en objetivos tan 
distintos como descifrar los códigos 

alemanes durante la Segunda 
Guerra Mundial, combatir el cáncer 

o contribuir al desarrollo de los 
ordenadores. 

Prerequisite
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Radial velocity measurements of small velocity 


fluctuations in the movement of stars 
Bayesian inference in physics
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Bayesian inference provides a consistent method for the extraction of information from physics
experiments even in ill-conditioned circumstances. The approach provides a unified rationale for
data analysis, which both justifies many of the commonly used analysis procedures and reveals
some of the implicit underlying assumptions. This review summarizes the general ideas of the
Bayesian probability theory with emphasis on the application to the evaluation of experimental data.
As case studies for Bayesian parameter estimation techniques examples ranging from extra-solar
planet detection to the deconvolution of the apparatus functions for improving the energy resolution
and change point estimation in time series are discussed. Special attention is paid to the numerical
techniques suited for Bayesian analysis, with a focus on recent developments of Markov chain
Monte Carlo algorithms for high-dimensional integration problems. Bayesian model comparison,
the quantitative ranking of models for the explanation of a given data set, is illustrated with
examples collected from cosmology, mass spectroscopy, and surface physics, covering problems
such as background subtraction and automated outlier detection. Additionally the Bayesian
inference techniques for the design and optimization of future experiments are introduced.
Experiments, instead of being merely passive recording devices, can now be designed to adapt
to measured data and to change the measurement strategy on the fly to maximize the information of
an experiment. The applied key concepts and necessary numerical tools which provide the means
of designing such inference chains and the crucial aspects of data fusion are summarized and some
of the expected implications are highlighted.
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The measured velocities vi are related to the model prediction
fi by

vi ¼ fi þ !i þ !0i; (33)

where the measurement errors !i have been assumed to be
Gaussian with known but unequal standard deviation "i. The
term !0i accounts for additional measurement errors such as
‘‘jitter,’’ which is due in part to flows and inhomogeneities
on the stellar surface (Wright, 2005). The distribution of
!0i is again assumed to be Gaussian but with a common
variance s for all data points D ¼ v1; . . . ; vN . With ! ¼
fV0; K; P; e; !;#; sg the likelihood distribution is given by
the product of N Gaussian, one for each data point

pðDj!;IÞ¼ ð2$Þ%N=2

!YN

i¼1

ð"2
i þs2Þ%1=2

"

&exp
!
%1

2

XN

i¼1

ðvi%fiÞ2
"2

i þs2

"
: (34)

Bounded, independent, and normalized priors were chosen
for the parameters, for example, the prior for the longitude of
the periastron was chosen to be uniform in ½0; 2$(: pð!jIÞ ¼
1=ð2$Þ. The joint prior is then given by the product of the
individual prior distributions

pð!jIÞ ¼ pðV0jIÞpðKjIÞpðPjIÞpðejIÞpð!jIÞpð#jIÞpðsjIÞ:
(35)

The posterior distribution for ! is obtained using Bayes’
theorem

pð!jD; IÞ ¼ pðDj!; IÞpð!jIÞ=Z; (36)

where Z is a normalization constant which can be neglected
for parameter estimation purposes. However, this posterior
distribution [Eq. (36)] still depends on the additional parame-
ter s, which accommodates additional noise. Application of
the marginalization rule finally yields the estimation of the
physical model parameters

pðV0; K; P; e;!;#jD; IÞ ¼
Z

dspð!jD; IÞ: (37)

In the work of Gregory (2005b) the integration of the parame-
ter space was performed using a parallel tempering Markov

chain Monte Carlo algorithm, which is superior to the stan-
dard Metropolis-Hastings MCMC algorithm in situations with
multimodal distributions (cf. IV.E.3.b) because transitions
between different modes are facilitated (Liu, 2001). The
best-fit result for a 128-day orbit is shown in Fig. 5, in
reasonable agreement with the data. A detailed analysis re-
vealed that three different periods of 128, 190, and 376 days
are compatible with the measured data and that the longest
period of 376 days has the highest evidence. This conclusion
differed from the original result of an orbital period of
190.5 days derived by Tinney et al. (2003) and resulted in
further investigations of the system. Eventually, with addi-
tional data at hand it was discovered that two planets orbit
HD 73526 in a 2:1 resonant orbit, one with an orbital period of
377 days and a second one with 188 days (Tinney et al.,
2006). The search for extra-solar planets is revisited in
Sec. VII.C, where the optimization of observational resources
is discussed in the framework of Bayesian experimental
design.

2. Change point analysis

The identification of changes in measured data and the
extraction of the underlying parameter changes are at the core
of many physical investigations. Very often sudden changes
indicate the presence of an unknown effect or a transition in
the properties of the system of interest. The problem of
detecting and locating abrupt changes in data sequences has
been studied under the name change point detection for
decades, and a large number of methods have been developed
for this problem; see, e.g., Carlin et al. (1992), Muller
(1992), Basseville and Nikiforov (1993), Stephens (1994),
Chen and Gupta (2000), and Garnett et al. (2009). Common
applications are time-series prediction (Garnett et al., 2009),
investigation of stock-market trends (Hsu, 1982; Loschi
et al., 2008), or analysis of environmental changes (Bradley
et al., 1999; Perreault et al., 2000; Zhao and Chu, 2010). But
also in areas as diverse as material science (Rudoy et al.,
2010), surface physics (von der Linden et al., 1998), and
plasma physics (Preuss et al., 2003) the identification of
change points is a recurring theme.

The following example from Dose and Menzel (2004)
addresses the question if there are indications for changes
in the blossom time series collected for several species over
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FIG. 4. HD 73526 radial velocity measurement plotted from data
given by Tinney et al. (2003).

FIG. 5. HD 73526 radial velocity measurement data superimposed
with the best-fit model radial velocity. Adapted from Gregory,
2005b.
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The measured velocities vi are related to the model prediction
fi by

vi ¼ fi þ !i þ !0i; (33)

where the measurement errors !i have been assumed to be
Gaussian with known but unequal standard deviation "i. The
term !0i accounts for additional measurement errors such as
‘‘jitter,’’ which is due in part to flows and inhomogeneities
on the stellar surface (Wright, 2005). The distribution of
!0i is again assumed to be Gaussian but with a common
variance s for all data points D ¼ v1; . . . ; vN . With ! ¼
fV0; K; P; e; !;#; sg the likelihood distribution is given by
the product of N Gaussian, one for each data point
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The posterior distribution for ! is obtained using Bayes’
theorem

pð!jD; IÞ ¼ pðDj!; IÞpð!jIÞ=Z; (36)

where Z is a normalization constant which can be neglected
for parameter estimation purposes. However, this posterior
distribution [Eq. (36)] still depends on the additional parame-
ter s, which accommodates additional noise. Application of
the marginalization rule finally yields the estimation of the
physical model parameters

pðV0; K; P; e;!;#jD; IÞ ¼
Z

dspð!jD; IÞ: (37)

In the work of Gregory (2005b) the integration of the parame-
ter space was performed using a parallel tempering Markov

chain Monte Carlo algorithm, which is superior to the stan-
dard Metropolis-Hastings MCMC algorithm in situations with
multimodal distributions (cf. IV.E.3.b) because transitions
between different modes are facilitated (Liu, 2001). The
best-fit result for a 128-day orbit is shown in Fig. 5, in
reasonable agreement with the data. A detailed analysis re-
vealed that three different periods of 128, 190, and 376 days
are compatible with the measured data and that the longest
period of 376 days has the highest evidence. This conclusion
differed from the original result of an orbital period of
190.5 days derived by Tinney et al. (2003) and resulted in
further investigations of the system. Eventually, with addi-
tional data at hand it was discovered that two planets orbit
HD 73526 in a 2:1 resonant orbit, one with an orbital period of
377 days and a second one with 188 days (Tinney et al.,
2006). The search for extra-solar planets is revisited in
Sec. VII.C, where the optimization of observational resources
is discussed in the framework of Bayesian experimental
design.

2. Change point analysis

The identification of changes in measured data and the
extraction of the underlying parameter changes are at the core
of many physical investigations. Very often sudden changes
indicate the presence of an unknown effect or a transition in
the properties of the system of interest. The problem of
detecting and locating abrupt changes in data sequences has
been studied under the name change point detection for
decades, and a large number of methods have been developed
for this problem; see, e.g., Carlin et al. (1992), Muller
(1992), Basseville and Nikiforov (1993), Stephens (1994),
Chen and Gupta (2000), and Garnett et al. (2009). Common
applications are time-series prediction (Garnett et al., 2009),
investigation of stock-market trends (Hsu, 1982; Loschi
et al., 2008), or analysis of environmental changes (Bradley
et al., 1999; Perreault et al., 2000; Zhao and Chu, 2010). But
also in areas as diverse as material science (Rudoy et al.,
2010), surface physics (von der Linden et al., 1998), and
plasma physics (Preuss et al., 2003) the identification of
change points is a recurring theme.

The following example from Dose and Menzel (2004)
addresses the question if there are indications for changes
in the blossom time series collected for several species over
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FIG. 4. HD 73526 radial velocity measurement plotted from data
given by Tinney et al. (2003).

FIG. 5. HD 73526 radial velocity measurement data superimposed
with the best-fit model radial velocity. Adapted from Gregory,
2005b.
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(Dated: June 10, 2019)

Bayesian statistics and MCMC (Markov Chain Monte Carlo) algorithms have found their
place in the field of Cosmology. They have become important mathematical and numerical
tools, especially in parameter estimation and model comparison. In this paper we review
some of the fundamental concepts to understand Bayesian statistics, to then introduce
the MCMC algorithms and samplers that allow us to perform the parameter inference
procedure. We also provide a general description of the standard cosmological model, known
as the ⇤CDM model, along with several alternatives to it; and current datasets coming
from astrophysical and cosmological observations. Finally, with the tools acquired we use
a MCMC algorithm implemented in python -called SimpleMC- to test the cosmological
models and find out the combination of parameters that best describes the universe.
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Resumen

Presentamos un resumen del método Monte Carlo vía Cadenas de

Markov que pueda ser usado con fines didácticos en una primera apro-

ximación al método. Para dar unidad al artículo y proponerlo como un

material autosuficiente, incluimos una breve nota histórica y la descripción

del método de Monte Carlo Ordinario.

Palabras clave: Monte Carlo, números aleatorios, cadenas de Mar-

kov.

Creo que de alguna manera se podría dar vuelta a una afirmación de La-
place, que dice que la teoría de la probabilidad no es sino el cálculo aplicado al
sentido común. El método de Monte Carlo es el sentido común aplicado a las
formulaciones matemáticas de las leyes físicas y los procesos.

Stanislaw M. Ulam 1

1. Introducción

Bajo el nombre de método de Monte Carlo (MC) se engloba en realidad a
una familia de técnicas computacionales basadas en el muestreo aleatorio (en
la generación de números pseudoaleatorios) y empleadas para hallar soluciones

1Cita tomada de [1]

1

et. al.

Fecha: 1 de abril de 2019

Una Aplicación de las Redes Neuronales Artificiales en la Cosmoloǵıa

Isidro Gómez Vargas,1, a Ricardo Medel Esquivel,1, b Ricardo Garćıa Salcedo,1 and J. Alberto Vázquez2

1CICATA-Legaria, Instituto Politécnico Nacional, Ciudad de México, CP 11500, México.
2Instituto de Ciencias F́ısicas UNAM, Av. Universidad s/n,

Col. Chamilpa, Cuernavaca, Morelos, 62210, México.

La búsqueda cient́ıfica de un modelo que describa al Uni-
verso, ha guiado la producción de sofisticadas explora-
ciones cosmológicas y, por tanto, de una inmensidad de
datos observacionales. Para explorar y analizar esta gran
cantidad de información, la ciencia computacional resulta
imprescindible.

El idilio entre cosmoloǵıa y computación podŕıa ser te-
ma de varios libros; sin embargo, en este art́ıculo nos limi-
taremos a analizar una aplicación de las redes neuronales
artificiales en la estimación de parámetros de modelos
cosmológicos.

La cosmoloǵıa y sus datos

La cosmoloǵıa es la ciencia que estudia el Universo a
gran escala, donde las galaxias pueden ser descritas co-
mo puntos (Fig. 1). Su objetivo es describir el origen, la
evolución, composición y destino del Universo a través de

Figura 1: Distribución de galaxias locales gene-
rada con los datos del Sloan Digital Sky Survey
(SDSS). Cada punto representa una galaxia. Fuente:
www.sdss.org/science/orangepie.

aElectronic address: igomezv0701@alumno.ipn.mx
bElectronic address: medetl@hotmail.com

teoŕıas fundamentales de la f́ısica, que luego se confrontan
con observaciones astronómicas.
En la actualidad, el modelo cosmológico que mejor des-

cribe los datos observacionales es el modelo de materia os-
cura fŕıa con constante cosmológica (abreviado en inglés,
⇤CDM). Se basa en la teoŕıa general de la relatividad de
Einstein, la teoŕıa del Big Bang, la existencia de materia
oscura fŕıa (materia lenta en comparación con la luz y so-
lo detectable por sus efectos gravitacionales) y de enerǵıa
oscura (componente misterioso que explica la expansión
acelerada del Universo).
Sin embargo, el modelo ⇤CDM es incapaz de explicar

algunas cuestiones f́ısicas importantes. Esto ha propicia-
do la generación de una amplia gama de modelos, algunos
basados en teoŕıas alternas a la relatividad general y otros
en hipótesis sobre la existencia de materia no ordinaria.
La cosmoloǵıa es una ciencia muy singular debido a su

objeto de estudio. El Universo es un sistema único, de
fronteras inaccesibles, que debe estudiarse desde adentro
sin la posibilidad de realizar experimentos. Esto motiva y
exige dos caracteŕısticas metodológicas de la cosmoloǵıa
contemporánea: el análisis intensivo de datos y el uso de
la estad́ıstica bayesiana.
Jim Gray1 pronosticó el advenimiento de un cuarto pa-

radigma en la ciencia. El primer paradigma ocurrió hace
mil años cuando la ciencia se limitaba a ser descriptiva y
emṕırica; el segundo tuvo su inicio con las investigaciones
de Isaac Newton al adquirir un carácter teórico; el terce-
ro surgió a mediados del siglo XX, con la incorporación
de simulaciones computacionales en las investigaciones
cient́ıficas. El cuarto paradigma seŕıa la ciencia de datos
o e-ciencia, como lo denominó Jim Gray, una mezcla de
ciencia emṕırica y teórica basada en el cómputo y análi-
sis exhaustivo de una cantidad exorbitante de datos, con
la finalidad de extraer conocimiento útil [1].
Información sobre supernovas, galaxias, radiación

cósmica de fondo, oscilaciones acústicas de bariones y
otros fenómenos cósmicos es recolectada desde la Tierra
o el espacio. Proyectos como COBE2, WMAP3, el satélite
Planck4 y SDSS5 proveen información valiosa para com-

1 Premio Turing en 1998, creador del concepto de Cubo de Datos
y desarrollador de la base de datos del SDSS.

2 science.nasa.gov/missions/cobe
3 map.gsfc.nasa.gov
4 www.phy.cam.ac.uk/research/research-groups/ap/plank
5 www.sdss.org
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of a theoretical model that best fits some observable data, and to calibrate these
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I. INTRODUCTION

There are many methods for estimating the parame-
ters of a mathematical model, particularly for cosmologi-
cal models. However, two di↵erent models may have the
same quality in their estimates and, therefore, an addi-
tional statistical tool is required: model comparison.

The most accepted method for comparing cosmologi-
cal models is through Bayesian Evidence. There are other
less complex methods (Refs. [1, 2]), (jav: ademas de los
criterios de informacion, hay aproximaciones a la eviden-
cia bayesiana? laplace approx?) however they have the
disadvantage that are approximations of the Bayesian
Evidence and they carry accuracy errors. In the literatu-
re we can find several algorithms of nested sampling and
calculation of Bayesian evidence; however, in this work
we only focus on algorithms that have a pure Python
implementation available. It is known that a code ba-
sed on C or C++ is more e�cient, but for the scientific
community (individual researchers and not institutional
groups) it has several drawbacks in the installation and
its complex use is the main di�culty.

II. BAYESIAN STATISTICS

To test theoretical models, Bayes’theorem takes the
following form:

P (✓|D,H) =
P (D|✓, H)P (✓|H)

P (D|H)
, (1)

where D represents the observational (or experimental)
dataset, H is the hypothesis or model under test, and
✓ is the set of parameters. The prior P (✓|H) represents
our knowledge about the parameters ✓ before considering

a igomezv0701@alumno.ipn.mx
b medetl@hotmail.com

the observational data. This probability is modified th-
rough likelihood P (D|✓, H) when the experimental data
D is included. The final goal of the Bayesian inference is
to obtain the posterior probability P (✓|D,H), which re-
presents the state of our knowledge of the parameters of
the model once we have taken into account the informa-
tion provided for the data. The normalization constant
P (D|H), or Bayesian Evidence, is the average of the li-
kelihood in the probability prior :

P (D|H) =

Z
d
N
✓P (D|✓, H)P (✓|H), (2)

where N is the dimension of the parameter space. Becau-
se this quantity is a constant, it can be omitted in the
process of parameter estimation, but it is fundamental in
the model comparison.
The Bayesian Evidence is significant because it pena-

lizes the models with the largest number of parameters,
through the prior distribution. Therefore, Occam’s razor
is obeyed, a philosophical guide that says: “Under equal
conditions, the simplest explanation is usually the most
probable”. In other words, the simpler a model is, the
better.
The MCMC methods are good for estimating parame-

ters, but ine�cient when calculating Bayesian Evidence,
therefore, other more e�cient algorithms have been pro-
posed in this field. Such is the case of the nested sampling
proposed by John Skilling in 2003.
The main drawback of the MCMC methods is the

computational cost. There are several attempts to im-
prove MCMC methods with artificial intelligence techni-
ques, such as clustering, genetic algorithms and artificial
neural networks.

III. MCMC SAMPLERS

(isidro: ¿son necesarios?¿podŕıan solo mencio-
narse?) (jav: comentar brevemente y enunciar sus refe-
renias)

Notas
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3.1. Bayes theorem, priors, posteriors and all that stu↵

When anyone is interested on the Bayesian framework, there are several concepts to understand
before presenting the results. In this section we quickly review these concepts and then we take
back the example about the coin toss given in the last section.

The Bayes theorem. The Bayes theorem is a direct consequence of the axioms of probability
shown in Eqs. (2). From Eqn. (2d), without loss of generality, it must be fulfilled that P (x1\x2) =
P (x2 \ x1). In such case the following relation applies

P (x2|x1) =
P (x1|x2)P (x2)

P (x1)
. (6)

As already mentioned, in the Bayesian framework data and model are part of the same space. Given
a model (or hypothesis) H, considering x1 ! D as a set of data, and x2 ! ✓ as the parameter
vector of said hypothesis, we can rewrite the above equation as

P (✓|D,H) =
P (D|✓, H)P (✓|H)

P (D|H)
. (7)

This last relation is the so-called Bayes theorem and the most important tool in a Bayesian
inference procedure. In this result, P (✓|D,H) is called the posterior probability of the model.
P (D|✓, H) ⌘ L(D|✓, H) is called the likelihood and it will be our main focus in future sections.
P (✓|H) ⌘ ⇡(✓) is called the prior and expresses the knowledge about the model before acquiring
the data. This prior can be fixed depending on either previous experiment results or the theory
behind. P (D|H) ⌘ Z is the evidence of the model, usually referred as the Bayesian Evidence.
We notice that this evidence acts only as a normalizing factor, and is nothing more than the average
of the likelihood over the prior

P (D|H) =

Z
d
N
✓P (D|✓, H)P (✓|H), (8)

whereN is the dimensionality of the parameter space. This quantity is usually ignored, for practical
reasons, when testing the parameter space of a unique model. Nevertheless, the Bayesian evidence
plays an important role for selecting the model that best “describes” the data, known as model
selection. For convenience, the ratio of two evidences

K ⌘ P (D|H0)

P (D|H1)
=

R
d
N0✓0 P (D|✓0, H0)P (✓0|H0)R

dN1✓1 P (D|✓1, H1)P (✓1|H1)
=

Z0

Z1
, (9)

or equivalently the di↵erence in log evidence lnZ0 � lnZ1 if often termed as the Bayes factor
B0,1:

B0,1 = ln
Z0

Z1
, (10)

where ✓i is a parameter vector (with dimensionality Ni) for the hypothesis Hi and i = 0, 1. In
Eqn. (10), the quantity B0,1 = lnK provides an idea on how well model 0 may fit the data when
is compared to model 1. Je↵reys provided a suitable guideline scale on which we are able to make
qualitative conclusions (see Table II).

We can see that Bayes theorem has an enormous implication with respect to a statistical in-
ferential point of view. In a typical scenario we collect some data and hope to interpret it with a



JAVazquez 7

€ 

w = −1

€ 

Λ

++
  GR 

  

€ 

d4x∫ −g R

€ 

ds2

  FRW       + ?+

€ 

ns,As

      Inflation +

€ 

Ωdm

€ 

Ωb

  Baryons   Radiation    CDM

1. THE HOMOGENEOUS UNIVERSE

component ⌦i wi ⇢(a) a(t) H(t)

radiation ⌦r 1/3 / a
�4 / t

1/2 1/2t

matter ⌦m 0 / a
�3 / t

2/3 2/3t

curvature ⌦k -1/3 / a
�2 / t 1/t

missing matter ⌦X -2/3 / a
�1 / t

2 2/t

cosmological constant ⌦⇤ -1 / a
0 / exp(

q
⇤

3
t) const

Table 1.1: Constituents of the universe and their cosmological parameters: density pa-

rameter ⌦i, equation-of-state parameter wi; and their behaviour: density evolution ⇢(a),

scale factor a(t), Hubble parameter H(t).

For a positive density contribution ⇢, the universal expansion can only be stopped if

the universe is closed  > 0 (⇢ < 0), otherwise it will expand forever.

Missing matter

If the Friedmann equation is written in terms of the present energy-density components,

we have ✓
ȧ

a

◆
2

=
8⇡G

3

⇥
⇢r,0 a

�4 + ⇢m,0 a
�3 + ⇢k,0a

�2 + ⇢⇤,0a
0
⇤
. (1.158)

Notice that the right-hand-side can be seen as a power series expansion, however with

a missing component with contribution a
�1. To complete the series, we include this

term and named it as the missing-energy component [121], for which its energy-density

satisfies

⇢X(t) = ⇢X,0 a
�1

, and a / t
2
. (1.159)

The missing-energy component has therefore an equation-of-state wX = �2/3, and

behaves similarly to domain walls [9, 124]. We explain in more detail about this new

term in Chapter ??.

A summary of the main components of the universe, along with their behaviour, is

shown in Table 1.1. Before solving the cosmological equations for the whole mixture of

perfect-fluid components, we include some essential notation:

-32-

Standard cosmological 
model       
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3.1. Bayes theorem, priors, posteriors and all that stu↵

When anyone is interested on the Bayesian framework, there are several concepts to understand
before presenting the results. In this section we quickly review these concepts and then we take
back the example about the coin toss given in the last section.

The Bayes theorem. The Bayes theorem is a direct consequence of the axioms of probability
shown in Eqs. (2). From Eqn. (2d), without loss of generality, it must be fulfilled that P (x1\x2) =
P (x2 \ x1). In such case the following relation applies

P (x2|x1) =
P (x1|x2)P (x2)

P (x1)
. (6)

As already mentioned, in the Bayesian framework data and model are part of the same space. Given
a model (or hypothesis) H, considering x1 ! D as a set of data, and x2 ! ✓ as the parameter
vector of said hypothesis, we can rewrite the above equation as

P (✓|D,H) =
P (D|✓, H)P (✓|H)

P (D|H)
. (7)

This last relation is the so-called Bayes theorem and the most important tool in a Bayesian
inference procedure. In this result, P (✓|D,H) is called the posterior probability of the model.
P (D|✓, H) ⌘ L(D|✓, H) is called the likelihood and it will be our main focus in future sections.
P (✓|H) ⌘ ⇡(✓) is called the prior and expresses the knowledge about the model before acquiring
the data. This prior can be fixed depending on either previous experiment results or the theory
behind. P (D|H) ⌘ Z is the evidence of the model, usually referred as the Bayesian Evidence.
We notice that this evidence acts only as a normalizing factor, and is nothing more than the average
of the likelihood over the prior

P (D|H) =

Z
d
N
✓P (D|✓, H)P (✓|H), (8)

whereN is the dimensionality of the parameter space. This quantity is usually ignored, for practical
reasons, when testing the parameter space of a unique model. Nevertheless, the Bayesian evidence
plays an important role for selecting the model that best “describes” the data, known as model
selection. For convenience, the ratio of two evidences

K ⌘ P (D|H0)

P (D|H1)
=

R
d
N0✓0 P (D|✓0, H0)P (✓0|H0)R

dN1✓1 P (D|✓1, H1)P (✓1|H1)
=

Z0

Z1
, (9)

or equivalently the di↵erence in log evidence lnZ0 � lnZ1 if often termed as the Bayes factor
B0,1:

B0,1 = ln
Z0

Z1
, (10)

where ✓i is a parameter vector (with dimensionality Ni) for the hypothesis Hi and i = 0, 1. In
Eqn. (10), the quantity B0,1 = lnK provides an idea on how well model 0 may fit the data when
is compared to model 1. Je↵reys provided a suitable guideline scale on which we are able to make
qualitative conclusions (see Table II).

We can see that Bayes theorem has an enormous implication with respect to a statistical in-
ferential point of view. In a typical scenario we collect some data and hope to interpret it with a
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When anyone is interested on the Bayesian framework, there are several concepts to understand
before presenting the results. In this section we quickly review these concepts and then we take
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The Bayes theorem. The Bayes theorem is a direct consequence of the axioms of probability
shown in Eqs. (2). From Eqn. (2d), without loss of generality, it must be fulfilled that P (x1\x2) =
P (x2 \ x1). In such case the following relation applies
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. (6)

As already mentioned, in the Bayesian framework data and model are part of the same space. Given
a model (or hypothesis) H, considering x1 ! D as a set of data, and x2 ! ✓ as the parameter
vector of said hypothesis, we can rewrite the above equation as

P (✓|D,H) =
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or equivalently the di↵erence in log evidence lnZ0 � lnZ1 if often termed as the Bayes factor
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where ✓i is a parameter vector (with dimensionality Ni) for the hypothesis Hi and i = 0, 1. In
Eqn. (10), the quantity B0,1 = lnK provides an idea on how well model 0 may fit the data when
is compared to model 1. Je↵reys provided a suitable guideline scale on which we are able to make
qualitative conclusions (see Table II).

We can see that Bayes theorem has an enormous implication with respect to a statistical in-
ferential point of view. In a typical scenario we collect some data and hope to interpret it with a
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Figure 4.1: Dependence of the temperature power spectrum for three fundamen-
tal quantities: Curvature (�k), Baryons (�b) and Dark energy in the form of a
cosmological constant (��).

[125, 137]. Variations of these parameters a⇥ect the amplitude and shape of the

spectra as well as the background evolution in many di⇥erent ways, yielding

hence to very di⇥erent universes. They are classified depending on whether they

characterise the background or perturbed universe:

Background parameters

The present description of the homogeneous universe can be given in terms of the

density parameters �i,0 and the Hubble parameter H0, through the Friedmann

equation (3.36):

H2 = H2
0

�
(��,0 + �⇥,0) a�4 + (�b,0 + �dm,0) a�3 + �k,0a

�2 + �X,0a
�1 + ��,0

⇥
,

(4.1)

From these parameters the radiation contribution is accurately measured, for

instance by the WMAP satellite, corresponding to ��,0 = 2.469 � 10�5h�2 for
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degeneracies it is common to introduce a combination of the cosmological param-

eters such that they have orthogonal e⇥ects on the power spectrum [122]. For

instance, a standard parameterisation is based on the physical energy-densities of

cold dark matter �dmh2, and baryons �bh2, and the ratio of the sound horizon

to the angular diameter distance at decoupling time:

� =
rs(adec)

DA(adec)
. (4.2)

There is an extra parameter that accounts for the reionisation history of the

universe, the optical depth to scattering ⇤ (i.e., the probability that a given photon

scatters once), given by

⇤ = ⇥T

⇤ t0

tr

ne(t)dt, (4.3)

where ⇥T is the Thompson cross-section and ne(t) is the electron number density

as a function of time.

Inflationary parameters

After the horizon exit, H and ⌅̇ have small variations during few e-folds. Thus,

the scalar (3.138) and tensor (3.140) spectra are nearly scale independent. The

standard assumption is therefore to parameterise each of the spectra in terms of

a power-law

PR(k) = As

�
k

k0

⇥ns�1

, (4.4)

PT (k) = At

�
k

k0

⇥nt

. (4.5)

where As, At are the spectral amplitudes, and ns, nt the spectral indices or tilt

parameters, for both scalar and tensor perturbations respectively; k0 denotes

an arbitrary scale at which the tilted spectrum pivots, usually fixed to k0 =

0.002 Mpc�1. A scale-invariant spectrum, called Harrison-Zel’dovich (HZ), has

constant variance on all length scales and it is characterised by ns = 1, nt = 0.

Small deviations from scale-invariance are also considered as typical signatures

of inflationary models [139]. The spectrum of perturbations is said to be blue if

ns > 0 (more power in ultraviolet), and red if ns < 0 (more power in infrared).
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Base Parameters

They are not predicted by any fundamental theory, rather we have to fit them by 
hand in order to determine which combination best describes current observations
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Planck Collaboration: Cosmological parameters

Table 1. Cosmological parameters used in our analysis. For each, we give the symbol, prior range, value taken in the base �CDM
cosmology (where appropriate), and summary definition (see text for details). The top block contains parameters with uniform
priors that are varied in the MCMC chains. The ranges of these priors are listed in square brackets. The lower blocks define various
derived parameters.

Parameter Prior range Baseline Definition

⌥b ⌅ ⇥bh2 . . . . . . . [0.005, 0.1] . . . Baryon density today
⌥c ⌅ ⇥ch2 . . . . . . . [0.001, 0.99] . . . Cold dark matter density today
100⇥MC . . . . . . . . . [0.5, 10.0] . . . 100⇥ approximation to r⇤/DA (CosmoMC)
⌃ . . . . . . . . . . . . . . [0.01, 0.8] . . . Thomson scattering optical depth due to reionization
⇥K . . . . . . . . . . . . [�0.3, 0.3] 0 Curvature parameter today with ⇥tot = 1 �⇥K⇤

m⇤ . . . . . . . . . . . [0, 5] 0.06 The sum of neutrino masses in eV
me⇤
⇤, sterile . . . . . . . . . [0, 3] 0 E⇤ective mass of sterile neutrino in eV

w0 . . . . . . . . . . . . . [�3.0,�0.3] �1 Dark energy equation of statea, w(a) = w0 + (1 � a)wa
wa . . . . . . . . . . . . . [�2, 2] 0 As above (perturbations modelled using PPF)
Ne⇤ . . . . . . . . . . . . [0.05, 10.0] 3.046 E⇤ective number of neutrino-like relativistic degrees of freedom (see text)
YP . . . . . . . . . . . . . [0.1, 0.5] BBN Fraction of baryonic mass in helium
AL . . . . . . . . . . . . . [0, 10] 1 Amplitude of the lensing power relative to the physical value
ns . . . . . . . . . . . . . [0.9, 1.1] . . . Scalar spectrum power-law index (k0 = 0.05Mpc�1)
nt . . . . . . . . . . . . . nt = �r0.05/8 Inflation Tensor spectrum power-law index (k0 = 0.05Mpc�1)
dns/d ln k . . . . . . . . [�1, 1] 0 Running of the spectral index
ln(1010As) . . . . . . . [2.7, 4.0] . . . Log power of the primordial curvature perturbations (k0 = 0.05 Mpc�1)
r0.05 . . . . . . . . . . . . [0, 2] 0 Ratio of tensor primordial power to curvature power at k0 = 0.05 Mpc�1

⇥� . . . . . . . . . . . . . . . Dark energy density divided by the critical density today
t0 . . . . . . . . . . . . . . . . Age of the Universe today (in Gyr)
⇥m . . . . . . . . . . . . . . . Matter density (inc. massive neutrinos) today divided by the critical density
⇧8 . . . . . . . . . . . . . . . . RMS matter fluctuations today in linear theory
zre . . . . . . . . . . . . . . . . Redshift at which Universe is half reionized
H0 . . . . . . . . . . . . [20,100] . . . Current expansion rate in km s�1Mpc�1

r0.002 . . . . . . . . . . . 0 Ratio of tensor primordial power to curvature power at k0 = 0.002 Mpc�1

109As . . . . . . . . . . . . . 109 ⇥ dimensionless curvature power spectrum at k0 = 0.05 Mpc�1

⌥m ⌅ ⇥mh2 . . . . . . . . . Total matter density today (inc. massive neutrinos)

z⇤ . . . . . . . . . . . . . . . . Redshift for which the optical depth equals unity (see text)
r⇤ = rs(z⇤) . . . . . . . . . . Comoving size of the sound horizon at z = z⇤
100⇥⇤ . . . . . . . . . . . . . 100⇥ angular size of sound horizon at z = z⇤ (r⇤/DA)
zdrag . . . . . . . . . . . . . . . Redshift at which baryon-drag optical depth equals unity (see text)
rdrag = rs(zdrag) . . . . . . . Comoving size of the sound horizon at z = zdrag

kD . . . . . . . . . . . . . . . . Characteristic damping comoving wavenumber (Mpc�1)
100⇥D . . . . . . . . . . . . . 100⇥ angular extent of photon di⇤usion at last scattering (see text)
zeq . . . . . . . . . . . . . . . . Redshift of matter-radiation equality (massless neutrinos)
100⇥eq . . . . . . . . . . . . . 100⇥ angular size of the comoving horizon at matter-radiation equality
rdrag/DV(0.57) . . . . . . . BAO distance ratio at z = 0.57 (see Sect. 5.2)

a For dynamical dark energy models with constant equation of state, we denote the equation of state by w and adopt the same prior as for w0.

The photon temperature today is well measured to be T0 =
2.7255 ± 0.0006 K (Fixsen 2009); we adopt T0 = 2.7255 K as
our fiducial value. We assume full thermal equilibrium prior to
neutrino decoupling. The decoupling of the neutrinos is nearly,
but not entirely, complete by the time of electron-positron anni-
hilation. This leads to a slight heating of the neutrinos in addition
to that expected for the photons and hence to a small departure
from the thermal equilibrium prediction T� = (11/4)1/3T⇤ be-
tween the photon temperature T� and the neutrino temperature
T⇤. We account for the additional energy density in neutrinos by
assuming that they have a thermal distribution with an e⇤ective
energy density

⌅⇤ = Ne⇤
7
8

�
4

11

⇥4/3
⌅�, (1)

with Ne⇤ = 3.046 in the baseline model (Mangano et al. 2002,
2005). This density is divided equally between three neutrino
species while they remain relativistic.

In our baseline model we assume a minimal-mass normal
hierarchy for the neutrino masses, accurately approximated for

current cosmological data as a single massive eigenstate with
m⇤ = 0.06 eV (⇥⇤h2 ⇧ ⇤m⇤/93.04 eV ⇧ 0.0006; corrections
and uncertainties at the meV level are well below the accuracy
required here). This is consistent with global fits to recent os-
cillation and other data (Forero et al. 2012), but is not the only
possibility. We discuss more general neutrino mass constraints
in Sect. 6.3.

We shall also consider the possibility of extra radiation,
beyond that included in the Standard Model. We model this
as additional massless neutrinos contributing to the total Ne⇤
determining the radiation density as in Eq. (1). We keep the
mass model and heating consistent with the baseline model at
Ne⇤ = 3.046, so there is one massive neutrino with N(massive)

e⇤ =

3.046/3 ⇧ 1.015, and massless neutrinos with N(massless)
e⇤ =

Ne⇤ � 1.015. In the case where Ne⇤ < 1.015 we use one mas-
sive eigenstate with reduced temperature.

5

Base Parameters

6

3.1. Bayes theorem, priors, posteriors and all that stu↵

When anyone is interested on the Bayesian framework, there are several concepts to understand
before presenting the results. In this section we quickly review these concepts and then we take
back the example about the coin toss given in the last section.

The Bayes theorem. The Bayes theorem is a direct consequence of the axioms of probability
shown in Eqs. (2). From Eqn. (2d), without loss of generality, it must be fulfilled that P (x1\x2) =
P (x2 \ x1). In such case the following relation applies

P (x2|x1) =
P (x1|x2)P (x2)

P (x1)
. (6)

As already mentioned, in the Bayesian framework data and model are part of the same space. Given
a model (or hypothesis) H, considering x1 ! D as a set of data, and x2 ! ✓ as the parameter
vector of said hypothesis, we can rewrite the above equation as

P (✓|D,H) =
P (D|✓, H)P (✓|H)

P (D|H)
. (7)

This last relation is the so-called Bayes theorem and the most important tool in a Bayesian
inference procedure. In this result, P (✓|D,H) is called the posterior probability of the model.
P (D|✓, H) ⌘ L(D|✓, H) is called the likelihood and it will be our main focus in future sections.
P (✓|H) ⌘ ⇡(✓) is called the prior and expresses the knowledge about the model before acquiring
the data. This prior can be fixed depending on either previous experiment results or the theory
behind. P (D|H) ⌘ Z is the evidence of the model, usually referred as the Bayesian Evidence.
We notice that this evidence acts only as a normalizing factor, and is nothing more than the average
of the likelihood over the prior

P (D|H) =

Z
d
N
✓P (D|✓, H)P (✓|H), (8)

whereN is the dimensionality of the parameter space. This quantity is usually ignored, for practical
reasons, when testing the parameter space of a unique model. Nevertheless, the Bayesian evidence
plays an important role for selecting the model that best “describes” the data, known as model
selection. For convenience, the ratio of two evidences

K ⌘ P (D|H0)

P (D|H1)
=

R
d
N0✓0 P (D|✓0, H0)P (✓0|H0)R

dN1✓1 P (D|✓1, H1)P (✓1|H1)
=

Z0

Z1
, (9)

or equivalently the di↵erence in log evidence lnZ0 � lnZ1 if often termed as the Bayes factor
B0,1:

B0,1 = ln
Z0

Z1
, (10)

where ✓i is a parameter vector (with dimensionality Ni) for the hypothesis Hi and i = 0, 1. In
Eqn. (10), the quantity B0,1 = lnK provides an idea on how well model 0 may fit the data when
is compared to model 1. Je↵reys provided a suitable guideline scale on which we are able to make
qualitative conclusions (see Table II).

We can see that Bayes theorem has an enormous implication with respect to a statistical in-
ferential point of view. In a typical scenario we collect some data and hope to interpret it with a
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Both parameters principally affect the anisotropies 

through dA and so simply shift the peaks.
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with w = 1/3 for radiation. Thus, cs =
p
1/3 c, and the sound horizon

(proper) at decoupling is therefore:

shor,s '
2p
3

c

H0
⌦�1/2

m,0 (1 + zdec)
�3/2

. (10.14)

The angle on the sky subtended by shor,s depends on the angular diameter
distance:

✓hor,s =
shor,s

dA
(10.15)

and dA in turn depends on the cosmological parameters ⌦m,0, ⌦k,0, and
⌦⇤,0 (with ⌦m,0 + ⌦k,0 + ⌦⇤,0 = 1) as we saw in Lecture 5. For the case
⌦⇤,0 = 0, we already saw in Lecture 9 (Mattig relation) that, at z � 1:

dA(z) ⇡ 2
c

H0

1

⌦m,0 z
. (10.16)

so that:

✓hor,s '
1p
3

✓
(1� ⌦k,0)

zdec

◆1/2

. (10.17)

From the above equation, it can be seen that as ⌦k,0 increases from 0 to 1,
✓hor,s decreases, that is the first acoustic peak moves to larger ` values (see
Figure 10.5).

Figure 10.5: Left: CMB acoustic peaks expected for a cosmology in which ⌦k,0 = 0.
Right, Yellow Curve: CMB acoustic peaks expected for a cosmology in which ⌦k,0 = 0.9.
(Figure credit: Wayne Hu).
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or
shor,prop(zdec) ' 2

c

H0

⌦�1/2

m,0 (1 + zdec)
�3/2

. (9.25)

where shor,prop = a shor,com is the physical (proper) horizon distance at de-
coupling.

The angle on the sky subtended by a length shor,prop is:

✓hor,dec =
shor,prop(zdec)

dA(zdec)
(9.26)

where dA is the angular diameter distance. In Lecture 5.3.3 we saw that
in a flat universe (⌦k,0 = 0) the expression for dA is simplified to:

dA(z) =
c

H0

1

(1 + z)

zZ

0

dz

h
⌦m,0 (1 + z)3 + ⌦⇤,0

i1/2
(9.27)

The elliptical integral is not of straightforward solution. However, in an
open universe with ⌦⇤,0 = 0, ⌦k,0 6= 0, the so-called Mattig relation applies:

dA(z) = 2
c

H0

1

⌦2

m,0 (1 + z)2
⇥

h
⌦m,0z + (⌦m,0 � 2)

⇣p
1 + ⌦m,0z � 1

⌘i

(9.28)
which, for z � 1 reduces to:

dA(z) ⇡ 2
c

H0

1

⌦m,0 z
. (9.29)

Substituting 9.29 and 9.25 into 9.26 we find:

✓hor,dec ⇡
✓

⌦m,0

zdec

◆1/2

=

✓
0.312

1090

◆1/2

= 0.017 radians ⇠ 1� (9.30)

In models with a cosmological constant (⌦m,0 + ⌦⇤,0 = 1, ⌦k,0 = 0)

✓hor,dec ⇡ 1.8�

with a very weak dependence on ⌦m,0 (/ ⌦�0.1
m,0 ).

What this means is that CMB photons coming to us from two directions
separated by more than ⇠ 2� originated from regions which were not in
causal contact at zdec. The fact that the CMB is uniform over much larger
angular scales constitutes what is referred to as the horizon problem.
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6

3.1. Bayes theorem, priors, posteriors and all that stu↵

When anyone is interested on the Bayesian framework, there are several concepts to understand
before presenting the results. In this section we quickly review these concepts and then we take
back the example about the coin toss given in the last section.

The Bayes theorem. The Bayes theorem is a direct consequence of the axioms of probability
shown in Eqs. (2). From Eqn. (2d), without loss of generality, it must be fulfilled that P (x1\x2) =
P (x2 \ x1). In such case the following relation applies

P (x2|x1) =
P (x1|x2)P (x2)

P (x1)
. (6)

As already mentioned, in the Bayesian framework data and model are part of the same space. Given
a model (or hypothesis) H, considering x1 ! D as a set of data, and x2 ! ✓ as the parameter
vector of said hypothesis, we can rewrite the above equation as

P (✓|D,H) =
P (D|✓, H)P (✓|H)

P (D|H)
. (7)

This last relation is the so-called Bayes theorem and the most important tool in a Bayesian
inference procedure. In this result, P (✓|D,H) is called the posterior probability of the model.
P (D|✓, H) ⌘ L(D|✓, H) is called the likelihood and it will be our main focus in future sections.
P (✓|H) ⌘ ⇡(✓) is called the prior and expresses the knowledge about the model before acquiring
the data. This prior can be fixed depending on either previous experiment results or the theory
behind. P (D|H) ⌘ Z is the evidence of the model, usually referred as the Bayesian Evidence.
We notice that this evidence acts only as a normalizing factor, and is nothing more than the average
of the likelihood over the prior

P (D|H) =

Z
d
N
✓P (D|✓, H)P (✓|H), (8)

whereN is the dimensionality of the parameter space. This quantity is usually ignored, for practical
reasons, when testing the parameter space of a unique model. Nevertheless, the Bayesian evidence
plays an important role for selecting the model that best “describes” the data, known as model
selection. For convenience, the ratio of two evidences

K ⌘ P (D|H0)

P (D|H1)
=

R
d
N0✓0 P (D|✓0, H0)P (✓0|H0)R

dN1✓1 P (D|✓1, H1)P (✓1|H1)
=

Z0

Z1
, (9)

or equivalently the di↵erence in log evidence lnZ0 � lnZ1 if often termed as the Bayes factor
B0,1:

B0,1 = ln
Z0

Z1
, (10)

where ✓i is a parameter vector (with dimensionality Ni) for the hypothesis Hi and i = 0, 1. In
Eqn. (10), the quantity B0,1 = lnK provides an idea on how well model 0 may fit the data when
is compared to model 1. Je↵reys provided a suitable guideline scale on which we are able to make
qualitative conclusions (see Table II).

We can see that Bayes theorem has an enormous implication with respect to a statistical in-
ferential point of view. In a typical scenario we collect some data and hope to interpret it with a

SN Ia
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parameterise each of the spectra in terms of a power-law

PR(k) = As

✓
k

k0

◆ns�1

, (5.5)

PT (k) = At

✓
k

k0

◆nt

. (5.6)

where As, At are the spectral amplitudes, and ns, nt the spectral indices or tilt parameters, for

both scalar and tensor perturbations respectively; k0 denotes an arbitrary scale at which the

tilted spectrum pivots, usually fixed to k0 = 0.002 Mpc�1. A scale-invariant spectrum, called

Harrison-Zel’dovich (HZ), has constant variance on all length scales and it is characterised by

ns = 1, nt = 0. Small deviations from scale-invariance are also considered as typical signatures

of inflationary models [? ]. The spectrum of perturbations is said to be blue if ns > 0 (more

power in ultraviolet), and red if ns < 0 (more power in infrared). The spectral indices, ns and

nt, and the tensor-to-scalar ratio r can be expressed in terms of the slow-roll parameters ✏v and

⌘v (??), as:

ns � 1 ' �6 ✏v(�) + 2 ⌘v(�), (5.7)

nt ' �2 ✏v(�), (5.8)

r ' 16 ✏v(�). (5.9)

These parameters are not completely independent each other, but the tensor spectral index is

proportional to the tensor-to-scalar ratio r = �8nt [? ]. This expression is considered as the

consistency relation for slow-roll inflation. Any single-field inflationary model can hence be de-

scribed, to the lowest order in slow-roll, in terms of three independent parameters: the amplitude

of density perturbations As, the scalar spectral index ns, and the tensor-to-scalar ratio r. Varia-

tions of the CMB T -spectrum over di↵erent values of ns are shown in the left panel of Figure 5.3.

In addition to the temperature T and polarisation E spectra, produced by scalar perturba-

tions, there is also the B-mode polarisation only produced by tensor perturbations. Therefore,

measurements of B-modes are important tests for the existence of primordial gravitational

waves. Unfortunately, there is no observational evidence of tensor perturbations yet, and r is

commonly set to zero. The next generation of CMB polarisation experiments will substantially

improve these limits (see Section 5.2.2). Variations of the C
BB tensor spectrum with respect

to the tensor-to-scalar ratio r are displayed in the right panel of Figure 5.3.
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5. STATISTICS IN COSMOLOGY

parameterise each of the spectra in terms of a power-law

PR(k) = As

✓
k

k0

◆ns�1

, (5.5)

PT (k) = At

✓
k

k0

◆nt

. (5.6)

where As, At are the spectral amplitudes, and ns, nt the spectral indices or tilt parameters, for

both scalar and tensor perturbations respectively; k0 denotes an arbitrary scale at which the

tilted spectrum pivots, usually fixed to k0 = 0.002 Mpc�1. A scale-invariant spectrum, called

Harrison-Zel’dovich (HZ), has constant variance on all length scales and it is characterised by

ns = 1, nt = 0. Small deviations from scale-invariance are also considered as typical signatures

of inflationary models [? ]. The spectrum of perturbations is said to be blue if ns > 0 (more

power in ultraviolet), and red if ns < 0 (more power in infrared). The spectral indices, ns and

nt, and the tensor-to-scalar ratio r can be expressed in terms of the slow-roll parameters ✏v and

⌘v (??), as:

ns � 1 ' �6 ✏v(�) + 2 ⌘v(�), (5.7)

nt ' �2 ✏v(�), (5.8)

r ' 16 ✏v(�). (5.9)

These parameters are not completely independent each other, but the tensor spectral index is

proportional to the tensor-to-scalar ratio r = �8nt [? ]. This expression is considered as the

consistency relation for slow-roll inflation. Any single-field inflationary model can hence be de-

scribed, to the lowest order in slow-roll, in terms of three independent parameters: the amplitude

of density perturbations As, the scalar spectral index ns, and the tensor-to-scalar ratio r. Varia-

tions of the CMB T -spectrum over di↵erent values of ns are shown in the left panel of Figure 5.3.

In addition to the temperature T and polarisation E spectra, produced by scalar perturba-

tions, there is also the B-mode polarisation only produced by tensor perturbations. Therefore,

measurements of B-modes are important tests for the existence of primordial gravitational

waves. Unfortunately, there is no observational evidence of tensor perturbations yet, and r is

commonly set to zero. The next generation of CMB polarisation experiments will substantially

improve these limits (see Section 5.2.2). Variations of the C
BB tensor spectrum with respect

to the tensor-to-scalar ratio r are displayed in the right panel of Figure 5.3.
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6

3.1. Bayes theorem, priors, posteriors and all that stu↵

When anyone is interested on the Bayesian framework, there are several concepts to understand
before presenting the results. In this section we quickly review these concepts and then we take
back the example about the coin toss given in the last section.

The Bayes theorem. The Bayes theorem is a direct consequence of the axioms of probability
shown in Eqs. (2). From Eqn. (2d), without loss of generality, it must be fulfilled that P (x1\x2) =
P (x2 \ x1). In such case the following relation applies

P (x2|x1) =
P (x1|x2)P (x2)

P (x1)
. (6)

As already mentioned, in the Bayesian framework data and model are part of the same space. Given
a model (or hypothesis) H, considering x1 ! D as a set of data, and x2 ! ✓ as the parameter
vector of said hypothesis, we can rewrite the above equation as

P (✓|D,H) =
P (D|✓, H)P (✓|H)

P (D|H)
. (7)

This last relation is the so-called Bayes theorem and the most important tool in a Bayesian
inference procedure. In this result, P (✓|D,H) is called the posterior probability of the model.
P (D|✓, H) ⌘ L(D|✓, H) is called the likelihood and it will be our main focus in future sections.
P (✓|H) ⌘ ⇡(✓) is called the prior and expresses the knowledge about the model before acquiring
the data. This prior can be fixed depending on either previous experiment results or the theory
behind. P (D|H) ⌘ Z is the evidence of the model, usually referred as the Bayesian Evidence.
We notice that this evidence acts only as a normalizing factor, and is nothing more than the average
of the likelihood over the prior

P (D|H) =

Z
d
N
✓P (D|✓, H)P (✓|H), (8)

whereN is the dimensionality of the parameter space. This quantity is usually ignored, for practical
reasons, when testing the parameter space of a unique model. Nevertheless, the Bayesian evidence
plays an important role for selecting the model that best “describes” the data, known as model
selection. For convenience, the ratio of two evidences

K ⌘ P (D|H0)

P (D|H1)
=

R
d
N0✓0 P (D|✓0, H0)P (✓0|H0)R

dN1✓1 P (D|✓1, H1)P (✓1|H1)
=

Z0

Z1
, (9)

or equivalently the di↵erence in log evidence lnZ0 � lnZ1 if often termed as the Bayes factor
B0,1:

B0,1 = ln
Z0

Z1
, (10)

where ✓i is a parameter vector (with dimensionality Ni) for the hypothesis Hi and i = 0, 1. In
Eqn. (10), the quantity B0,1 = lnK provides an idea on how well model 0 may fit the data when
is compared to model 1. Je↵reys provided a suitable guideline scale on which we are able to make
qualitative conclusions (see Table II).

We can see that Bayes theorem has an enormous implication with respect to a statistical in-
ferential point of view. In a typical scenario we collect some data and hope to interpret it with a
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Nuisance parameters 

We do not have particular interest on these type of parameters, however they may 

influence the rest of the parameter-space constraints. 


May be related to insufficiently constrained aspects of physics, or uncertainties 
in the measuring process

* bias factor in galaxy surveys b

* the stretch α and colour β corrections on measurements of distance 
modulus of SNe Type Ia

* calibrations and beans uncertainties, galactic foregrounds

The latest observational analyses yield impressive statistical precision on scales

near transition from linear to non-linear regime, e.g., typical 1 − σ errors of 5−10%

on P (k) at k " 0.15hMpc−1. The critical uncertainty in cosmological interpretation

is therefore the accuracy of equation (2.1) on these scales. The effects of non-linearity

and redshift-space distortions on the matter power spectrum can be computed using

numerical simulations or tuned analytic models (Smith et al. 2003, and references

therein), but details of galaxy formation physics can influence the relation between

galaxy and matter power spectra in this regime. Percival et al. (2007) find that linear

theory fits imply different cosmological parameters if applied up to measurements at

k = 0.06hMpc−1 or k = 0.15hMpc−1. Furthermore, Cole, Sánchez & Wilkins (2006)

analyze the SDSS and 2dFGRS galaxy samples and find that the measured shapes

of galaxy power spectra are different and inexplicable by expected cosmic variance.

They show that the likely source of the discrepancy is different scale-dependence

of galaxy bias, originating from the different color distributions in the SDSS and

2dFGRS galaxy samples.

Cole et al. (2005), Padmanabhan et al. (2007), and Tegmark et al. (2006)

approach this problem by fitting a parametrized model of scale-dependent bias,

Pgal(k) = b2
0Plin(k)

1 + Qk2

1 + Ak
. (2.2)

The functional form is devised for convenience to approximate the scale-dependent

bias of galaxy samples obtained by populating the Hubble volume simulation

12

Comparison of cosmological parameter inference methods 3

(2006); Kowalski et al. (2008); Kessler et al. (2009a); Amanullah
et al. (2010); Guy et al. (2010); Conley et al. (2011); Marriner et al.
(2011). A detailed account of this approach, together with a de-
scription of some statistical issues associated with the methodol-
ogy, is given in the preceding references; we therefore present only
a brief summary here.

One begins by defining the ‘observed’ distance modulus µobs
i

for the ith SN as

µobs
i = m̂�

B,i �M + �x̂1,i � ⇥ĉi, (8)

where M is the (unknown) B-band absolute magnitude of the
SN, and �, ⇥ are (unknown) nuisance parameters controlling the
stretch and colour corrections; all three parameters are assumed to
be global, i.e. the same for all SNIa.

One then defines the ⇧2 misfit function

⇧2(C ,�,⇥,M,⌅int) =
N�

i=1

[µobs
i (�,⇥,M)� µi(C )]2

⌅2
i (�,⇥,⌅int)

, (9)

where, for clarity, we have made explicit the functional dependen-
cies of the various terms on (only) the parameters to be fitted. In
this expression, µi is the predicted distance modulus given by (2)
and is a function of SN redshift zi and the cosmological parameters
C , and the total dispersion ⌅2

i is the sum of several errors added in
quadrature:

⌅2
i = ⌅2

z,i + ⌅2
int + ⌅2

fit,i(�,⇥). (10)

The three components are: (i) the error ⌅z,i in the redshift mea-
surement owing to uncertainties in the peculiar velocity of the host
galaxy and in the spectroscopic measurements; (ii) the intrinsic dis-
persion ⌅int, which describes the global variation in the SNIa abso-
lute magnitudes that remain after correction for stretch and colour;
and (ii) the fitting error, which is given by

⌅2
fit,i = �tĈi�, (11)

where the transposed vector �t = (1,�,�⇥) and Ĉi is the covari-
ance matrix given in (6).

Typically, the chi-squared function (9) is minimized simul-
taneously with respect to the cosmological parameters C and the
global SNIa nuisance parameters �, ⇥ and M . There are, how-
ever, a few differences in the way in which this minimisation is
performed, such as which search algorithm is used (MCMC tech-
niques or grid searches) and the treatment of M (which is degen-
erate with H0), namely whether these parameters are marginalised
over analytically or numerically. Once this chi-squared minimisa-
tion has been performed, the value of ⌅int is estimated by adjusting
it to obtain ⇧2/Ndof ⇥ 1, usually by some iterative process.

In this work, we take the simple cos fitter algorithm3 (Con-
ley et al. 2011) as representative of the general class of chi-square
methods, and compare its performance with the BHM, which we
describe below. It should be noted that the chi-square method is an
approximation to the BHM in certain limits (see Gull 1989 for a
general discussion of this, and March et al. 2011 for a discussion of
this as applied to the SNIa case.). Hence we expect the two meth-
ods to converge in some limit; detailed studies into this exact limit
have not yet been carried out.

3 Alex Conley’s simple cos fitter code has generously been made available
at: http://qold.astro.utoronto.ca/conley/simple cosfitter

2.2 Bayesian hierarchical method

Recently, a more statistically well-motivated method for cosmolog-
ical parameter inference from SNIa was put forward in the form of
a Bayesian hierarchical model (March et al. 2011), itself based on
the methodology of (Gull 1989), and indeed is a special case of the
more general methodology of (Kelly 2007); which provides for full
propagation of systematic uncertainties to the final inferences and
also allows for rigorous model selection.

In essence, this method provides a means for constructing a
robust effective likelihood function that yields the probability of
obtaining the observed data for the ith SN (i.e. the parameter values
obtained in the SALT-II lightcurve fits) as a function of the cosmo-
logical parameters and global SNIa nuisance parameters, namely

Pr(m̂�
B,i, x̂1,i, ĉi, ẑi|C ,�,⇥,⌅int), (12)

which also depends on the covariance matrix ⇥Ci of the uncertainties
on the input data (m̂�

B,i, x̂1,i, ĉi), and the uncertainty ⌅z,i in the
estimated redshift ẑi, all of which are assumed known. The full
likelihood function is given by the product of the likelihoods (12)
for each SN.

The likelihood for each SN is computed by first introducing
the hidden variables Mi, xi, ci and zi, which are, respectively, the
true (unknown) values of its absolute B-band magnitude, stretch
and colour corrections, and redshift. These are then assigned pri-
ors, which themselves contain further nuisance parameters, and all
the parameters introduced in this way are marginalised over to ob-
tain the likelihood (12). The details of this procedure are given in
Appendix A. By assuming separable Gaussian priors on the hid-
den variables and nuisance parameters, one can perform all the
marginalisations analytically, except for two nuisance parameters
Rx and Rc, which are also described in Appendix A, that must be
marginalised over numerically.

The full likelihood function is then multiplied by an assumed
prior (see Appendix A) on the unknown parameters to yield their
posterior distribution. This posterior is explored using the Multi-
Nest algorithm (Feroz & Hobson 2008; Feroz et al. 2009), which
implements the nested sampling method (Skilling 2004, 2006)
adapted for potentially multimodal distributions.

3 REAL SUPERNOVAE DATA

We will perform our comparison of the standard chi-square method
and the BHM by applying them to two classes of data sets. The
first of these is the single survey SNLS3 data alone, i.e. only SNIa
data which was taken during the first three years of the SNLS3 sur-
vey (Guy et al. 2010). We take the SNLS3 data as supplied by the
SNLS3 team4 after selection cuts have been made, the SALT-II
lightcurve fitting process has been completed and the Malmquist
correction has been applied. Our interest in comparing the perfor-
mance of the two cosmological parameter inference methods as ap-
plied to this single survey data set is driven by potential science ap-
plications that use a single SNIa survey in conjunction with other
data sets (not SNIa) to investigate various astrophysical and cos-
mological phenomena. An example of such an application is con-
straining the properties of dark matter haloes of foreground galax-
ies along the lines-of-sight to the SNIa using gravitational lensing,
as discussed in our companion paper (Karpenka et. al. 2012).

4 SNLS3 data and associated data sets are available from:
http://hdl.handle.net/1807/26549

c� 2012 RAS, MNRAS 000, 1–10
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3.1. Bayes theorem, priors, posteriors and all that stu↵

When anyone is interested on the Bayesian framework, there are several concepts to understand
before presenting the results. In this section we quickly review these concepts and then we take
back the example about the coin toss given in the last section.

The Bayes theorem. The Bayes theorem is a direct consequence of the axioms of probability
shown in Eqs. (2). From Eqn. (2d), without loss of generality, it must be fulfilled that P (x1\x2) =
P (x2 \ x1). In such case the following relation applies

P (x2|x1) =
P (x1|x2)P (x2)

P (x1)
. (6)

As already mentioned, in the Bayesian framework data and model are part of the same space. Given
a model (or hypothesis) H, considering x1 ! D as a set of data, and x2 ! ✓ as the parameter
vector of said hypothesis, we can rewrite the above equation as

P (✓|D,H) =
P (D|✓, H)P (✓|H)

P (D|H)
. (7)

This last relation is the so-called Bayes theorem and the most important tool in a Bayesian
inference procedure. In this result, P (✓|D,H) is called the posterior probability of the model.
P (D|✓, H) ⌘ L(D|✓, H) is called the likelihood and it will be our main focus in future sections.
P (✓|H) ⌘ ⇡(✓) is called the prior and expresses the knowledge about the model before acquiring
the data. This prior can be fixed depending on either previous experiment results or the theory
behind. P (D|H) ⌘ Z is the evidence of the model, usually referred as the Bayesian Evidence.
We notice that this evidence acts only as a normalizing factor, and is nothing more than the average
of the likelihood over the prior

P (D|H) =

Z
d
N
✓P (D|✓, H)P (✓|H), (8)

whereN is the dimensionality of the parameter space. This quantity is usually ignored, for practical
reasons, when testing the parameter space of a unique model. Nevertheless, the Bayesian evidence
plays an important role for selecting the model that best “describes” the data, known as model
selection. For convenience, the ratio of two evidences

K ⌘ P (D|H0)

P (D|H1)
=

R
d
N0✓0 P (D|✓0, H0)P (✓0|H0)R

dN1✓1 P (D|✓1, H1)P (✓1|H1)
=

Z0

Z1
, (9)

or equivalently the di↵erence in log evidence lnZ0 � lnZ1 if often termed as the Bayes factor
B0,1:

B0,1 = ln
Z0

Z1
, (10)

where ✓i is a parameter vector (with dimensionality Ni) for the hypothesis Hi and i = 0, 1. In
Eqn. (10), the quantity B0,1 = lnK provides an idea on how well model 0 may fit the data when
is compared to model 1. Je↵reys provided a suitable guideline scale on which we are able to make
qualitative conclusions (see Table II).

We can see that Bayes theorem has an enormous implication with respect to a statistical in-
ferential point of view. In a typical scenario we collect some data and hope to interpret it with a
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Planck Collaboration: Cosmological parameters

Table 4. Astrophysical parameters used to model foregrounds in our analysis, plus instrumental calibration and beam parameters.
We include the symbol for each parameter, the prior range adopted for the MCMC analysis and a summary definition (see text for
details). Square brackets denote hard priors, parentheses indicate Gaussian priors. Note that the beam eigenmode amplitudes require
a correlation matrix to describe fully their joint prior, and that all but �1

1 are internally marginalized over rather than sampled over
for the main MCMC runs. The bottom two blocks are only used in the analysis including the ACT and SPT high-⌅ CMB data.

Parameter Prior range Definition

APS
100 [0, 360] Contribution of Poisson point-source power toD100⇥100

3000 for Planck (in µK2)
APS

143 [0, 270] As for APS
100, but at 143 GHz

APS
217 [0, 450] As for APS

100, but at 217 GHz
rPS

143⇥217 [0, 1] Point-source correlation coe⇥cient for Planck between 143 and 217 GHz
ACIB

143 [0, 20] Contribution of CIB power toD143⇥143
3000 at the Planck CMB frequency for 143 GHz (in µK2)

ACIB
217 [0, 80] As for ACIB

143 , but for 217 GHz
rCIB

143⇥217 [0, 1] CIB correlation coe⇥cient between 143 and 217 GHz
⇥CIB [�2, 2] (0.7 ± 0.2) Spectral index of the CIB angular power (D⌅ ⌅ ⌅⇥CIB )
AtSZ [0, 10] Contribution of tSZ toD143⇥143

3000 at 143 GHz (in µK2)
AkSZ [0, 10] Contribution of kSZ toD3000 (in µK2)
⇤tSZ⇥CIB [0, 1] Correlation coe⇥cient between the CIB and tSZ (see text)

c100 [0.98, 1.02] (1.0006 ± 0.0004) Relative power spectrum calibration for Planck between 100 GHz and 143 GHz
c217 [0.95, 1.05] (0.9966 ± 0.0015) Relative power spectrum calibration for Planck between 217 GHz and 143 GHz
�i

j (0 ± 1) Amplitude of the jth beam eigenmode ( j = 1–5) for the ith cross-spectrum (i = 1–4)

APS, ACT
148 [0, 30] Contribution of Poisson point-source power toD148⇥148

3000 for ACT (in µK2)
APS, ACT

218 [0, 200] As for APS, ACT
148 , but at 218 GHz

rPS
150⇥220 [0, 1] Point-source correlation coe⇥cient between 150 and 220 GHz (for ACT and SPT)

AACTe
dust [0, 5] (0.8 ± 0.2) Contribution from Galactic cirrus toD3000 at 150 GHz for ACTe (in µK2)

AACTs
dust [0, 5] (0.4 ± 0.2) As AACTe

dust , but for ACTs
yACTe

148 [0.8, 1.3] Map-level calibration of ACTe at 148 GHz relative to Planck 143 GHz
yACTe

217 [0.8, 1.3] As yACTe
148 , but at 217 GHz

yACTs
148 [0.8, 1.3] Map-level calibration of ACTs at 148 GHz relative to Planck 143 GHz

yACTs
217 [0.8, 1.3] As yACTs

148 , but at 217 GHz

APS, SPT
95 [0, 30] Contribution of Poisson point-source power toD95⇥95

3000 for SPT (in µK2)
APS, SPT

150 [0, 30] As for APS, SPT
95 , but at 150 GHz

APS, SPT
220 [0, 200] As for APS, SPT

95 , but at 220 GHz
rPS

95⇥150 [0, 1] Point-source correlation coe⇥cient between 95 and 150 GHz for SPT
rPS

95⇥220 [0, 1] As rPS
95⇥150, but between 95 and 220 GHz

ySPT
95 [0.8, 1.3] Map-level calibration of SPT at 95 GHz relative to Planck 143 GHz

ySPT
150 [0.8, 1.3] As for ySPT

95 , but at 150 GHz
ySPT

220 [0.8, 1.3] As for ySPT
95 , but at 220 GHz

D3000 around 50 µK2 at 217 GHz (rising to around 200 µK2 on
the scale of the first acoustic peak) and becomes a major fore-
ground component, with an amplitude close to the net contri-
bution of Poisson point sources and the clustered CIB. There is
therefore a trade-o� between limiting the signal-to-noise at 143
and 217 GHz, by restricting the sky area, and potential system-
atic errors associated with modelling Galactic cirrus over a large
area of sky (i.e., sensitivity to the assumption of a “universal”
dust template spectrum). We have chosen to be conservative in
this first cosmological analysis of Planck by limiting the sky area
at 143 and 217 GHz so that dust contamination is a minor fore-
ground at high multipoles. As a further test of the importance
of Galactic cirrus, we have analysed a Planck likelihood that re-
tains only 24.7% of the sky (see Planck Collaboration XV 2013)
at 217 GHz. Within this mask the CIB dominates over Galactic
cirrus at multipoles ⌅ >⇤ 500. There is a signal-to-noise penalty
in using such a small area of sky at 217 GHz, but otherwise the
results from this likelihood are in broad agreement with the re-
sults presented here. With the conservative choices adopted in

this paper, Galactic cirrus has no significant impact on our cos-
mological results.

We follow R12 and subtract a small-scale dust contribution
of Ddust

⌅ = 2.19 µK2(⌅/3000)�1.2 from the R12 220 GHz spec-
trum. This correction was determined by cross-correlating the
SPT data with model 8 of Finkbeiner et al. (1999). For the ACT
data we marginalize over a residual Galactic dust component
Ddust
⌅ = AACTe/s

dust (⌅/3000)�0.7, with di�erent amplitudes for the
southern and equatorial spectra, imposing Gaussian priors and
frequency scaling as described in Dunkley et al. (2013).

Notice that the spectral index of the SPT dust correction
is significantly steeper than the dust correction applied to the
Planck spectra. In future analyses it would be useful to derive
more accurate dust corrections for the high-resolution CMB data
by cross-correlating the SPT and ACT maps with the Planck
545 and 857 GHz maps. Since the dust corrections are relatively
small for the high-resolution data used here, we adopt the cor-
rection described above in this paper.

In application of the likelihood to Planck data alone, the
model for unresolved foregrounds and relative calibrations con-
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3.1. Bayes theorem, priors, posteriors and all that stu↵

When anyone is interested on the Bayesian framework, there are several concepts to understand
before presenting the results. In this section we quickly review these concepts and then we take
back the example about the coin toss given in the last section.

The Bayes theorem. The Bayes theorem is a direct consequence of the axioms of probability
shown in Eqs. (2). From Eqn. (2d), without loss of generality, it must be fulfilled that P (x1\x2) =
P (x2 \ x1). In such case the following relation applies

P (x2|x1) =
P (x1|x2)P (x2)

P (x1)
. (6)

As already mentioned, in the Bayesian framework data and model are part of the same space. Given
a model (or hypothesis) H, considering x1 ! D as a set of data, and x2 ! ✓ as the parameter
vector of said hypothesis, we can rewrite the above equation as

P (✓|D,H) =
P (D|✓, H)P (✓|H)

P (D|H)
. (7)

This last relation is the so-called Bayes theorem and the most important tool in a Bayesian
inference procedure. In this result, P (✓|D,H) is called the posterior probability of the model.
P (D|✓, H) ⌘ L(D|✓, H) is called the likelihood and it will be our main focus in future sections.
P (✓|H) ⌘ ⇡(✓) is called the prior and expresses the knowledge about the model before acquiring
the data. This prior can be fixed depending on either previous experiment results or the theory
behind. P (D|H) ⌘ Z is the evidence of the model, usually referred as the Bayesian Evidence.
We notice that this evidence acts only as a normalizing factor, and is nothing more than the average
of the likelihood over the prior

P (D|H) =

Z
d
N
✓P (D|✓, H)P (✓|H), (8)

whereN is the dimensionality of the parameter space. This quantity is usually ignored, for practical
reasons, when testing the parameter space of a unique model. Nevertheless, the Bayesian evidence
plays an important role for selecting the model that best “describes” the data, known as model
selection. For convenience, the ratio of two evidences

K ⌘ P (D|H0)

P (D|H1)
=

R
d
N0✓0 P (D|✓0, H0)P (✓0|H0)R

dN1✓1 P (D|✓1, H1)P (✓1|H1)
=

Z0

Z1
, (9)

or equivalently the di↵erence in log evidence lnZ0 � lnZ1 if often termed as the Bayes factor
B0,1:

B0,1 = ln
Z0

Z1
, (10)

where ✓i is a parameter vector (with dimensionality Ni) for the hypothesis Hi and i = 0, 1. In
Eqn. (10), the quantity B0,1 = lnK provides an idea on how well model 0 may fit the data when
is compared to model 1. Je↵reys provided a suitable guideline scale on which we are able to make
qualitative conclusions (see Table II).

We can see that Bayes theorem has an enormous implication with respect to a statistical in-
ferential point of view. In a typical scenario we collect some data and hope to interpret it with a

The curse of dimensionality 
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3.1. Bayes theorem, priors, posteriors and all that stu↵

When anyone is interested on the Bayesian framework, there are several concepts to understand
before presenting the results. In this section we quickly review these concepts and then we take
back the example about the coin toss given in the last section.

The Bayes theorem. The Bayes theorem is a direct consequence of the axioms of probability
shown in Eqs. (2). From Eqn. (2d), without loss of generality, it must be fulfilled that P (x1\x2) =
P (x2 \ x1). In such case the following relation applies

P (x2|x1) =
P (x1|x2)P (x2)

P (x1)
. (6)

As already mentioned, in the Bayesian framework data and model are part of the same space. Given
a model (or hypothesis) H, considering x1 ! D as a set of data, and x2 ! ✓ as the parameter
vector of said hypothesis, we can rewrite the above equation as

P (✓|D,H) =
P (D|✓, H)P (✓|H)

P (D|H)
. (7)

This last relation is the so-called Bayes theorem and the most important tool in a Bayesian
inference procedure. In this result, P (✓|D,H) is called the posterior probability of the model.
P (D|✓, H) ⌘ L(D|✓, H) is called the likelihood and it will be our main focus in future sections.
P (✓|H) ⌘ ⇡(✓) is called the prior and expresses the knowledge about the model before acquiring
the data. This prior can be fixed depending on either previous experiment results or the theory
behind. P (D|H) ⌘ Z is the evidence of the model, usually referred as the Bayesian Evidence.
We notice that this evidence acts only as a normalizing factor, and is nothing more than the average
of the likelihood over the prior

P (D|H) =

Z
d
N
✓P (D|✓, H)P (✓|H), (8)

whereN is the dimensionality of the parameter space. This quantity is usually ignored, for practical
reasons, when testing the parameter space of a unique model. Nevertheless, the Bayesian evidence
plays an important role for selecting the model that best “describes” the data, known as model
selection. For convenience, the ratio of two evidences

K ⌘ P (D|H0)

P (D|H1)
=

R
d
N0✓0 P (D|✓0, H0)P (✓0|H0)R

dN1✓1 P (D|✓1, H1)P (✓1|H1)
=

Z0

Z1
, (9)

or equivalently the di↵erence in log evidence lnZ0 � lnZ1 if often termed as the Bayes factor
B0,1:

B0,1 = ln
Z0

Z1
, (10)

where ✓i is a parameter vector (with dimensionality Ni) for the hypothesis Hi and i = 0, 1. In
Eqn. (10), the quantity B0,1 = lnK provides an idea on how well model 0 may fit the data when
is compared to model 1. Je↵reys provided a suitable guideline scale on which we are able to make
qualitative conclusions (see Table II).

We can see that Bayes theorem has an enormous implication with respect to a statistical in-
ferential point of view. In a typical scenario we collect some data and hope to interpret it with a
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We present a cosmological model in the presence of a vacuum energy yielding a particular form of
shear stress so that Friedmann equations modified such that the scale factor replaced by the average
scale factor, shear scalar and vacuum energy mimic the kinetic term and potential of a scalar
field, respectively. So that any deviation from cosmological constant potential is accompanied by a
deviation from isotropic expansion. The shear scalar evolves non-trivially, changes very slowly, for
instance, can track dark energy, whereas it is inversely proportional to sixth power of average scale
factor when anisotropy is allowed in standard ⇤CDM model. Most importantly, even unobservable
amount of anisotropy in the current universe would increase and dominate universe in the past
and then spoils the successes of the standard cosmological model. Our model on the other hand
leads the density parameter of anisotropy to decrease as we go back to early universe. This allows
an observationally indistinguishable deviation from the ⇤CDM model, and hence preserves all the
successes of ⇤CDM model but yet lead a slight anisotropization as the dark energy domination
starts and resolve the quadrupole problem and anisotropy does never lead a complication in the
past. We study the constant equation of state and CPL models of dark energy in this framework.

I. INTRODUCTION

The Einstein’s field equations are

Rµ⌫ � 1

2
Rgµ⌫ = �Tµ⌫ , (1)

where µ, ⌫ = 0, .., 3, and gµ⌫ , Rµ⌫ , and R are the metric
tensor, the Ricci tensor, and the Ricci curvature scalar,
respectively. Here  = 8⇡G = 1, G is the gravita-
tional constant and Tµ⌫ is the energy-momentum tensor
(EMT). We use the simplest anisotropic spacetime met-
ric, LRS Bianchi type I metric, which is spatially homo-
geneous and flat but not necessarily isotropic spacetime,
as follows:

ds2 = �dt2 + S
2
⇥
e
4�dx2 + e

�2�(dy2 + dz2)
⇤
, (2)

where S is average scale factor and t is the cosmic time.
The exponent and shear scalar are related as �

2 = 6�̇2,
where the shear scalar �

2 = �ij�
ij , in terms of shear

tensor �ij , is the measure of the deviation from isotropic
expansion. The average Hubble parameter H and shear
scalar depend on directional Hubble parameters Hi (i =
x, y, z) along x, y and z directions read

H =
Ṡ

S
=

Hx + 2Hy

3
and �

2 =
3

2
(Hx �H)2. (3)

The most general EMT for this metric can yield
anisotropic pressure as

Tµ
⌫ = diag[�⇢, px, py, pz]

= diag[�1, wx, (wx + �), (wx + �)]⇢ (4)
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here � is the skewness parameter that measures the dis-
tortion of the equation of state (EoS) parameter. Ein-
stein field equations (1) for metric (2) in the presence of
(4) read:

3
Ṡ
2

S2
� 1
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2 = ⇢+ ⇢f , (5)
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Ṡ

S
�

!
= �(wx + �)⇢� pf ,

(7)

⇢f and pf stand for the energy density and pressure, re-
spectively, for representing common cosmological fluids
such as radiation (r), matter (m) parameterised in terms
of a constant EoS parameter as wf =

pf

⇢f
.

II. MODEL

Subtracting (7) from (6) we get the shear propagation
equation

�̇ + 3
Ṡ

S
� = �

r
2

3
�⇢. (8)

Using this in (6) and (7), both of which become iden-
tically the same and hence the system (5)-(7) can be
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Ṡ
2

S2
�
r

2

3

 
�̇ + 3

Ṡ
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Using this in (6) and (7), both of which become iden-
tically the same and hence the system (5)-(7) can be

Si resulta que perturbaciones a primer orden
son insuficientes se siguie a órdenes superiores que
pueden llegar ser lo suficientemente grandes como
para que �/c

2 (una medida del ”contraste de cur-
vatura”) y el contraste de densidad � = �⇢/⇢ queden
fuera del radio de convergencia de la serie de aprox-
imaciones.

Debido a las dificultades que pueden aparecer
dentro de la teorı́a de perturbaciones se ha buscado
como alternativa utilizar soluciones inhomogéneas
exactas a las ecuaciones de Einstein algo que no es
tan popular dentro de la comunidad cosmológica
como utilizar perturbaciones. Las soluciones más
útiles para el estudio cosmológico son la solución
de Lemaı̂tre-Tolman y de Szekeres las cuáles serán
descritas brevemente en las siguientes secciones
además de mostrar unos ejemplos de formación de
estructura.

MODELOS INHOMOGÉNEOS: LEMAÎTRE-TOLMAN Y
SZEKERES

Comencemos por esbozar una definición de lo
que es un modelo cosmológico inhomogéneo: son
aquellas soluciones a las ecuaciones de Einstein que
contienen por lo menos una subclase no vacı́a y no
estática de una solución FLRW como lı́mite. Resulta
obvio pedir esto ya que sabemos que los modelos
FLRW representan una primera aproximación real-
isra a la descripción del universo.

Como ya se mencionó antes, las soluciones in-
homogéneas más utilizadas son las de Lemaı̂tre-
Tolman y Szekeres que pueden describir la
evolución del universo después de la época de re-
combinación porque tienen como fuente al polvo
(fluido perfecto con presión 0) y en las épocas ante-
riores no se debe despreciar el efecto de la presión.
Estos modelos no son adecuados para incluir en-
ergı́a oscura a menos que sea con constante cos-
mológica y sirven (como ya fue mencionado al fi-
nal de la introducción) como reemplazo para teorı́a
de perturbaciones linealizadas y, aunque funcionen
para situaciones menos generales que las perturba-
ciones, tienen como ventaja el ser soluciones exactas
y por eso pueden ser extrapoladas arbitrariamente
al futuro sin necesidad de constreñiarlas en ciertos
régimenes.

Solución de Szekeres. La solución de Szekeres está
dada por el elemento de lı́nea

ds
2 = dt

2
� e

2↵(t,x,y,r)
dr

2
� e

2�(t,x,y,r)(dx2 + dy
2).

Ciertas propiedades que cumplen estos modelos
son tener una fuente de fluido perfecto (en partic-
ular, polvo) cuyas lı́neas de flujo son geodésicas
sin rotación, las hipersuperficies ortogonales a estas
lı́neas son conformemente planas, el tensor de Ricci
de esas hipersuperficies tiene dos valores propios
iguales y el tensor de ”esfuerzos cortantes” (shear
tensor) tiene dos valores propios iguales. Además,
la presión depende solo del tiempo al utilizar coor-
denadas comoviles. El modelo es útil para épocas
en las que la gravedad juega un papel dominante y
los procesos hidrodinámicos a grandes escalas han
terminado.

El elemento de lı́nea está escrito en coordenadas
comoviles (u↵ = �

↵

0 ) y dependiendo del valor de
@�

@r
= �,r se tienen dos tipos de familias de esta

solución: �,r = 0 y �,r 6= 0. La segunda familia es
la interesante para aplicaciones cosmológicas. Aquı́
las funciones de la métrica cumplen

e
� = �(t, r)e⌫(r,x,y),

e
↵ = h(r)�(t, r)�,r = h(r)(�,r +�⌫,r ),

e
�⌫ = A(r)(x2 + y

2) + 2B1(r)x+ 2B2(r)y + C(r),

en donde � cumple la ecuacióna

�,2
t
= �k(r) +

2M(r)

�
+

1

3
⇤�2

,

h, k, M , A, B1, B2 y C son funciones arbitrarias
que cumplen la ecuación para otra función arbitraria
g(r)

g(r) = 4(AC �B
2
1 �B

2
2) =

1

h2
+ k

y la función de ”tiempo de bang” (bang time func-
tion) tB(r) se obtiene de la ecuación para �

Z
�

0

d�0
q
�k + 2M/�0 + 1

3⇤�
02

= t� tB(r).

La densidad de energı́a está dada por

8⇡G

c4
⇢ =

(2Me
3⌫),r

e2�(e�),r
.

En general, los modelos de Szekeres no tienen
simetrı́a alguna pero obtienen un grupo de simetrı́as
de tres dimensiones con órbitas dos dimensionales
cuando A, B1, B2 y C son todas constantes. El signo
de g(r) define la geometrı́a de las superficies de t y
r constantes pero si las funciones anteriores no son
constantes, un mismo espacio con t = cte. puede
tener una mezcla de geometrı́as. Además el signo

aEsta ecuación es la equivalente a la ecuación de Friedmann en la solución de Szekeres.
2

de k influencı́a el signo de g y por tanto determina
la evolución cuando no hay constante cosmológica.
El modelo cuasi-esférico (g > 0), imaginado como
un modelo de esferas no concéntricas (figura 1), es el
único que se ha estudiado con detalle y se ha usado
en el estudio del universo temprano, formación de
estructura y observaciones de supernovas y cmb.

FIGURA 1. Representación gráfica del modelo de Szekeres
en donde cada rebanada de tiempo es foliada en esferas
no concéntricas de radio r. El lado derecho representa la
proyección ecuatorial de las curvas de nivel de distancia
propia constante. Las esferas no son ortogonales a trayec-
torias radiales lo que da lugar a los términos fuera de
la diagonal en la métrica (ver apéndice) en coordenadas
esféricas. La aparente simetrı́a rotacional de la figura del
lado izquierdo es un efecto de las coordenadas y no algo
covariante.

Solución de Lemaı̂tre-Tolman (LT). Este modelo es
un caso especial del modelo de Lemaı̂tre descrito por
el elemento de lı́nea

ds
2 = e

A(t,r)
dt

2
�e

B(t,r)
dr

2
�R

2(t, r)(d✓2+sin ✓2d'2)

y describe un fluido inhomogéneo esféricamente
simétrico con presión anisotrópica.

En el modelo de Lemaı̂tre-Tolman se toma como
el caso en el que la fuente es polvo con constante cos-
mológica, entonces se utiliza P,r = 0 lo que implica
que A,r = 0 y se puede escalar g00 de tal forma que
el elemento de lı́nea se transforma en

ds
2 = dt

2
�

R,
2
r

1 + 2E(r)
dr

2
�R

2(t, r)d⌦2
, (1)

en donde R(t, r) cumple la ecuaciónb

R,
2
t
= 2E +

2M

R
+

1

3
⇤R2

. (2)

Para este modelo, la densidad de masa está dada
por

8⇡G

c4
⇢ =

2M,r

R2R,r
.

Al considerar ⇤ = 0 se puede resolver la ecuación
(2) de manera explı́cita y para E < 0 (evolución
elı́ptica), E = 0 (evolución parabólica) y E > 0
(evolución hiperbólica)c. Como todas las funciones
son covariantes ante cambios arbitrarios de la coor-
denada radial r̃ = g(r) entonces E(r), M(r) o tB(r)
(el tiempo de bang) pueden ser elegidas a convenien-
cia. El lı́mite de FLRW está cuando se toma tB = cte.

y E
3/2

M
= cte

d. En ciertas aplicaciones (como en la
formación de una galaxia con un agujero negro cen-
tral) es conveniente utilizar M como la coordenada
radial, r̃ = M(r).

El modelo tiene como condiciones de origen en
r = rc si R(t, rc) = 0 para cada tiempo. Al ser
un modelo inhomogéneo podrı́a ocurrir que un cas-
carón de radio constante r chocara con su vecino, a
este fenomeno se le llama shell crossing (o cruce de
cascarones como traducción directa) y son lugares
geométricos extremales de R, es decir, lugares donde
R

0 = 0 pero no son máximos o mı́nimos regulares.
Estos cruces crean singularidades de densidad di-
vergente y cambios de signo; las condiciones para
evitar este fenómeno se encuentran en el apéndice.

Aplicaciones de este modelo son formación de
agujeros negros, cúmulos y supercúmuos galácticos,
voids cósmicos, interpretaciones de observaciones de
supernova, CMB, entre otros.

DISTANCIAS

En cosmologı́a, las distancias son escenciales para
realizar observaciones, sin embargo, estas cambian
dependiendo del modelo utilizado y la distribución
de materia dentro de el. Las inhomogeneidades
tienen efectos sobre las distancias medidas, por
ejemplo, afectan al parámetro de desaceleración.
Aún ası́, usualmente no se toman en cuenta los cam-
bios que las inhomogeneidades producen a las di-
tancias ya que las fluctuaciones del potencial grav-
itacional son pequeñas y se pueden usar perturba-
ciones y estas, al ser gaussianas, se desvanecen al
promediar.

bEsta ecuación se obtiene de las ecuaciones de Einstein para un tensor de energı́a-momento de polvo. Es una primer integral.
cLas soluciones para cada caso se encuentran en el apéndice.
dPara tener una expresión en las coordenadas usuales se toma M = M0r3, E = � 1

2kr
2 y R(t, r) = ra(t); ası́, la ecuación para

R(t, r) se convierte en la ecuación de Friedmann. Para mayores detalles, consultar el capı́tulo 18 de [2].
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RESUMEN:Al tener mediciones más precisas del Universo, el comportamiento no lineal de estructuras es más
aparente, el Universo es altamente inhomogéneo a escalas menores a 150Mpc. La descripción de este se basa en
utilizar un espacio-tiempo casi plano con perturbaciones a primer orden y si estas son insuficientes se toman órdenes
mayores. Esto difiere con la realidad ya que �/c2 es una medida del ”contraste de curvatura” el cual, junto con el
contraste de densidad �⇢/⇢ deben ser pequeños y al presente están fuera del radio de convergencia de la serie de
aproximaciones. Además, suelen aparecer dificultades al utilizar el método, por ejemplo: modelos irrotacionales y
silenciosos suelen ser linealmente inestables, modelos Robertson-Walker cerrados son linealmente inestables, pertur-
baciones de segundo orden pueden volverse más fuertes a las de primero en modelos inflacionarios de slow-roll, entre
otros. Sin embargo, los datos observacionales nos permiten trabajar con modelos inhomogéneos, entre los cuales, se
tienen tres de utilidad: el Lemaı̂tre-Tolman, el método de Misner-Sharp y el modelo de Szekeres. Son de utilidad para
describir diversos problemas como:

• Formación de una galaxia con agujero negro central
• Formación y evolución de cúmulos galácticos y voids
• Resolución del problema de horizontes sin la necesidad de modelos inflacionarios
• La influencia de estructuras inhomogéneas sobre el camino de un rayo de luz en la distribución observada

de la temperatura del CMB.
El propósito de este ensayo es describir modelos inhomogéneos (especialmente el Lemaı̂tre-Tolman), algunos ejemplos
de su uso, ajusto de observaciones y observaciones futuras que puedan apoyar la idea de usar este tipo de cosmologı́as.

INTRODUCCIÓN: HOMOGENEIDAD E ISOTROPÍA

La cosmologı́a suele estudiarse considerando al
universo como homogeneo e isotrópico a grandes
escalas. En Relatividad General esto se traduce a la
métrica FLRW dada en una de sus formas más cono-
cida, usando la signatura (+,�,�,�), por

ds
2 = dt

2
� a(t)


dr

2

1� kr2
+ r

2(d✓2 + sin ✓2d'2)

�
,

en donde k nos define la geometrı́a del espacio:
k = 1 universo cerrado o esférico, k = 0 universo
plano y k = �1 universo parabólico o abierto.

Las Ecuaciones de campo de Einstein y la
condición de conservación de la energı́a-momento
rµT

µ

⌫
= 0 nos dan las ecuaciones de evolución del

universo (se utiliza un tensor de energı́a-momento
de fluido perfecto):

ȧ
2

a2
=

8⇡G

3
⇢+

⇤

3
�

k

a2
,

ä

a
= �

4⇡G

3
(⇢+ 3P ) +

⇤

3
,

⇢̇+ 3H(⇢+ P ) = 0,

en donde ⇢ es la densidad de energı́a del fluido,
P la presión del fluido, ⇤ la constante cosmológica
y H = ȧ/a el parámetro de Hubble. Normalmente

se utiliza una ecuación de estado barotrópica (P =
P (⇢) = !⇢)para poder resolver el sistema de ecua-
ciones para un fluı́do (o mezcla de fluidos) con su
ecuación de estado caracterı́stica.

El estudio del universo como homogéneo e
isotrópico se ha realizado exahustivamente y se
conoce la evolución para distintos fluidos y ge-
ometrı́as e incluso combinaciones de fluidos. Sin
embargo, sabemos que el universo a escalas menores
de 150Mpc no es ni isotrópico ni homogéneo. Lo
podemos ver, por ejemplo, en las pequeñas diferen-
cia de temperatura del fondo cósmico de microon-
das (CMB por sus siglas en inglés) o en las estruc-
turas cosmicas formadas. Como consecuencia, es
debido realizar un estudio del universo fuera del es-
quema de homogeneidad e isotropı́a y usualmente
esto se hace utilizando teorı́a de perturbaciones so-
bre un fondo FLRW. Junto con modelos inflacionar-
ios, utilizados para resolver el problema de hori-
zontes (la alta homogeneidad (a escalas mayores de
150Mpc)de la temperatura en el CMB para regiones
causalmente desconectadas), el problema de plani-
tud (el hecho de que las observaciones indican que el
universo es plano siendo este un sistema inestable) y
el problema de monopolos (la falta de existencia de
monopolos).

1
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3.1. Bayes theorem, priors, posteriors and all that stu↵

When anyone is interested on the Bayesian framework, there are several concepts to understand
before presenting the results. In this section we quickly review these concepts and then we take
back the example about the coin toss given in the last section.

The Bayes theorem. The Bayes theorem is a direct consequence of the axioms of probability
shown in Eqs. (2). From Eqn. (2d), without loss of generality, it must be fulfilled that P (x1\x2) =
P (x2 \ x1). In such case the following relation applies

P (x2|x1) =
P (x1|x2)P (x2)

P (x1)
. (6)

As already mentioned, in the Bayesian framework data and model are part of the same space. Given
a model (or hypothesis) H, considering x1 ! D as a set of data, and x2 ! ✓ as the parameter
vector of said hypothesis, we can rewrite the above equation as

P (✓|D,H) =
P (D|✓, H)P (✓|H)

P (D|H)
. (7)

This last relation is the so-called Bayes theorem and the most important tool in a Bayesian
inference procedure. In this result, P (✓|D,H) is called the posterior probability of the model.
P (D|✓, H) ⌘ L(D|✓, H) is called the likelihood and it will be our main focus in future sections.
P (✓|H) ⌘ ⇡(✓) is called the prior and expresses the knowledge about the model before acquiring
the data. This prior can be fixed depending on either previous experiment results or the theory
behind. P (D|H) ⌘ Z is the evidence of the model, usually referred as the Bayesian Evidence.
We notice that this evidence acts only as a normalizing factor, and is nothing more than the average
of the likelihood over the prior

P (D|H) =

Z
d
N
✓P (D|✓, H)P (✓|H), (8)

whereN is the dimensionality of the parameter space. This quantity is usually ignored, for practical
reasons, when testing the parameter space of a unique model. Nevertheless, the Bayesian evidence
plays an important role for selecting the model that best “describes” the data, known as model
selection. For convenience, the ratio of two evidences

K ⌘ P (D|H0)

P (D|H1)
=

R
d
N0✓0 P (D|✓0, H0)P (✓0|H0)R

dN1✓1 P (D|✓1, H1)P (✓1|H1)
=

Z0

Z1
, (9)

or equivalently the di↵erence in log evidence lnZ0 � lnZ1 if often termed as the Bayes factor
B0,1:

B0,1 = ln
Z0

Z1
, (10)

where ✓i is a parameter vector (with dimensionality Ni) for the hypothesis Hi and i = 0, 1. In
Eqn. (10), the quantity B0,1 = lnK provides an idea on how well model 0 may fit the data when
is compared to model 1. Je↵reys provided a suitable guideline scale on which we are able to make
qualitative conclusions (see Table II).

We can see that Bayes theorem has an enormous implication with respect to a statistical in-
ferential point of view. In a typical scenario we collect some data and hope to interpret it with a
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Abstract

We construct two simple e↵ective field theory versions of Hybrid Natural Inflation (HNI) that
illustrate the range of its phenomenological implications. The resulting inflationary sector potential,
V = �4(1+a cos(�/f)), arises naturally, with the inflaton field a pseudo-Nambu-Goldstone boson. The
end of inflation is triggered by a waterfall field and the conditions for this to happen are determined.
Also of interest is the fact that the slow-roll parameter ✏ (and hence the tensor r) is a non-monotonic
function of the field with a maximum where observables take universal values that determines the
maximum possible tensor to scalar ratio r. In one of the models the inflationary scale can be as low
as the electroweak scale. We explore in detail the associated HNI phenomenology, taking account of
the constraints from Black Hole production, and perform a detailed fit to the Planck 2015 temperature
and polarisation data.

1 Introduction

Among the many models proposed to implement the inflationary paradigm [1], [2], [3], [4], Natural Inflation

(NI) [5], [6], [7], [8] is particularly appealing because its origins lie in well motivated physics. In this scheme

the inflaton potential has the form

VI(�) = �4(1 + cos(
�

f
)), (1.1)

where the inflaton, �, is a pseudo-Goldstone boson associated with a spontaneously broken global sym-

metry and is thus protected from large radiative corrections to its mass. Unfortunately, the predictions

of NI are now only marginally consistent with the recent measurements [9]. In addition it requires the

symmetry breaking scale, f , to be larger than the Planck scale M = 2.44 ⇥ 1018GeV 1 raising doubts

about the stability of the potential against higher dimensional terms2. However it is possible to construct

⇤
On sabbatical leave from Instituto de Ciencias F́ısicas, Universidad Nacional Autónoma de México, UNAM.

1
In what follows the Planck scale will be taken equal to unity.

2
Modified schemes have been constructed with additional fields and sub-Planckian scales of symmetry breaking but where

the resulting e↵ective scale is super-Planckian [10], [11]; see however [12], [13].
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generalised “Hybrid Natural Inflation” models [14]-[17], that maintain the symmetry protection for the

inflaton mass, are perfectly consistent with all current measurements and can avoid the need for a super-

Planckian symmetry breaking scale. The inflaton potential relevant to the inflationary era now has the

general form

VI(�) = �4(1 + a cos(
�

f
)), (1.2)

where 0  a < 1. The change in the structure is because inflation ends due to a new hybrid “waterfall”

field [18], �, that couples to the inflaton and ends inflation when this coupling triggers � to develop

a vacuum expectation value (vev). The appearance of the new parameter, a, allows for more general

inflationary phenomena that can readily accommodate the Planck results and even allow for a low-scale

of inflation. The waterfall field is important in the era after inflation and can lead to e�cient reheating

of the universe.

Our paper is organized as follows: In Section 2, we construct the e↵ective field theory (EFT) of HNI

that includes the waterfall field and is valid below the scale, ⇤, corresponding to the scale of the ultra-violet

(UV) completion of the model. This may be the scale at which the theory becomes supersymmetric or the

composite scale or even the Planck scale. Although the inflaton is protected by the underlying Goldstone

symmetry from large corrections to its mass proportional to ⇤, the same is not true of the waterfall field

and so there is a constraint on ⇤ following from the requirement that HNI should naturally avoid fine

tuning. As we discuss, there are essentially two classes of HNI depending on the underlying symmetries

of the EFT. In one class it is possible significantly to lower the scale of inflation and we discuss the limits

on this scale. We also discuss how the initial conditions prior to inflation may occur and the constraints

on the reheat temperature after inflation. In Section 3 we write the form slow-roll (SR) parameters

and observables in terms of a convenient notation. In Section 4.1 we consider the phenomenological

implications of HNI in the sub-Planckian f limit that can be analysed analytically. We construct the slow

roll parameters and the associated results for both scalar and tensor density perturbations and compare

them to the Planck data. We show that there is an upper bound to r and that in one class of HNI models

the inflation scale may be as low as the electroweak scale. In Section 4.2 we perform a likelihood fit of HNI

to the available data that allows us to determine the range of observables consistent with HNI. In this

we do not constrain f to be sub-Planckian. Section 5 presents a discussion of constraints on HNI coming

from primordial black hole abundances bounds at the end of inflation. We also check consistency of the

hierarchy of SR parameters with the usual first order power spectrum formula. Finally, we conclude in

Section 6 by discussing the main results obtained in the paper coming from observational and theoretical

constraints on the model.

2 The e↵ective field theory description of Hybrid Natural Inflation

2.1 The simplest scheme

Natural inflation identifies the inflaton with a Pseudo-Goldstone boson, �. The field theoretic origin of

the pseudo-Goldstone mode is the phase of a complex scalar field, �, such that

� = (⇢+ f̃)e
i
�

f̃ , (2.3)

where f̃ the scale of the Goldstone symmetry breaking and ⇢ is the radial field that acquires a mass of

O(f̃). To obtain an hybrid version of NI it is necessary to have at least an additional field that in the

2

Cosmological inflation predicts the initial power spectrum 

to be close to scale-invariant  with just a slight scale dependence.

2 Vázquez et al.

eters), and decide which model provides the best fit to ob-
servational data using the Bayesian evidence.

The paper is organised as follows: in Section 2 we
present the two di↵erent models for the power spectrum
and in Section 3 we describe basic parameter estimation
and model selection. We list the datasets and the cosmo-
logical parameters considered in Section 4 and present the
resulting parameter constraints in Section 5. We compute
Bayesian evidences in Section 6 to decide which model pro-
vides the best description for current observational data and
we validate our analysis by applying it to a CMB simulated
data. Our conclusions are presented in Section 7.

2 PRIMORDIAL POWER SPECTRUM

The correlation function ⇠ of density fluctuations � ⌘ �⇢/⇢

at two separated points x and x + r is defined as

⇠(r) ⌘ h�(x)�(x + r)i. (1)

Because the assumption of homogeneity and isotropy, ⇠ is a
function only of r ⌘ |r|. The power spectrum P(k) describes
the amplitude of fluctuations on di↵erent length scales and
it is related with the inverse Fourier transform of the corre-
lation function ⇠ by:

P(k) ⌘ h|�k|2i. (2)

During the inflationary period, fluctuations in the inflaton
field ��k result in curvature perturbations R(k) given by

R(k) = �
»

H

�̇
��k

–

k=RH

, (3)

where the quantities are evaluated at the horizon exit epoch
k = RH. Here R is the scale factor of the universe and
H ⌘ Ṙ/R is the Hubble parameter. In this paper, we follow
a slow-roll approximation (e.g. Liddle & Lyth 1999). Hence
the power spectrum of the inflaton fluctuations is constant
in time and equal to

P��(k) =

„
H

2⇡

«2

k=RH

. (4)

Thus, the primordial curvature spectrum PR(k) computed
from (2) - (4) is

PR(k) =

"„
H

�̇

«2 „
H

2⇡

«2
#

k=RH

. (5)

2.1 Power-law parameterisations

Cosmological slow-roll inflation predicts the spectrum of
curvature perturbations to be close to scale-invariant. Based
on this, the spectrum is commonly assumed to have the form

PR(k) = As

„
k

k0

«
ns�1

, (6)

where the spectral index ns is expected to be close to unity;
k0 is the pivot scale (set to k0 = 0.05 Mpc�1 throughout).
A spectrum where the typical amplitude of perturbations is
identical on all length scales is known as Harrison-Zel’dovich
spectrum (ns = 1).This particular parameterisation involves
only one free parameter, the spectral amplitude P(k) = As.

A further extension is possible by allowing the spectral

index to vary as a function of scale, such that ns(k). This
can be achieved by including a second order term in the
expansion of the power spectrum

PR(k) = As

„
k

k0

«
ns�1+(1/2) ln(k/k0)(dn/d ln k)

, (7)

where dn/d ln k is termed the running parameter nrun and
we would expect nrun ⇡ 0 for standard inflationary models.

In what follows we will consider three Power-Law pa-
rameterisations. In the first model (PL 1), we will assume a
simple power-law spectrum (without running) and restrict
the universe to be spatially flat. In PL model 2, we allow the
spatial curvature of the universe to be a free parameter. In
PL model 3, we allow for a running spectrum, but again re-
strict the universe to be spatially-flat. In this way, power-law
models 2 and 3 have the same number of parameters.

2.2 The LD model

Assuming the cosmological constant is the origin of dark en-
ergy, Lasenby & Doran (2005) provided a construction for
embedding closed-universe models in a de Sitter background.
As a consequence of this novel approach, a boundary condi-
tion on the total available conformal time emerges. Defining
the total conformal time ⌘ as

⌘ ⌘
Z 1

0

dt

R(t)
, (8)

the LD model requires ⌘ = ⇡/2. For more details about the
choice of the boundary condition, including how it can be
reinterpreted as an eigenvalue condition on the solution of a
di↵erential equation, see Lasenby (2003); Lasenby & Doran
(2004, 2005). In order to understand some consequences of
the new boundary condition we split the history of the Uni-
verse in two main contributions to the total conformal time:
matter (radiation and dust) and inflationary eras. Hence, we
want to compute the conformal time ⌘M elapsed during the
matter era and add it to that elapsed in the inflationary era
⌘I, such that the boundary condition is satisfied:

⌘I + ⌘M =
⇡

2
. (9)

It is found that this constraint leads to a ‘see-saw’ mecha-
nism linking the parameters describing the current state of
the universe with the initial conditions (Lasenby & Doran
2004).

2.2.1 Matter era

The general description of the large scale Universe is based
on the Robertson-Walker space-time with dynamics gov-
erned by the Einstein equations. The resulting Friedmann
equations can be written as (with c = 1)

Ṙ
2 + k

R2
� ⇤

3
=

8⇡G

3
⇢, (10)

2
R̈

R
+

Ṙ
2 + k

R2
� ⇤ = �8⇡GP.

Here k = 0, ±1 defines the geometry of the universe, ⇤ is the
cosmological constant, and the relationship between density
⇢ and pressure P is encoded in the equation of state P =
�⇢. The behaviour of the homogeneous universe is governed

c� 2011 RAS, MNRAS 000, 1–11
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parameterise each of the spectra in terms of a power-law

PR(k) = As

✓
k

k0

◆ns�1

, (5.5)

PT (k) = At

✓
k

k0

◆nt

. (5.6)

where As, At are the spectral amplitudes, and ns, nt the spectral indices or tilt parameters, for

both scalar and tensor perturbations respectively; k0 denotes an arbitrary scale at which the

tilted spectrum pivots, usually fixed to k0 = 0.002 Mpc�1. A scale-invariant spectrum, called

Harrison-Zel’dovich (HZ), has constant variance on all length scales and it is characterised by

ns = 1, nt = 0. Small deviations from scale-invariance are also considered as typical signatures

of inflationary models [? ]. The spectrum of perturbations is said to be blue if ns > 0 (more

power in ultraviolet), and red if ns < 0 (more power in infrared). The spectral indices, ns and

nt, and the tensor-to-scalar ratio r can be expressed in terms of the slow-roll parameters ✏v and

⌘v (??), as:

ns � 1 ' �6 ✏v(�) + 2 ⌘v(�), (5.7)

nt ' �2 ✏v(�), (5.8)

r ' 16 ✏v(�). (5.9)

These parameters are not completely independent each other, but the tensor spectral index is

proportional to the tensor-to-scalar ratio r = �8nt [? ]. This expression is considered as the

consistency relation for slow-roll inflation. Any single-field inflationary model can hence be de-

scribed, to the lowest order in slow-roll, in terms of three independent parameters: the amplitude

of density perturbations As, the scalar spectral index ns, and the tensor-to-scalar ratio r. Varia-

tions of the CMB T -spectrum over di↵erent values of ns are shown in the left panel of Figure 5.3.

In addition to the temperature T and polarisation E spectra, produced by scalar perturba-

tions, there is also the B-mode polarisation only produced by tensor perturbations. Therefore,

measurements of B-modes are important tests for the existence of primordial gravitational

waves. Unfortunately, there is no observational evidence of tensor perturbations yet, and r is

commonly set to zero. The next generation of CMB polarisation experiments will substantially

improve these limits (see Section 5.2.2). Variations of the C
BB tensor spectrum with respect

to the tensor-to-scalar ratio r are displayed in the right panel of Figure 5.3.
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3.1. Bayes theorem, priors, posteriors and all that stu↵

When anyone is interested on the Bayesian framework, there are several concepts to understand
before presenting the results. In this section we quickly review these concepts and then we take
back the example about the coin toss given in the last section.

The Bayes theorem. The Bayes theorem is a direct consequence of the axioms of probability
shown in Eqs. (2). From Eqn. (2d), without loss of generality, it must be fulfilled that P (x1\x2) =
P (x2 \ x1). In such case the following relation applies

P (x2|x1) =
P (x1|x2)P (x2)

P (x1)
. (6)

As already mentioned, in the Bayesian framework data and model are part of the same space. Given
a model (or hypothesis) H, considering x1 ! D as a set of data, and x2 ! ✓ as the parameter
vector of said hypothesis, we can rewrite the above equation as

P (✓|D,H) =
P (D|✓, H)P (✓|H)

P (D|H)
. (7)

This last relation is the so-called Bayes theorem and the most important tool in a Bayesian
inference procedure. In this result, P (✓|D,H) is called the posterior probability of the model.
P (D|✓, H) ⌘ L(D|✓, H) is called the likelihood and it will be our main focus in future sections.
P (✓|H) ⌘ ⇡(✓) is called the prior and expresses the knowledge about the model before acquiring
the data. This prior can be fixed depending on either previous experiment results or the theory
behind. P (D|H) ⌘ Z is the evidence of the model, usually referred as the Bayesian Evidence.
We notice that this evidence acts only as a normalizing factor, and is nothing more than the average
of the likelihood over the prior

P (D|H) =

Z
d
N
✓P (D|✓, H)P (✓|H), (8)

whereN is the dimensionality of the parameter space. This quantity is usually ignored, for practical
reasons, when testing the parameter space of a unique model. Nevertheless, the Bayesian evidence
plays an important role for selecting the model that best “describes” the data, known as model
selection. For convenience, the ratio of two evidences

K ⌘ P (D|H0)

P (D|H1)
=

R
d
N0✓0 P (D|✓0, H0)P (✓0|H0)R

dN1✓1 P (D|✓1, H1)P (✓1|H1)
=

Z0

Z1
, (9)

or equivalently the di↵erence in log evidence lnZ0 � lnZ1 if often termed as the Bayes factor
B0,1:

B0,1 = ln
Z0

Z1
, (10)

where ✓i is a parameter vector (with dimensionality Ni) for the hypothesis Hi and i = 0, 1. In
Eqn. (10), the quantity B0,1 = lnK provides an idea on how well model 0 may fit the data when
is compared to model 1. Je↵reys provided a suitable guideline scale on which we are able to make
qualitative conclusions (see Table II).

We can see that Bayes theorem has an enormous implication with respect to a statistical in-
ferential point of view. In a typical scenario we collect some data and hope to interpret it with a
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ABSTRACT

In this paper we consider φ2 scalar field potential as a candidate to dark matter.
If it is an ultralight boson particle, it condensates like a Bose-Einstein system at very
early times and forms the basic structure of the Universe. Real scalar fields collapse in
equilibrium configurations which oscillate in space-time (oscillatons).The cosmological
behavior of the field equations are solved using the dynamical system formalism. We
use the current cosmological parameters as constraints for the present value of the
scalar field and reproduce the cosmological predictions of the standard ΛCDM model
with this model. Therefore, scalar field dark matter seems to be a good alternative to
cold dark matter nature.

Key words: Cosmology – Theory – Dark Matter – Scalar Field

1 INTRODUCTION

Scalar fields are one of the most interesting and most myste-
rious fields in theoretical physics. Fundamental scalar fields
are needed in all unification’s theories, however, there are
not experimental evidence of its existence. From the stan-
dard model of particles which needs the Higgs boson, until
the superstring theory which contains the dilaton, passing
throught the Kaluza-Klein and the Brans-Dicke theories or
throught the inflationary model, scalar fields are necessary
fields. Doubtless, if they exist, they have some features which
make them very special.

The Scalar Field Dark Matter (SFDM) model paradigm
has been constructed step by step. One of the first sugges-
tions that a (complex) scalar field could contribute to struc-
ture formation of the Universe was given by Press (1990)
and Madsen (1992). Nevertheless, complex scalar fields were
used before as matter candidates as boson stars by Ruffini
(1969) (for a recent introduction to boson stars, see for ex-
ample Guzmán F. S. (2006)). One of the first candidates to
be scalar field dark matter is the axion, one of the solutions
to the strong-CP problem in QCD (see an excellent review in
Kolb, E. W. and Turner, S. T. (1990)). Essentially, the ax-
ion is a scalar field with mass restricted by observations to
∼ 10−5eV, which has its origin at 10−30 seconds after the big
bang, when the energy of the Universe was 1012GeV. This
candidate is till now one of the most accepted candidates

! E-mail:tmatos@fis.cinvestav.mx
† E-mail:jvazquez@fis.cinvestav.mx
‡ E-mail:jmagana@astroscu.unam.mx

for the nature of dark matter, if its abundance is about 109

particles per cubic centimetre.

The first in suggesting that a dark halo could be a Bose-
Einstein condensate were Sin (1994) and Ji & Sin (1994)
who used the weak field limit to show that a Bose-Einstein
Condensate (BEC) with several nodes can fit the rotation
galaxy curves with a very good accuracy. Further investiga-
tions on this direction were performed by Lee & Koh (1996),
where they incorporated φ4 interactions to the scalar field
potential and used the Gross-Pitaevskii equation instead of
the Schrödinger one (Lee 1996). Nevertheless, Seidel & Suen
(1991, 1994) showed that when the whole BEC is in the
ground state, many nodes in Einstein-Klein-Gordon fields
are unstable, since they evolve into the 0-node solution af-
ter a while (for a clear explanation to this point see also
(Guzmán, F. S. & Ureña-López 2003)). Thus, the static so-
lutions given by Sin (1994); Ji & Sin (1994); Lee & Koh
(1996) are expected to be unstable.

Later on, Peebles & Vilenkin (1999) proposed that a
scalar field driven by inflation can behave as a perfect
fluid and can have interesting observational consequences in
structure formation. Besides that, they performed a sound
waves analysis of this hypothesis giving some qualitative
ideas for the evolution of these fields and called it fluid
dark matter (Peebles 2000a,b). Independently and in an
opposite way, Matos & Guzmán (1999) proposed a scalar
field coming from some unify theory can condensate and
collapse to form haloes of galaxies. Very early, this scalar
field behaves as a perfect fluid, however its ultralight mass
causes that the bosons condensate at very high tempera-
ture and collapse in a very different way as the fluid dark
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3.1. Bayes theorem, priors, posteriors and all that stu↵

When anyone is interested on the Bayesian framework, there are several concepts to understand
before presenting the results. In this section we quickly review these concepts and then we take
back the example about the coin toss given in the last section.

The Bayes theorem. The Bayes theorem is a direct consequence of the axioms of probability
shown in Eqs. (2). From Eqn. (2d), without loss of generality, it must be fulfilled that P (x1\x2) =
P (x2 \ x1). In such case the following relation applies

P (x2|x1) =
P (x1|x2)P (x2)

P (x1)
. (6)

As already mentioned, in the Bayesian framework data and model are part of the same space. Given
a model (or hypothesis) H, considering x1 ! D as a set of data, and x2 ! ✓ as the parameter
vector of said hypothesis, we can rewrite the above equation as

P (✓|D,H) =
P (D|✓, H)P (✓|H)

P (D|H)
. (7)

This last relation is the so-called Bayes theorem and the most important tool in a Bayesian
inference procedure. In this result, P (✓|D,H) is called the posterior probability of the model.
P (D|✓, H) ⌘ L(D|✓, H) is called the likelihood and it will be our main focus in future sections.
P (✓|H) ⌘ ⇡(✓) is called the prior and expresses the knowledge about the model before acquiring
the data. This prior can be fixed depending on either previous experiment results or the theory
behind. P (D|H) ⌘ Z is the evidence of the model, usually referred as the Bayesian Evidence.
We notice that this evidence acts only as a normalizing factor, and is nothing more than the average
of the likelihood over the prior

P (D|H) =

Z
d
N
✓P (D|✓, H)P (✓|H), (8)

whereN is the dimensionality of the parameter space. This quantity is usually ignored, for practical
reasons, when testing the parameter space of a unique model. Nevertheless, the Bayesian evidence
plays an important role for selecting the model that best “describes” the data, known as model
selection. For convenience, the ratio of two evidences

K ⌘ P (D|H0)

P (D|H1)
=

R
d
N0✓0 P (D|✓0, H0)P (✓0|H0)R

dN1✓1 P (D|✓1, H1)P (✓1|H1)
=

Z0

Z1
, (9)

or equivalently the di↵erence in log evidence lnZ0 � lnZ1 if often termed as the Bayes factor
B0,1:

B0,1 = ln
Z0

Z1
, (10)

where ✓i is a parameter vector (with dimensionality Ni) for the hypothesis Hi and i = 0, 1. In
Eqn. (10), the quantity B0,1 = lnK provides an idea on how well model 0 may fit the data when
is compared to model 1. Je↵reys provided a suitable guideline scale on which we are able to make
qualitative conclusions (see Table II).

We can see that Bayes theorem has an enormous implication with respect to a statistical in-
ferential point of view. In a typical scenario we collect some data and hope to interpret it with a
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Abstract. Modifications to general relativity have been suggested as viable alternatives to
dark energy, introduced to explain the accelerated expansion of the Universe. We perform
a Bayesian analysis on modified gravity models using current cosmological observations.
We investigate the evolution both of the background universe and density perturbations.
While the cosmic expansion can be recast using an e↵ective equation-of-state we↵(a), the
evolution of linear perturbations is studied by the introduction of two parametric functions:
the ratio of the two metric potentials and the ratio of an e↵ective gravitational constant
to the Newtonian constant in the Poisson equation. With the use of large-scale structure,
cosmic microwave background and supernovae data we are be able to impose constraints
on any f(R) model, in particular we consider a variant of the Starobinsky model f(R) =

R� �Rc


1�

⇣
1 + ↵

R

Rc

⌘�n
�
parameterised in terms of �, ↵ and n. We find that, for n = 2,

current cosmological observations limit � = 15.6± 1.3, ↵ > 0.4, and the present value of the
field-amplitude 0 < F0 � 1 < 0.998, and its e↵ective equation-of-state today �1 < we↵,0 <

�0.998, at 95% C.L. In addition to parameter estimation, we compare the family of models
using the Bayesian model selection. We find that our f(R) model fits slightly better to current
data compared to the standard ⇤CDM model. The approach here performed can be extended
to any f(R) model in order to test possible deviations from the standard cosmological model.

Keywords: cosmological parameters – cosmology: observations – cosmology: theory – cosmic
background radiation – large-scale structure of Universe – modified gravity

we consider a particular f(R) model and look at its observables. By construction, we assume
f(R) is a well-behaved function, continuous in all its derivatives. It also has to satisfy some
further conditions in order to yield to a viable theory [6, 49, 58, 61]: f,R > 0 to avoid the
appearance of ghosts; f,RR > 0 to avoid tachyonic instability; f(R) ! R � 2⇤ to include
phenomenology of ⇤CDM as a limiting case and recover BBN and CMB constraints at early
times; |F0 � 1| ⌧ 1 to satisfy Solar and Galactic constraints. Thus, we focus the study on a
version of the Starobinsky model [58]:

f(R) = R� �Rc

"
1�

✓
1 + ↵

R

Rc

◆�n
#
, (2.15)

with positive constants �, ↵ and n, and R given by the solutions of equations (2.1) and
(2.2). In the region of high density (R � Rc), model (2.15) and the Hu & Sawicki model [31]
have a similar behaviour. Also model (2.15), with n = 1, closely mimics mCDTT [14] plus a
cosmological constant, and the inverse squared-curvature model for n = 2 [42]. Some other
f(R) models with an exponential form [8] may also be considered as viable alternatives.
Given the f(R) model (2.15), we are now able to compute its corresponding e↵ective equation-
of-state we↵(z) (2.6), which dominates the dynamics of the late-time expansion rate, and µ, �
(2.12) to describe the perturbations. Another function to bear in mind is the rescaling factor
F of the Newtonian constant, given by

F (R)� 1 = ��↵n

✓
1 + ↵

R

Rc

◆�n�1

. (2.16)

An important point to emphasise is the behaviour presented by |F�1|: as R � Rc, |F�1| be-
comes negligible, thus approaching the General Relativistic limit. Previous studies have cho-
sen F0 as a sampling parameter, although in our case, we consider it more natural to sample
over ↵, with F0 being a derived parameter. Also notice that at the extremum of the e↵ective
potential (2.8), the expansion history can approximate ⇤CDM by setting � ' 6⌦e↵,0/⌦m,0,
with ⌦m,0 the average matter density today and ⌦e↵,0 = 1� ⌦m,0.

Hence, for the model (2.15) the e↵ective equation-of-state we↵ (2.6) and the squared
ratio of the Compton wavelength to the physical wavelength of a mode A(a, k) (2.11) are now
parameterised in terms of ↵, n and the cosmological parameters ⌦m,0 and H0. These param-
eters together determine the epoch and scale on which modifications to GR may be relevant.
In general, having a dependence on space and time makes the analysis more challenging. To
understand the relationship of the new parameters with current observations let us consider
some particular cases. In Figure 2 we show some of the relevant functions which parameterise
the MG models using di↵erent ↵ values, for n = 1 (left panel) and n = 2 (right panel); in
both cases we have maintained fixed values of ⌦m,0 = 0.25 and H0 = 70. The top panels
show the behaviour of the normalised function f(R)/(R�2⇤). The middle panels display the
e↵ective equation-of-state for di↵erent values of ↵. We observe that at the background level,
modified gravity models with ↵ > 0.5 (n = 1) or ↵ > 0.2 (n = 2) present deviations by just
few percentages away from the cosmological constant. However, at the perturbations level
(bottom panel), even larger values of ↵ may be di↵erentiated by the epoch they cross the
regime line A = 1, and therefore µ be described by (2.14). A similar interpretation is used for
the n parameter: a transition taking place at later times corresponds to higher values of n.
One notices the existence of a pronounced degeneracy: for an increment in n, small values of

– 6 –
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1 Introduction

INTRO IS TO BE WRITTEN WHEN THE MAIN BODY IS COMPLETED.

2 Anisotropic Brans-Dicke extension of standard ⇤CDM model

We consider the BD action [1, 2] written in the Jordan frame in the following form:

SJBD =

Z
d4x

p
�g


'
2

8
R � !

✓
1

2
rµ'rµ

'+
1

2
M

2
'
2

◆�
+ SMatter, (2.1)

where ' is the Jordan (scalar) field and ! is the Brans-Dicke parameter, R is the Ricci scalar,
g is the determinant of the metric gµ⌫ , and SMatter is the matter action, which is independent
of ' so that the weak equivalence principle is satisfied. It is clear from the way of writing
the action that the term M

2 stands as the mass-squared of the Jordan field. We consider
M

2 = constant so that, as can also be seen from the action, it stands like a cosmological
constant as 2!M2 ⌘ ⇤ and thereby can drive accelerated expansion. Hence, switching
to massive BD from GR with a positive cosmological constant provides us opportunity to
construct ⇤CDM-type cosmologies, such that the mass of the Jordan field alone could play
the role of positive cosmological constant like in the standard ⇤CDM cosmology provided
that 2!M2 ⌘ ⇤ > 0, and the Jordan field ' varying slowly enough on the top of this could
account for small deviations from the standard ⇤CDM model, which in turn may lead to
an improved fit to the observational data w.r.t. the standard ⇤CDM model. In line with
that, we intend to study the BD extension of the standard ⇤CDM model as a correction,
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els based on Gauss-Bonnet gravity [33], and in Braneworld
models [34]. In this paper, we consider a new type of modi-
fied theory of gravity, namely, the Energy Momentum Squared
Gravity (EMSG) [35–41] generalizing the form of the matter
Lagrangian in a non-linear way and thereby leading, in general,
both u(z) and v(z) to be dynamical.

Almost all of modifications to GR in the literature, so far,
focus basically on generalizing gravitational Lagrangian away
from the Einstein-Hilbert term, into a more complicated de-
pendence on some f(R), or introducing terms dependent on
the curvature tensors. On the other hand, it is possible to con-
sider generalizing the form of the matter Lagrangian, Lm, in a
non-linear way, for instance, to some analytic function of a new
scalar T 2 = Tµ⌫Tµ⌫ formed from the energy-momentum ten-
sor (EMT), Tµ⌫ , of the matter stresses [35]. Such generaliza-
tions of GR include, without invoking new type of sources, new
type of contributions of the usual material stresses to the right-
hand side of the Einstein field equations, viz., v(z), and lead
in general to non-conservation of the material stresses, viz.,
u(z) (for other similar types of theories, see, e.g., [42, 43]).
A particular example of this type of generalizations is EMSG
with f(T 2) = ↵T 2, studied in various contexts in [36, 38–
40]. EMSG with f(T 2) = ↵T 2 in the presence of dust leads
to u(z) = 0 and v(z) = �↵⇢2m = �↵⇢2m,0(1 + z)6 > 0
for ↵ < 0 –exactly as in braneworld cosmological scenarios
[44, 45]–, which would obviously lead to negative DE in the
past. However, if the quadratic energy density term is large
enough to be e�ective today, then it would be the dominant
term just after a few red-shifts from now (z = 0) and hence
spoil the successful description of the early Universe. A gen-
eralisation of EMSG with f(T 2) = ↵T 2, Energy-Momentum
Powered Gravity (EMPG), takes the form f(T 2) = ↵(T 2)⌘ ,
as studied in [37, 38]. The f(T 2) = ↵(T 2)⌘ modification
becomes e�ective at high energy densities (e.g., in the early
Universe [38, 39]) for the cases ⌘ > 1/2, and at low energy
densities (e.g., in the dynamics of the late Universe) for the
case ⌘ < 1/2 [37]. For instance, ⌘ = 0 leads to mathemati-
cally exactly the same background dynamics with the ⇤CDM
model and ⌘ ⇠ 0 to a wCDM-type cosmological model, de-
spite the only physical source in the Universe is pressureless
matter [37]. EMPG model leads both u(z) and v(z) to be dy-
namical and could be investigated for obtaining e�ective DE
passes below zero, ⇢de < 0, at large redshifts. Nevertheless,
it is generally not possible to obtain explicit exact solution of
⇢m(z) and hence of ⇢de(z) rendering the EMPG practically
inconvenient for our purposes in the present study (see [37, 38]
for di�culties in obtaining exact explicit solutions for ⇢m(z)
in EMPG). The particular case ⌘ = 1/2, dubbed as Scale In-
dependent EMSG, is one of the exceptions like the case ⌘ = 1
(EMSG with f(T 2) = ↵T 2) that provides us with explicit
exact solution, e.g, of H(z) that is required for a detailed ob-
servational investigation. In this model, the new terms come
with the same power as the usual terms in GR, yet energy is
not conserved, and this leads to u(z) = (1 + z)3↵ � 1 and
v(z) = ⇢m,0(1 + z)3+3↵, which would provide us with the
desired features in case of ↵ < 0. This model is studied in
detail in [41] (though in somewhat di�erent context) and ↵ is
well constrained observationally to be so close to zero making

Scale Independent EMSG model irrelevant to the issues we
have been discussing so far.

In the present work we consider a new type of EMSG,
Energy-Momentum Log Gravity (EMLG), constructed by the
addition of f(Tµ⌫Tµ⌫) = ↵ ln(Tµ⌫Tµ⌫), where ↵ is a real
constant, to the Einstein-Hilbert action with ⇤. This choice is
particular that it includes new terms (viz., v(z)) of the pres-
sureless matter to the r.h.s. of the Einstein field equations
yielding constant e�ective inertial mass density, leads to non-
conservation of pressureless matter (viz., u(z)) and, more im-
portantly, leads to an explicit exact solution of the pressureless
matter energy density in redshift, so that we could carry out a
detailed theoretical investigation of the model analytically and
constrain against the observational data without applying some
simplifications. We look for viable cosmologies, in particular,
an extension of the standard ⇤CDM model. We find out that
the observational data do not rule out⇤CDM limit of our model
but slightly prefers u(z) > 0 and v(z) < 0, where u(z) > 0
(i.e.,the non-conservation of pressureless matter) coming with
right sign leads to an e�ective dynamical DE passing below
zero (screening of⇤) at high redshifts as desired for addressing
the tension relevant to Lyman-↵measurements within standard
⇤CDM model. We discuss also that EMLG model relaxes the
persistent tension that appears on the measurements of H0

within the standard ⇤CDM model.

II. ENERGY-MOMENTUM LOG GRAVITY

We begin with the action constructed by the addition of the
term f(Tµ⌫Tµ⌫) to the Einstein-Hilbert (EH) action with a
cosmological constant, ⇤, as follows

S =

Z 
1

2
(R � 2⇤) + f(Tµ⌫T

µ⌫) + Lm

�p
�g d4x, (1)

where  = 1 is Newton’s constant, R is the Ricci scalar, g is
the determinant of the metric gµ⌫ , and Lm is the Lagrangian
density corresponding to the matter source described by the
energy-momentum tensor Tµ⌫ . We reserve the cosmologi-
cal constant, ⇤, in the model since according to Lovelock’s
theorem it arises as a constant of nature1.

We take the variation of the action with respect to the inverse
metric gµ⌫ as

�S =

Z
d4x

p
�g


1

2
�R+

@f

@(Tµ⌫Tµ⌫)

�(T�✏T �✏)

�gµ⌫
�gµ⌫

�1

2
gµ⌫ (R � ⇤+ f(T�✏T

�✏)) �gµ⌫ +
1p
�g

�(
p

�gLm)

�gµ⌫

�
,

(2)

1 Lovelock’s theorem [46, 47] states that the only possible second-order Euler-
Lagrange expression obtainable in a four-dimensional space from a scalar
density of the form L = L(gµ⌫) is Eµ⌫ =

p
�g (�1Gµ⌫ + �2gµ⌫),

where �1 and �2 are constants, leading to Newton’s gravitational constant
G and cosmological constant⇤ in Einstein’s field equationsGµ⌫+⇤gµ⌫ =
Tµ⌫ (see [18, 48, 49] for further reading).

Energy-Momentum Log Gravity extension of ⇤CDM model and screening ⇤

Özgür Akarsu,1, ⇤ John D. Barrow,2, † Charles V. R. Board,2, ‡ N. Merve Uzun,3, § and J. Alberto Vazquez4, ¶

1Department of Physics, Istanbul Technical University, Maslak 34469 Istanbul, Turkey
2DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, U.K.

3Department of Physics, Bo�aziçi University, Bebek 34342 Istanbul, Turkey.
4Instituto de Ciencias Fsicas, Universidad Nacional Autonoma de Mexico,

Apdo. Postal 48-3, 62251 Cuernavaca, Morelos, Mexico
(Dated: March 11, 2019)

We study a new theory of modified gravity, Energy-Momentum Log Gravity (EMLG), constructed by the
addition of the term f(Tµ⌫T

µ⌫) = ↵ ln(Tµ⌫T
µ⌫), where ↵ is a real constant, to the Einstein-Hilbert action with

⇤. The choice of this modification is made as a specific way of including new terms in the right-hand side of
the Einstein field equations, resulting in constant e�ective inertial mass density and, more importantly, leading
to an explicit exact solution of the matter energy density in terms of redshift. We look for viable cosmologies,
in particular, an extension of the standard ⇤CDM model. EMLG provides us with an e�ective dynamical dark
energy passing below zero at high redshifts accommodating a mechanism for screening ⇤ at large redshifts,
as suggested by many for alleviating some tensions that arise between di�erent observational data sets within
the standard ⇤CDM model. We present a detailed theoretical investigation of the model and then constrain
the free parameters using the latest observational data. The data do not rule out ⇤CDM limit of our model
(↵0 = 0), prefer slightly negative values of the EMLG model parameter (↵0 = �0.032 ± 0.043), which leads
to the screening of ⇤. We discuss also that EMLG model relaxes the persistent tension that appears on the
measurements of H0 within the standard ⇤CDM model.

I. INTRODUCTION

The standard ⇤CDM model is the most successful cosmo-
logical model we have today at describing the dynamics as well
as the large-scale structure of the observable Universe –relying
on inflationary paradigm–, being simple and in good agree-
ment with the currently available observational data [1–3].
Nevertheless, it su�ers from severe theoretical issues relating
to the cosmological constant ⇤ [4–6] and, on observational
side, from tensions of various degrees of significance between
existing data sets [7–13]. The most prominent among many
may be the following two: The value of H0 measured from
the cosmic microwave background (CMB) data by the Planck
Collaboration [2] within the framework of ⇤CDM model is
3.4� lower than the model independent local value reported
by Riess et al. [14]. And, the Lyman-↵ forest measurement of
the baryon acoustic oscillations (BAO) by the Baryon Oscilla-
tion Spectroscopic Survey (BOSS) prefers a smaller value of
the pressureless matter density parameter than that preferred
by the CMB within ⇤CDM model [15]. Such tensions are
of great importance since detection of even small deviations
from ⇤CDM model usually implies profound modifications
to the fundamental theories underpinning the ⇤CDM model.
For instance, the BOSS collaboration reported in [7] a clear
detection of non-zero Dark Energy (DE) density consistent
with non-zero ⇤ for z < 1, but a preference for negative DE
density for z > 1.6 and argued that the Lyman-↵ data from
z ⇠ 2.3 can be accommodated by a non-monotonic evolution

⇤ akarsuo@itu.edu.tr
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of H(z) and thus of ⇢tot(z) within GR, which is di�cult to
achieve in any model with non-negative DE density. How-
ever, of course, DE as an actual physical source with negative
energy density would be physically ill, which then may be
implying that DE should be an e�ective source arising, for
instance, from a modified theory of gravity (See [16–22] for
reviews on DE and modified theories of gravity). In line
with that, it is argued in [23] that the BOSS Lyman-↵ mea-
surements may be explained in a modified gravity model that
alters the Friedmann equation, H(z), itself in a physically mo-
tivated way and that a tension relevant to these measurements
reported in the same study may be alleviated in models in
which ⇤ is dynamically screened, which, as well, implies an
e�ective DE passing below zero and concurrently exhibiting
a pole in its equation of state (EOS) at z ⇠ 2.4. The possible
modifications to the H(z) of the ⇤CDM model can be rep-
resented by 3H2(z) = ⇢m,0(1 + z)3[1 � u(z)] + ⇤ � v(z)
involving functions u(z) and v(z) that stand for two main
types of modifications. Interpreting all the terms other than
⇢m,0(1 + z)3 by alone as the constituents of DE, namely,
writing 3H2(z) = ⇢m,0(1 + z)3 + ⇢DE, would lead to ef-
fective DE as ⇢DE = ⇤ � ⇢m,0u(z)(1 + z)3 � v(z). Ac-
cordingly, u(z) > 0 and v(z) > 0 would tend ⇢DE to-
ward negative values and consequently ⇤ could be screened
when ⇢m,0u(z)(1 + z)3 + v(z) = ⇤ and ⇢DE < 0 when
⇢m,0u(z)(1+ z)3+ v(z) > ⇤. We note that u(z) > 0 implies
either non-conservation of the EMT of the pressureless mat-
ter or varying e�ective gravitational coupling strength (viz.,
Ge↵(z) < Ge↵(0) for z > 0), where the latter case occurs
in scalar-tensor gravity theories [24–26], higher dimensional
cosmological models with contracting internal space [27–30]
and etc. Cosmological models leading to v(z) > 0, on the
other hand, can be found in a wide range of models also, in-
cluding theories in which ⇤ relaxes from a large initial value
via an adjustment mechanism [31, 32], in cosmological mod-
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and, as usual, we define the EMT in terms of the matter La-
grangian Lm as follows

Tµ⌫ = � 2p
�g

�(
p

�gLm)

�gµ⌫
= gµ⌫Lm � 2

@Lm

@gµ⌫
. (3)

Accordingly, the modified Einstein field equations read

Gµ⌫ + ⇤gµ⌫ = Tµ⌫ + fgµ⌫ � 2
@f

@(Tµ⌫Tµ⌫)
✓µ⌫ , (4)

where Gµ⌫ = Rµ⌫ � 1
2Rgµ⌫ is the Einstein tensor and ✓µ⌫ is

a new tensor defined as

✓µ⌫ = T �✏
�T�✏

�gµ⌫
+ T�✏

�T �✏

�gµ⌫

= �2Lm

✓
Tµ⌫ � 1

2
gµ⌫T

◆
� T Tµ⌫

+ 2T �

µ
T⌫� � 4T �✏

@2Lm

@gµ⌫@g�✏
.

(5)

where T is the trace of EMT Tµ⌫ . We note that the EMT
given in (3) does not include the second variation of Lm, and
hence the last term of (5) vanishes. As the definition of the
matter Lagrangian that gives rise to the perfect-fluid EMT is
not unique, one could choose either Lm = p or Lm = �⇢,
which result in the same EMT. In the present study, we consider
Lm = p.

We proceed with a specific form of the model,

f(Tµ⌫T
µ⌫) = ↵ ln(Tµ⌫T

µ⌫), (6)

which comes with some particular features. In the cosmologi-
cal application of the model, this is the only functional choice
of f(Tµ⌫Tµ⌫) that would give rise to new contributions of a
perfect fluid on the right hand side of the Einstein field equa-
tions yielding constant e�ective inertial mass density (See
Section III A for details). Additionally, it has an explicit exact
solution, including the form of ⇢(z) which is important for an-
alytical investigations. This contrasts with many EMSG-type
models, in which this is usually not possible due to the non-
linear coupling of the matter sources to gravity. For instance,
in [37] cosmic acceleration in a dust only EMPG model was
investigated, where the exact solution of z(⇢m) was obtained,
but the corresponding explicit solution of ⇢m(z) could in gen-
eral only be obtained through an approximation procedure and
was found exactly only for some particular cases ([38, 41]).

Consequently, the action we proceed with reads

S =

Z 
1

2
(R � 2⇤) + ↵ ln(Tµ⌫T

µ⌫) + Lm

�p
�g d4x,

(7)
where↵ is a constant that determines the gravitational coupling
strength of the EMLG modification to the GR. Accordingly,
the modified Einstein field equations (4) for this action now
read

Gµ⌫ +⇤gµ⌫ = Tµ⌫ +↵gµ⌫ ln(T�✏T
�✏)�2↵

✓µ⌫
(T�✏T �✏)

. (8)

From (8), the covariant divergence of the EMT becomes

rµTµ⌫ = �↵gµ⌫rµ ln(T�✏T
�✏) + 2↵rµ

✓
✓µ⌫

T�✏T �✏

◆
. (9)

We note that, unless↵ = 0, the right-hand side of this equation
does not vanish in general, and thus the EMT is not conserved,
i.e. rµTµ⌫ = 0 is not satisfied.

III. COSMOLOGY IN EMLG

In this paper, we investigate the cosmological behaviour of
this gravitational model. Therefore we proceed by considering
the spatially maximally symmetric spacetime metric, given by
the Friedman-Lemaitre-Robertson-Walker metric,

ds2 = �dt2 + a2


dr2

1 � kr2
+ r2(d✓2 + sin2 ✓d�2)

�
, (10)

where the spatial curvature parameter k takes values in
{�1, 0, 1} corresponding to open, flat and closed 3-spaces
respectively, and the scale factor a = a(t) is a function of
cosmic time t only. For cosmological matter sources describ-
ing the physical component of the Universe, we consider the
perfect fluid form of the EMT given by

Tµ⌫ = (⇢+ p)uµu⌫ + pgµ⌫ , (11)

where ⇢ is the energy density and p is the thermodynamic
pressure satisfying the barotropic equation of state (EoS) as

p

⇢
= w = constant, (12)

and uµ is the four-velocity satisfying the conditions uµuµ =
�1, and r⌫uµuµ = 0.

Using (11) and (12), we calculate ✓µ⌫ defined in (5) and
the self-contraction of the EMT for the perfect fluid with
barotropic EoS (12) as follows

✓µ⌫ = �⇢2(3w + 1)(w + 1)uµu⌫ , (13)
Tµ⌫T

µ⌫ = ⇢2(3w2 + 1). (14)

Next, using (13) and (14) along with the metric (10) in the
modified Einstein field equations (8) we obtain the following
pair of linearly independent modified Friedmann equations,
for mono-fluid cosmology,

3H2 +
3k

a2
= ⇢+ ⇤+ ↵0⇢0 + ↵0⇢0

2

�
ln (⇢/⇢0) , (15)

�2Ḣ � 3H2 � k

a2
=w⇢ � ⇤

� ↵0⇢0
2

�
ln
hp

3w2 + 1 (⇢/⇢0)
i
.

(16)
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Autónoma de México, 62210 Cuernavaca, Morelos, México

2Departamento de F́ısica, Centro de Investigación y de Estudios Avanzados del IPN,
AP 14-740, Ciudad de México 07000, México
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The scalar fields models to describe dark energy have gained popularity on the cosmological
field. They can be found as a Dilaton (String theories), curvaton (f(R) models), etc.., (jav: review
of some models and observations) and as candidates to describe dark matter and to solve other
missing puzzles. Even though the fields are very nice candidates to describe the dark energy of
the universe and avoid the general problems attached to the cosmological constant, they may
faced some troubles. Single scalar field models, with canonical kinetic energy, are not able to cross
the phantom divide line w = �1. On the other hand, by using model independent techniques to
reconstruct the shape of the DE equation of state, several groups converge to similar shapes of
w(z). These form showed an oscillatory behaviours with a peak at z =? and a crossing at about
z =?.

In this paper we show the combination of two scalar fields, named quintessence and phantom,
provides a better fit to observations, and better AIC event though the extra parameters.
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In this paper we present the scalar field components as candidates to be the dark energy of
the universe. We start with Quintessence and Phantom fields and show that a more complex
model should bear in mind to satisfy current cosmological observations. Then present some
constraints for a combination of the two fields, named as Quintom cosmology.

I. INTRODUCTION

We have seen in recent papers, using a model independent techniques, the existence of a crossing
of the phanton divide line through the dark energy equation of state w(z) = �1. If this trend keeps
on going on the coming experiments, single scalar fields may face serious troubles an more complex
theories need to show up to the rescue. In this paper we present present and future (maybe DESI)
constraints on a combination of two scalar fields commonly named as Quintom. Not sure is this is
physically feasible but at least satisfy observations and has a better chi-square/bayesian evidence
(hopefully). Because the perturbations coming from dark energy models can be easily neglected,
here we assume only geometric quantities, (jav: is it safe to do this?, at least is easier.)

II. INTRODUCTION

The scalar fields models to describe dark energy have gained popularity on the cosmological
field. They can be found as a Dilaton (String theories), curvaton (f(R) models), etc.., (jav: review
of some models and observations) and as candidates to describe dark matter and to solve other
missing puzzles. Even though the fields are very nice candidates to describe the dark energy of
the universe and avoid the general problems attached to the cosmological constant, they may
faced some troubles. Single scalar field models, with canonical kinetic energy, are not able to cross
the phantom divide line w = �1. On the other hand, by using model independent techniques to
reconstruct the shape of the DE equation of state, several groups converge to similar shapes of
w(z). These form showed an oscillatory behaviours with a peak at z =? and a crossing at about
z =?.

In this paper we show the combination of two scalar fields, named quintessence and phantom,
provides a better fit to observations, and better AIC event though the extra parameters.

(jav: Explain what’s quintessence and phantom fields.)

III. SCALAR FIELDS AS DARK ENERGY

The Lagrange density assumed throughout this work is

£ =
p

�g (R � L� � L⇤
� � L�) , (1)

where L = 1
2@

��@��+ V is the scalar field Lagrangian endowed with the scalar field potential
V . In this way, the scalar field Lagrangian in terms of the real scalar field contains the quintessence

6

3.1. Bayes theorem, priors, posteriors and all that stu↵

When anyone is interested on the Bayesian framework, there are several concepts to understand
before presenting the results. In this section we quickly review these concepts and then we take
back the example about the coin toss given in the last section.

The Bayes theorem. The Bayes theorem is a direct consequence of the axioms of probability
shown in Eqs. (2). From Eqn. (2d), without loss of generality, it must be fulfilled that P (x1\x2) =
P (x2 \ x1). In such case the following relation applies

P (x2|x1) =
P (x1|x2)P (x2)

P (x1)
. (6)

As already mentioned, in the Bayesian framework data and model are part of the same space. Given
a model (or hypothesis) H, considering x1 ! D as a set of data, and x2 ! ✓ as the parameter
vector of said hypothesis, we can rewrite the above equation as

P (✓|D,H) =
P (D|✓, H)P (✓|H)

P (D|H)
. (7)

This last relation is the so-called Bayes theorem and the most important tool in a Bayesian
inference procedure. In this result, P (✓|D,H) is called the posterior probability of the model.
P (D|✓, H) ⌘ L(D|✓, H) is called the likelihood and it will be our main focus in future sections.
P (✓|H) ⌘ ⇡(✓) is called the prior and expresses the knowledge about the model before acquiring
the data. This prior can be fixed depending on either previous experiment results or the theory
behind. P (D|H) ⌘ Z is the evidence of the model, usually referred as the Bayesian Evidence.
We notice that this evidence acts only as a normalizing factor, and is nothing more than the average
of the likelihood over the prior

P (D|H) =

Z
d
N
✓P (D|✓, H)P (✓|H), (8)

whereN is the dimensionality of the parameter space. This quantity is usually ignored, for practical
reasons, when testing the parameter space of a unique model. Nevertheless, the Bayesian evidence
plays an important role for selecting the model that best “describes” the data, known as model
selection. For convenience, the ratio of two evidences

K ⌘ P (D|H0)

P (D|H1)
=

R
d
N0✓0 P (D|✓0, H0)P (✓0|H0)R

dN1✓1 P (D|✓1, H1)P (✓1|H1)
=

Z0

Z1
, (9)

or equivalently the di↵erence in log evidence lnZ0 � lnZ1 if often termed as the Bayes factor
B0,1:

B0,1 = ln
Z0

Z1
, (10)

where ✓i is a parameter vector (with dimensionality Ni) for the hypothesis Hi and i = 0, 1. In
Eqn. (10), the quantity B0,1 = lnK provides an idea on how well model 0 may fit the data when
is compared to model 1. Je↵reys provided a suitable guideline scale on which we are able to make
qualitative conclusions (see Table II).

We can see that Bayes theorem has an enormous implication with respect to a statistical in-
ferential point of view. In a typical scenario we collect some data and hope to interpret it with a
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• Alternative models

?

A non-exhaustive list of candidates beyond the standard cosmological model

4. STATISTICS IN COSMOLOGY

Table 4.1: Candidate parameters used to describe models beyond the concordance
�CDM. The highlighted models are studied in detail throughout this work.

�Rn Modifications to gravity

[or more complex theories]

ds̃2 Anisotropic universe

d�/dz, dG/dz Variations of fundamental constants

fNL Non-gaussianity

nrun Running of the scalar spectral index

kcut Large-scale cut-o⇤ in the spectrum

[or a more complex parameterisation of PR(k)]

r + 8nt Violation of the inflationary consistency relation

nt,run Running of the tensor spectral index

[or a more complex parameterisation of PT (k)]

Piso CDM isocurvature perturbations

⇥k Spatial curvature

⇥X Additional components

mdm Warm dark matter mass

[or scalar field dark matter]

m⇥i Neutrino mass for species ‘i’

wDE Dark energy equation-of-state

[or a more complex parameterisation of w(z)]

⇥� Polytropic equation of state

� Interacting fluids
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Observations 
Rapid advance in the development of powerful 


observational-instruments 


has led to the establishment of precision cosmology. 


3. STATISTICS IN COSMOLOGY

3.3.1 Parameter estimation

A Bayesian analysis provides a consistent approach to estimating the values

of the parameters � within a model M , which best describe the data D. The

method is based on the assignment of probabilities to the quantities of interest,

and then the manipulation of these probabilities given a series of rules, in which

Bayes’ theorem plays the main role [138]. Bayes’ theorem states that

P (�|D,M) =
P (D|�,M) P (�|M)

P (D|M)
. (3.14)

In this expression, the prior probability P(�|M) ⇥ � represents what we thought

the probability of � was before considering the data. This probability is modi-

fied through the likelihood P(D|�,M) ⇥ L. The posterior probability P(�|D,M)

represents the state of knowledge once we have taken the experimental data D

into account. The normalisation constant in the denominator is the marginal

likelihood or Bayesian evidence P(D|M) ⇥ Z, as is normally called in cosmology.

Since this quantity is independent of the parameters �, it is commonly ignored

in parameter estimation but it takes the central role for model comparison.

The central step for parameter estimation is to construct the likelihood func-

tion L for the measurements, and then the exploration of the region around its

maximum value Lmax. A simple chi-squared function is often used ⇥2 = �2 lnL.
when the distributions are Gaussian. However, some current problems in cos-

mology present obstacles for carrying out this procedure straightforwardly (some

of them discussed by Liddle [138]). Fortunately, models of our interest can be

easily tackled by numerical techniques developed on statistical fields, in partic-

ular the methods known as Markov Chain Monte Carlo (MCMC). There have

been developed di�erent codes employing MCMC techniques to carry out the

exploration of the cosmological parameter-space, for instance CosmoMC [134],

CosmoHammer [4], CMBEASY [63]. Although some of them use a simple

Metropolis-Hasting algorithm by default, nowadays improved algorithms have

been adapted to explore complex posterior probability distributions.
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Motivation

1 ZB = 10^21bytes=1trillion gigabytes.

2

prender la evolución del Universo. Gracias a proyectos
como estos, la cosmoloǵıa cuenta con un laboratorio ce-
leste que le proporciona datos para validar o descartar
sus modelos teóricos; esta nueva etapa en el estudio del
Universo se conoce como cosmoloǵıa de precisión.

Además, dentro de pocos años, el telescopio LSST6 fo-
tografiará toda la bóveda celeste con la cámara más gran-
de jamas construida (3.2 Gigapixeles), y se estima que
recopilará 15 Terabytes de datos por noche. Se vislum-
bra que la gestión y mineŕıa de datos del telescopio sean
la parte técnica más dif́ıcil del proyecto. Por otro lado, el
próximo radiotelescopio más grande del mundo, SKA7,
colectará el estimado de 14 exabytes por d́ıa, suficientes
datos en crudo como para llenar 15 millones de iPods de
64 GB.

Para transportar, almacenar y procesar la vasta infor-
mación de las entrañas del cosmos, la computación tendrá
un papel cada vez más crucial e indispensable. Por ejem-
plo, la computadora central de SKA contará con el poder
de, más o menos, 100 millones de unidades de procesa-
miento.

Como puede apreciarse, la cosmoloǵıa contemporánea,
con su torrente de datos sobre fenómenos cósmicos, cris-
taliza en una realidad la visión de Jim Gray y el cuarto
paradigma.

El análisis de los datos cosmológicos, requiere técnicas
estad́ısticas y computacionales para ajustar los paráme-
tros de los modelos teóricos. En este contexto, las redes
neuronales artificiales y otras técnicas del aprendizaje au-
tomático pueden aportar sus virtudes a la investigación
cosmológica.

La inferencia bayesiana

La inferencia estad́ıstica utilizada en cosmoloǵıa tiene
como fundamento el teorema de Bayes, una controverti-
da aplicación de la probabilidad condicional con más de
dos siglos de historia, que ha conquistado grandes logros.
Dada su naturaleza predictiva, se puede afirmar que el
teorema de Bayes ha sido pionero del aprendizaje au-
tomático. Incluso, en la actualidad, se sigue empleando
en muchas tareas computacionales, por ejemplo, para de-
tectar spam y hacer diagnósticos médicos [2].

Al lector interesado en la inferencia bayesiana, se le
recomienda la Ref. [2] para una introducción, la Ref. [3]
presenta un tratamiento más formal y la Ref. [4] es una
buena gúıa en el contexto cosmológico.

Para la prueba de modelos teóricos, el teorema de Ba-
yes adquiere el siguiente aspecto:

P (✓|D,H) =
P (D|✓, H)P (✓|H)

P (D|H)
,

6 www.lsst.org
7 www.itweb.co.za/content/mraYAyqowZnqJ38N

donde D representa el conjunto de datos observaciona-
les, H es la hipótesis o modelo bajo prueba y ✓ es el
conjunto de sus parámetros (un modelo lineal, por ejem-
plo, estaŕıa dado por la ecuación de una recta y tendŕıa
como parámetros libres la pendiente de la recta y su or-
denada al origen). La probabilidad Previa P (✓|H)8 re-
presenta nuestro conocimiento de los parámetros ✓ antes
de considerar los datos observables. Esta probabilidad se
modifica a través de la Verosimilitud P (D|✓, H) cuando
se involucra a los datos experimentales D. El objetivo
final de la inferencia Bayesiana es obtener la probabili-
dad Posterior P (✓|D,H), la cual representa el estado de
nuestro conocimiento de los parámetros del modelo una
vez que se ha tomado en cuenta la información aportada
por los datos. La constante de normalización P (D|H), o
Evidencia Bayesiana, es el promedio de la Verosimilitud
sobre la probabilidad Previa:

P (D|H) =

Z
d
N
✓P (D|✓, H)P (✓|H),

donde N es la dimensión del espacio de parámetros. De-
bido a que esta cantidad es una constante, puede omitirse
en el proceso de estimación de parámetros, pero es fun-
damental en la comparación de modelos.

La Verosimilitud se determina al suponer alguna dis-
tribución estad́ıstica particular para los datos D, la pro-
babilidad Previa se define a partir de conocimientos an-
teriores a las observaciones. Al calcular la distribución
Posterior, se pueden obtener predicciones basadas en el
modelo teórico considerado y en las observaciones dispo-
nibles.

La estimación de parámetros consiste en hallar el valor
más probable de éstos, a la luz de los datos. En cosmo-
loǵıa, los parámetros son las principales cantidades que
describen el Universo; como no existe una teoŕıa funda-
mental que prediga estas cantidades, sus valores deben es-
timarse estad́ısticamente. Esto se realiza mediante mues-
treos aleatorios en el espacio de parámetros e iteraciones
del teorema de Bayes sobre los valores muestreados; las
iteraciones cesan cuando los resultados alcanzan un es-
tado estacionario. Los valores de los parámetros en ese
momento conforman la mejor estimación y también se
pueden conocer las regiones de confianza. En la Figura 2
se muestran dos tipos de gráficas que muestran los resul-
tados de una inferencia bayesiana.

En cosmoloǵıa, como en otros campos cient́ıficos, la
inferencia bayesiana se implementa, en general, me-
diante métodos Monte Carlo v́ıa Cadenas de Markov
(MCMC, por sus siglas en inglés), con algoritmos como
el Metropolis-Hastings, el muestreo de Gibbs u otras pro-
puestas de muestreo.

8 Nótese que las involucradas en el teorema son probabilidades con-
dicionales: aśı, por ejemplo, P (✓|D,H) significa la probabilidad
de que ocurra ✓ dado que han ocurrido D y H
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of the parameters � within a model M , which best describe the data D. The

method is based on the assignment of probabilities to the quantities of interest,

and then the manipulation of these probabilities given a series of rules, in which

Bayes’ theorem plays the main role [138]. Bayes’ theorem states that

P (�|D,M) =
P (D|�,M) P (�|M)

P (D|M)
. (3.14)

In this expression, the prior probability P(�|M) ⇥ � represents what we thought

the probability of � was before considering the data. This probability is modi-

fied through the likelihood P(D|�,M) ⇥ L. The posterior probability P(�|D,M)

represents the state of knowledge once we have taken the experimental data D

into account. The normalisation constant in the denominator is the marginal

likelihood or Bayesian evidence P(D|M) ⇥ Z, as is normally called in cosmology.

Since this quantity is independent of the parameters �, it is commonly ignored

in parameter estimation but it takes the central role for model comparison.

The central step for parameter estimation is to construct the likelihood func-

tion L for the measurements, and then the exploration of the region around its

maximum value Lmax. A simple chi-squared function is often used ⇥2 = �2 lnL.
when the distributions are Gaussian. However, some current problems in cos-

mology present obstacles for carrying out this procedure straightforwardly (some

of them discussed by Liddle [138]). Fortunately, models of our interest can be

easily tackled by numerical techniques developed on statistical fields, in partic-

ular the methods known as Markov Chain Monte Carlo (MCMC). There have

been developed di�erent codes employing MCMC techniques to carry out the

exploration of the cosmological parameter-space, for instance CosmoMC [134],

CosmoHammer [4], CMBEASY [63]. Although some of them use a simple

Metropolis-Hasting algorithm by default, nowadays improved algorithms have

been adapted to explore complex posterior probability distributions.
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Table 1: Summary of current or planned BAO capable spectroscopic surveys. [Eisenstein,
2001][Hogg, 2005] [Drinkwater, 2010][Scrimgeour, 2012] [Eisenstein, 2011][Bolton, 2012]
[Hill, 2008] [Abdalla, 2012] [Schlegel, 2011] [Ellis, 2012] [de Jong, 2012] [Amiaux, 2012]

Instrument Telescope Nights/ year No. Galaxies sq deg Ops Start
SDSS I+II APO 2.5m dedicated 85K LRG 7600 2000
Wiggle-Z AAT 3.9m 60 239K 1000 2007
BOSS APO 2.5m dedicated 1.4M LRG+160K Ly-↵ 10000 2009
HETDEX HET 9.2m 60 1M 420 2014
eBOSS APO 2.5m 180 600K LRG + 70K Ly-↵ 7000 2014
DESI NOAO 4m dedicated +20M + 800k Ly-↵ 14000 2018
SUMIRE PFS Subaru 8.2m 20 4M 1400 2018
4MOST VISTA 4.1m shared facility 6-20M bright objects 15000 2019
EUCLID 1.2m space dedicated 52M 14700 2021

4 DESI Instrument Reference Design

The design of the DESI instrument is set by the key science project and operational re-
quirements, primary ones being:

• Survey operates from 2018 through 2022

• 14,000 – 18,000 sq. deg. BAO/RSD redshift survey

• Targets are LRGs, ELGs and QSOs including Ly-↵ forest

• 20 � 30 million targeted galaxies and QSOs for 0.5 < z < 3.5

• Spectroscopic resolution su�cient for redshift error < 0.001(1 + z)

Performing a wide, deep spectroscopic survey of a large volume of the Universe with a
density > 1500 galaxies/deg2 in a five-year survey requires a high throughput spectrograph
capable of observing thousands of spectra simultaneously. The DESI project is designed
to achieve these ambitious goals. The instrument components are 1) prime focus corrector
optics to achieve a wide field of view, 2) focal plane with robotic fiber positioners, 3) fiber
optics cable management system, 4) spectrographs, 5) a real-time control and data acquisi-
tion systems, and 6) a data processing pipeline that ingests raw data from the detectors and
produces calibrated spectra useful for cosmological investigation. A conceptual drawing of
the telescope and instrument is shown in Figure 2.

Here we briefly discuss critical instrument parameters and their connection to the key
science projects and operational constraints. The Mayall telescope has been identified as
the telescope most suitable for DESI, and DOE and NSF are currently discussing the terms
for its use. The Mayall is a 4-m telescope capable of supporting complex prime focus
instruments and attaining a field of view from 2.5 � 3.0 degrees diameter. Combining the
field of view, survey duration, galaxy spectra count, spectral resolution, and signal-to-noise
leads to a focal plane design that accommodates 4000 � 5000 repositionable optical fibers
on a 12 mm or smaller pitch. The entire focal plane needs to be reconfigured for the next
exposure in less than a minute with the fiber tips placed with an accuracy of 5µm r.m.s.
with robotic positioners. The repositioning time overlaps telescope slew and readout of

5
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4. STATISTICS IN COSMOLOGY

4.3 Bayesian Analysis

Over the last decade or so, the vast amount of information coming from a wide

range of sources, including CMB, SNe and LSS, has increased amazingly. We

would like to translate this experimental/observational information into con-

straints of our model(s), summarised by the estimation of the cosmological pa-

rameters involved. The concordance �CDM model, previously described, depends

on a set of cosmological parameters shown in Section 4.1. A primary goal concern-

ing observational cosmology is to determine best-fit parameter values for a given

model, as well as to decide which model is in best-agreement with observational

data. To do this we focus on the Bayesian inference. Some excellent reviews

of Bayesian statistics applied to cosmology are given by Heavens [90], Liddle

[138], Liddle et al. [142], Trotta [227], Verde [236, 237], von Toussaint [241], and

the textbook for data analysis Sivia and Skilling [215].

4.3.1 Parameter estimation

A Bayesian analysis provides a consistent approach to estimate the values

of the parameters � within a model M , which best describe the data D. The

method is based on the assignment of probabilities to the quantities of interest,

and then the manipulation of these probabilities given a series of rules, which

Bayes’ theorem plays the main role [138]. Bayes’ theorem states that

P (�|D, M) =
P (D|�, M) P (�|M)

P (D|M)
. (4.14)

In this expression, the prior probability P(�|M) � � represents what we thought

the probability of � was before considering the data. This probability is modi-

fied through the likelihood P(D|�,M) � L. The posterior probability P(�|D,M)

represents the state of knowledge once we have taken the experimental data D

into account. The normalisation constant in the denominator is the marginal

likelihood or Bayesian evidence P(D|M) � Z, as is normally called in cosmology.

Since this quantity is independent of the parameters �, it is commonly ignored

in parameter estimation but it takes the central role for model comparison.
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compute the expected distribution of the data. Examples of forward modelling distributions
include the common ones - binomial, Poisson, gaussian etc. or may be more complex, such
as the predictions for the CMB power spectrum as a function of cosmological parameters.
As a concrete example, consider a model which is a gaussian with mean µ and variance ⇥2.
The model has two parameters, � = (µ,⇥), and the probability of a single variable x given
the parameters is

p(x|�) = 1⇤
2�⇥

exp

�
� (x� µ)2

2⇥2

⇥
, (2)

but this is not what we actually want. However, we can relate this to p(�|x) using Bayes’
Theorem, here written for a more general data vector x:

p(�|x) = p(�,x)

p(x)
=

p(x|�)p(�)
p(x)

. (3)

• p(�|x) is the posterior probability for the parameters.

• p(x|�) is called the Likelihood and given its own symbol L(x;�).

• p(�) is called the prior, and expresses what we know about the parameters prior to
the experiment being done. This may be the result of previous experiments, or theory
(e.g. some parameters, such as the age of the Universe, may have to be positive). In the
absence of any previous information, the prior is often assumed to be a constant (a ‘flat
prior’).

• p(x) is the evidence.

For parameter estimation, the evidence simply acts to normalise the probabilities,

p(x) =

⇤
d� p(x|�) p(�) (4)

and the relative probabilities of the parameters do not depend on it, so it is often ignored
and not even calculated.

However, the evidence does play an important role in model selection, when more than
one theoretical model is being considered, and one wants to choose which model is most
likely, whatever the parameters are. We turn to this later.

Actually all the probabilities above should be conditional probabilities, given any prior
information I which we may have. For clarity, I have omitted these for now. I may be the
result of previous experiments, or may be a theoretical prior, in the absence of any data. In
such cases, it is common to adopt the principle of indi�erence and assume that all values
of the parameter(s) is (are) equally likely, and take p(�)=constant (perhaps within some
finite bounds, or if infinite bounds, set it to some arbitrary constant and work with an
unnormalised prior). This is referred to as a flat prior. Other choices can be justified.

Thus for flat priors, we have simply

p(�|x) ⇥ L(x;�). (5)

Although we may have the full probability distribution for the parameters, often one simply
uses the peak of the distribution as the estimate of the parameters. This is then a Maximum
Likelihood estimate. Note that if the priors are not flat, the peak in the posterior p(�|x) is
not necessarily the maximum likelihood estimate.

A ‘rule of thumb’ is that if the priors are assigned theoretically, and they influence the
result significantly, the data are usually not good enough. (If the priors come from previous
experiment, the situation is di�erent - we can be more certain that we really have some prior
knowledge in this case).

Finally, note that this method does not generally give a goodness-of-fit, only relative
probabilities. It is still common to compute ⇤2 at this point to check the fit is sensible.
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6

3.1. Bayes theorem, priors, posteriors and all that stu↵

When anyone is interested on the Bayesian framework, there are several concepts to understand
before presenting the results. In this section we quickly review these concepts and then we take
back the example about the coin toss given in the last section.

The Bayes theorem. The Bayes theorem is a direct consequence of the axioms of probability
shown in Eqs. (2). From Eqn. (2d), without loss of generality, it must be fulfilled that P (x1\x2) =
P (x2 \ x1). In such case the following relation applies

P (x2|x1) =
P (x1|x2)P (x2)

P (x1)
. (6)

As already mentioned, in the Bayesian framework data and model are part of the same space. Given
a model (or hypothesis) H, considering x1 ! D as a set of data, and x2 ! ✓ as the parameter
vector of said hypothesis, we can rewrite the above equation as

P (✓|D,H) =
P (D|✓, H)P (✓|H)

P (D|H)
. (7)

This last relation is the so-called Bayes theorem and the most important tool in a Bayesian
inference procedure. In this result, P (✓|D,H) is called the posterior probability of the model.
P (D|✓, H) ⌘ L(D|✓, H) is called the likelihood and it will be our main focus in future sections.
P (✓|H) ⌘ ⇡(✓) is called the prior and expresses the knowledge about the model before acquiring
the data. This prior can be fixed depending on either previous experiment results or the theory
behind. P (D|H) ⌘ Z is the evidence of the model, usually referred as the Bayesian Evidence.
We notice that this evidence acts only as a normalizing factor, and is nothing more than the average
of the likelihood over the prior

P (D|H) =

Z
d
N
✓P (D|✓, H)P (✓|H), (8)

whereN is the dimensionality of the parameter space. This quantity is usually ignored, for practical
reasons, when testing the parameter space of a unique model. Nevertheless, the Bayesian evidence
plays an important role for selecting the model that best “describes” the data, known as model
selection. For convenience, the ratio of two evidences

K ⌘ P (D|H0)

P (D|H1)
=

R
d
N0✓0 P (D|✓0, H0)P (✓0|H0)R

dN1✓1 P (D|✓1, H1)P (✓1|H1)
=

Z0

Z1
, (9)

or equivalently the di↵erence in log evidence lnZ0 � lnZ1 if often termed as the Bayes factor
B0,1:

B0,1 = ln
Z0

Z1
, (10)

where ✓i is a parameter vector (with dimensionality Ni) for the hypothesis Hi and i = 0, 1. In
Eqn. (10), the quantity B0,1 = lnK provides an idea on how well model 0 may fit the data when
is compared to model 1. Je↵reys provided a suitable guideline scale on which we are able to make
qualitative conclusions (see Table II).

We can see that Bayes theorem has an enormous implication with respect to a statistical in-
ferential point of view. In a typical scenario we collect some data and hope to interpret it with a

3. STATISTICS IN COSMOLOGY

3.3.1 Parameter estimation

A Bayesian analysis provides a consistent approach to estimating the values

of the parameters � within a model M , which best describe the data D. The

method is based on the assignment of probabilities to the quantities of interest,

and then the manipulation of these probabilities given a series of rules, in which

Bayes’ theorem plays the main role [137]. Bayes’ theorem states that

P (�|D, M) =
P (D|�, M) P (�|M)

P (D|M)
. (3.14)

In this expression, the prior probability P(�|M) ⇥ � represents what we thought

the probability of � was before considering the data. This probability is modi-

fied through the likelihood P(D|�,M) ⇥ L. The posterior probability P(�|D,M)

represents the state of knowledge once we have taken the experimental data D

into account. The normalisation constant in the denominator is the marginal

likelihood or Bayesian evidence P(D|M) ⇥ Z, as is normally called in cosmology.

Since this quantity is independent of the parameters �, it is commonly ignored

in parameter estimation but it takes the central role for model comparison.

The central step for parameter estimation is to construct the likelihood func-

tion L for the measurements, and then the exploration of the region around its

maximum value Lmax. A simple chi-squared function is often used ⇥2 = �2 lnL.

when the distributions are Gaussian. However, some current problems in cos-

mology present obstacles for carrying out this procedure straightforwardly (some

of them discussed by Liddle [137]). Fortunately, models of our interest can be

easily tackled by numerical techniques developed on statistical fields, in partic-

ular the methods known as Markov Chain Monte Carlo (MCMC). There have

been developed di�erent codes employing MCMC techniques to carry out the

exploration of the cosmological parameter-space, for instance CosmoMC [133],

CosmoHammer [4], CMBEASY [62]. Although some of them use a simple

Metropolis-Hasting algorithm by default, nowadays improved algorithms have

been adapted to explore complex posterior probability distributions.
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is called the Hessian matrix and it controls whether the estimates of ✓i and ✓j are correlated. If
it is diagonal, these estimates are uncorrelated.

The above expression for the likelihood is a good approximation as long as our posterior dis-
tribution possesses a single-peak. It is worth mentioning that, if the data errors are normally
distributed, then the likelihood for the data will be a Gaussian function as well. In fact, this is
always true if the model is linearly dependent on the parameters. On the other hand, if the data
is not normally distributed we can resort to the central limit theorem. In this way, the central
limit theorem tell us that the resulting distribution will be best approximated by a multi-variate
Gaussian distribution [6].

3.4. Letting aside the priors

In this section we present an argument for letting aside the prior in the parameter estimation.
For this, we follow the example given in [5]. In this example there are two people, A and B, that are
interested in the measurement of a given physical quantity ✓. A and B have di↵erent prior beliefs
regarding the possible value of ✓. This discrepancy could be given by the experience, such as the
possibility that A and B have made the same measurement at di↵erent times. Let us denote their
priors by P (✓|Ii), (i = A,B), and assume they are described by two Gaussian distributions with
mean µi and variance ⌃2

i
. Now, A and B make a measurement of ✓ together using an apparatus

subject to a Gaussian noise with known variance �. They obtain the value ✓0 = m1. Therefore
they can write their likelihoods for ✓ as

L(D|✓, HI) = L0 exp


�1

2

(✓ � m1)2

�2

�
. (29)

By using the Bayes formula, the posterior of the model A (and B) becomes

P (✓|m1) =
L(m1|✓Ii)P (✓|Ii)

P (m1|Ii)
, (30)

where we have skipped writing explicitly the hypothesisH and used the notation given in Eqn. (21).
Then, the posterior of A and B are (again) Gaussian with mean

µ̂i =
m1 + (�/⌃i)2µi

1 + (�/⌃i)2
, (31)

and variance

⌧
2
i =

�
2

1 + (�/⌃i)2
, (i = A,B). (32)

Thus, if the likelihood is more informative than the prior i.e. (�/⌃i) ⌧ 1 the posterior mean of A
(and B) will converge towards the measured value, m1. As more data are obtained one can simply
replace the value of m1 in the above equation by the mean hmi and �

2 by �
2
/N . Then, we can

see that the initial prior µi of A and B will progressively be overridden by the data. This process
is illustrated in Figure 3 where the green (red) curve corresponds to the probability distribution
of ✓ for person A (B) and the blue curve corresponds to their likelihood.
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FIG. 3: Converging views in Bayesian inference (taken from [5]). A and B have di↵erent priors P (✓|Ii) for a value
✓ (panel (a)). Then, they observe one datum with an apparatus subject to a Gaussian noise and they obtained a

likelihood L(✓;HI) (panel (b)), after which their posteriors P (✓|m1) are obtained (panel (c)). Then, after
observing 100 data, it can be seen how both posteriors are practically indistinguishable (panel (d)).

3.5. Chi-square and goodness of fit

We mentioned the main aim of parameter estimation is to maximize the likelihood in order to
obtain the most probable set of model parameters, given the data. If we consider the Gaussian
approximation given in Eqn. (27) we can see the likelihood will be maximum if the quantity

�
2 ⌘ (✓i � ✓0i)Hij(✓j � ✓0j), (33)

is minimum. The quantity �
2 is usually called chi-square and is related to the Gaussian likelihood

via L = L0e
��

2
/2. Then, we can say that maximizing the Gaussian likelihood is equivalent to

minimizing the chi-square. However, as we mentioned before, there are some circumstances where
the likelihood cannot be described by a Gaussian distribution, in these cases the chi-square and
the likelihood are no longer equivalent.

The probability distribution for di↵erent values of �2 around its minimum, is given by the �2 dis-
tribution for v = n�M degrees of freedom, where n is the number of independent data points and
M the number of parameters. Hence, we can calculate the probability that an observed �

2 exceeds
by chance a value �̂ for the correct model. This probability is given by Q(v, �̂) = 1 � �(v/2, �̂/2)
[8], where � is the incomplete Gamma function. Then, the probability that the observed �

2 (even
the correct model) is less than a given value �̂

2 is 1 � Q. This statement is strictly true if the
errors are Gaussian and the model is a linear function of the likelihood, i.e., for Gaussian likelihoods.

If we evaluate the quantity Q for the best-fit values (minimum chi-square) we can have a measure
of the goodness of fit. If Q is small (small probability) we can interpret it as:

• The model is wrong and can be rejected.

• The errors are underestimated.

• The error measurements are not normally distributed.

On the other hand, if Q is too large there are some reasons to believe that:

• Errors have been overestimated.

• Data are correlated or non-independent.

• The distribution is non-Gaussian.
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3. STATISTICS IN COSMOLOGY

3.3.1 Parameter estimation

A Bayesian analysis provides a consistent approach to estimating the values

of the parameters � within a model M , which best describe the data D. The

method is based on the assignment of probabilities to the quantities of interest,

and then the manipulation of these probabilities given a series of rules, in which

Bayes’ theorem plays the main role [138]. Bayes’ theorem states that

P (�|D,M) =
P (D|�,M) P (�|M)

P (D|M)
. (3.14)

In this expression, the prior probability P(�|M) ⇥ � represents what we thought

the probability of � was before considering the data. This probability is modi-

fied through the likelihood P(D|�,M) ⇥ L. The posterior probability P(�|D,M)

represents the state of knowledge once we have taken the experimental data D

into account. The normalisation constant in the denominator is the marginal

likelihood or Bayesian evidence P(D|M) ⇥ Z, as is normally called in cosmology.

Since this quantity is independent of the parameters �, it is commonly ignored

in parameter estimation but it takes the central role for model comparison.

The central step for parameter estimation is to construct the likelihood func-

tion L for the measurements, and then the exploration of the region around its

maximum value Lmax. A simple chi-squared function is often used ⇥2 = �2 lnL.
when the distributions are Gaussian. However, some current problems in cos-

mology present obstacles for carrying out this procedure straightforwardly (some

of them discussed by Liddle [138]). Fortunately, models of our interest can be

easily tackled by numerical techniques developed on statistical fields, in partic-

ular the methods known as Markov Chain Monte Carlo (MCMC). There have

been developed di�erent codes employing MCMC techniques to carry out the

exploration of the cosmological parameter-space, for instance CosmoMC [134],

CosmoHammer [4], CMBEASY [63]. Although some of them use a simple

Metropolis-Hasting algorithm by default, nowadays improved algorithms have

been adapted to explore complex posterior probability distributions.
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If the data are Gaussianly distributed the likelihood is given by a 
multi-variate Gaussian:

10 Licia Verde

given the data. However having ignored P(D) and the prior this approach cannot
give in general a goodness of fit and thus cannot give an absolute probability for a

given model. However it can give relative probabilities. If the data are Gaussianly

distributed the likelihood is given by a multi-variate Gaussian:

L =
1

(2π)n/2|detC|1/2
exp

[

−
1

2
∑
i j

(D− y)iC
−1
i j (D− y) j

]

(9)

whereCi j = 〈(Di− yi)(Dj− y j)〉 is the covariance matrix.
It should be clear from this that the relation between χ2 and likelihood is that, for

Gaussian distributions, L ∝ exp[−1/2χ2] and minimizing the χ2 is equivalent at
minimizing the likelihood. In this case likelihood analysis and χ2 coincide and by
the end of this section, it will this be no surprise that the Gamma function appearing

in the χ2 distribution is closely related to the Gaussian integrals.
The subtle step is that now, in Bayesian statistics, confidence regions are regions

R in model space such that
∫
RP(θ |D)dθ = p where p is the confidence level we

request (e.g., 68.3%, 95.4% etc.). Note that by integrating the posterior over the

model parameters, the confidence region depends on the prior information: as seen

in §3.1 different priors give different posteriors and thus different regions R.
It is still possible to report results independently of the prior by using the Like-

lihood ratio. The likelihood at a particular point in parameter space is compared

with that at the best fit value,Lmax where likelihood id maximized. Thus a model is

acceptable if the likelihood ratio

Λ = −2ln
[
L (θ )

Lmax

]
(10)

is above a given threshold. The connection to the χ2 for Gaussian distribution should
be clear. In general, the threshold can be calibrated by calculating the entire distri-

bution of the likelihood ratio in the case that a particular model is the true model.

Frequently this is chosen to be the best ft model.

There is a subtlety to point out here. In cosmology the data may be Gaussainly

distributed and still the χ2 and likelihood ratio analysis may give different results.
This happens because in identifying likelihood and chisquare we have neglected the

term [(2π)n/2|detC|1/2]−1. If the covariance does not depend on the model or model
parameters, this is just a normalization factor which drops out in the likelihood ratio.

However in cosmology often the covariance depends on the model: this happens for

example when errors are dominated by cosmic variance, like in the case of the CMB

temperature fluctuations on the largest scales, or on the galaxies power spectrum on

the largest scales. In this case the cosmology dependence of the covariance cannot

be neglected, but one can always define a pseudo-chisquare as −2lnL and work

with this quantity.

Let us stress again that the likelihood is linked to the posterior through the prior:

the identification of the likelihood with the posterior is prior dependent (as we will

see in an example below). In the absence of any data it is common to assume a flat
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been developed di�erent codes employing MCMC techniques to carry out the

exploration of the cosmological parameter-space, for instance CosmoMC [134],

CosmoHammer [4], CMBEASY [63]. Although some of them use a simple

Metropolis-Hasting algorithm by default, nowadays improved algorithms have

been adapted to explore complex posterior probability distributions.
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ensures the correct normalization, so that the multidimensional integral of the posterior
pdf with respect to all the parameters {Xj} is equal to unity.
It will come as no surprise that the maximum of the multivariate Gaussian is de-

fined by the vectorXo; the condition for finding its components, in eqn (3.29), can be
written compactly as:∇L(Xo)=0. By comparison with the standard one-dimensional
Gaussian of eqn (2.14), we see that ∇∇L is analogous to −1/σ2 ; this suggests that
the spread (or ‘width’) of the posterior should be related to the inverse of the second-
derivative matrix. Indeed, as shown in Appendix A, the covariance matrix σ2 is given
by minus the inverse of∇∇L (evaluated atXo):

[

σ2
]

ij
=

〈

(

Xi−Xoi

)(

Xj−Xoj

)

〉

= −
[

(

∇∇L
)−1

]

ij
, (3.32)

and is a generalization of eqns (3.26) and (3.28). The square root of the diagonal el-
ements (i = j) corresponds to the (marginal) error-bars for the associated parameters;
the off-diagonal components (i "= j) tell us about the correlations between the inferred
values ofXi andXj .
Before concluding our discussion of the quadratic approximation, it is worth empha-

sizing the fact that the inverse of the diagonal elements of a matrix are not, in general,
equal to the diagonal elements of its inverse. Stated in this direct way, few of us would
expect to make the mistake. We would be pursuing this folly inadvertently, however, if
we were foolishly tempted to estimate the reliability of one parameter in a multivariate
problem by holding all the others fixed at their optimal values. The situation is illus-
trated schematically in Fig. 3.8 and shows that the estimate of the error-bars can be
misleadingly small if we try to avoid the marginalization procedure.

3.2.2 Asymmetric and multimodal posterior pdfs
The above analysis, leading to the approximation of the posterior pdf by a multivariate
Gaussian, relies on the validity of the quadratic expansion of eqn (3.30). The elliptical

mated by a multi-variate Gaussian:

L =
1

(2π)n/2|detC|1/2
exp



−1

2

∑

ij

(D − y)iC
−1
ij (D − y)j



 (18)

where Cij = 〈(Di − yi)(Dj − yj)〉 is the covariance matrix.

—————————————————————————————

Exercise: when are likelihood analyses and χ2 analyses the same?

—————————————————————————————–

1. Confidence levels for likelihood

For Bayesian statistics, confidence regions are found as regions R in model space such

that
∫
R P(#α|D)d#α is, say, 0.68 for 68% confidence level and 0.95 for 95% confidence. Note

that this encloses the prior information. To report results independently of the prior the

likelihood ratio is used. In this case compare the likelihood at a particular point in model

space L(#α) with the value of the maximum likelihood Lmax. Then a model is said acceptable

if

− 2 ln

[
L(#α)

Lmax

]

≤ threshold (19)

Then the threshold should be calibrated by calculating the distribution of the likelihood

ratio in the case where a particular model is the true model. There are some cases however

when the value of the threshold is the corresponding confidence limit for a χ2 with m degrees

of freedom, for m the number of parameters.

—————————————————————————————–

Exercise: in what cases?3

———————————————————————————————

C. Marginalization, combining different experiments

Of all the model parameters αi some of them may be uninteresting. Typical examples

of nuisance parameters are calibration factors, galaxy bias parameter etc, but also it may

3 Solution: The data must have Gaussian errors, the model must depend linearly on the parameters, the

gradients of the model with respect to the parameters are not degenerate and the parameters do not affect

the covariance.
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Y −Yo will tend to be positive when X−Xo is positive; if the same is true for under-
estimates, so that Y −Yo is usually negative when X−Xo is as well, the expectation
value of the product of the deviations will be positive: the covariancewill then be greater
than zero. If there is an anti-correlation, so that an over-estimate of one is accompanied
by an under-estimation of the other, then the covariance will be negative. When our
estimate of one parameter has little, or no, influence on the inferred value of the other,
then the magnitude of the covariance will be negligible in comparison to the variance
terms; in other words, |σXY

2 |"
√

σX
2 σY

2 .
When the double integral of eqn (3.26) is evaluated within the quadratic approxima-

tion of eqns (3.17)–(3.19), it yields the result

σXY
2 =

C

AB−C2
. (3.27)

In conjunction with eqns (3.21) and (3.22), therefore, we see that both the variance
and covariance terms are given by (minus) the elements of the inverse of the second-
derivative matrix of eqn (3.20):

(

σX
2 σXY

2

σXY
2 σY

2

)

=
1

AB−C2

(

−B C

C −A

)

= −
(

A C

C B

)−1

. (3.28)

This table of ‘error-bar products’ is called the covariance matrix. When C = 0, σXY
2

also equals zero and means that the inferred values of the parameters are uncorrelated.
In that case, the principal directions of the corresponding posterior pdf will be parallel
to the coordinates axes; this situation is illustrated in Fig. 3.7(a). As the magnitude of
C increases, relative to A and B, the posterior pdf becomes more and more skew and
elongated; this reflects the growing strength of the correlation between our estimates

Fig. 3.7 A schematic illustration of covariance and correlation. (a) The contours of a posterior
pdf with zero covariance, where the inferred values ofX and Y are uncorrelated. (b) The corre-
sponding plot when the covariance is large and negative; Y + mX = constant along the dotted
line (wherem>0), emphasizing that only this sum of the two parameters can be inferred reliably.
(c) The case of positive correlation, where we learn most about the difference Y − mX; this is
constant along the dotted line.
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for the associated parameters.
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ensures the correct normalization, so that the multidimensional integral of the posterior
pdf with respect to all the parameters {Xj} is equal to unity.
It will come as no surprise that the maximum of the multivariate Gaussian is de-

fined by the vectorXo; the condition for finding its components, in eqn (3.29), can be
written compactly as:∇L(Xo)=0. By comparison with the standard one-dimensional
Gaussian of eqn (2.14), we see that ∇∇L is analogous to −1/σ2 ; this suggests that
the spread (or ‘width’) of the posterior should be related to the inverse of the second-
derivative matrix. Indeed, as shown in Appendix A, the covariance matrix σ2 is given
by minus the inverse of∇∇L (evaluated atXo):

[

σ2
]

ij
=

〈

(

Xi−Xoi

)(

Xj−Xoj

)

〉

= −
[

(

∇∇L
)−1

]

ij
, (3.32)

and is a generalization of eqns (3.26) and (3.28). The square root of the diagonal el-
ements (i = j) corresponds to the (marginal) error-bars for the associated parameters;
the off-diagonal components (i "= j) tell us about the correlations between the inferred
values ofXi andXj .
Before concluding our discussion of the quadratic approximation, it is worth empha-

sizing the fact that the inverse of the diagonal elements of a matrix are not, in general,
equal to the diagonal elements of its inverse. Stated in this direct way, few of us would
expect to make the mistake. We would be pursuing this folly inadvertently, however, if
we were foolishly tempted to estimate the reliability of one parameter in a multivariate
problem by holding all the others fixed at their optimal values. The situation is illus-
trated schematically in Fig. 3.8 and shows that the estimate of the error-bars can be
misleadingly small if we try to avoid the marginalization procedure.

3.2.2 Asymmetric and multimodal posterior pdfs
The above analysis, leading to the approximation of the posterior pdf by a multivariate
Gaussian, relies on the validity of the quadratic expansion of eqn (3.30). The elliptical

Is given by minus the inverse of                    evaluated at y
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trated schematically in Fig. 3.8 and shows that the estimate of the error-bars can be
misleadingly small if we try to avoid the marginalization procedure.
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If you plot such error ellipses, you must say what contours you plot. If you say you
plot 1⇤ and 2⇤ contours, I don’t know whether this is for the joint distribution (i.e. 68%
of the probability lies within the inner contour), or whether 68% of the probability of a
single parameter lies within the bounds projected onto a parameter axis. The latter is a 1⇤,
single-parameter error contour (and corresponds to �⌅2 = 1), whereas the former is a 1⇤
contour for the joint distribution, and corresponds to �⌅2 = 2.3.

Note that �⌅2 = ⌅2 � ⌅2(minimum), where

⌅2 =
⇤

i

(xi � µi)2

⇤2
i

(18)

for data xi with µi = ⇤xi⌅ and variance ⇤2
i . If the data are correlated, this generalises to

⌅2 =
⇤

ij

(xi � µi)C
�1
ij (xj � µj) (19)

where Cij = ⇤(xi � µi)(xj � µj)⌅.

For other dimensions, see Table 1, or read...

The Numerical Recipes bible, chapter 15.6 [19]

Read it. Then, when you need to plot some error contours, read it again.

Table 1. �⇤2 for joint parameter estimation for 1, 2 and 3 parameters.

⇥ p M=1 M=2 M=3
1⇥ 68.3% 1.00 2.30 3.53
2⇥ 95.4% 4.00 6.17 8.02
3⇥ 99.73% 9.00 11.8 14.2

Note that some of the results I give assume the likelihood (or posterior) is well-
approximated by a multivariate gaussian. This may not be so. If your posterior is a single
peak, but is not well-approximated by a multivariate gaussian, label your contours with the
enclosed probability. If the likelihood is complicated (e.g. multimodal), then you may have
to plot it and leave it at that - reducing it to a maximum likelihood point and error matrix
is not very helpful. Not that in this case, the mean of the posterior may be unhelpful - it
may lie in a region of parameter space with a very small posterior.

A multivariate gaussian likelihood is a common assumption, so it is useful to compute
marginal errors for this rather general situation. The simple result is that the marginal error
on parameter ⇥� is

⇤� =
⌅

(H�1)��. (20)

Note that we invert the Hessian matrix, and then take the square root of the diagonal
components. Let us prove this important result. In practice it is often used to estimate
errors for a future experiment, where we deal with the expectation value of the Hessian,
called the Fisher Matrix:

F�⇥ ⇥ ⇤H�⇥⌅ =
�
� ⇧2 lnL

⇧��⇧�⇥

⇥
. (21)

We will have much more to say about Fisher matrices later. The expected error on ⇥� is
thus

⇤� =
⌅

(F�1)��. (22)

It is always at least as large as the expected conditional error. Note: this result applies for
gaussian-shaped likelihoods, and is useful for experimental design. For real data, you would
do the marginalisation a di�erent way - see later.

To prove this, we will use characteristic functions.
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ensures the correct normalization, so that the multidimensional integral of the posterior
pdf with respect to all the parameters {Xj} is equal to unity.
It will come as no surprise that the maximum of the multivariate Gaussian is de-

fined by the vectorXo; the condition for finding its components, in eqn (3.29), can be
written compactly as:∇L(Xo)=0. By comparison with the standard one-dimensional
Gaussian of eqn (2.14), we see that ∇∇L is analogous to −1/σ2 ; this suggests that
the spread (or ‘width’) of the posterior should be related to the inverse of the second-
derivative matrix. Indeed, as shown in Appendix A, the covariance matrix σ2 is given
by minus the inverse of∇∇L (evaluated atXo):

[

σ2
]

ij
=

〈

(

Xi−Xoi

)(

Xj−Xoj

)

〉

= −
[

(

∇∇L
)−1

]

ij
, (3.32)

and is a generalization of eqns (3.26) and (3.28). The square root of the diagonal el-
ements (i = j) corresponds to the (marginal) error-bars for the associated parameters;
the off-diagonal components (i "= j) tell us about the correlations between the inferred
values ofXi andXj .
Before concluding our discussion of the quadratic approximation, it is worth empha-

sizing the fact that the inverse of the diagonal elements of a matrix are not, in general,
equal to the diagonal elements of its inverse. Stated in this direct way, few of us would
expect to make the mistake. We would be pursuing this folly inadvertently, however, if
we were foolishly tempted to estimate the reliability of one parameter in a multivariate
problem by holding all the others fixed at their optimal values. The situation is illus-
trated schematically in Fig. 3.8 and shows that the estimate of the error-bars can be
misleadingly small if we try to avoid the marginalization procedure.

3.2.2 Asymmetric and multimodal posterior pdfs
The above analysis, leading to the approximation of the posterior pdf by a multivariate
Gaussian, relies on the validity of the quadratic expansion of eqn (3.30). The elliptical
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peak, but is not well-approximated by a multivariate gaussian, label your contours with the
enclosed probability. If the likelihood is complicated (e.g. multimodal), then you may have
to plot it and leave it at that - reducing it to a maximum likelihood point and error matrix
is not very helpful. Not that in this case, the mean of the posterior may be unhelpful - it
may lie in a region of parameter space with a very small posterior.

A multivariate gaussian likelihood is a common assumption, so it is useful to compute
marginal errors for this rather general situation. The simple result is that the marginal error
on parameter ⇥� is

⇤� =
⌅

(H�1)��. (20)

Note that we invert the Hessian matrix, and then take the square root of the diagonal
components. Let us prove this important result. In practice it is often used to estimate
errors for a future experiment, where we deal with the expectation value of the Hessian,
called the Fisher Matrix:

F�⇥ ⇥ ⇤H�⇥⌅ =
�
� ⇧2 lnL

⇧��⇧�⇥

⇥
. (21)

We will have much more to say about Fisher matrices later. The expected error on ⇥� is
thus

⇤� =
⌅

(F�1)��. (22)

It is always at least as large as the expected conditional error. Note: this result applies for
gaussian-shaped likelihoods, and is useful for experimental design. For real data, you would
do the marginalisation a di�erent way - see later.

To prove this, we will use characteristic functions.

The covariance matrix 
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3. STATISTICS IN COSMOLOGY

3.3.1 Parameter estimation

A Bayesian analysis provides a consistent approach to estimating the values

of the parameters � within a model M , which best describe the data D. The

method is based on the assignment of probabilities to the quantities of interest,

and then the manipulation of these probabilities given a series of rules, in which

Bayes’ theorem plays the main role [138]. Bayes’ theorem states that

P (�|D,M) =
P (D|�,M) P (�|M)

P (D|M)
. (3.14)

In this expression, the prior probability P(�|M) ⇥ � represents what we thought

the probability of � was before considering the data. This probability is modi-

fied through the likelihood P(D|�,M) ⇥ L. The posterior probability P(�|D,M)

represents the state of knowledge once we have taken the experimental data D

into account. The normalisation constant in the denominator is the marginal

likelihood or Bayesian evidence P(D|M) ⇥ Z, as is normally called in cosmology.

Since this quantity is independent of the parameters �, it is commonly ignored

in parameter estimation but it takes the central role for model comparison.

The central step for parameter estimation is to construct the likelihood func-

tion L for the measurements, and then the exploration of the region around its

maximum value Lmax. A simple chi-squared function is often used ⇥2 = �2 lnL.
when the distributions are Gaussian. However, some current problems in cos-

mology present obstacles for carrying out this procedure straightforwardly (some

of them discussed by Liddle [138]). Fortunately, models of our interest can be

easily tackled by numerical techniques developed on statistical fields, in partic-

ular the methods known as Markov Chain Monte Carlo (MCMC). There have

been developed di�erent codes employing MCMC techniques to carry out the

exploration of the cosmological parameter-space, for instance CosmoMC [134],

CosmoHammer [4], CMBEASY [63]. Although some of them use a simple

Metropolis-Hasting algorithm by default, nowadays improved algorithms have

been adapted to explore complex posterior probability distributions.
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given the data. However having ignored P(D) and the prior this approach cannot
give in general a goodness of fit and thus cannot give an absolute probability for a

given model. However it can give relative probabilities. If the data are Gaussianly

distributed the likelihood is given by a multi-variate Gaussian:

L =
1

(2π)n/2|detC|1/2
exp

[

−
1

2
∑
i j

(D− y)iC
−1
i j (D− y) j

]

(9)

whereCi j = 〈(Di− yi)(Dj− y j)〉 is the covariance matrix.
It should be clear from this that the relation between χ2 and likelihood is that, for

Gaussian distributions, L ∝ exp[−1/2χ2] and minimizing the χ2 is equivalent at
minimizing the likelihood. In this case likelihood analysis and χ2 coincide and by
the end of this section, it will this be no surprise that the Gamma function appearing

in the χ2 distribution is closely related to the Gaussian integrals.
The subtle step is that now, in Bayesian statistics, confidence regions are regions

R in model space such that
∫
RP(θ |D)dθ = p where p is the confidence level we

request (e.g., 68.3%, 95.4% etc.). Note that by integrating the posterior over the

model parameters, the confidence region depends on the prior information: as seen

in §3.1 different priors give different posteriors and thus different regions R.
It is still possible to report results independently of the prior by using the Like-

lihood ratio. The likelihood at a particular point in parameter space is compared

with that at the best fit value,Lmax where likelihood id maximized. Thus a model is

acceptable if the likelihood ratio

Λ = −2ln
[
L (θ )

Lmax

]
(10)

is above a given threshold. The connection to the χ2 for Gaussian distribution should
be clear. In general, the threshold can be calibrated by calculating the entire distri-

bution of the likelihood ratio in the case that a particular model is the true model.

Frequently this is chosen to be the best ft model.

There is a subtlety to point out here. In cosmology the data may be Gaussainly

distributed and still the χ2 and likelihood ratio analysis may give different results.
This happens because in identifying likelihood and chisquare we have neglected the

term [(2π)n/2|detC|1/2]−1. If the covariance does not depend on the model or model
parameters, this is just a normalization factor which drops out in the likelihood ratio.

However in cosmology often the covariance depends on the model: this happens for

example when errors are dominated by cosmic variance, like in the case of the CMB

temperature fluctuations on the largest scales, or on the galaxies power spectrum on

the largest scales. In this case the cosmology dependence of the covariance cannot

be neglected, but one can always define a pseudo-chisquare as −2lnL and work

with this quantity.

Let us stress again that the likelihood is linked to the posterior through the prior:

the identification of the likelihood with the posterior is prior dependent (as we will

see in an example below). In the absence of any data it is common to assume a flat
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3.1.2 High precision spectroscopic redshift surveys

Future BAO surveys are expected to represent a real break-
through in our knowledge of the dark energy. In (Percival
2010; EUCLID EUCLID) is proposed a survey to measure
spectroscopic redshifts for 6.1 ⇥ 107 luminous galaxies and
clusters of galaxies out to redshift z = 2 over 20000 deg2,
reaching a dz/(1 + z) < 0.001, enough to resolve the BAO
feature along the line of sight, and achieving much better
dark energy constraints than their predecessors.

We have used the Initiative for Cosmology (iCosmo)
software package to generate the BAO mock data. In this
case are concerned with the following two signatures of the
BAO peak:

y(z) =
r(z)
rs(zr)

, (36)

y⇥(z) =
r⇥(z)
rs(zr)

=
c/H(z)
rs(zr)

. (37)

The publicly available code has built-in routines based on
the universal BAO fitting formulae for the diagonal errors
on y and y⇥ presented in (Blake et al. 2006). Once we have
made the proper modifications of the code to replace the de-
faults (Peacock and Dodds (Peacock & Dodds 1996) power
spectrum and Smail et al. (Smail et al. 1994) galaxy distri-
bution) with the survey properties (those quoted above and
besides zmed ⌅ 0.46, redshift range 0.1 < z < 0.9), we have
written extra codes to generate a large number of normal
random realizations around a fiducial model which is specif-
ically the wcdm+sz+lens case fromWMAP7-year (Komatsu
et al. 2011), which has �m = 0.26± 0.099 and is phantom-
like with w = �1.12± 0.43., Then after some reduction the
synthetic BAO data presented in table 1 have been obtained.
In addition, in the the corresponding ⌃2 we have introduced
priors based on the values of the matter and baryon density
presented in (Burigana et al. 2010) as a forecast analysis of
Planck: using the result �mh2 = 0.1308 ± 0.0008 we con-
struct a weak Gaussian prior, whereas with �bh

2 = 0.0223
we construct a fixed prior. In both cases we use h = 0.742 as
is given by (Riess et al. 2009). See as well Fig. 1 for a graph-
ical account of the features of our BAO simulated data.

In this case we need an expression for the sound horizon
at recombination to constrain the dark energy parameters:

rs(ar) =
c

⇧
3H0�

1/2
m

� ar

0

da

(a+ aeq)1/2
1

(1 +R)1/2
, (38)

which can be evaluated as described in (Efstathiou & Bond
1999) and gives

rs(ar) =
4000⇧
�bh2

⇧
aeq⇧

1 + �⇤
(39)

ln

⇧
[1 +R(zr)]

1/2 + [R(zr) +Req]
1/2

1 +
 

Req

⌃
Mpc

where �⇤ = 0.6813 is the ratio of the energy density in neu-
trinos to the energy in photons. The parameter R = 3⌅b/4⌅�
is numerically obtained

R(a) = 30496�bh
2a. (40)

The scale factor at which radiation and matter have equal
densities is

a�1
eq = 24185

⇤
1.6813
1 + �⇤

�mh2

⌅
, (41)

and the redshift of recombination zr is given by (Hu &
Sugiyama 1996) in the following fitting formula

zr = 1048
�
1 + 0.00124(�bh

2)�0.738⇥ (1 + g1 (�mh2)g2), (42)

being

g1 = 0.0783(�bh
2)�0.238 �1 + 39.5 (�bh

2)0.763
⇥�1

, (43)

and

g2 = 0.560
�
1 + 21.1(�bh

2)1.81
⇥�1

. (44)

The ⌃2 function for BAO mock data is now defined in
Eq. 45 , whereNmode is the number of mock data, in this case
4. And � = ⇥1, ⇥2, ... are the dark energy model parameters.
Here we have conveniently accounted for the slight degree
of correlation existing between y and y⇥, and as suggested
in (Seo & Eisenstein 2007) we will fix for our calculations
⌅y,y� = 0.4.

3.2 Type Ia Supernovae

Type Ia supernovae (SN) are the explosions that take place
at late stages of the stellar evolution. They have been recog-
nized as a powerful probe of cosmological dynamics, as they
give a good measure of the cosmological expansion rate. Su-
pernovae provided the first probe for the cosmological ex-
pansion (Riess et al. 1998; Perlmutter et al. 1999) and are
considered as standard candles (Leibundgut 2001).

The statistical analysis of such SN samples rests on the
definition of the modulus distance:

µ(zj) = 5 log10[dL(zj ,�)] + µ0, (46)

where dL(zj ,�) is the luminosity distance:

dL(z,�) = (1 + z)

� z

0

dz⇥
1

H(z⇥,�)
. (47)

The best fits for the parameters of a given model can be
obtained by minimizing

⌃2
SN(µ0,�) =

⌥

j=1

(µth(zj ;µ0,�)� µobs(zj))
2

⇧2
µ,j

, (48)

where ⇧µ,j are the measurement variances. Here we have ne-
glected correlations between measurements at di⇥erent red-
shifts, as they are typically small; as it is well known, doing
this just induces a slight degradation in the constraints, and
therefore it is simply a conservative and acceptable proce-
dure.

In our ⌃2
SN we have a nuisance parameter, µ0, which

encodes the Hubble parameter and the absolute magni-
tude M , and has to be marginalized over. However, when
one works with an homogeneous data sample (Nesseris &
Perivolaropoulos 2004), an alternative method is used for
that purpose. This method consists in maximizing the like-
lihood by minimizing ⌃2 with respect to µ0 (Elgaroy & Mul-
tamaki 2006). Then one can rewrite the ⌃2

SN(µ0,�) as

⌃2
SN(�) = c1 � 2c2µ0 + c3µ

2
0 (49)

being

c1 =
⌥

j=1

(µobs(zj)� 5 log10 dL (zj ;�))
2

⇧2
µ,j

(50)
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panels, i.e., δ ln " = δ ln k where " ! (δ ln k)−1. At low " where " " 1/δ ln k the oscillations in k

space disappear in " space due to the discreteness of ".

This discussion shows that the enhanced CMB integrator can accurately compute the oscillations

in CMB to ∆C!/C! " 10−3. This does not mean, however, that the total C! is accurate to 10−3.

The C! power spectrum can be systematically biased at subpercent level due to, e.g., recombination

uncertainties [76]. Understanding and eliminating these theoretical errors is important if we want

to extract generic features in Ps(k) with 10−3 accuracy. On the other hand, if we are only interested

in a model predicting a specific feature in C! that cannot be mimicked by other effects, we can

focus only on the relative difference in C!.

IV. THE FORECAST TECHNIQUES

CosmoLib uses Fisher matrix analysis and MCMC method to forecast the constraints on cos-

mological parameters for future CMB, LSS and SN experiments. In this section we discuss the

modeling of the likelihoods and the parameter estimation methods.

A. The likelihoods

1. CMB simulation

Given a likelihood function L, we define χ2 ≡ −2 lnL. For a nearly full-sky CMB experiment

χ2 can be approximated by [77, 78]

χ2 =
!max
∑

!=!min

(2"+ 1)fsky

[

ĈBB
!

CBB
!

− 3 + ln

(

CBB
!

ĈBB
!

)

+
ĈTT
! CEE

! + ĈEE
! CTT

! − 2ĈTE
! CTE

!

CTT
! CEE

! − (CTE
! )2

+ ln

(

CTT
! CEE

! − (CTE
! )2

ĈTT
! ĈEE

! − (ĈTE
! )2

)]

,

(36)

where "min and "max are suitable cutoffs that are determined by the observed fraction of sky fsky

and the beam resolution of the experiment. In this formula, CXY
! are the model-dependent the-

oretical angular power spectra (including the noise contributions) for the temperature, E and B

polarizations and their cross-correlations, with X,Y = {T,E,B}. We compute the noise contribu-

tion N! assuming Gaussian beams. The mock data ĈXY
! are CXY

! for the fiducial model.

We use the model introduced in [77] (and later updated in [78]) to propagate the effect of

polarization foreground residuals into the estimated uncertainties on the cosmological parameters.

For simplicity, in our simulation we consider only the dominant components in the frequency bands

that we are using, i.e., the synchrotron and dust signals. We assume that foreground subtraction

BAO
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3 OBSERVATIONAL DATA

As dark energy is expected to have started to dominate at
recent times, low redshift datasets are the obvious choice to
put the tighter constraints on each dynamics, whereas high
redshift ones may be viewed as complementary. Thus the
combination of SN and BAO datasets, given their quality in
both cases, and the considerable number of data points in
the case of the SN, is an excellent choice given the state of
the art. Besides, new avenues on BAO (Bassett & Hlozek
2010) are to be open soon which will allow to exploit the
tremendous potential of this new astronomical tool towards
constraining the main evolutionary features of dark energy.
As we have already mentioned, one of our objectives is to
introduce new promising parametrizations as alternatives to
one of the commonest, but one of the other objectives is to
forecast how the old parametrizations and our challengers
will cope with new data.

The literature provides a large number of papers where
simulated supernovae data are used in the way we have just
mentioned, but to our knowledge synthetic baryon acoustic
oscillations data have only been presented and exploited in
(Escamilla-Rivera et al. 2011). This builds on considerable
theoretical e⇥orts in di⇥erent forecast aspects (Blake et al.
2006), which have crystallized in the package Initiative for
Cosmology (iCosmo) (see (Refregier et al. 2011)) and its
BAO modules, which have allowed us to produce these mock
data. We have modified and extended this general purpose
software to produce mock data from a line of sight, high-
precision BAO spectroscopic survey as the one described in
(Percival 2010; EUCLID EUCLID) and pre-WFIRST super-
novae data.

3.1 Baryon Acoustic Oscillations

Baryon Acoustic Oscillations (BAO) have emerged as a
promising standard ruler in cosmology, enabling precise
measurements of the dark energy parameters with a min-
imum of systematic errors (Wang et al. 2010; Blake et al.
2006). These oscillations were originated before recombi-
nation due to the density fluctuations created by acoustic
waves generated by primordial perturbations. After recom-
bination, photons decoupled and propagated freely leaving a
signature of the primordial perturbations in the CMB tem-
perature distribution. A similar but attenuated feature ap-
pears in the clustering of matter; the peaks and troughs of
the acoustic waves gave rise to overdense regions of baryonic
matter which imprint a correlation between matter densities
at the scale of the sound horizon at recombination

rs(zr) =

⌥ ⇤

zr

cs(z)
H(z)

dz, (26)

where cs is the sound speed (Bassett & Hlozek 2010; Per-
cival 2006). Cosmological Microwave Background (CMB)
anisotropies provide an absolute physical scale for these
baryonic peaks, but these features can be also determined
in a galaxy survey. By comparison of the absolute value
given by CMB and the observed location of the peaks of the
two-point correlation function of the matter distribution,
�(z) given by a galaxy survey, one can obtain measurements
of cosmological distance scales. Measuring the BAO scale
from galaxy clustering in the transverse and radial directions

yields measurements of r(z)/rs(zr) and of rs(zr)H(z) (Blake
& Glazebrook 2003; Hu & Haiman 2003; Seo & Eisenstein
2003), where

r(z) =

⌥ z

0

cdz⇥

H(z⇥)
(27)

is the comoving distance at redshift z.

3.1.1 Percival et al.

In (Percival W. et al. 2010) Gaussian values on the distance
ratio, rs(zdrag)/DV (z), at redshifts z = 0.2 and z = 0.35, are
given from the measures obtained by combining the spec-
troscopic Sloan Digital Sky Survey (SDSS) and the Two-
Degree Field Galaxy Redshift Survey (2DFGRS) data. This
distance ratio represents the comoving sound horizon at the
baryon dragging epoch, zdrag,

rs(zdrag) = c

⌥ ⇤

zdrag

cs(z)
H(z)

dz , (28)

over the e⇥ective distance DV (z), defined as (Eisenstein
et al. 2005) as

DV (z) =

⇤
(1 + z)2D2

A(z)
c z

H(z)

⌅1/3

, (29)

DA being the angular diameter distance which takes the
form

DA(z) =
c

1 + z

⌥ z

0

dz⇥

H(z⇥)
, (30)

in a flat universe containing only matter and dark energy.
In order to estimate the dark energy parameters in the

context of Bayesian statistics, as detailed in Appendix A,
we need a definition of the ⇥2 which reflects the di⇥erence
between the observational data and the values given by our
models. In our case this requires giving an expression for the
comoving sound horizon at the baryon dragging epoch, and
we have used the fitting formula proposed in (Eisenstein &
Hu 1998):

rs(zdrag) = 153.5

�
�bh

2

0.02273

⇥�0.134 �
�mh2

0.1326

⇥�0.255

. (31)

Now, taking into account the Gaussian values at z = 0.2
and 0.35 from the BAO data in (Percival W. et al. 2010),
we can calculate

⇥2
BAO = (vi � vBAO

i )(C �1)BAO
ij (vj � vBAO

j ) (32)

where

v =

⇧
rs(zdrag,�m,�b;�)
DV (0.2,�m;�)

,
rs(zdrag,�m,�b;�)
DV (0.35,�m;�)

⌃
, (33)

vBAO = (0.1905, 0.1097) (34)

and

C�1 =

�
30124 �17227
�17227 86977

⇥
, (35)

being the inverse of the covariance matrix.
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As dark energy is expected to have started to dominate at
recent times, low redshift datasets are the obvious choice to
put the tighter constraints on each dynamics, whereas high
redshift ones may be viewed as complementary. Thus the
combination of SN and BAO datasets, given their quality in
both cases, and the considerable number of data points in
the case of the SN, is an excellent choice given the state of
the art. Besides, new avenues on BAO (Bassett & Hlozek
2010) are to be open soon which will allow to exploit the
tremendous potential of this new astronomical tool towards
constraining the main evolutionary features of dark energy.
As we have already mentioned, one of our objectives is to
introduce new promising parametrizations as alternatives to
one of the commonest, but one of the other objectives is to
forecast how the old parametrizations and our challengers
will cope with new data.

The literature provides a large number of papers where
simulated supernovae data are used in the way we have just
mentioned, but to our knowledge synthetic baryon acoustic
oscillations data have only been presented and exploited in
(Escamilla-Rivera et al. 2011). This builds on considerable
theoretical e⇥orts in di⇥erent forecast aspects (Blake et al.
2006), which have crystallized in the package Initiative for
Cosmology (iCosmo) (see (Refregier et al. 2011)) and its
BAO modules, which have allowed us to produce these mock
data. We have modified and extended this general purpose
software to produce mock data from a line of sight, high-
precision BAO spectroscopic survey as the one described in
(Percival 2010; EUCLID EUCLID) and pre-WFIRST super-
novae data.

3.1 Baryon Acoustic Oscillations

Baryon Acoustic Oscillations (BAO) have emerged as a
promising standard ruler in cosmology, enabling precise
measurements of the dark energy parameters with a min-
imum of systematic errors (Wang et al. 2010; Blake et al.
2006). These oscillations were originated before recombi-
nation due to the density fluctuations created by acoustic
waves generated by primordial perturbations. After recom-
bination, photons decoupled and propagated freely leaving a
signature of the primordial perturbations in the CMB tem-
perature distribution. A similar but attenuated feature ap-
pears in the clustering of matter; the peaks and troughs of
the acoustic waves gave rise to overdense regions of baryonic
matter which imprint a correlation between matter densities
at the scale of the sound horizon at recombination

rs(zr) =

⌥ ⇤

zr

cs(z)
H(z)

dz, (26)

where cs is the sound speed (Bassett & Hlozek 2010; Per-
cival 2006). Cosmological Microwave Background (CMB)
anisotropies provide an absolute physical scale for these
baryonic peaks, but these features can be also determined
in a galaxy survey. By comparison of the absolute value
given by CMB and the observed location of the peaks of the
two-point correlation function of the matter distribution,
�(z) given by a galaxy survey, one can obtain measurements
of cosmological distance scales. Measuring the BAO scale
from galaxy clustering in the transverse and radial directions

yields measurements of r(z)/rs(zr) and of rs(zr)H(z) (Blake
& Glazebrook 2003; Hu & Haiman 2003; Seo & Eisenstein
2003), where

r(z) =

⌥ z

0

cdz⇥

H(z⇥)
(27)

is the comoving distance at redshift z.

3.1.1 Percival et al.

In (Percival W. et al. 2010) Gaussian values on the distance
ratio, rs(zdrag)/DV (z), at redshifts z = 0.2 and z = 0.35, are
given from the measures obtained by combining the spec-
troscopic Sloan Digital Sky Survey (SDSS) and the Two-
Degree Field Galaxy Redshift Survey (2DFGRS) data. This
distance ratio represents the comoving sound horizon at the
baryon dragging epoch, zdrag,

rs(zdrag) = c

⌥ ⇤

zdrag

cs(z)
H(z)

dz , (28)

over the e⇥ective distance DV (z), defined as (Eisenstein
et al. 2005) as

DV (z) =

⇤
(1 + z)2D2

A(z)
c z

H(z)

⌅1/3

, (29)

DA being the angular diameter distance which takes the
form

DA(z) =
c

1 + z

⌥ z

0

dz⇥

H(z⇥)
, (30)

in a flat universe containing only matter and dark energy.
In order to estimate the dark energy parameters in the

context of Bayesian statistics, as detailed in Appendix A,
we need a definition of the ⇥2 which reflects the di⇥erence
between the observational data and the values given by our
models. In our case this requires giving an expression for the
comoving sound horizon at the baryon dragging epoch, and
we have used the fitting formula proposed in (Eisenstein &
Hu 1998):

rs(zdrag) = 153.5

�
�bh

2

0.02273

⇥�0.134 �
�mh2

0.1326

⇥�0.255

. (31)

Now, taking into account the Gaussian values at z = 0.2
and 0.35 from the BAO data in (Percival W. et al. 2010),
we can calculate

⇥2
BAO = (vi � vBAO

i )(C �1)BAO
ij (vj � vBAO

j ) (32)

where

v =

⇧
rs(zdrag,�m,�b;�)
DV (0.2,�m;�)

,
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DV (0.35,�m;�)

⌃
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being the inverse of the covariance matrix.
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Using above WMAP distance priors, the CMB χ2 statistic is given by

χ2
CMB = (xO

i − xT
i )(C

−1)ij(x
O
j − xT

j ) (16)

where xT
i = (lA, R, zdc) are the values predicted by a model and xO

i are the corresponding

maximum-likelihood observe values. The three distance priors obtained from the WMAP
7-year are given as

lA = 302.09± 0.76, R = 1.725± 0.018, zdc = 1091.3± 0.91. (17)

These results are correlated and the inverse covariance matrix is given by

(C−1) =





2.305 29.698 −1.333

29.698 6825.27 −113.180
−1.333 −113.180 3.414



 . (18)

2.4. Hubble Constant H0

The Hubble constant H0 means the present expansion rate of our universe and is very
important for determining the cosmological distances. Using the three observations in the

local universe including the ”maser galaxy” NGC 4258, the Cepheid variables and the SNe
Ia, Riess et al. (2009) provided a precise measurement result H0 = 74.2± 3.6 km s−1Mpc−1.
In their analysis, the NGC 4258, located at about 7.2Mpc away, plays as the anchor galaxy,

for the overall uncertainty of its geometric distance is very small, only 3% by far(Herrnstein
et al. 1999; Humphreys et al. 2008; Greenhill et al. 2009). On the other hand, the

240 Cepheid variables obtained with the Hubble Space Telescope (Macri et al. 2006) are
distributed across six recent hosts of SNe Ia and the NGC 4258, allowing to directly calibrate

the peak luminosities of the SNe Ia, which is crucial to constrain the Hubble constant H0

through the SNe Ia data. The authors had rejected those objects with 0.75 mag above
the best fitted period-luminosity relation, a error value beyond the ”normal” observation

uncertainty, and the Cepheid sample is reduced to 209. In the SNe Ia data analysis, only
140 nearby SNe Ia with the redshift 0.023 < z < 0.1 (Hicken et al. 2009) are used and then,

utilizing the derivations of the scale factor a, the related luminosity distance is expanded
to the polynomial function of the redshift z, keeping highest to z2 order. Finally with the
well-controlled systematic errors, the SHOES team provided the determination of the Hubble

constant H0 to ∼ 5% precision. Then the statistic is simply given by

χ2
Hub(H0) =

[H0 − 74.2]2

3.62
(19)

Hubble

– 9 –

2.5. Joint Analysis of SNe Ia, BAO, CMB and H0 Data

For the four independent observations, the likelihood function of a joint analysis is just
given by

L = LSNe × LBAO × LCMB × LHub

= exp[−(χ2
SNe + χ2

BAO + χ2
CMB + χ2

Hub)/2]. (20)

3. Constraints On Time-Varying Dark Energy Models

In this section, we investigate our two-parameter models of dark energy EOS from the

joint analysis of (SNe + BAO + BAO + H0). The observational data depend on w(z) only
through a complicated integral relation, which effectively smooth out partial differences of

different models. Consequently, to distinguish different dark energy models from observa-
tional data is quite difficult. In fact, though the use of more than two parameters can offer
flexible function form to test the dark energy EOS, the observational constraints on those

parameters are quite poor. Therefore, in this paper we focus our efforts on two-parameter
models by carefully analysizing the low (z → 0) and high redshift (z → ∞) behaviors of

dark energy EOS w(z), while the certain function form determines its evolution with time.
Our two-parameter models are constructed with considering three limitations: firstly, the

dark energy EOS w(z) has finite boundary values at z = 0 and z = ∞; secondly, the w(z)
function has no more than one local extremum point in the range of redshift z = (0,∞);
thirdly, the basic bricks of the function are z, 1/(1 + z)(i.e. a) and z/(1 + z)(i.e. (1− a)).

In the data analysis, only two parameters are variable, and the possible relevant extra pa-
rameter is fixed, which enlarges our model space. There is an alternative way to choose two

parameters: assuming that w(z) can be approximated at low redshift z < 1 and use the first
two terms of its Taylor series about z = 0 (Copeland et al. 2006). But when considering

data from the CMB, the high redshift limit becomes important and our choice is reasonable.

3.1. Two-Parameter Dark Energy Models

Though the certain knowledge of w(z) is still lacked and the dark energy modeling

space is infinite dimensional, our aim is to find some interesting modeling forms and study
the corresponding behaviors of dark energy. We try different varieties of function forms with

paying much attentions to keep the models as simple as possible. According to the boundary
behaviors of the EOS w(z) at z = 0 and z = ∞ and its local extremum property in the range

of redshift z = (0,∞), we classify eight parameterations of dark energy EOS w(z) into two

3. STATISTICS IN COSMOLOGY

3.3.1 Parameter estimation

A Bayesian analysis provides a consistent approach to estimating the values

of the parameters � within a model M , which best describe the data D. The

method is based on the assignment of probabilities to the quantities of interest,

and then the manipulation of these probabilities given a series of rules, in which

Bayes’ theorem plays the main role [138]. Bayes’ theorem states that

P (�|D,M) =
P (D|�,M) P (�|M)

P (D|M)
. (3.14)

In this expression, the prior probability P(�|M) ⇥ � represents what we thought

the probability of � was before considering the data. This probability is modi-

fied through the likelihood P(D|�,M) ⇥ L. The posterior probability P(�|D,M)

represents the state of knowledge once we have taken the experimental data D

into account. The normalisation constant in the denominator is the marginal

likelihood or Bayesian evidence P(D|M) ⇥ Z, as is normally called in cosmology.

Since this quantity is independent of the parameters �, it is commonly ignored

in parameter estimation but it takes the central role for model comparison.

The central step for parameter estimation is to construct the likelihood func-

tion L for the measurements, and then the exploration of the region around its

maximum value Lmax. A simple chi-squared function is often used ⇥2 = �2 lnL.
when the distributions are Gaussian. However, some current problems in cos-

mology present obstacles for carrying out this procedure straightforwardly (some

of them discussed by Liddle [138]). Fortunately, models of our interest can be

easily tackled by numerical techniques developed on statistical fields, in partic-

ular the methods known as Markov Chain Monte Carlo (MCMC). There have

been developed di�erent codes employing MCMC techniques to carry out the

exploration of the cosmological parameter-space, for instance CosmoMC [134],

CosmoHammer [4], CMBEASY [63]. Although some of them use a simple

Metropolis-Hasting algorithm by default, nowadays improved algorithms have

been adapted to explore complex posterior probability distributions.
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Rotation curves

BEC

We find that the ansatz

δΦ = δΦ0
sin(kr)

kr
cos(ωt) (14)

is an exact solution to equation (13) provided

ω2 = k2c2 +
λk2B
2!2

(T 2
C − T 2

Φ). (15)

Here δΦ0 is the amplitude of the fluctuation. From
equation (15) we notice that now k = k(TΦ).
For an easier comparison with observations we
use the standard definition of number density
n(x , t)=κ(δΦ)2, where κ is a constant that gives us
the necessary units so that we can interpret n(x , t)
as the number density of DM particles, as Φ has
energy units. With this in mind, we can define
an effective mass density of the SF fluctuation by
ρ = mn and a central density by ρ0 = mκ(δΦ0)2.
It is important to note that, while δΦ0 is not be
obtained directly from observations, the value of
ρ0 is a direct consequence of the RC fit, for this
reason, it is preferable to work with ρ0 instead of
δΦ0.

Combining equation (14) and the definition of
n we obtain a finite temperature density profile

ρ(r) = ρ0
sin2(kr)

(kr)2
, (16)

provided

k2BT
2
Φ = k2BT

2
C − 4Φ2

0, (17)

Φ2
0 = Φ2

min (18)

Here k(TΦ) and ρ0=ρ0(TΦ) are fitting parameters
while λ, TC(or m), and κ are free parameters to
be constrained by observations.

For galaxies the Newtonian approximation
gives a good description, therefore, from equa-
tion (16) we obtain the mass and rotation curve
velocity profiles given by

M(r) =
4πGρ0
k2

r

2

(

1−
sin(2kr)

2kr

)

, (19a)

V 2(r) =
4πGρ0
2k2

(

1−
sin(2kr)

2kr

)

. (19b)

respectively. For comparison, we write the
Einasto rotation curve profile which lately seems
to give a better description of DM halos in CDM

simulations (Navarro et al. 2010; Merrit et al.
2006; Graham et al. 2006),

V 2
E = 4πGρ−2

r3−2

r

[

e2/α

α

(

α

2

)(3/α)

γ(
3

α
, x′)

]

,

(20)
with γ the incomplete gamma function given by

γ(
3

α
, x′) =

∫ x′

0
e−τ τ (3/α)−1dτ

with x′ := 2
α (

r
r−2

)α, r−2 is the radius in which
the logarithmic slope of the density is −2, ρ−2 is
the density at the radius r−2, and α is a param-
eter that describes the degree of curvature of the
profile(Merrit et al. 2006; Graham et al. 2006).

We now define the radius R of the SFDM dis-
tribution by the condition ρ(R) = 0. This fixes
the relation

kjR = jπ, j = 1, 2, 3, ... (21)

where j is the number of the exited state required
to fit a galaxy RC up to the last measured point.
From equations (13),(14), and (21) we find that
the halo allows exited states, i.e., the exited states
are also solutions of equation (13). As this equa-
tion is linear, there can be halos in combination of
exited states, for these cases the total density ρtot
is the sum of the densities in the different states,
given by

ρtot =
∑

j

ρj0
sin2(jπr/R)

(jπr/R)2
, (22)

with ρj0 the central density of the state j. It is im-
portant to note that there is only one halo forma-
tion temperature, TΦ, also, the number of states
that compose one DM halo depends of each halo,
one reason is that the initial conditions change
form one to another. Finally, we note that for
each state j there exists both, ωj and kj , which
satisfy their corresponding equation (15).

An additional feature of equation (16) is the
presence of “wiggles,” these oscillations charac-
teristic of SF configurations in exited states were
also seen in Sin (1994). Also, we define the dis-
tance where the first peak (maximum) in the RC
is reached as r1max, this determines the first local
maximum of the RC velocity, which can be ob-
tained form equation (23)

cos(2πjy)

2(πj)2y

[ tan(2πjy)

2πjy
− 1

]

= 0, (23)
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and core radius. In section 3, we fit the galaxy data and
obtain the fitting parameters and the core radius for the PI
and BEC density profiles. In section 4, we discuss our results
and in section 5 we give our conclusions.

2 DARK MATTER HALO DENSITY
PROFILES

In this section we provide the dark matter profiles that will
be used in the analysis. In the last part of the section we
briefly describe the usual meaning of the core and establish
a new definition for it.

2.1 BEC profile

The case in which the dark matter is in the form of a
static Bose-Einstein condensate and the number of DM par-
ticles in the ground state is very large was considered in
Bohmer & Harko (2007). Following this paper and assum-
ing the Thomas-Fermi approximation (Dalfovo et al. 1999)
which neglects the anisotropic pressure terms that are rel-
evant only in the boundary of the condensate, the system
of equations describing the static BEC in a gravitational
potential V is given by

∇p

(

ρ
m

)

= −ρ∇V (4)

∇
2V = 4πGρ, (5)

with the following equation of state

p(ρ) = U0ρ
2, (6)

where U0 =
2π!2a
m3

, ρ is the mass density of the static BEC

configuration and p is the pressure, as we are considering
zero temperature p is not a thermal pressure but instead it
is produced by the strong repulsive interaction between the
ground state bosons. Assuming spherical symmetry and de-
noting R as the radius at which the pressure and density are
zero, the density profile takes the form (Bohmer & Harko
2007)

ρB(r) = ρB0
sin(kr)

kr
(7)

where k =
√

Gm3/!2a = π/R and ρB0 = ρB(0) is the BEC
central density, m is the mass of the DM particle and a is
the scattering lenght. The mass at the radius r is given by

m(r) =
4πρB0
k2

r

(

sin(kr)
kr

− cos(kr)

)

, (8)

from here the tangential velocity VB of a test particle at a
distance r, is

V 2
B(r) =

4πGρB0
k2

(

sin(kr)
kr

− cos(kr)

)

. (9)

The logaritmic slope of a density profile is defined as

α =
d(log ρ)
d(log r)

(10)

using (7) in (10) it is obtained (Harko 2011b)

α(r) = −

[

1−
πr
R

cot

(

πr
R

)]

. (11)

Additionaly, the logarithmic slope of the rotation curve is
defined (Harko 2011b) by

β =
d(log V )
d(log r)

(12)

from (9) we get

β = −
1
2

[

1−
(πr/R)2

1− (πr/R) cot(πr/R)

]

. (13)

2.2 Pseudo Isothermal profile

All the empirical core profiles that exist in the literature
fit two parameters, a scale radius and a scale density. A
characteristic profile of this type is

ρPI =
ρPI
0

1 + (r/Rc)2
, (14)

this is the PI profile (Begeman et al. 1991). Here Rc is the
scale radius and ρPI

0 is the central density. The rotation
curve is

V (r)PI =

√

4πGρPI
0 R2

c

(

1−
Rc

r
arctan

(

r
Rc

))

. (15)

2.3 Navarro-Frenk-White profile

The NFW profile emerges from numerical simulations
that use only CDM and are based on the ΛCDM model
(Dubinski et al. 1991; Navarro et al. 1996, 1997). In addi-
tion to this, we have chosen this profile because it is repre-
sentative of what is called the cuspy behavior (α ≈ −1) in
the center of galaxies due to DM. The NFW density pro-
file (Navarro et al. 1997) and the rotation curve are given
respectively by

ρNFW (r) =
ρi

(r/Rs)(1 + r/Rs)2
(16)

VNFW (r) =
√

4πGρiR3
s

√

1
r

[

ln

(

1 +
r
Rs

)

−
r/Rs

1 + r/Rs

]

,

(17)
ρi is related to the density of the universe at the moment
the halo collapsed and R2

s is a characteristic radius.

2.4 Meaning of the core radius and cusp/core
discrepancy

In the large scale simulations that use collissionless cold dark
matter the inner region of DM halos show a density distri-
bution described by a power law ρ ∼ rα with α ≈ −1,
such behavour is what is now called a cusp. On the other
hand, observations mainly in dwarf and LSB galaxies seem
to prefer a central density going as ρ ∼ r0. This discrep-
ancy between observation and the CDM model receives the
name of cusp/core problem. Among the empirical profiles
most frequently used to describe the constant density be-
havior in these galaxies are the PI (Begeman et al. 1991),
the isothermal (Athanassoula et al. 1987) and the Burkert
profile (Burkert 1995). Even though their behavior is similar
in the central region and is specified by the central density
fitting parameter, their second parameter called the core
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and core radius. In section 3, we fit the galaxy data and
obtain the fitting parameters and the core radius for the PI
and BEC density profiles. In section 4, we discuss our results
and in section 5 we give our conclusions.

2 DARK MATTER HALO DENSITY
PROFILES

In this section we provide the dark matter profiles that will
be used in the analysis. In the last part of the section we
briefly describe the usual meaning of the core and establish
a new definition for it.

2.1 BEC profile

The case in which the dark matter is in the form of a
static Bose-Einstein condensate and the number of DM par-
ticles in the ground state is very large was considered in
Bohmer & Harko (2007). Following this paper and assum-
ing the Thomas-Fermi approximation (Dalfovo et al. 1999)
which neglects the anisotropic pressure terms that are rel-
evant only in the boundary of the condensate, the system
of equations describing the static BEC in a gravitational
potential V is given by

∇p

(

ρ
m

)

= −ρ∇V (4)

∇
2V = 4πGρ, (5)

with the following equation of state

p(ρ) = U0ρ
2, (6)

where U0 =
2π!2a
m3

, ρ is the mass density of the static BEC

configuration and p is the pressure, as we are considering
zero temperature p is not a thermal pressure but instead it
is produced by the strong repulsive interaction between the
ground state bosons. Assuming spherical symmetry and de-
noting R as the radius at which the pressure and density are
zero, the density profile takes the form (Bohmer & Harko
2007)

ρB(r) = ρB0
sin(kr)

kr
(7)

where k =
√

Gm3/!2a = π/R and ρB0 = ρB(0) is the BEC
central density, m is the mass of the DM particle and a is
the scattering lenght. The mass at the radius r is given by

m(r) =
4πρB0
k2

r

(

sin(kr)
kr

− cos(kr)

)

, (8)

from here the tangential velocity VB of a test particle at a
distance r, is

V 2
B(r) =

4πGρB0
k2

(

sin(kr)
kr

− cos(kr)

)

. (9)

The logaritmic slope of a density profile is defined as

α =
d(log ρ)
d(log r)

(10)

using (7) in (10) it is obtained (Harko 2011b)

α(r) = −

[

1−
πr
R

cot

(

πr
R

)]

. (11)

Additionaly, the logarithmic slope of the rotation curve is
defined (Harko 2011b) by

β =
d(log V )
d(log r)

(12)

from (9) we get

β = −
1
2

[

1−
(πr/R)2

1− (πr/R) cot(πr/R)

]

. (13)

2.2 Pseudo Isothermal profile

All the empirical core profiles that exist in the literature
fit two parameters, a scale radius and a scale density. A
characteristic profile of this type is

ρPI =
ρPI
0

1 + (r/Rc)2
, (14)

this is the PI profile (Begeman et al. 1991). Here Rc is the
scale radius and ρPI

0 is the central density. The rotation
curve is

V (r)PI =

√

4πGρPI
0 R2

c

(

1−
Rc

r
arctan

(

r
Rc

))

. (15)

2.3 Navarro-Frenk-White profile

The NFW profile emerges from numerical simulations
that use only CDM and are based on the ΛCDM model
(Dubinski et al. 1991; Navarro et al. 1996, 1997). In addi-
tion to this, we have chosen this profile because it is repre-
sentative of what is called the cuspy behavior (α ≈ −1) in
the center of galaxies due to DM. The NFW density pro-
file (Navarro et al. 1997) and the rotation curve are given
respectively by

ρNFW (r) =
ρi

(r/Rs)(1 + r/Rs)2
(16)

VNFW (r) =
√

4πGρiR3
s

√

1
r

[

ln

(

1 +
r
Rs

)

−
r/Rs

1 + r/Rs

]

,

(17)
ρi is related to the density of the universe at the moment
the halo collapsed and R2

s is a characteristic radius.

2.4 Meaning of the core radius and cusp/core
discrepancy

In the large scale simulations that use collissionless cold dark
matter the inner region of DM halos show a density distri-
bution described by a power law ρ ∼ rα with α ≈ −1,
such behavour is what is now called a cusp. On the other
hand, observations mainly in dwarf and LSB galaxies seem
to prefer a central density going as ρ ∼ r0. This discrep-
ancy between observation and the CDM model receives the
name of cusp/core problem. Among the empirical profiles
most frequently used to describe the constant density be-
havior in these galaxies are the PI (Begeman et al. 1991),
the isothermal (Athanassoula et al. 1987) and the Burkert
profile (Burkert 1995). Even though their behavior is similar
in the central region and is specified by the central density
fitting parameter, their second parameter called the core
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3. STATISTICS IN COSMOLOGY

3.3.1 Parameter estimation

A Bayesian analysis provides a consistent approach to estimating the values

of the parameters � within a model M , which best describe the data D. The

method is based on the assignment of probabilities to the quantities of interest,

and then the manipulation of these probabilities given a series of rules, in which

Bayes’ theorem plays the main role [138]. Bayes’ theorem states that

P (�|D,M) =
P (D|�,M) P (�|M)

P (D|M)
. (3.14)

In this expression, the prior probability P(�|M) ⇥ � represents what we thought

the probability of � was before considering the data. This probability is modi-

fied through the likelihood P(D|�,M) ⇥ L. The posterior probability P(�|D,M)

represents the state of knowledge once we have taken the experimental data D

into account. The normalisation constant in the denominator is the marginal

likelihood or Bayesian evidence P(D|M) ⇥ Z, as is normally called in cosmology.

Since this quantity is independent of the parameters �, it is commonly ignored

in parameter estimation but it takes the central role for model comparison.

The central step for parameter estimation is to construct the likelihood func-

tion L for the measurements, and then the exploration of the region around its

maximum value Lmax. A simple chi-squared function is often used ⇥2 = �2 lnL.
when the distributions are Gaussian. However, some current problems in cos-

mology present obstacles for carrying out this procedure straightforwardly (some

of them discussed by Liddle [138]). Fortunately, models of our interest can be

easily tackled by numerical techniques developed on statistical fields, in partic-

ular the methods known as Markov Chain Monte Carlo (MCMC). There have

been developed di�erent codes employing MCMC techniques to carry out the

exploration of the cosmological parameter-space, for instance CosmoMC [134],

CosmoHammer [4], CMBEASY [63]. Although some of them use a simple

Metropolis-Hasting algorithm by default, nowadays improved algorithms have

been adapted to explore complex posterior probability distributions.
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* The choice of a proposal distribution (step size) is crucial 
to improve the chain efficiency and speed up convergence.

 Steps too big or too small will lead to slow convergence

           to have a proposal density that is of similar shape to the posterior. 


(Fortunately with cosmological data we have a reasonable idea of what the 
posterior might look like)

It is vitally important  to have a convergence test

 The Gelman-Rubin convergence criterion
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FIG. 5: Multiple MCMC. We use five Markov Chains to estimate the convergence.

If our chains converge, W and B/N must agree. In fact we say that the chains converge when the
quantity

R̂ =
N�1
N

W +B(1 + 1
M
)

W
, (59)

which is the ratio of the two estimates, approaches unity. A typical convergence criteria is when
0.97 < R̂ < 1.03.

4.1.4. Some useful details

The proposal distribution. The choice of a proposal distribution q is crucial for the e�cient
exploration of the posterior. In our example we used a Gaussian-like distribution with a variance
(step) �̂ = 0.1. This value was taken because we initially explored, by hand, di↵erent values for
�̂ and we select the quickest that approaches the analytic posterior distribution of p. However, if
the scale of q is too small compared to the scale of the target (in the sense that the typical jump
is small), then the chain may take very long to explore the target distribution which implies that
the algorithm will be very ine�cient. As we can see in Figure 6 (left panel), considering an initial
step pi = 0.6 and a variance for the proposal distribution �̂ = 0.002, the number of points are not
enough for the system to move to its “real” posterior distribution. On the other hand, if the scale
of q is too large, the chain gets stuck and it does not jump very frequently (right panel of the figure
with �̂ = 0.8) so we will have di↵erent “peaks” in our posterior.

In order to fix this issue in a more e�cient way, it is recommendable to run an exploratory
MCMC, compute the covariance matrix from the samples, and then re-run with this covariance
matrix as the covariance of a multivariate Gaussian proposal distribution. This process can be
computed a couple of times before running the “real” MCMC.

The burn-in. It is important to notice that at the beginning of the chain we will have a region
of points outside the stationary region (points inside the ellipse in the right panel of Figure 4).
This early part of the chain (called “burn-in”) must be ignored, this means that the dependence
on the starting point must be lost. Thus, it is important to have a reliable convergence test.

Thinning. There are several Bayesian statisticians that usually thin their MCMC, this means
that they do not prefer to save every step given by the MCMC; instead, they prefer to save a new
step each time n steps have taken place. An obvious consequence of thinning the chains is that the

22

FIG. 6: Two Markov Chains considering di↵erent variance for our Gaussian proposal distribution. Left panel
corresponds to �̂ = 0.002, while right panel corresponds to �̂ = 0.8.

amount of autocorrelation is reduced. However, as long as the chains are thinned, the precision
for the estimated parameters is reduced [23]. Thinning the chains can be useful in other kind of
circumstances, for example, if we have limitations in memory. Notice that thinning a chain does
not yield incorrect results; it yields correct results but less e�cient than using the full chains.

Autocorrelation probes. A complementary way to look for convergence in a MCMC estima-
tion is by looking for the autocorrelation between the samples. The autocorrelation lag k is defined
as the correlation between every sample and the sample k steps before. It can be quantified as
[24, 25]

⇢k =
Cov(Xt, Xt+k)p

V ar(Xt)V ar(Xt+k)
=

E[(Xt � X)(Xt+k � X)]p
E[(Xt � X)2]E[(Xt+k � X)2]

, (60)

where Xt is the t-th sample and X is the mean of the samples. This autocorrelation should become
smaller as long as k increases (this means that samples start to become independent).

More samplers

Gibbs sampling. The basic idea of the Gibbs sampling algorithm [26] is to split the multidi-
mensional ✓ into blocks and sample each block separately, conditional on the most recent values of
the other blocks. It basically breaks a high-dimensional problem into low-dimensional problems.

The algorithm reads as follows:

1. ✓ consists of k blocks ✓1, ..., ✓k. Then, at step i

2. Draw ✓
i+1
1 from p(✓1|✓i2, ..., ✓ik)

3. Draw ✓
i+1
2 from p(✓2|✓i+1

1 , ✓
i

3, ..., ✓
i

k
)

4. ...

5. Draw ✓
i+1
k

from p(✓k|✓i+1
1 , ✓

i+1
2 , ..., ✓

i+1
k�1)

6. Repeat the above steps for the wished iterations with i ! i+ 1.
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exploration of the cosmological parameter-space, for instance CosmoMC [134],
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been adapted to explore complex posterior probability distributions.
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TABLE I. Comparison between CMB Codes a

CAMB CLASS CMBEASY CMBquick CosmoLib b

Language F90 C C++ Mathematica F90c

gauge d syn. syn./Newt. e syn./gauge-inv. Newt. Newt.

open/close universe Yes No No No No

massive neutrinos Yes Yes Yes Yes No

tensor perturb. Yes Yes Yes Yes Yes

CDM isocurvature mode Yes Yes Yes Yes Yes

dark energy perturb. Yes Yes Yes No Yes

nonzero c2s,b Yes Yes Yes No Yes

dark energy EOS. constant w0 + wa(1− a) arbitrary -1 arbitrary

non-smooth primordial power No No No No Yes

MCMC driver Yes No Yes No Yes

periodic proposal density No No No No Yes

data simulation No No No No Yes

second-order perturb. f No No No Yes No g

a Here we do not include CMBFast, which is no longer supported by its authors or available for download.
b This refers to CosmoLib Version 0.2.
c CosmoLib is a mixture of Fortran and C codes. The main part is written in Fortran.
d syn.: synchronous gauge; Newt.: Newtonian gauge; gauge-inv.: gauge-invariant variables.
e Newtonian gauge is implemented in CLASS version 1.3.
f A second-order perturbation code is used to study the CMB non-Gaussianity.
g The second-order part of CosmoLib is not released with this paper.

written in Newtonian gauge (also called Poisson gauge) [39–41], while many other codes are mainly

developed in synchronous gauge (see e.g. [2]). This is a plus-and-minus point. We found that our

Newtonian-gauge Boltzmann code is slightly slower than the codes written in synchronous gauge.

However, many theoretical works in the literature have derived equations in Newtonian gauge. For

instance, second-order Boltzmann equations have been derived in this gauge [42–55]. Implementing

these equations in a code already in Newtonian gauge would be much easier. To conclude the

discussion, we list the differences between CosmoLib and other publicly available CMB codes in

Table I.

As an application, CosmoLib is used to study the “hints” of cosine osicllations in the primor-

dial power spectrum that was recently found in Refs. [56, 57]. In an accompanying paper [58],

CosmoLib is applied to forecast the constraining power of future CMB and galaxy survey data on

the primordial power spectrum from inflation, with an emphasis on models generating features in

the power spectrum.

Cosmo Codes

           

6

3.1. Bayes theorem, priors, posteriors and all that stu↵

When anyone is interested on the Bayesian framework, there are several concepts to understand
before presenting the results. In this section we quickly review these concepts and then we take
back the example about the coin toss given in the last section.

The Bayes theorem. The Bayes theorem is a direct consequence of the axioms of probability
shown in Eqs. (2). From Eqn. (2d), without loss of generality, it must be fulfilled that P (x1\x2) =
P (x2 \ x1). In such case the following relation applies

P (x2|x1) =
P (x1|x2)P (x2)

P (x1)
. (6)

As already mentioned, in the Bayesian framework data and model are part of the same space. Given
a model (or hypothesis) H, considering x1 ! D as a set of data, and x2 ! ✓ as the parameter
vector of said hypothesis, we can rewrite the above equation as

P (✓|D,H) =
P (D|✓, H)P (✓|H)

P (D|H)
. (7)

This last relation is the so-called Bayes theorem and the most important tool in a Bayesian
inference procedure. In this result, P (✓|D,H) is called the posterior probability of the model.
P (D|✓, H) ⌘ L(D|✓, H) is called the likelihood and it will be our main focus in future sections.
P (✓|H) ⌘ ⇡(✓) is called the prior and expresses the knowledge about the model before acquiring
the data. This prior can be fixed depending on either previous experiment results or the theory
behind. P (D|H) ⌘ Z is the evidence of the model, usually referred as the Bayesian Evidence.
We notice that this evidence acts only as a normalizing factor, and is nothing more than the average
of the likelihood over the prior

P (D|H) =

Z
d
N
✓P (D|✓, H)P (✓|H), (8)

whereN is the dimensionality of the parameter space. This quantity is usually ignored, for practical
reasons, when testing the parameter space of a unique model. Nevertheless, the Bayesian evidence
plays an important role for selecting the model that best “describes” the data, known as model
selection. For convenience, the ratio of two evidences

K ⌘ P (D|H0)

P (D|H1)
=

R
d
N0✓0 P (D|✓0, H0)P (✓0|H0)R

dN1✓1 P (D|✓1, H1)P (✓1|H1)
=

Z0

Z1
, (9)

or equivalently the di↵erence in log evidence lnZ0 � lnZ1 if often termed as the Bayes factor
B0,1:

B0,1 = ln
Z0

Z1
, (10)

where ✓i is a parameter vector (with dimensionality Ni) for the hypothesis Hi and i = 0, 1. In
Eqn. (10), the quantity B0,1 = lnK provides an idea on how well model 0 may fit the data when
is compared to model 1. Je↵reys provided a suitable guideline scale on which we are able to make
qualitative conclusions (see Table II).

We can see that Bayes theorem has an enormous implication with respect to a statistical in-
ferential point of view. In a typical scenario we collect some data and hope to interpret it with a

PICO (Parameters for the Impatient COsmologist)
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Fast Cosmological Parameter Estimation from Microwave Background Temperature
and Polarization Power Spectra
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We improve the algorithm of Kosowsky, Milosavljevic, and Jimenez (2002) for computing power
spectra of the cosmic microwave background. The present algorithm computes not only the tem-
perature power spectrum but also the E-mode polarization and the temperature-polarization cross
power spectra, providing the accuracy required for current cosmological parameter estimation. We
refine the optimum set of cosmological parameters for computing the power spectra as perturbations
around a fiducial model, leading to an accuracy better than 0.5% for the temperature power spec-
trum throughout the region of parameter space within WMAP’s first-year 3σ confidence region. This
accuracy is comparable to the difference between the widely-used CMBFAST code (Seljak and Zal-
darriaga 1996) and Boltzmann codes. Our algorithm (CMBwarp) makes possible a full exploration
of the likelihood region for eight cosmological parameters in about one hour on a laptop computer.
We provide the code to compute power spectra as well as the Markov Chain Monte Carlo algorithm
for cosmological parameters estimation at http://www.physics.upenn.edu/∼raulj/CMBwarp.

PACS numbers: 98.70.V, 98.80.C

I. INTRODUCTION

The recent Wilkinson Microwave Anisotropy Probe
(WMAP) first-year data release has shown that, despite
advances in our ability to compute the power spectrum of
microwave background anisotropies and increases in com-
puter power, cosmological parameter estimation is still
relatively slow and computationally expensive. For ex-
ample, for the simplest parameter space of flat, Lambda
Cold Dark Matter (LCDM) models, the WMAP team
needed about a week of supercomputer time (32 CPUs
on an SGI Origin) to determine the two parameters joint
2-σ confidence contours in the parameter space [1]. Al-
lowing a non-flat geometry slows down the analysis sig-
nificantly and more than quadruples the time required
to draw the 2-σ contours. The main bottleneck in the
parameter estimation process is the theoretical compu-
tation of the power spectrum anisotropy for a very large
number of models, scattered throughout the parameter
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such as CMBFAST ([2]) or CAMB ([3]). To accelerate
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calculation of the angular power spectra, based on ana-
lytical and semi-analytical approximations.

Rigorous analysis of future microwave background
and other complementary data sets require recomput-
ing the likelihood contours for cosmological parameters
each time new data becomes available. Additionally for
each new experiment, not one but many likelihood anal-
yses are required to explore the impacts of potential
systematic errors. Not every researcher has access to
months of supercomputer time for these computations; a
fast and reasonably accurate method to compute confi-
dence regions for cosmological parameters is needed. Mo-
tivated by the enormous computational burden that a
proper 3 to 4-σ exploration of the likelihood hypersur-
face represents and by the related need to understand
more clearly the physical parameters that control the
shape of the power spectrum, Kosowsky, Milosavljevic
and Jimenez (KMJ) [5] presented a new set of “physi-
cal” parameters formed from the usual cosmological pa-
rameters which have nearly-orthogonal effects on the mi-
crowave background temperature power spectrum. Thus,
with this set of parameters, the efficiency of Monte Carlo
techniques for evaluating the likelihood region increases
significantly; these parameters have been used in the
WMAP analysis [1, 6] and then incorporated into Lewis’
suite of microwave background analysis codes [7]. Subse-
quent work in a similar vein constructed a set of normal
parameters that locally transformed the likelihood in pa-
rameter space into Gaussian form[8].
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Abstract

Approximate Bayesian Computation (ABC) enables parameter inference for complex physical systems in
cases where the true likelihood function is unknown, unavailable, or computationally too expensive. It relies
on the forward simulation of mock data and comparison between observed and synthetic catalogues. Here we
present cosmoabc, a Python ABC sampler featuring a Population Monte Carlo variation of the original ABC
algorithm, which uses an adaptive importance sampling scheme. The code is very flexible and can be easily
coupled to an external simulator, while allowing to incorporate arbitrary distance and prior functions. As an
example of practical application, we coupled cosmoabc with the numcosmo library and demonstrate how it can
be used to estimate posterior probability distributions over cosmological parameters based on measurements
of galaxy clusters number counts without computing the likelihood function. cosmoabc is published under the
GPLv3 license on PyPI and GitHub and documentation is available at http://goo.gl/SmB8EX.

1. Introduction

The precision era of cosmology marks the tran-
sition from a data-deprived field to a data-driven sci-
ence on which statistical methods play a central role.
The ever-increasing data deluge must be tackled with

new and innovative statistical methods in order to im-
prove our understanding of the key ingredients driv-
ing our Universe (e.g., Borne, 2009; Ball & Brun-
ner, 2010; de Souza et al., 2014; de Souza & Ciardi,
2015). Given the continuous inflow of new data, one
does not start an analysis from scratch for every new
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We present a simple representation of  Friedman cosmological models in terms of  a pressure-density relationship which allows 
the Einstein equations to be solved exactly. The resulting 1-parameter set of  inflationary models includes the well-known power- 
law and exponential inflationary universes together with new types of  intermediate inflationary behaviour in which the scale 
factor expands as an exponential of  an arbitrary power of  the time. These models can be re-expressed as Friedman universes 
containing a scalar field with particular self-interaction potentials. 

The most commonly studied inflationary uni- 
verses exhibit an exponential increase of mean ex- 
pansion scale-factor with time [ 1 ]. This behaviour 
arises for a wide range of cosmological models in 
which the matter source is temporarily dominated by 
a scalar field with some self-interaction potential 
V(~0). When the field enters a regime in which the 
evolution of ~0 is dominated by its potential energy 
then it exerts the same stress as an effective cosmo- 
logical constant. However, if the potential energy of 
the ~0 field is directly proportional to its kinetic en- 
ergy then there will be power-law ~ t n, n> 1, rather 
than exponential increase in the scale-factor with time 
[2-5 ]. Such power-law inflation has been found also 
in Brans-Dicke cosmological models [6] and in 
higher-order lagrangian theories of gravity [ 7 ]. In the 
quadratic lagrangian theories there also exist partic- 
ular solutions in which the scale-factor increases as 
exp(at2), ot constant [8]. In all these inflationary 
solutions it is interesting to investigate the conse- 
quences for the horizon and flatness problems as well 
as the production of density and gravitational-wave 
fluctuations. However, exact solutions are rare. The 
only exact solutions for self-interacting scalar fields 
are those with V(~0) constant and V(~0)=A 
×exp(-2~0),  with 2, A constants [9]. 

In this letter we shall exhibit a simple class of exact 
Friedman models which exhibit the whole range of 
known inflationary behaviors (and a number of new 
ones) as one allows a single constant parameter to 

vary. They have scale-factors which expand as 
exp[g( t ) ]  where g(t)ocln t or t" with - o o < n < o o .  
These solutions provide an interesting set of simple 
examples with which to explore the cosmological 
ramifications of complicated quasi-classical stresses 
in the early universe. In some particular cases they 
reduce to known or new solutions or scalar fields with 
a particular V(~o). 

We assume that the universe is isotropic and ho- 
mogeneous and described by the Friedman metric 
with expansion scale-factor a(t) and curvature pa- 
rameter k=  0 or + I. The matter stress has pressure p 
and density p. Our principal assumption is that they 
are related by the following model equation of state: 

p+p=Tp a, y#0,  2 constants. (1) 

When 2=  1 this reduces to the standard equation of 
state of a perfect fluid, p =  ( 7 -  1 )p. In the subsequent 
discussion we shall also show that in a number of 
cases, with 7> 0, ( 1 ) is equivalent to a scalar field 
with some V(~)>0.  If 7>/0 we will ensure that the 
dominant energy condition, p+p>~ O, is obeyed. The 
strong energy condition [ 5,10,11 ], p +  3p>~ 0, whose 
violation is necessary and sufficient for the Friedman 
scale-factor to accelerate, can be violated at large or 
small values o fp  according as 2< 1 or 2> 1, respec- 
tively, since 

p+ 3p=p(3~,p~-~-2). (2) 

40 0370-2693/90/$ 03.50 © Elsevier Science Publishers B.V. ( North-Holland ) 
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We study a new model of Graduated Dark Energy.

I. GRADUATED DARK ENERGY

The energy-momentum tensor describing an isotropic
perfect fluid can be decomposed relative to a unique four-
velocity, ua in the form,

Tab = ⇢uaub + p hab, (1)

where ⇢ = Tabuaub is the relativistic energy density
relative to ua, p = Tabhab/3 is the isotropic pressure,
and r⌫uµuµ = 0. The projection tensor into the in-
stantaneous rest spaces of comoving observers is hab =
gab + uaub with the spacetime metric, gab. The set of
equations arise from the twice-contracted Bianchi iden-
tities which, by Einstein’s field equations, Gab = �Tab,
imply the conservation equations

rbG
ab = 0 ! rbT

ab = 0. (2)

Projecting parallel and orthogonal to ua, we obtain the
energy and momentum conservation equations, corre-
spondingly,

⇢̇+⇥(⇢+ p) = 0, (3)

Dap+ (⇢+ p)u̇a = 0, (4)

where u̇a is the four acceleration. Here rbua = Dbua �
u̇aub and Dbua = 1

3⇥hab, ⇥ = Daua is the volume ex-
pansion rate. We note that ⇢ + p in (4), the multiplier
of u̇a, is the inertial mass density which also governs the
conservation of energy given in (3). We define a type of
dark energy inspired by [1] [see eqn. (1) in that paper]
described as follows;

p+ ⇢ = �⇢0

✓
⇢

⇢0

◆�

, (5)

where ⇢0 is positive definite, the parameters � and � are
real constants. So that EoS parameter reads

w =
p

⇢
= �1 + �

✓
⇢

⇢0

◆��1

(6)
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Note that � = 0 would lead to conventional vacuum en-
ergy with p+ ⇢ = 0. Additionally, depending on various
particular values of � and/or � there are various physical
interpretations/implications/correspondences etc., which
would be elaborated substantially in following sections in
the current paper. From continuity equation, ⇢̇+3 ȧ

a (⇢+
p) = 0, we have d⇢+ 3da

a (⇢+ p) = 0 leading to

d⇢+ 3�⇢0

✓
⇢

⇢0

◆� da

a
= 0. (7)

This is solved for

⇢ = ⇢0 [1 + 3�(� � 1) ln a]
1

1�� , (8)

leading to a pressure as

p = �⇢0 [1 + 3�(� � 1) ln a]
�

1�� � ⇢0 [1 + 3�(� � 1) ln a]
1

1�� ,
(9)

and an EoS parameter as

w = �1 +
�

1 + 3�(� � 1) ln a
. (10)

We note that w(a = 1) = �1+�, so that we would expect
� ⇠ 0 as it is well known that w(a = 1) ⇠ �1. w ! �1
in the limits a ! 1 and a ! 0.
Considering this source as dark energy (DE) we end

up with the following nice H(a) function

3H2 = ⇢r,0a
�4 + ⇢m,0a

�3 + ⇢k,0a
�2 + ⇢DE,0 [1 + 3�(� � 1) ln a]

1
1�� ,

(11)

where subscript 0 stands for the present time a = 1 values
of the parameters. Using this we can straightforwardly
write the following H(z) function

H2

H2
0

= ⌦r,0(1 + z)4 + ⌦m,0(1 + z)3 + ⌦k,0(1 + z)2

+⌦DE,0 [1 � 3�(� � 1) ln(1 + z)]
1

1�� .

(12)

H2

H2
0

= ⌦r,0(1 + z)4 + ⌦m,0(1 + z)3 + ⌦k,0(1 + z)2

+⌦DE,0 [1 � 0.8292 ln(1 + z)]�
�

0.2764 .

(13)
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interpretations/implications/correspondences etc., which
would be elaborated substantially in following sections in
the current paper. From continuity equation, ⇢̇+3 ȧ

a (⇢+
p) = 0, we have d⇢+ 3da

a (⇢+ p) = 0 leading to

d⇢+ 3�⇢0

✓
⇢

⇢0

◆� da

a
= 0. (7)

This is solved for

⇢ = ⇢0 [1 + 3�(� � 1) ln a]
1

1�� , (8)

leading to a pressure as

p = �⇢0 [1 + 3�(� � 1) ln a]
�

1�� � ⇢0 [1 + 3�(� � 1) ln a]
1

1�� ,
(9)

and an EoS parameter as

w = �1 +
�

1 + 3�(� � 1) ln a
. (10)

We note that w(a = 1) = �1+�, so that we would expect
� ⇠ 0 as it is well known that w(a = 1) ⇠ �1. w ! �1
in the limits a ! 1 and a ! 0.
Considering this source as dark energy (DE) we end

up with the following nice H(a) function

3H2 = ⇢r,0a
�4 + ⇢m,0a

�3 + ⇢k,0a
�2 + ⇢DE,0 [1 + 3�(� � 1) ln a]

1
1�� ,

(11)

where subscript 0 stands for the present time a = 1 values
of the parameters. Using this we can straightforwardly
write the following H(z) function

H2

H2
0

= ⌦r,0(1 + z)4 + ⌦m,0(1 + z)3 + ⌦k,0(1 + z)2

+⌦DE,0 [1 � 3�(� � 1) ln(1 + z)]
1

1�� .

(12)

H2

H2
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= ⌦r,0(1 + z)4 + ⌦m,0(1 + z)3 + ⌦k,0(1 + z)2
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�

0.2764 .
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We study a new model of Graduated Dark Energy.

I. GRADUATED DARK ENERGY

The energy-momentum tensor describing an isotropic
perfect fluid can be decomposed relative to a unique four-
velocity, ua in the form,

Tab = ⇢uaub + p hab, (1)

where ⇢ = Tabuaub is the relativistic energy density
relative to ua, p = Tabhab/3 is the isotropic pressure,
and r⌫uµuµ = 0. The projection tensor into the in-
stantaneous rest spaces of comoving observers is hab =
gab + uaub with the spacetime metric, gab. The set of
equations arise from the twice-contracted Bianchi iden-
tities which, by Einstein’s field equations, Gab = �Tab,
imply the conservation equations

rbG
ab = 0 ! rbT

ab = 0. (2)

Projecting parallel and orthogonal to ua, we obtain the
energy and momentum conservation equations, corre-
spondingly,

⇢̇+⇥(⇢+ p) = 0, (3)

Dap+ (⇢+ p)u̇a = 0, (4)

where u̇a is the four acceleration. Here rbua = Dbua �
u̇aub and Dbua = 1

3⇥hab, ⇥ = Daua is the volume ex-
pansion rate. We note that ⇢ + p in (4), the multiplier
of u̇a, is the inertial mass density which also governs the
conservation of energy given in (3). We define a type of
dark energy inspired by [1] [see eqn. (1) in that paper]
described as follows;

p+ ⇢ = �⇢0
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◆�

, (5)

where ⇢0 is positive definite, the parameters � and � are
real constants. So that EoS parameter reads
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FIG. 6: Blue lines and 3D scatter color plots described the EMLG
model marginalised posterior distributions for EMLG parameter
↵0 in the {↵0, Omh2(zi; zj), h0} subspace for {z1, z2}, {z1, z3}
and {z2, z3}. The color code indicates the value of ↵0 labeled by
the colour bar. Red lines display 2D marginalised posterior
distributions for the ⇤CDM model.

(15), we obtain

Omh2(zi; zj) = h2
0⌦m,0 + h2

0⌦k,0
(1 + zi)2 � (1 + zj)2

(1 + zi)3 � (1 + zj)3

+h2
0 (1 � ⌦m,0 � ⌦k,0)

sgn(xi)|xi|y � sgn(xj)|xj |y

(1 + zi)3 � (1 + zj)3
,

(22)

where we have used that ⌦m,0 + ⌦k,0 + ⌦DE,0+ = 1.

.

4

FIG. 3: RELATED TO FIG 1: H(z)/(1 + z) vs. z graph of the
graduated DE and ⇤CDM (black). The figure is plotted by using
⌦m,0 = 0.28, H0 = 70km s�1Mpc�1. For graduated DE we use
� = �0.03 along with � = �8 (red) and � = �10 (blue). For the
three observational H(z) values with errors we consider those in
[5].

forest of SDSS DR11 data and read

Omh2(z1; z2) = 0.124 ± 0.045,

Omh2(z1; z3) = 0.122 ± 0.010,

Omh2(z2; z3) = 0.122 ± 0.012.

(21)

Note that these model-independent values of Omh2 for
any two redshifts are stable at about 0.12 which is in ten-
sion with, the value Omh2 = ⌦m,0h2

0 = 0.1430 ± 0.0011
determined for the base ⇤CDM model from the Planck
2018 release [11]. Note that Omh2 is not a↵ected signif-
icantly by H(z = 0) (the accurate value of which is sub-
ject to a great debate in the contemporary cosmology)
owing to the high-precision measurement of H(z = 2.34)
[? ].
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FIG. 4: The case � = �10. 1D Marginalised posterior distribution
for the � parameter. Notice the existence of a global maximum
di↵erent to � = 0, which corresponds to the ⇤CDM model. On
the pink plot, the y-axis is the -log Like and the x-axis is the
gama parameter. so you can see the di↵erence in chisq is about 2,
therefore the improvement is

p
2 sigma...

FIG. 5: TEMPERORY FIGURE FOR OURSELVES. THIS IS
⇢DE/⇢c,0 FIG. 11 FROM [4] TO SHOW HOW WELL OUR FIG.
4 FITS TO THIS MODEL INDEPENDENT FIG. 11.

It is argued in [? ] that this tension can be alleviated
in models in which ⇤ was dynamically screened in the
past. In the graduated DE model the constant that plays
the role of ⇤ is embedded into a parenthesis raised to a
power, which renders our model more featured.

We now consider Om diagnostic expression defined in
Eqn.(18) for our model. Neglecting the radiation, from

Posteriors
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A review of samplers for cosmological model comparison
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(jav: Este art. śı recomendaria que fuese en ingles. De esta manera se podria subir al Arxiv y por
tanto mas investigadores tendrian acceso a el. Ademas, solo viendo los temas/subtemas, parece que
sera un poco extenso >⇠ 15 pags. Tambien podria servir como carta de presentacion para hacer
una estancia en el extranjero. Que opinan?) (isidro:  Me parece perfecto.) In this paper,
we review the types of samplers used in cosmology for the calculation of Bayesian Evidence. The
selected samplers are available in pure Python language.

Keywords:

PACS numbers: ...

I. INTRODUCTION

There are many methods for estimating the parame-
ters of a mathematical model, particularly for cosmologi-
cal models. However, two di↵erent models may have the
same quality in their estimates and, therefore, an addi-
tional statistical tool is required: model comparison.

The most accepted method for comparing cosmologi-
cal models is through Bayesian Evidence. There are other
less complex methods (Refs. [1, 2]), (jav: ademas de los
criterios de informacion, hay aproximaciones a la eviden-
cia bayesiana? laplace approx?) however they have the
disadvantage that are approximations of the Bayesian
Evidence and they carry accuracy errors. In the literatu-
re we can find several algorithms of nested sampling and
calculation of Bayesian evidence; however, in this work
we only focus on algorithms that have a pure Python
implementation available. It is known that a code ba-
sed on C or C++ is more e�cient, but for the scientific
community (individual researchers and not institutional
groups) it has several drawbacks in the installation and
its complex use is the main di�culty.

II. BAYESIAN STATISTICS

To test theoretical models, Bayes’theorem takes the
following form:

P (✓|D,H) =
P (D|✓, H)P (✓|H)

P (D|H)
, (1)

where D represents the observational (or experimental)
dataset, H is the hypothesis or model under test, and
✓ is the set of parameters. The prior P (✓|H) represents
our knowledge about the parameters ✓ before considering

a igomezv0701@alumno.ipn.mx
b medetl@hotmail.com

the observational data. This probability is modified th-
rough likelihood P (D|✓, H) when the experimental data
D is included. The final goal of the Bayesian inference is
to obtain the posterior probability P (✓|D,H), which re-
presents the state of our knowledge of the parameters of
the model once we have taken into account the informa-
tion provided for the data. The normalization constant
P (D|H), or Bayesian Evidence, is the average of the li-
kelihood in the probability prior :

P (D|H) =

Z
d
N
✓P (D|✓, H)P (✓|H), (2)

where N is the dimension of the parameter space. Becau-
se this quantity is a constant, it can be omitted in the
process of parameter estimation, but it is fundamental in
the model comparison.
The Bayesian Evidence is significant because it pena-

lizes the models with the largest number of parameters,
through the prior distribution. Therefore, Occam’s razor
is obeyed, a philosophical guide that says: “Under equal
conditions, the simplest explanation is usually the most
probable”. In other words, the simpler a model is, the
better.
The MCMC methods are good for estimating parame-

ters, but ine�cient when calculating Bayesian Evidence,
therefore, other more e�cient algorithms have been pro-
posed in this field. Such is the case of the nested sampling
proposed by John Skilling in 2003.
The main drawback of the MCMC methods is the

computational cost. There are several attempts to im-
prove MCMC methods with artificial intelligence techni-
ques, such as clustering, genetic algorithms and artificial
neural networks.

III. MCMC SAMPLERS

(isidro: ¿son necesarios?¿podŕıan solo mencio-
narse?) (jav: comentar brevemente y enunciar sus refe-
renias)

22

FIG. 6: Two Markov Chains considering di↵erent variance for our Gaussian proposal distribution. Left panel
corresponds to �̂ = 0.002, while right panel corresponds to �̂ = 0.8.

amount of autocorrelation is reduced. However, as long as the chains are thinned, the precision
for the estimated parameters is reduced [23]. Thinning the chains can be useful in other kind of
circumstances, for example, if we have limitations in memory. Notice that thinning a chain does
not yield incorrect results; it yields correct results but less e�cient than using the full chains.

Autocorrelation probes. A complementary way to look for convergence in a MCMC estima-
tion is by looking for the autocorrelation between the samples. The autocorrelation lag k is defined
as the correlation between every sample and the sample k steps before. It can be quantified as
[24, 25]

⇢k =
Cov(Xt, Xt+k)p

V ar(Xt)V ar(Xt+k)
=

E[(Xt � X)(Xt+k � X)]p
E[(Xt � X)2]E[(Xt+k � X)2]

, (60)

where Xt is the t-th sample and X is the mean of the samples. This autocorrelation should become
smaller as long as k increases (this means that samples start to become independent).

More samplers

Gibbs sampling. The basic idea of the Gibbs sampling algorithm [26] is to split the multidi-
mensional ✓ into blocks and sample each block separately, conditional on the most recent values of
the other blocks. It basically breaks a high-dimensional problem into low-dimensional problems.

The algorithm reads as follows:

1. ✓ consists of k blocks ✓1, ..., ✓k. Then, at step i

2. Draw ✓
i+1
1 from p(✓1|✓i2, ..., ✓ik)

3. Draw ✓
i+1
2 from p(✓2|✓i+1

1 , ✓
i

3, ..., ✓
i

k
)

4. ...

5. Draw ✓
i+1
k

from p(✓k|✓i+1
1 , ✓

i+1
2 , ..., ✓

i+1
k�1)

6. Repeat the above steps for the wished iterations with i ! i+ 1.
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The distribution p(✓1|✓2, ..., ✓k) = p(✓1,...,✓k)
p(✓2,...,✓k)

is known as the full conditional distribution of ✓1.
This algorithm is a special case of MHA where the proposal is always accepted.

Metropolis Coupled Markov Chain Monte Carlo (MC
3). It is easy to see that it could be

a little problematic if our likelihood has local maxima. The MC
3 is a modification of the standard

MCMC algorithm that consists of running several Markov Chains in parallel to explore the target
distribution for di↵erent “temperatures”. This simplifies the way we sample our parameter space
and help us to avoid this local maxima. Here we exemplify the basic idea of this algorithm, however
if you are interested in a more extensive explanation, or a modification to make the temperature
of the chains dynamical, please consult the reference [27].

We consider a tempering version of the posterior distribution P (✓, T |D,H)

P (✓, T |D,H) / L(✓, D)1/TP (✓, H), (61)

where L is the likelihood and P (✓, H) the prior. Notice that, for higher T , individual peaks of L
become flatter, making the distribution easier to sample with a MCMC algorithm. Now, we have
to run N chains with di↵erent temperatures assigned in a ladder T1 < T2 < ... < TN , usually taken
with a geometrically distributed division, with T1 = 1. The coldest chain T1 samples the posterior
distribution more accurately and behaves as a typical MCMC. Then, we define this chain as the
main chain. The rest of the chains are running such that they can cross local maximum likelihoods
easier and transport this information to our main chain.

The chains explore independently the landscape for a certain number of generations. Then, in
a pre-determined interval, the chains are allowed to “swap” its actual position with a probability

Ai,j = min

(✓
L(✓i)

L(✓j)

◆1/Tj�1/Ti

, 1

)
. (62)

In this way, if a swap is accepted, chains i and j must exchange their current position in the
parameter space, then chain i has to be in position ✓j and chain j has to move to position ✓i.

We can see that, since the hottest chain Tmax can access easier to all the modes of P (✓, H, Tmax|D),
then it can propagate its position to colder chains, to be precise, it can propagate its position to
the coldest chain T = 1. At the same time, the position of colder chains can be propagated to
hotter chains, allowing them to explore the entire prior volume.

A�ne Invariant MCMC Ensemble Sampler. The main property of this algorithm relies
on its invariance under a�ne transformations. Let’s consider a highly anisotropic density

p(x1, x2) / exp

✓
�(x1 � x2)2

2✏
� (x1 + x2)2

2

◆
, (63)

which is di�cult to calculate for small ✏. But by making the a�ne transformation

y1 =
x1 � x2p

✏
, y2 = x1 + x2, (64)

we can rewrite the anisotropic density into the easier problem

p(y1, y2) / exp

✓
�(y21 + y

2
2)

2

◆
. (65)

A MCMC sampler has the form X(t + 1) = R(X(t), (t), p), where X(t) is the sample after
t iterations, R is the sampler algorithm,  is the sequence of independent identically distributed
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FIG. 7: Datasets D1 and D2 measured by our straight-line theory. Case 1 (left) and case 2 (right).

random variables and p is the density. A sampler is said to be a�ne invariant if, for any a�ne
transformation Ax+ b,

R(AX(t) + b, (t), pA,b) = AR(X(t), (t), p) + b. (66)

There are already several algorithms that are a�ne invariant, one of the easiest is known as
the stretch move [28]. An algorithm fully implemented in Python under the name EMCEE [29]
is also a�ne invariant, and there are also some other algorithms that can be found in [30].

Even more samplers. The generation of the elements in a Markov chain is probabilistic
by construction and it depends on the algorithm we are working with. The MHA is the easiest
algorithm used in Bayesian inference. However, there are several algorithms that can help us to
fulfill our mission. For instance, some of the most popular and e↵ective ones, are the Hamiltoninan
Monte Carlo (see e.g. [31, 32]) or the Adaptative Metropolis-Hastings (AMH) (see e.g. [33]).

5. FITTING A STRAIGHT-LINE

In this section we apply the tools learned so far to the simplest example: fitting a straight-line.
That is, we assume that we have a certain theory where our measurements should follow a straight
line. Then, in order to apply our techniques, we simulate several datasets along this line. One of
the principal topics we want to analyse is the hyperparameter method and how it works, so we will
apply our analysis to two di↵erent cases (Figure 7):

1. Consider two datasets taken from the same straight-line but with di↵erent errors.

2. Consider two datasets but now we simulate both of them from di↵erent straight-lines and
di↵erent errors.

In our analysis we used the PyMC3 module implemented in Python. Our complete code can be
downloaded from the git repository [34]. This code is simple to use and can be modified easily for
any model to be tested. We recommend to use the file called “new model” where the reader can
find a blank project. Here the data and model can be added up and, by running all the notebook,
obtain all the analysis we present in this section. One can find as well several notes that will help
in programming the model with PyMC3, even if the model contains functions that are not defined
in PyMC3.
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obtain all the analysis we present in this section. One can find as well several notes that will help
in programming the model with PyMC3, even if the model contains functions that are not defined
in PyMC3.
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The distribution p(✓1|✓2, ..., ✓k) = p(✓1,...,✓k)
p(✓2,...,✓k)

is known as the full conditional distribution of ✓1.
This algorithm is a special case of MHA where the proposal is always accepted.

Metropolis Coupled Markov Chain Monte Carlo (MC
3). It is easy to see that it could be

a little problematic if our likelihood has local maxima. The MC
3 is a modification of the standard

MCMC algorithm that consists of running several Markov Chains in parallel to explore the target
distribution for di↵erent “temperatures”. This simplifies the way we sample our parameter space
and help us to avoid this local maxima. Here we exemplify the basic idea of this algorithm, however
if you are interested in a more extensive explanation, or a modification to make the temperature
of the chains dynamical, please consult the reference [27].

We consider a tempering version of the posterior distribution P (✓, T |D,H)

P (✓, T |D,H) / L(✓, D)1/TP (✓, H), (61)

where L is the likelihood and P (✓, H) the prior. Notice that, for higher T , individual peaks of L
become flatter, making the distribution easier to sample with a MCMC algorithm. Now, we have
to run N chains with di↵erent temperatures assigned in a ladder T1 < T2 < ... < TN , usually taken
with a geometrically distributed division, with T1 = 1. The coldest chain T1 samples the posterior
distribution more accurately and behaves as a typical MCMC. Then, we define this chain as the
main chain. The rest of the chains are running such that they can cross local maximum likelihoods
easier and transport this information to our main chain.

The chains explore independently the landscape for a certain number of generations. Then, in
a pre-determined interval, the chains are allowed to “swap” its actual position with a probability

Ai,j = min

(✓
L(✓i)

L(✓j)

◆1/Tj�1/Ti

, 1

)
. (62)

In this way, if a swap is accepted, chains i and j must exchange their current position in the
parameter space, then chain i has to be in position ✓j and chain j has to move to position ✓i.

We can see that, since the hottest chain Tmax can access easier to all the modes of P (✓, H, Tmax|D),
then it can propagate its position to colder chains, to be precise, it can propagate its position to
the coldest chain T = 1. At the same time, the position of colder chains can be propagated to
hotter chains, allowing them to explore the entire prior volume.

A�ne Invariant MCMC Ensemble Sampler. The main property of this algorithm relies
on its invariance under a�ne transformations. Let’s consider a highly anisotropic density

p(x1, x2) / exp

✓
�(x1 � x2)2

2✏
� (x1 + x2)2

2

◆
, (63)

which is di�cult to calculate for small ✏. But by making the a�ne transformation

y1 =
x1 � x2p

✏
, y2 = x1 + x2, (64)

we can rewrite the anisotropic density into the easier problem

p(y1, y2) / exp

✓
�(y21 + y

2
2)

2

◆
. (65)

A MCMC sampler has the form X(t + 1) = R(X(t), (t), p), where X(t) is the sample after
t iterations, R is the sampler algorithm,  is the sequence of independent identically distributed
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behavior in order to speed up the exploration of the distribu-
tion was suggested by Neal (1999b) with his ordered over-
relaxation method. The practical applicability of Gibbs
sampling depends on the ease with which samples can be
drawn from the conditional distributions. In many settings
with likelihoods given by physical models the conditional
distributions will be more or less intractable, thus excluding
the use of Gibbs sampling.

b. Particle filters: Sequential Monte Carlo

Sequential Monte Carlo methods are algorithms optimized
for sampling from a sequence of probability distributions. A
typical example is tracking of dynamical systems, where new
measurements should be included in the inference process as
soon as the data are available. Since the pioneering paper of
Gordon et al. (1993) introducing particle filters as a first
instance of sequential Monte Carlo methods, these techniques
are now commonly applied in signal processing, robotics, and
Bayesian dynamical models. Sequential Monte Carlo meth-
ods approximate the sequence of probability distributions of
interest using a large set of random samples, named particles.
These particles are propagated over time using various im-
portance sampling and resampling mechanisms. The basic
scheme proceeds as follows: Initially, at time 0 a population
of N samples is created by sampling from a prior distribution,

xi;0 ! pðxj0Þ; i ¼ 1; . . . ; N: (91)

Using a transition model pðxtþ1jxtÞ each sample is propa-
gated by one step

xi;tþ1 ! pðxjxi;tÞ; i ¼ 1; . . . ; N; (92)

where the particle parameters are updated probabilistically
according to the transition model. Then all samples are
weighted proportional to the likelihood wi ¼ pðdtþ1jxi;tþ1Þ
and the new population is selected: Each new sample is
selected from the existing population. The probability of a
sample to be selected is proportional to its weight.

Preserving a sufficient coverage of the probability distri-
bution with a reasonable number of particles is a key issue in
sequential Monte Carlo algorithms. Good coverage of se-
quential Monte Carlo methods and applications is given in
several recent review papers (Cappé et al., 2007; Doucet and
Johansen, 2008).

3. MCMC methods II: Specialized algorithms

The methods presented in the previous section are efficient
general purpose methods (Gilks et al., 1996). However, they
exhibit some weaknesses which can be addressed by more
specialized methods. The key issues are as follows: multi-
modality of distributions, variable dimension of the parame-
ter space, adaptive proposal distributions, and faster
exploration of the distribution. The most common and severe
problem is multimodality of the sampling distribution, i.e.,
several maxima well separated by regions of low probability.
The probability to cross such low-probability regions decays
exponentially with their extension. Furthermore, such incom-
plete sampling of the parameter space is often hard to recog-
nize. If the Markov chains are trapped in an extended but
isolated maximum all the convergence diagnostics indicate

proper sampling. Only by chance, e.g., by a Markov chain
sampling a different maximum or by prior knowledge (e.g.,
symmetries of the problem), can such problematic behavior
be recognized. A (partial) solution of that problem is the use
of auxiliary tempered distributions, which facilitate the cross-
ing between different modes of the target distribution.
Mainly, there are two different approaches: In the simulated
tempering approach the parameter space is augmented by an
additional tempering parameter !, whereas in the parallel
tempering algorithm the joint parameter space of a set of
temperature altered distributions is used as sample space.

a. Simulated tempering

In order to explore the parameter space more freely than in
the standard-MCMC scheme, Marinari and Parisi (1992) and
Geyer and Thompson (1995) proposed using a discrete set of
progressively flatter versions of the target distribution by
varying an additional single parameter, the tempering pa-
rameter !, in the target distribution. If exact samples can
be generated from the prior distribution then the tempering
parameter is commonly applied to the likelihood only:

pð"jD;!m; IÞ ¼ pðDj"; IÞ!mpð"jIÞ; (93)

for !m 2 f0 ¼ !0;!1;!2; . . . ;!M ¼ 1g. For ! values close
to zero the target distribution is nearly flat, allowing the
sampler to escape local modes and therefore increasing its
chance of reaching other modes of the distribution. The actual
algorithm alternates between a standard-MCMC step in the "
space with constant !m and moves in the ! direction, where
m0 ¼ m& 1 is proposed with equal probability and accepted
with probability

minf1; cm0pð"jD;!m0 ; IÞ=cmpð"jD;!m; IÞg; (94)

otherwise, m0 is set equal to m. The relative frequency
between the temperature changing moves and the standard-
MCMC steps can be adjusted using an additional parameter
#0. The ci and #0 are constants that can be controlled by the
user and should be tuned so that each of the !i distributions
has roughly equal chance to be visited (Geyer and Thompson,
1995). A special case arises for m0 ¼ 0: In this case an
independent sample can be generated from pð"jIÞ. The time
for one exact sample is therefore given by the time needed by
the Markov chain to migrate through the set of tempered
distribution from !0 to !M and back again. The expectation
values for the target distribution pð"jD; IÞ are calculated from
all the (correlated and uncorrelated) samples with ! ¼ 1,
where the correlated samples are from Markov sequences
which repeatedly reach ! ¼ 1 before drawing a new and
independent sample from the ! ¼ 0 distribution. The inde-
pendent samples provide an expedient method to compute
reliable error estimates (Geyer and Thompson, 1995;
Daghofer et al., 2004) of the expectation values. However,
the expected waiting time for an independent sample is of the
order of M2 even for the ideal situation of a symmetric
random walk in temperature space. Therefore, the number
of temperature levels should be kept low while still ensuring a
sufficient overlap between two adjacent distributions. The
choice of the coefficients cm is crucial for a reasonable
performance of simulated tempering. Ideally, the coefficients
cm should be proportional to the reciprocal of the respective
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extracted from the spectrum. The results of the Bayesian
depth profile reconstruction are given in Fig. 11 (von
Toussaint, Krieger et al., 1999). Before exposure a 13C layer
can be seen, ! 2:2" 1018 atoms=cm2 thick, but with an
average contribution of 20% 12C. After exposure most of
the 13C is still present but there is an additional layer of
12C deposited on top of it. The surprising result is the coex-
istence of erosion and deposition at the area where the out-
ermost closed magnetic surface intersects the divertor
(von Toussaint, Fischer et al., 1999). This so-called
‘‘strike-point’’ area experiences extremely high thermal loads

and was considered as erosion dominated. At the same time
this measurement shows that conclusions based on net
changes in sample thickness may strongly underestimate
the dynamical modifications. For further applications of
Bayesian parameter estimation in physics see, e.g.,
Bretthorst (1988, 2001), Dose (2003a), and Meier et al.
(2003).

IV. NUMERICAL METHODS

A. Overview

Once the likelihood and prior distributions are specified
Bayes’ theorem, Eq. (4), allows one to derive the posterior
probability for every specified parameter vector. However, in
most situations the posterior distribution is required primarily
for the purpose of evaluating expectation values of a function
of interest fð!Þ with respect to the posterior,

hfð!Þi¼
Z
d!fð!Þpð!jD;IÞ¼

Z
d!fð!ÞpðDj!;IÞpð!jIÞ

Z

¼
Z
d!fð!Þp

&ð!Þ
Z

¼
Z
d!gð!Þ: (62)

The normalization constant of the unnormalized distribution
p&ð!Þ is given by

Z ¼
Z

d!p&ð!Þ: (63)

These integrals over the parameter space are commonly high
dimensional and analytically intractable, except in very rare
circumstances, so that typically neither the expectation value
nor the normalization constant are at hand—the latter is the
key quantity for Bayesian model comparison, which will be
discussed in Sec. V. Also the important marginalization of
parameters requires integration in often high-dimensional
spaces. There are two different ways to proceed. Either the
integrant of Eq. (62) is approximated by a different, more
easily accessible function or the integral itself is approximated
by numerical integration or by sampling techniques. A note on
notation: Throughout this review all probabilities are consid-
ered as conditional probabilities (there is always some, how-
ever vague, background information). However, in this section
the focus is on integration techniques instead of probabilistic
inference. Therefore, to keep the notation uncluttered, the I
denoting background information is omitted at several places.

B. Approximation methods

First approximation methods are addressed since they
provide in many circumstances a fast and convenient way
to obtain approximations to the expectation values. If the
underlying assumptions hold (which has to be verified), the
computations are often fast enough for use in monitoring or
even real-time applications.

1. Laplace approximation

The Laplace approximation (also known as saddle-point
approximation) substitutes the distribution gð!Þ by its asymp-
totic normal form around its mode !0, i.e., the value of !

FIG. 10. RBS data of the sample before and after plasma expo-
sition. The signal edge position at around 550 keV is shifted toward
lower energies due to the plasma exposition. At the same time the
peak intensity increases relative to the bulk signal. From von
Toussaint and Dose, 2005.

FIG. 11. Reconstructed depth profiles and asymmetric confidence
intervals from the RBS spectra shown in Fig. 10. (a) The sample
composition before exposure (lines are added to guide the eye), and
(b) the sample composition after exposure. From von Toussaint
et al., 1999b.
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maximizing gð!Þ. Expanding the logarithm of gð!Þ around
this point yields

lngð!Þ # lngð!0Þ $ 1
2ð! $ !0ÞTAð! $ !0Þ; (64)

where the elements of the N % N Hessian matrix A are
defined by

Aij ¼
@2

@!i@!j
lngð!Þ

!!!!!!!!!¼!0

: (65)

Taking the exponential of Eq. (64) provides an
N-dimensional Gaussian function

gð!Þ # gð!0Þ exp½$1
2ð! $ !0ÞTAð! $ !0Þ( (66)

and the analytical integration of Eq. (62) finally yields

hfð!Þi # gð!0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2"ÞN
jAj

s
: (67)

In order to apply the Laplace approximation the mode has
to be localized, typically using a gradient-based numerical
optimization algorithm [e.g., the conjugate gradient method
(Press et al., 1996)], followed by the evaluation of the
Hessian matrix at the mode. The Laplace approximation
will be accurate if the data vector consists of a suitably large
number of observations such that the central limit theorem
applies. However, especially in problems of medium to high
dimensionality this is rarely the case and the dependence of
the approximation on a single point (the mode) of the distri-
bution may be fatal as generic properties of the distribution
may be completely missed. On the other hand, an approxi-
mate value of the evidence is easily accessible with the
Laplace approximation, a difference to most sampling meth-
ods. Extensions to higher order approximations and estimates
of the asymptotic accuracy are given by Lindley et al. (1980),
Tierney and Kadane (1986), and Kass et al. (1988). Several
special geometries, e.g., spheres are considered by Bagchi
and Kadane (1991).

2. Variational methods

Only recently variational methods have been used to ap-
proximate complex posterior distributions. The basic idea is
to introduce a tractable and flexible parametric test distribu-
tion qð!;wÞ and to optimize the parameter vector w to provide
the best possible approximation to the true posterior distri-
bution. The most commonly used objective function to mea-
sure the quality of the approximation is the relative entropy
between the test distribution and the (unnormalized) posterior
distribution as target distribution

FðwÞ ¼
Z

d!qð!;wÞ ln qð!;wÞ
pðDj!; IÞpð!jIÞ

¼
Z

d!qð!;wÞ ln qð!;wÞ
pð!jD; IÞ $ lnpðDjIÞ: (68)

Since the relative entropy is never negative the objective
function is bounded below by $ lnpðDjIÞ and the minimum
occurs when the test function equals the posterior distribution
pð!jD; IÞ. Although the test function may be of arbitrary

complexity (the problem of overfitting does not exist), often
factorized distributions are used as test functions (Jordan
et al., 1999; Jaakkola and Jordan, 2000; Jaakkola, 2001) to
allow for an efficient (convex) optimization of the parameters
w. A convenient software package (VIBES) for variational
inference in Bayesian networks exists (Bishop et al.,
2003). It may be tempting to use an optimized test function
as a proposal function for importance sampling. However, the
optimized test function is usually more compact than the
target distribution which is a severe disadvantage for a pro-
posal function.

C. Quadrature

In many problems the dimension of the parameter space is
small, i.e., of the order of 1 to 10. In this situation the classical
numerical integration, also called quadrature, is often the
method of choice for Bayesian computations. This holds
especially for the computation of the evidence [cf. Eq. (63)]
which is very challenging to estimate with MCMC methods.
For the quadrature an extensive literature exists [see, e.g.,
Davis and Rabinowitz (1984) and Press et al. (1996) and
references therein]. The one-dimensional integral

I ¼
Z

d!gð!Þ (69)

is approximated by a weighted average of the function g
evaluated at a number of design points !i¼1;...;n

I #
Xn

i¼1

wigð!iÞ; (70)

where the different quadrature schemes are distinguished by
using different sets of design points and weights wi¼1;...;n.
Commonly Gauss-Hermite quadrature rules are especially
advantageous for integrals of probability distributions, since
often gð!Þ is approximately normal and therefore closely
approximated by hð!Þ expð!2=2Þ, where hð!Þ is a polynomial
in ! and the design points and weights of the Gauss-Hermite
quadrature are now such that Eq. (70) yields the exact integral
if expð!2=2Þgð!Þ is a polynomial up to order 2n$ 1 on the
support of ( $1;1½. Tables of design points and weights for
different quadrature rules can be found in Abramowitz and
Stegun (1965). In one-dimensional cases the efficiency of
quadrature rules is unsurpassed. The situation changes if the
number of dimensions increases. Assuming an integration
scheme with n design points in one dimension, the same
coverage in m dimensions requires nm design points, which
will be impractically large unless m is sufficiently small
(m & 10). This exponential increase in the number of func-
tion evaluations with the dimensionality of the problem is
often called the curse of dimensions and is the driving force
toward Monte Carlo methods. Nevertheless, quadrature, de-
spite suffering from the curse of dimension, is indispensable
for several reasons: Well-tested implementations of the
various algorithms exist [see, e.g., Press et al. (1996), GSL
(2008), and NAG (2008)] and reliable error estimates are
available. Furthermore, the quadrature algorithms are very
robust and can be used to validate MCMC codes.
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d!qð!;wÞ ln qð!;wÞ
pð!jD; IÞ $ lnpðDjIÞ: (68)

Since the relative entropy is never negative the objective
function is bounded below by $ lnpðDjIÞ and the minimum
occurs when the test function equals the posterior distribution
pð!jD; IÞ. Although the test function may be of arbitrary

complexity (the problem of overfitting does not exist), often
factorized distributions are used as test functions (Jordan
et al., 1999; Jaakkola and Jordan, 2000; Jaakkola, 2001) to
allow for an efficient (convex) optimization of the parameters
w. A convenient software package (VIBES) for variational
inference in Bayesian networks exists (Bishop et al.,
2003). It may be tempting to use an optimized test function
as a proposal function for importance sampling. However, the
optimized test function is usually more compact than the
target distribution which is a severe disadvantage for a pro-
posal function.

C. Quadrature

In many problems the dimension of the parameter space is
small, i.e., of the order of 1 to 10. In this situation the classical
numerical integration, also called quadrature, is often the
method of choice for Bayesian computations. This holds
especially for the computation of the evidence [cf. Eq. (63)]
which is very challenging to estimate with MCMC methods.
For the quadrature an extensive literature exists [see, e.g.,
Davis and Rabinowitz (1984) and Press et al. (1996) and
references therein]. The one-dimensional integral

I ¼
Z

d!gð!Þ (69)

is approximated by a weighted average of the function g
evaluated at a number of design points !i¼1;...;n

I #
Xn

i¼1

wigð!iÞ; (70)

where the different quadrature schemes are distinguished by
using different sets of design points and weights wi¼1;...;n.
Commonly Gauss-Hermite quadrature rules are especially
advantageous for integrals of probability distributions, since
often gð!Þ is approximately normal and therefore closely
approximated by hð!Þ expð!2=2Þ, where hð!Þ is a polynomial
in ! and the design points and weights of the Gauss-Hermite
quadrature are now such that Eq. (70) yields the exact integral
if expð!2=2Þgð!Þ is a polynomial up to order 2n$ 1 on the
support of ( $1;1½. Tables of design points and weights for
different quadrature rules can be found in Abramowitz and
Stegun (1965). In one-dimensional cases the efficiency of
quadrature rules is unsurpassed. The situation changes if the
number of dimensions increases. Assuming an integration
scheme with n design points in one dimension, the same
coverage in m dimensions requires nm design points, which
will be impractically large unless m is sufficiently small
(m & 10). This exponential increase in the number of func-
tion evaluations with the dimensionality of the problem is
often called the curse of dimensions and is the driving force
toward Monte Carlo methods. Nevertheless, quadrature, de-
spite suffering from the curse of dimension, is indispensable
for several reasons: Well-tested implementations of the
various algorithms exist [see, e.g., Press et al. (1996), GSL
(2008), and NAG (2008)] and reliable error estimates are
available. Furthermore, the quadrature algorithms are very
robust and can be used to validate MCMC codes.
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We present algorithm that allows e�cient sampling of complex multi-dimensional likelihoods and
that is trivially parallelizable.

I. PRESCOOPED

See http://arxiv.org/abs/0903.0837.

II. INTRODUCTION

MCMC sampling is bad - you need to wait for burn-in and therefore in the limit of many (> 100) chains one is
limited by the burn-in period or waiting for chains to “forget” their initial state if starting at high likelihood region.

III. GAUSSIAN EMBEDDING SAMPLING

A. Importance Sampling

Assuming that one can sample from a known distribution (called source distribution, usually chosen so that it is
easier to sample from it), then one can weight samples to recover the e↵ective sampling from a target distribution
(whose properties one would like to study)

wi = A
Lt(xi)

Ls(xi)
, (1)

where wi is the weight for sample i and Lt and Ls are target and source distribution respectively. A constant A is
a convenience constant that makes weights have a desirable magnitude. A trivial example is Ls = 1, where we just
sample from the prior and evaluate likelihood at those points. A more typical example is to importance sample an
MCMC chain from certain base dataset with intent to add new data.

It is obvious that this must work. The number density of samples in a small volume d
Nx is proportional to the

source likelihood at that position

n̄(x) / Ls(x) (2)

For small enough volume, the weight given by equation ?? is constant and hence the weighted number density of
samples is simply given by

n̄w(x) = n̄(x)A
Lt(xi)

Ls(xi)
/ Lt(x) (3)

⇤ author list alphabetized
†Electronic address: anze@bnl.gov
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MCMC is an algorithm that walks around the likelihood

and produces samples 

• Scales perfectly for small number 
of chains, but not on modern 
architectures with 1000s of cores 
one always needs to throw away 
some ~thousands steps, because 
of the burn in period.  

( the initial state is “forgotten")
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• Populate a lists of Gaussians with a single Gaussian 
centered at a chosen point with a suitable covariance

• Take N samples from the most recently added Gaussian

• Calculate importance sample weights

2

One can use weighted samples in exactly the same way one uses standard MCMC weights but counting weights
as representing wi samples at position xi. For example, the marginalized posterior probabilities can be found by
measuring the weighted histograms. The expectation values of parameters can be calculated simply by

E(hxi) =
P

wixiP
wi

, (4)

etc.
Importance sampling algorithm is formally always correct (as long a Ls is always positive where Lt is positive),

however, the speed of convergence is or course massively a↵ected by how close the source and target distributions are.
One wants weights to not vary too much in magnitude.

Traditionally, people tried to sample a complex likelihood, by embedding it into a single large Gaussian. In many
dimensions this fails miserably.

B. New algorithm

The new algorithm is an importance sampling algorithm, where we assume the source likelihood is a sum of
Gaussians

Ls(x) =
X

i

Gi(x � µi,Ci) (5)

Additional, we always choose A, so that the the weight at the maximum (i.e. the best discovered maximum so far)
of target likelihood is unity.

The algorithm proceeds as follow

1. Populate a list of Gaussians with a single Gaussian centered at a chosen starting point. The covariance of this
Gaussian can in principle be anything, but a good choice, such as suitably regularized second derivative matrix
of the target likelihood works best.

2. Take N samples from the most recently added Gaussian in the list. That is, draw N samples from this Gaussian
and evaluate the target likelihood at those positions. These N samples can be taken in a trivially parallelizable
manner.

3. After this step, we have N samples taken from each of the M Gaussians in the list. These N samples therefore
sample the probability distribution given in Equation 5.

Now we calculate importance sample weights,

wi = A
Lt(xi)P

j=1...M Gj(xi � µj ,Cj)
, (6)

where A is chosen so that the weight is unity at the position of the maximum encountered likelihood of Lt. If
Ls is sampling the target distribution well, the weights will be around unity, much less than unity where we are
oversampling the parameters space and much more than unity where we are undersampling parameter space.
At this point we can also calculate the e↵ective number of samples according to the formula

Ne↵ =

P
wi

max(wi)
(7)

This formula counts the maximum weight as one sample and others are suppressed by their relative irrelevance.

4. Determine convergence by calculating Ne↵ and demanding that it is larger than some large number (typically
we demand Ne↵ > 4000. See discussion below.

5. Locate the highest importance weight – this is the position where our covering function is not sampling the
distribution well. Add a Gaussian centered at that position and repeat the step number 2 until converged[2].

A natural convergence tests would be to demand that the maximum weight is less than some predetermined criterion.
However, our numerical experiments has shown that demanding a minimum Ne↵ is a better test of convergence for
the following reason. Intuitive demand for the convergence is that our covering Gaussians have significant probability

• Add a new Gaussian at the position of the largest importance weight

• Repeat step 2, until convergence

Game Sampler

    If Ls is sampling the target distribution well the weights will be around unity,  << 1 we are 
oversampling the parameters space and >> 1 where we are undersampling parameter space 

• The effective number of samples
Demanding large Neff shown to be robust. If part of posterior is not covered, weights 
will blow up in that region, reducing then the number of effective samples 
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etc.
Importance sampling algorithm is formally always correct (as long a Ls is always positive where Lt is positive),

however, the speed of convergence is or course massively a↵ected by how close the source and target distributions are.
One wants weights to not vary too much in magnitude.

Traditionally, people tried to sample a complex likelihood, by embedding it into a single large Gaussian. In many
dimensions this fails miserably.
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X
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Gi(x � µi,Ci) (5)

Additional, we always choose A, so that the the weight at the maximum (i.e. the best discovered maximum so far)
of target likelihood is unity.

The algorithm proceeds as follow

1. Populate a list of Gaussians with a single Gaussian centered at a chosen starting point. The covariance of this
Gaussian can in principle be anything, but a good choice, such as suitably regularized second derivative matrix
of the target likelihood works best.

2. Take N samples from the most recently added Gaussian in the list. That is, draw N samples from this Gaussian
and evaluate the target likelihood at those positions. These N samples can be taken in a trivially parallelizable
manner.

3. After this step, we have N samples taken from each of the M Gaussians in the list. These N samples therefore
sample the probability distribution given in Equation 5.

Now we calculate importance sample weights,

wi = A
Lt(xi)P

j=1...M Gj(xi � µj ,Cj)
, (6)

where A is chosen so that the weight is unity at the position of the maximum encountered likelihood of Lt. If
Ls is sampling the target distribution well, the weights will be around unity, much less than unity where we are
oversampling the parameters space and much more than unity where we are undersampling parameter space.
At this point we can also calculate the e↵ective number of samples according to the formula

Ne↵ =

P
wi

max(wi)
(7)

This formula counts the maximum weight as one sample and others are suppressed by their relative irrelevance.

4. Determine convergence by calculating Ne↵ and demanding that it is larger than some large number (typically
we demand Ne↵ > 4000. See discussion below.

5. Locate the highest importance weight – this is the position where our covering function is not sampling the
distribution well. Add a Gaussian centered at that position and repeat the step number 2 until converged[2].

A natural convergence tests would be to demand that the maximum weight is less than some predetermined criterion.
However, our numerical experiments has shown that demanding a minimum Ne↵ is a better test of convergence for
the following reason. Intuitive demand for the convergence is that our covering Gaussians have significant probability
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Test 1: Gaussian

2-G

Target distribution

3-G

1-G

Source Gaussians (indicated by crosses) 
and the density of unweighted samples.

Density of weighted samples that 
sample the target distribution.

2

One can use weighted samples in exactly the same way one uses standard MCMC weights but counting weights
as representing wi samples at position xi. For example, the marginalized posterior probabilities can be found by
measuring the weighted histograms. The expectation values of parameters can be calculated simply by

E(hxi) =
P

wixiP
wi

, (4)

etc.
Importance sampling algorithm is formally always correct (as long a Ls is always positive where Lt is positive),

however, the speed of convergence is or course massively a↵ected by how close the source and target distributions are.
One wants weights to not vary too much in magnitude.

Traditionally, people tried to sample a complex likelihood, by embedding it into a single large Gaussian. In many
dimensions this fails miserably.

B. New algorithm

The new algorithm is an importance sampling algorithm, where we assume the source likelihood is a sum of
Gaussians

Ls(x) =
X

i

Gi(x � µi,Ci) (5)

Additional, we always choose A, so that the the weight at the maximum (i.e. the best discovered maximum so far)
of target likelihood is unity.

The algorithm proceeds as follow

1. Populate a list of Gaussians with a single Gaussian centered at a chosen starting point. The covariance of this
Gaussian can in principle be anything, but a good choice, such as suitably regularized second derivative matrix
of the target likelihood works best.

2. Take N samples from the most recently added Gaussian in the list. That is, draw N samples from this Gaussian
and evaluate the target likelihood at those positions. These N samples can be taken in a trivially parallelizable
manner.

3. After this step, we have N samples taken from each of the M Gaussians in the list. These N samples therefore
sample the probability distribution given in Equation 5.

Now we calculate importance sample weights,

wi = A
Lt(xi)P

j=1...M Gj(xi � µj ,Cj)
, (6)

where A is chosen so that the weight is unity at the position of the maximum encountered likelihood of Lt. If
Ls is sampling the target distribution well, the weights will be around unity, much less than unity where we are
oversampling the parameters space and much more than unity where we are undersampling parameter space.
At this point we can also calculate the e↵ective number of samples according to the formula

Ne↵ =

P
wi

max(wi)
(7)

This formula counts the maximum weight as one sample and others are suppressed by their relative irrelevance.

4. Determine convergence by calculating Ne↵ and demanding that it is larger than some large number (typically
we demand Ne↵ > 4000. See discussion below.

5. Locate the highest importance weight – this is the position where our covering function is not sampling the
distribution well. Add a Gaussian centered at that position and repeat the step number 2 until converged[2].

A natural convergence tests would be to demand that the maximum weight is less than some predetermined criterion.
However, our numerical experiments has shown that demanding a minimum Ne↵ is a better test of convergence for
the following reason. Intuitive demand for the convergence is that our covering Gaussians have significant probability
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Test 1: Gaussian
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One can use weighted samples in exactly the same way one uses standard MCMC weights but counting weights
as representing wi samples at position xi. For example, the marginalized posterior probabilities can be found by
measuring the weighted histograms. The expectation values of parameters can be calculated simply by

E(hxi) =
P

wixiP
wi

, (4)

etc.
Importance sampling algorithm is formally always correct (as long a Ls is always positive where Lt is positive),

however, the speed of convergence is or course massively a↵ected by how close the source and target distributions are.
One wants weights to not vary too much in magnitude.

Traditionally, people tried to sample a complex likelihood, by embedding it into a single large Gaussian. In many
dimensions this fails miserably.

B. New algorithm

The new algorithm is an importance sampling algorithm, where we assume the source likelihood is a sum of
Gaussians

Ls(x) =
X

i

Gi(x � µi,Ci) (5)

Additional, we always choose A, so that the the weight at the maximum (i.e. the best discovered maximum so far)
of target likelihood is unity.

The algorithm proceeds as follow

1. Populate a list of Gaussians with a single Gaussian centered at a chosen starting point. The covariance of this
Gaussian can in principle be anything, but a good choice, such as suitably regularized second derivative matrix
of the target likelihood works best.

2. Take N samples from the most recently added Gaussian in the list. That is, draw N samples from this Gaussian
and evaluate the target likelihood at those positions. These N samples can be taken in a trivially parallelizable
manner.

3. After this step, we have N samples taken from each of the M Gaussians in the list. These N samples therefore
sample the probability distribution given in Equation 5.

Now we calculate importance sample weights,

wi = A
Lt(xi)P

j=1...M Gj(xi � µj ,Cj)
, (6)

where A is chosen so that the weight is unity at the position of the maximum encountered likelihood of Lt. If
Ls is sampling the target distribution well, the weights will be around unity, much less than unity where we are
oversampling the parameters space and much more than unity where we are undersampling parameter space.
At this point we can also calculate the e↵ective number of samples according to the formula

Ne↵ =

P
wi

max(wi)
(7)

This formula counts the maximum weight as one sample and others are suppressed by their relative irrelevance.

4. Determine convergence by calculating Ne↵ and demanding that it is larger than some large number (typically
we demand Ne↵ > 4000. See discussion below.

5. Locate the highest importance weight – this is the position where our covering function is not sampling the
distribution well. Add a Gaussian centered at that position and repeat the step number 2 until converged[2].

A natural convergence tests would be to demand that the maximum weight is less than some predetermined criterion.
However, our numerical experiments has shown that demanding a minimum Ne↵ is a better test of convergence for
the following reason. Intuitive demand for the convergence is that our covering Gaussians have significant probability
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6

3.1. Bayes theorem, priors, posteriors and all that stu↵

When anyone is interested on the Bayesian framework, there are several concepts to understand
before presenting the results. In this section we quickly review these concepts and then we take
back the example about the coin toss given in the last section.

The Bayes theorem. The Bayes theorem is a direct consequence of the axioms of probability
shown in Eqs. (2). From Eqn. (2d), without loss of generality, it must be fulfilled that P (x1\x2) =
P (x2 \ x1). In such case the following relation applies

P (x2|x1) =
P (x1|x2)P (x2)

P (x1)
. (6)

As already mentioned, in the Bayesian framework data and model are part of the same space. Given
a model (or hypothesis) H, considering x1 ! D as a set of data, and x2 ! ✓ as the parameter
vector of said hypothesis, we can rewrite the above equation as

P (✓|D,H) =
P (D|✓, H)P (✓|H)

P (D|H)
. (7)

This last relation is the so-called Bayes theorem and the most important tool in a Bayesian
inference procedure. In this result, P (✓|D,H) is called the posterior probability of the model.
P (D|✓, H) ⌘ L(D|✓, H) is called the likelihood and it will be our main focus in future sections.
P (✓|H) ⌘ ⇡(✓) is called the prior and expresses the knowledge about the model before acquiring
the data. This prior can be fixed depending on either previous experiment results or the theory
behind. P (D|H) ⌘ Z is the evidence of the model, usually referred as the Bayesian Evidence.
We notice that this evidence acts only as a normalizing factor, and is nothing more than the average
of the likelihood over the prior

P (D|H) =

Z
d
N
✓P (D|✓, H)P (✓|H), (8)

whereN is the dimensionality of the parameter space. This quantity is usually ignored, for practical
reasons, when testing the parameter space of a unique model. Nevertheless, the Bayesian evidence
plays an important role for selecting the model that best “describes” the data, known as model
selection. For convenience, the ratio of two evidences

K ⌘ P (D|H0)

P (D|H1)
=

R
d
N0✓0 P (D|✓0, H0)P (✓0|H0)R

dN1✓1 P (D|✓1, H1)P (✓1|H1)
=

Z0

Z1
, (9)

or equivalently the di↵erence in log evidence lnZ0 � lnZ1 if often termed as the Bayes factor
B0,1:

B0,1 = ln
Z0

Z1
, (10)

where ✓i is a parameter vector (with dimensionality Ni) for the hypothesis Hi and i = 0, 1. In
Eqn. (10), the quantity B0,1 = lnK provides an idea on how well model 0 may fit the data when
is compared to model 1. Je↵reys provided a suitable guideline scale on which we are able to make
qualitative conclusions (see Table II).

We can see that Bayes theorem has an enormous implication with respect to a statistical in-
ferential point of view. In a typical scenario we collect some data and hope to interpret it with a
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JAVazquez 55

... and finally

4. STATISTICS IN COSMOLOGY

4.3 Bayesian Analysis

Over the last decade or so, the vast amount of information coming from a wide

range of sources, including CMB, SNe and LSS, has increased amazingly. We

would like to translate this experimental/observational information into con-

straints of our model(s), summarised by the estimation of the cosmological pa-

rameters involved. The concordance �CDM model, previously described, depends

on a set of cosmological parameters shown in Section 4.1. A primary goal concern-

ing observational cosmology is to determine best-fit parameter values for a given

model, as well as to decide which model is in best-agreement with observational

data. To do this we focus on the Bayesian inference. Some excellent reviews

of Bayesian statistics applied to cosmology are given by Heavens [90], Liddle

[138], Liddle et al. [142], Trotta [227], Verde [236, 237], von Toussaint [241], and

the textbook for data analysis Sivia and Skilling [215].

4.3.1 Parameter estimation

A Bayesian analysis provides a consistent approach to estimate the values

of the parameters � within a model M , which best describe the data D. The

method is based on the assignment of probabilities to the quantities of interest,

and then the manipulation of these probabilities given a series of rules, which

Bayes’ theorem plays the main role [138]. Bayes’ theorem states that

P (�|D, M) =
P (D|�, M) P (�|M)

P (D|M)
. (4.14)

In this expression, the prior probability P(�|M) � � represents what we thought

the probability of � was before considering the data. This probability is modi-

fied through the likelihood P(D|�,M) � L. The posterior probability P(�|D,M)

represents the state of knowledge once we have taken the experimental data D

into account. The normalisation constant in the denominator is the marginal

likelihood or Bayesian evidence P(D|M) � Z, as is normally called in cosmology.

Since this quantity is independent of the parameters �, it is commonly ignored

in parameter estimation but it takes the central role for model comparison.
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qualitative conclusions (see Table II).

We can see that Bayes theorem has an enormous implication with respect to a statistical in-
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* Confidence regions are regions R in model space such that


 where p is the confidence level we request (e.g., 68.3% 95.4% etc.)

10 Licia Verde

given the data. However having ignored P(D) and the prior this approach cannot
give in general a goodness of fit and thus cannot give an absolute probability for a

given model. However it can give relative probabilities. If the data are Gaussianly

distributed the likelihood is given by a multi-variate Gaussian:

L =
1

(2π)n/2|detC|1/2
exp

[

−
1

2
∑
i j

(D− y)iC
−1
i j (D− y) j

]

(9)

whereCi j = 〈(Di− yi)(Dj− y j)〉 is the covariance matrix.
It should be clear from this that the relation between χ2 and likelihood is that, for

Gaussian distributions, L ∝ exp[−1/2χ2] and minimizing the χ2 is equivalent at
minimizing the likelihood. In this case likelihood analysis and χ2 coincide and by
the end of this section, it will this be no surprise that the Gamma function appearing

in the χ2 distribution is closely related to the Gaussian integrals.
The subtle step is that now, in Bayesian statistics, confidence regions are regions

R in model space such that
∫
RP(θ |D)dθ = p where p is the confidence level we

request (e.g., 68.3%, 95.4% etc.). Note that by integrating the posterior over the

model parameters, the confidence region depends on the prior information: as seen

in §3.1 different priors give different posteriors and thus different regions R.
It is still possible to report results independently of the prior by using the Like-

lihood ratio. The likelihood at a particular point in parameter space is compared

with that at the best fit value,Lmax where likelihood id maximized. Thus a model is

acceptable if the likelihood ratio

Λ = −2ln
[
L (θ )

Lmax

]
(10)

is above a given threshold. The connection to the χ2 for Gaussian distribution should
be clear. In general, the threshold can be calibrated by calculating the entire distri-
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12 Licia Verde

P(θ1..θm−1|D) =C0 exp

[
−
1

2
C1−2C2A+C3A

2

]
dA (13)

(where C0...3 denote constants and it is left as an exercise to write them down

explicitly) and that this kind of integral is evaluated by using the substitution

A−→ A−C2/C3 giving something ∝ exp[−1/2(C1−C22/C3)].
In cases where the likelihood surface (describing the value of the likelihood as
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Model Selection

Two different and competing models of the Universe 
may explain the data equally well,...

so, how do we choose between them?

Answer : Occam’s razor (~1328)

"when you have two competing theories that make the same 

predictions, the simpler one is the better."



i.e. data

If the model is too simple , it might not fit data equally well, 

A complex model that explains the data slightly better 

should be penalised by the inclusion of extra information 

reflects a lack of predictability

then it can be discarded

"Everything should be made as simple as possible, but not simpler."
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Model Selection

goodness 

of fit

~Occam’s 

factor

3.3 Bayesian Analysis

Discriminating among models and determining which of them is the most

plausible given some data is a task for model comparison techniques, whose ap-

plication is discussed in the next section.

3.3.2 Model selection

There is nowadays a rich diversity of models trying to describe the vast amount

of cosmological information. Some of them might involve complex interactions

or introduce a high number of parameters, but provide just as good fit as the

standard �CDM model (see Table 3.1). So, how can we perform an objective

comparison between them and choose the appropriate model? The solution was

proposed by William of Occam: the simplest model which covers all the facts

ought to be preferred. That is, a complex model that explains the data slightly

better than a simple one should be penalised by the inclusion of extra parameters,

because this additional information reflects a lack of predictability in the model.

Moreover, if a model is too simple, it might not fit certain data equally well, then

it can be discarded [141, 228].

Many attempts have been performed to translate Occam’s razor into a math-

ematical language for model selection. Two major types have been used so far:

Bayesian evidence and Information criteria; where the latter one can be used as

an useful approximation when the Bayesian evidence cannot be computed.

Information criteria is based on some simplifying approximations to the

full Bayesian evidence. The method considers the best-fit values and attaches a

penalty term for more complex models:

• The Akaike Information criterion (AIC), introduced by Hirotugu Akaike

has the form

AIC ⇤ �2 lnLmax + 2k, (3.15)

where the penalty term is induced by the number of free parameters k to

be estimated.
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• The Bayesian Information Criterion (BIC), was derived by Gideon E. Schwarz

and it is given by

BIC ⇤ �2 lnLmax + k ln N, (3.16)

where N is the number of datapoints. It follows from a Gaussian approxi-

mation of the Bayesian evidence for a large number of samples.

• The Deviance Information Criterion (DIC), was proposed by David J Spiegel-

halter. It is a generalization of the AIC and BIC written as

DIC ⇤ �2�DKL + 2Cb, (3.17)

where the former term is the estimated KL divergence and the latter one is

the e⇥ective number of parameters.

An extended discussion of the di⇥erent information criteria can be found in

[136, 141, 228].

Bayesian evidence. This is the primordial tool for the model selection we

focus on. It applies the same type of analysis as in parameter estimation, but

now at the level of models rather than parameters. The Bayesian evidence is the

key quantity to bear in mid as it balances the complexity of cosmological models

and then, naturally, incorporates Occam’s razor. It has been applied to a wide

diversity of cosmological contexts, see for example [93, 109, 113].

Let us consider several models M , each of them with prior probability P (M).

Bayes’ theorem for model selection is

P (M |D) =
P (D|M)P (M)

P (D)
. (3.18)

The left-hand side denotes the probability of the model given the data, which is

exactly what we are looking for in model selection. We need, therefore, to obtain

an expression that allows us to compute the Bayesian evidence in terms of the

information we already have. As we previously mentioned, the Bayesian evidence

is simply the normalisation constant of the posterior distribution expressed by

Z =

�
L(D|�)�(�)dN�. (3.19)
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3.3.1 Parameter estimation

A Bayesian analysis provides a consistent approach to estimating the values

of the parameters � within a model M , which best describe the data D. The

method is based on the assignment of probabilities to the quantities of interest,

and then the manipulation of these probabilities given a series of rules, in which

Bayes’ theorem plays the main role [137]. Bayes’ theorem states that

P (�|D, M) =
P (D|�, M) P (�|M)

P (D|M)
. (3.14)

In this expression, the prior probability P(�|M) ⇥ � represents what we thought

the probability of � was before considering the data. This probability is modi-

fied through the likelihood P(D|�,M) ⇥ L. The posterior probability P(�|D,M)

represents the state of knowledge once we have taken the experimental data D

into account. The normalisation constant in the denominator is the marginal

likelihood or Bayesian evidence P(D|M) ⇥ Z, as is normally called in cosmology.

Since this quantity is independent of the parameters �, it is commonly ignored

in parameter estimation but it takes the central role for model comparison.

The central step for parameter estimation is to construct the likelihood func-

tion L for the measurements, and then the exploration of the region around its

maximum value Lmax. A simple chi-squared function is often used ⇥2 = �2 lnL.

when the distributions are Gaussian. However, some current problems in cos-

mology present obstacles for carrying out this procedure straightforwardly (some

of them discussed by Liddle [137]). Fortunately, models of our interest can be

easily tackled by numerical techniques developed on statistical fields, in partic-

ular the methods known as Markov Chain Monte Carlo (MCMC). There have

been developed di�erent codes employing MCMC techniques to carry out the

exploration of the cosmological parameter-space, for instance CosmoMC [133],

CosmoHammer [4], CMBEASY [62]. Although some of them use a simple

Metropolis-Hasting algorithm by default, nowadays improved algorithms have

been adapted to explore complex posterior probability distributions.

-64-



The Bayesian evidence 

is simply the normalisation constant 

3. STATISTICS IN COSMOLOGY

• The Bayesian Information Criterion (BIC), was derived by Gideon E. Schwarz

and it is given by

BIC ⇤ �2 lnLmax + k ln N, (3.16)

where N is the number of datapoints. It follows from a Gaussian approxi-

mation of the Bayesian evidence for a large number of samples.

• The Deviance Information Criterion (DIC), was proposed by David J Spiegel-

halter. It is a generalization of the AIC and BIC written as

DIC ⇤ �2�DKL + 2Cb, (3.17)

where the former term is the estimated KL divergence and the latter one is

the e⇥ective number of parameters.

An extended discussion of the di⇥erent information criteria can be found in

[136, 141, 228].

Bayesian evidence. This is the primordial tool for the model selection we

focus on. It applies the same type of analysis as in parameter estimation, but

now at the level of models rather than parameters. The Bayesian evidence is the

key quantity to bear in mid as it balances the complexity of cosmological models

and then, naturally, incorporates Occam’s razor. It has been applied to a wide

diversity of cosmological contexts, see for example [93, 109, 113].

Let us consider several models M , each of them with prior probability P (M).

Bayes’ theorem for model selection is

P (M |D) =
P (D|M)P (M)

P (D)
. (3.18)

The left-hand side denotes the probability of the model given the data, which is

exactly what we are looking for in model selection. We need, therefore, to obtain

an expression that allows us to compute the Bayesian evidence in terms of the

information we already have. As we previously mentioned, the Bayesian evidence

is simply the normalisation constant of the posterior distribution expressed by

Z =

�
L(D|�)�(�)dN�. (3.19)

-66-

3. STATISTICS IN COSMOLOGY

3.3.1 Parameter estimation

A Bayesian analysis provides a consistent approach to estimating the values

of the parameters � within a model M , which best describe the data D. The

method is based on the assignment of probabilities to the quantities of interest,

and then the manipulation of these probabilities given a series of rules, in which

Bayes’ theorem plays the main role [137]. Bayes’ theorem states that

P (�|D, M) =
P (D|�, M) P (�|M)

P (D|M)
. (3.14)

In this expression, the prior probability P(�|M) ⇥ � represents what we thought

the probability of � was before considering the data. This probability is modi-

fied through the likelihood P(D|�,M) ⇥ L. The posterior probability P(�|D,M)

represents the state of knowledge once we have taken the experimental data D

into account. The normalisation constant in the denominator is the marginal

likelihood or Bayesian evidence P(D|M) ⇥ Z, as is normally called in cosmology.

Since this quantity is independent of the parameters �, it is commonly ignored

in parameter estimation but it takes the central role for model comparison.

The central step for parameter estimation is to construct the likelihood func-

tion L for the measurements, and then the exploration of the region around its

maximum value Lmax. A simple chi-squared function is often used ⇥2 = �2 lnL.

when the distributions are Gaussian. However, some current problems in cos-

mology present obstacles for carrying out this procedure straightforwardly (some

of them discussed by Liddle [137]). Fortunately, models of our interest can be

easily tackled by numerical techniques developed on statistical fields, in partic-

ular the methods known as Markov Chain Monte Carlo (MCMC). There have

been developed di�erent codes employing MCMC techniques to carry out the

exploration of the cosmological parameter-space, for instance CosmoMC [133],

CosmoHammer [4], CMBEASY [62]. Although some of them use a simple

Metropolis-Hasting algorithm by default, nowadays improved algorithms have

been adapted to explore complex posterior probability distributions.

-64-

3. STATISTICS IN COSMOLOGY

3.3.1 Parameter estimation

A Bayesian analysis provides a consistent approach to estimating the values

of the parameters � within a model M , which best describe the data D. The

method is based on the assignment of probabilities to the quantities of interest,

and then the manipulation of these probabilities given a series of rules, in which

Bayes’ theorem plays the main role [137]. Bayes’ theorem states that

P (�|D, M) =
P (D|�, M) P (�|M)

P (D|M)
. (3.14)

In this expression, the prior probability P(�|M) ⇥ � represents what we thought

the probability of � was before considering the data. This probability is modi-

fied through the likelihood P(D|�,M) ⇥ L. The posterior probability P(�|D,M)

represents the state of knowledge once we have taken the experimental data D

into account. The normalisation constant in the denominator is the marginal

likelihood or Bayesian evidence P(D|M) ⇥ Z, as is normally called in cosmology.

Since this quantity is independent of the parameters �, it is commonly ignored

in parameter estimation but it takes the central role for model comparison.

The central step for parameter estimation is to construct the likelihood func-

tion L for the measurements, and then the exploration of the region around its

maximum value Lmax. A simple chi-squared function is often used ⇥2 = �2 lnL.

when the distributions are Gaussian. However, some current problems in cos-

mology present obstacles for carrying out this procedure straightforwardly (some

of them discussed by Liddle [137]). Fortunately, models of our interest can be

easily tackled by numerical techniques developed on statistical fields, in partic-

ular the methods known as Markov Chain Monte Carlo (MCMC). There have

been developed di�erent codes employing MCMC techniques to carry out the

exploration of the cosmological parameter-space, for instance CosmoMC [133],

CosmoHammer [4], CMBEASY [62]. Although some of them use a simple

Metropolis-Hasting algorithm by default, nowadays improved algorithms have

been adapted to explore complex posterior probability distributions.

-64-

3. STATISTICS IN COSMOLOGY

3.3.1 Parameter estimation

A Bayesian analysis provides a consistent approach to estimating the values

of the parameters � within a model M , which best describe the data D. The

method is based on the assignment of probabilities to the quantities of interest,

and then the manipulation of these probabilities given a series of rules, in which

Bayes’ theorem plays the main role [137]. Bayes’ theorem states that

P (�|D, M) =
P (D|�, M) P (�|M)

P (D|M)
. (3.14)

In this expression, the prior probability P(�|M) ⇥ � represents what we thought

the probability of � was before considering the data. This probability is modi-

fied through the likelihood P(D|�,M) ⇥ L. The posterior probability P(�|D,M)

represents the state of knowledge once we have taken the experimental data D

into account. The normalisation constant in the denominator is the marginal

likelihood or Bayesian evidence P(D|M) ⇥ Z, as is normally called in cosmology.

Since this quantity is independent of the parameters �, it is commonly ignored

in parameter estimation but it takes the central role for model comparison.

The central step for parameter estimation is to construct the likelihood func-

tion L for the measurements, and then the exploration of the region around its

maximum value Lmax. A simple chi-squared function is often used ⇥2 = �2 lnL.

when the distributions are Gaussian. However, some current problems in cos-

mology present obstacles for carrying out this procedure straightforwardly (some

of them discussed by Liddle [137]). Fortunately, models of our interest can be

easily tackled by numerical techniques developed on statistical fields, in partic-

ular the methods known as Markov Chain Monte Carlo (MCMC). There have

been developed di�erent codes employing MCMC techniques to carry out the

exploration of the cosmological parameter-space, for instance CosmoMC [133],

CosmoHammer [4], CMBEASY [62]. Although some of them use a simple

Metropolis-Hasting algorithm by default, nowadays improved algorithms have

been adapted to explore complex posterior probability distributions.

-64-

3. STATISTICS IN COSMOLOGY

3.3.1 Parameter estimation

A Bayesian analysis provides a consistent approach to estimating the values

of the parameters � within a model M , which best describe the data D. The

method is based on the assignment of probabilities to the quantities of interest,

and then the manipulation of these probabilities given a series of rules, in which

Bayes’ theorem plays the main role [137]. Bayes’ theorem states that

P (�|D, M) =
P (D|�, M) P (�|M)

P (D|M)
. (3.14)

In this expression, the prior probability P(�|M) ⇥ � represents what we thought

the probability of � was before considering the data. This probability is modi-

fied through the likelihood P(D|�,M) ⇥ L. The posterior probability P(�|D,M)

represents the state of knowledge once we have taken the experimental data D

into account. The normalisation constant in the denominator is the marginal

likelihood or Bayesian evidence P(D|M) ⇥ Z, as is normally called in cosmology.

Since this quantity is independent of the parameters �, it is commonly ignored

in parameter estimation but it takes the central role for model comparison.

The central step for parameter estimation is to construct the likelihood func-

tion L for the measurements, and then the exploration of the region around its

maximum value Lmax. A simple chi-squared function is often used ⇥2 = �2 lnL.

when the distributions are Gaussian. However, some current problems in cos-

mology present obstacles for carrying out this procedure straightforwardly (some

of them discussed by Liddle [137]). Fortunately, models of our interest can be

easily tackled by numerical techniques developed on statistical fields, in partic-

ular the methods known as Markov Chain Monte Carlo (MCMC). There have

been developed di�erent codes employing MCMC techniques to carry out the

exploration of the cosmological parameter-space, for instance CosmoMC [133],

CosmoHammer [4], CMBEASY [62]. Although some of them use a simple

Metropolis-Hasting algorithm by default, nowadays improved algorithms have

been adapted to explore complex posterior probability distributions.

-64-

It is the average likelihood weighted by the prior for a specific model choice

3.3 Bayesian Analysis

where N is the dimensionality of the parameter space. More explicitly, it is the

average likelihood weighted by the prior for a specific model choice:

Evidence =

�
(Likelihood⇥ Prior)dN�. (3.20)

A model containing wider regions of prior parameter-space along with higher like-

lihoods will have a high evidence and vice versa. Therefore, the Bayesian evidence

does provide a natural mechanism to balance the complexity of cosmological mod-

els and then, elegantly incorporates Occam’s razor.

When comparing two models, Mi and Mj, the important quantity to bear in

mind is the ratio of the posterior probabilities, or posterior odds, given by

P (Mi|D)

P (Mj|D)
=

Zi

Zj

P (Mi)

P (Mj)
, (3.21)

where P (Mi)/P (Mj) is the prior probability ratio for the two models, usually set

to unity. The ratio of two evidences Zi/Zj (or equivalently the di⇥erence in log

evidences lnZi � lnZj) is often termed the Bayes factor Bi,j:

Bi,j = ln
Zi

Zj
. (3.22)

Then, the quantity Bi,j measures the relative probability of how well model i

may fit the data when is compared to model j. Je⇥reys [112] provided a suitable

guideline scale on which we are able to make qualitative conclusions (see Table

3.2). In this work, we refer to positive (negative) values of Bi,j when the i model

being favoured (disfavoured) over model j.

The calculation of the integral in Equation (3.19) is a very computation-

ally demanding process, since it requires a multidimensional integration over the

likelihood and prior. For many years much progress has been made in the con-

struction of e⌅cient algorithms to allow faster and more accurate computation of

the Bayesian evidence. Until recently, algorithms such as simulating annealing or

thermodynamic integration [27], required around 107 likelihood evaluations mak-

ing the procedure hardly treatable. A powerful algorithm was recently invented
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where the former term is the estimated KL divergence and the latter one is

the e⇥ective number of parameters.

An extended discussion of the di⇥erent information criteria can be found in

[136, 141, 228].

Bayesian evidence. This is the primordial tool for the model selection we

focus on. It applies the same type of analysis as in parameter estimation, but

now at the level of models rather than parameters. The Bayesian evidence is the

key quantity to bear in mid as it balances the complexity of cosmological models

and then, naturally, incorporates Occam’s razor. It has been applied to a wide

diversity of cosmological contexts, see for example [93, 109, 113].

Let us consider several models M , each of them with prior probability P (M).

Bayes’ theorem for model selection is

P (M |D) =
P (D|M)P (M)

P (D)
. (3.18)

The left-hand side denotes the probability of the model given the data, which is

exactly what we are looking for in model selection. We need, therefore, to obtain

an expression that allows us to compute the Bayesian evidence in terms of the

information we already have. As we previously mentioned, the Bayesian evidence

is simply the normalisation constant of the posterior distribution expressed by

Z =

�
L(D|�)�(�)dN�. (3.19)
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the relative probability of how well model i may fit the data 

when is compared to model j
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Table 3.2: Je�reys guideline scale for evaluating the strength of evidence when
two models are compared.

|Bi,j| Odds Probability Strength

< 1.0 < 3 : 1 < 0.750 Inconclusive

1.0-2.5 � 12 : 1 0.923 Significant

2.5-5.0 � 150 : 1 0.993 Strong

> 5.0 > 150 : 1 > 0.993 Decisive

by Skilling [217], known as nested sampling algorithm, which has been proven to

be ten times more e⇤cient than previous methods. The first computationally-

e⇤cient code to compute the Bayesian evidence in cosmology, named CosmoN-

est, was implemented by Mukherjee et al. [170]. In this work we incorporate into

the CosmoMC software [133] a substantially improved and fully-parallelized ver-

sion of the nested sampling algorithm, called the Multinest algorithm, initially

proposed by Feroz & Hobson [73, 74]. The MultiNest algorithm increases the

sampling e⇤ciency for calculating the evidence and allows one to obtain pos-

terior samples even from distributions with multiple modes and/or pronounced

degeneracies between parameters. There is also CosmoPMC which is based on

an adaptative importance sampling method called Population Monte Carlo [117].

For more complex models with high number of parameters, there also exist im-

proved codes to increase the speed of the whole process by employing, for instance,

neuronal networks: CosmoNet [15]. BAMBI is an algorithm that combines the

benefits of both the nested sampling and artificial neural networks [80].

3.3.3 Dataset consistency

Combining multiple datasets to obtain tight constraints on the cosmological pa-

rameters has been a very common practice. Marshall et al. [156] established a

test to quantify the consistency of di�erent cosmological datasets analysed under

the same model (see also Hobson et al. [94]). The Bayesian consistency analysis

relies on partitioning the full combined dataset D into its constituent parts Di
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where N is the dimensionality of the parameter space. More explicitly, it is the

average likelihood weighted by the prior for a specific model choice:

Evidence =

�
(Likelihood⇥ Prior)dN�. (3.20)

A model containing wider regions of prior parameter-space along with higher like-

lihoods will have a high evidence and vice versa. Therefore, the Bayesian evidence

does provide a natural mechanism to balance the complexity of cosmological mod-

els and then, elegantly incorporates Occam’s razor.

When comparing two models, Mi and Mj, the important quantity to bear in

mind is the ratio of the posterior probabilities, or posterior odds, given by

P (Mi|D)

P (Mj|D)
=

Zi

Zj

P (Mi)

P (Mj)
, (3.21)

where P (Mi)/P (Mj) is the prior probability ratio for the two models, usually set

to unity. The ratio of two evidences Zi/Zj (or equivalently the di⇥erence in log

evidences lnZi � lnZj) is often termed the Bayes factor Bi,j:

Bi,j = ln
Zi

Zj
. (3.22)

Then, the quantity Bi,j measures the relative probability of how well model i

may fit the data when is compared to model j. Je⇥reys [112] provided a suitable

guideline scale on which we are able to make qualitative conclusions (see Table

3.2). In this work, we refer to positive (negative) values of Bi,j when the i model

being favoured (disfavoured) over model j.

The calculation of the integral in Equation (3.19) is a very computation-

ally demanding process, since it requires a multidimensional integration over the

likelihood and prior. For many years much progress has been made in the con-

struction of e⌅cient algorithms to allow faster and more accurate computation of

the Bayesian evidence. Until recently, algorithms such as simulating annealing or

thermodynamic integration [27], required around 107 likelihood evaluations mak-

ing the procedure hardly treatable. A powerful algorithm was recently invented
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The calculation of the integral

is a very computationally demanding process, since it requires 

a multidimensional integration over the likelihood and prior

Algorithms such as simulating annealing or thermodynamic integration, 

required around 10^7 likelihood evaluations

the ground-breaking paper of Green (1995), the change point
estimates of the coal-mining time series, was based on simu-
lations which had failed to converge (Green, 2003).
Sometimes the symmetry of the posterior distribution pro-
vides the possibility of basic control checks. Consider one of
the typical applications of RJMCMC: a mixture distribution
with an unknown number of components K,

pðxj!Þ ¼
XK

k¼1

wkfðxj!kÞ; (102)

where ! ¼ ð!1; . . . ;!K; w1; . . . ; wKÞ and the non-negative
weights satisfy w1 þ % % % þ wK ¼ 1 and the fðxj!kÞ’s are
from some parametric family, e.g., the normal distribution
with mean !k and variance "k: !k ¼ ð!k;"kÞ. Since the
mixture distribution Eq. (102) is invariant under permutation
of the indices k, monitoring of the MCMC samples should
reveal a uniform exploration of the K! equivalent modes. As
this is rarely the case even for moderate values of K, Celeux
et al. (2000) concluded ‘‘. . .that almost the entirety of MCMC
samplers implemented for mixture models has failed to
converge.’’ In addition, the invariance of the posterior distri-
bution under relabeling of some parameters results in the
so-called label-switching problem (Redner and Walker,
1984), even for a fully converged Markov chain: The usual
practice of summarizing the results by marginal posterior
distributions of the individual parameters is often inappro-
priate due to the multimodality of the joint posterior distri-
bution. The obvious approach to introduce artificial
identifiability constraints (Dieboldt and Robert, 1994)
on the parameter space ! such as partial ordering
(!1 < % % %<!K) or relabeling may affect the estimates
(Celeux et al., 2000; Stephens, 2000). A review of various
approaches to the label-switching problem is given by Jasra
et al. (2005). Nevertheless, despite these technical challenges
RJMCMC is in many instances (i.e., with an unknown
number of model parameters) the method of choice.

4. MCMC methods III: Evaluating the marginal likelihood

In Sec. IV.D several algorithms for the computation of
expectation values of the form

hfð!Þi ¼
Z

d!fð!Þpð!jIÞ (103)

were introduced. These algorithms are adequate for the situ-
ation shown in Fig. 24(a), which is commonly the case. A
prominent exception is the computation of the evidence, also
called prior-predictive value [cf. Eq. (15)]

Z ¼ pðdjM; IÞ ¼
Z

d!pðdj!; M; IÞpð!jM; IÞ (104)

which is often the single most important number in a prob-
lem. It represents the probability of the observed data d given
a model M and is the key quantity for model comparison.
Comparison of Eqs. (103) and (104) reveals that here the
expectation value of the likelihood with respect to the prior
has to be computed. Typically the likelihood is much more
structured than the prior, so that here the situation shown
in Fig. 24(b) applies. Straightforward sampling from
the prior ppð!jM; IÞ is ineligible since the huge variations

in the likelihood lead to large variances [cf. Eq. (74)] and
correspondingly to an extremely large number of required
MCMC samples. See Fig. 24, lower panel, for a visualization
of that case. von der Linden, Preuss, and Dose (1999) dis-
cussed a realistic test case which would require 10138 inde-
pendent samples from the prior distribution for an accuracy of
10%. Below several methods are presented which represent
different approaches to cope with this problem. It should be
noted that sometimes the ratio of the evidence, the Bayes
factor, is easier to compute than the individual evidence
values. For example, the ratio of the residence time of a
RJMCMC run in the different models provides a direct
estimation of the Bayes factors. The drawback of this ap-
proach is the insufficient exploration of less likely models
leading to large uncertainties in the ratio. Recent overviews of
methods for the computation of Bayes factors are given, e.g.,
by DiCiccio et al. (1997), Gelman and Meng (1998), and Han
and Carlin (2001). In the following a thermodynamic inte-
gration is presented as an example for a well-established
technique, a nested sampling as a technique using a quite
different approach, and finally a promising nonequilibrium
technique, highlighting the ongoing development.

a. Thermodynamic integration

In the thermodynamic integration (Frenkel, 1986; Ogata,
1989) [or thin MCMC (Neal, 1993)] an auxiliary quantity
Zð#Þ

Zð#Þ ¼
Z

d!pðdj!;M; IÞ#pð!jM; IÞ (105)

is introduced with Zð1Þ ¼ pðdjMÞ and Zð0Þ ¼ 1 due to the
normalization of the prior. The derivative of lnZð#Þ yields
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FIG. 24 (color online). Example of the two different cases for
expectation value computation as discussed. (a) The probability
distribution pðxÞ displays more structure than the function fðxÞ of
which the expectation value is taken. This is the easier case. (b) The
expectation value is computed from a function which is not well
matched to the probability distribution, often the case in the
evaluation of the marginal likelihood, requiring the use of advanced
methods (see Sec. IV.E.3).
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Let us consider several models M , each of them with prior probability P (M).

Bayes’ theorem for model selection is

P (M |D) =
P (D|M)P (M)

P (D)
. (3.18)

The left-hand side denotes the probability of the model given the data, which is

exactly what we are looking for in model selection. We need, therefore, to obtain
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is simply the normalisation constant of the posterior distribution expressed by
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L(D|�)�(�)dN�. (3.19)
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than thermodynamic integration. To achieve an improved accep-

tance ratio and efficiency, their algorithm uses an elliptical bound

containing the current point set at each stage of the process to re-

strict the region around the posterior peak from which new samples

are drawn. Shaw et al. (2007) point out that this method becomes

highly inefficient for multimodal posteriors, and hence introduce

the notion of clustered nested sampling, in which multiple peaks

in the posterior are detected and isolated, and separate ellipsoidal

bounds are constructed around each mode. This approach signifi-

cantly increases the sampling efficiency. The overall computational

load is reduced still further by the use of an improved error cal-

culation (Skilling 2004) on the final evidence result that produces

a mean and standard error in one sampling, eliminating the need

for multiple runs. In our previous paper (Feroz & Hobson 2008 –

hereinafter FH08), we built on the work of Shaw et al. (2007) by

pursuing further the notion of detecting and characterising multi-

ple modes in the posterior from the distribution of nested samples,

and presented a number of innovations that resulted in a substantial

improvement in sampling efficiency and robustness, leading to an

algorithm that constituted a viable, general replacement for tradi-

tional MCMC sampling techniques in astronomical data analysis.

In this paper, we present further substantial development of

the method discussed in FH08 and make the first public release of

the resulting Bayesian inference tool, called MULTINEST. In par-

ticular, we propose fundamental changes to the ‘simultaneous ellip-

soidal sampling’ method described in FH08, which result in a sub-

stantially improved and fully parallelized algorithm for calculat-

ing the evidence and obtaining posterior samples from distributions

with (an unkown number of) multiple modes and/or pronounced

(curving) degeneracies between parameters. The algorithm also

naturally identifies individual modes of a distribution, allowing for

the evaluation of the ‘local’ evidence and parameter constraints as-

sociated with each mode separately.

The outline of the paper is as follows. In Section 2, we briefly

review the basic aspects of Bayesian inference for parameter es-

timation and model selection. In Section 3, we introduce nested

sampling and discuss the use of ellipsoidal bounds in Section 4.

In Section 5, we present the MULTINEST algorithm. In Section 6,

we apply our new algorithms to two toy problems to demonstrate

the accuracy and efficiency of the evidence calculation and param-

eter estimation as compared with other techniques. In Section 7,

we consider the use of our new algorithm for cosmological model

selection focussed on the extension of the vanilla ΛCDM model to

include spatial curvature and a varying equation of state for dark

energy. We compare the efficiency of MULTINEST and standard

MCMC techniques for cosmological parameter estimation in Sec-

tion 7.3. Finally, our conclusions are presented in Section 8.

2 BAYESIAN INFERENCE

Bayesian inference methods provide a consistent approach to the

estimation of a set parametersΘ in a model (or hypothesis) H for

the dataD. Bayes’ theorem states that

Pr(Θ|D, H) =
Pr(D|Θ,H) Pr(Θ|H)

Pr(D|H)
, (1)

where Pr(Θ|D, H) ≡ P(Θ) is the posterior probability distri-
bution of the parameters, Pr(D|Θ, H) ≡ L(Θ) is the likelihood,
Pr(Θ|H) ≡ π(Θ) is the prior, and Pr(D|H) ≡ Z is the Bayesian

evidence.

In parameter estimation, the normalising evidence factor is

usually ignored, since it is independent of the parameters Θ, and

inferences are obtained by taking samples from the (unnormalised)

posterior using standard MCMC sampling methods, where at equi-

librium the chain contains a set of samples from the parameter

space distributed according to the posterior. This posterior consti-

tutes the complete Bayesian inference of the parameter values, and

can be marginalised over each parameter to obtain individual pa-

rameter constraints.

In contrast to parameter estimation problems, in model selec-

tion the evidence takes the central role and is simply the factor re-

quired to normalize the posterior overΘ:

Z =

Z
L(Θ)π(Θ)dD

Θ, (2)

where D is the dimensionality of the parameter space. As the av-

erage of the likelihood over the prior, the evidence automatically

implements Occam’s razor: a simpler theory with compact param-

eter space will have a larger evidence than a more complicated one,

unless the latter is significantly better at explaining the data. The

question of model selection between two models H0 and H1 can

then be decided by comparing their respective posterior probabili-

ties given the observed data setD, as follows

Pr(H1|D)
Pr(H0|D)

=
Pr(D|H1) Pr(H1)
Pr(D|H0) Pr(H0)

=
Z1

Z0

Pr(H1)
Pr(H0)

, (3)

where Pr(H1)/Pr(H0) is the a priori probability ratio for the two
models, which can often be set to unity but occasionally requires

further consideration.

Evaluation of the multidimensional integral (2) is a challeng-

ing numerical task. The standard technique of thermodynamic in-

tegration draws MCMC samples not from the posterior directly but

from Lλπ where λ is an inverse temperature that is slowly raised
from ≈ 0 to 1 according to some annealing schedule. It is pos-
sible to obtain accuracies of within 0.5 units in log-evidence via

this method, but in cosmological model selection applications it

typically requires of order 106 samples per chain (with around 10

chains required to determine a sampling error). This makes evi-

dence evaluation at least an order of magnitude more costly than

parameter estimation.

3 NESTED SAMPLING

Nested sampling (Skilling 2004) is a Monte Carlo technique aimed

at efficient evaluation of the Bayesian evidence, but also pro-

duces posterior inferences as a by-product. A full discussion of the

method is given in FH08, so we give only a briefly description here,

following the notation of FH08.

Nested sampling exploits the relation between the likelihood

and prior volume to transform the multidimensional evidence inte-

gral (Eq. 2) into a one-dimensional integral. The ‘prior volume’ X
is defined by dX = π(Θ)dD

Θ, so that

X(λ) =

Z

L(Θ)>λ

π(Θ)dD
Θ, (4)

where the integral extends over the region(s) of parameter space

contained within the iso-likelihood contour L(Θ) = λ. The evi-
dence integral (Eq. 2) can then be written as

Z =

Z 1

0

L(X)dX, (5)

where L(X), the inverse of Eq. 4, is a monotonically decreasing
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In principle, such a point could be obtained by sampling Xi uniformly from within the
corresponding restricted range (0, Xi−1), then interrogating the original likelihood-sorting to
discover what its θi would have been. In practice, it would naturally be obtained directly as
θi, by sampling within the equivalent constraint L(θ) > Li−1 (with L0 = 0 to ensure complete
initial coverage), in proportion to the prior density π(θ). This too finds a random point,
distributed just the same. The second method is equivalent to the first, but bypasses the use
of X. So we don’t need to do the sorting after all! That’s the key.

Successive points are illustrated in Figure 3, in which prior mass is represented by area.
Thus, point 2 is found by sampling over the prior within the box defined by L > L1, and so
on. Such points will usually be found by some MCMC approximation, starting at some point
θ∗ known to obey the constraint (if available), or at worst starting at θi−1 which lies on and
defines the current likelihood boundary.
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Figure 3: Nested likelihood contours are sorted to enclosed prior mass X.

It is not the purpose of this introductory paper to develop the technology of navigation
within such a volume. We merely note that exploring a hard-edged likelihood-constrained do-
main should prove to be neither more nor less demanding than exploring a likelihood-weighted
space. For example, consider a uniform prior weighted by a C-dimensional unit Gaussian like-
lihood L(θ) = exp(− 1

2 |θ|
2). Conventional Metropolis-Hastings exploration is simply accom-

plished with trial moves of arbitrary direction having step-length |δθ| around 1 for efficiency.
Most points have |θ| ≈

√
C, so the relaxation time is about C steps.

In nested sampling, the corresponding hard constraint is the ball |θ| <
√

C (or thereabouts).
The typical point has |θ| ≈

√
C − 1/

√
C, that being the median radius of the ball. Again, the

efficient trial step-length is |δθ| ≈ 1, so the relaxation time per iterate is much the same as
before. There are well-developed methods, such as Hamiltonian (or “hybrid”) Monte Carlo
(Duane et al. (1987), Neal (1993)), slice sampling (Neal (2003)) and more, which learn about
more general shapes of L in order to explore the likelihood-weighted space more efficiently.
Similar methods ought to work for exploring likelihood-constrained domains, but have not yet
been developed.

In terms of prior mass, successive intervals w scan the prior range from X = 1 down to
Figure 2: A sequence of snapshots of a toy-model evidence calculation, using a two-dimensional gaus-

sian likelihood. As the computation progresses the cluster of points, initially distributed throughout the

parameter space, drifts towards the region of high likelihood at the centre.

5 Applications of model selection

There are several areas of application of model selection techniques, the main two being as follows:

Application to data: With real data, one can assess the viability of different models under considera-

tion. In this case one simply computes the evidence for each model of interest and ranks them.

Model selection forecasting: This application aims to compare the power of different experiments be-

fore they are carried out. Many proposed experiments seek to answer model selection questions,

but their capabilities are often quantified using parameter estimation projections, such as Fisher

matrix forecasting. For instance, a dark energy experiment may be advertized as able to measure

the equation of state parameter w with an uncertainty of ±0.05, the aim being to detect devia-

tions of w from−1, which characterizes the cosmological constant or vacuum zero-point energy.
One can instead forecast experiments’ ability to carry out model selection tests. In this case data

must be simulated for a range of different assumed models, in order to investigate where in the

available parameter space a given experiment can make a strong or decisive model comparison

between a dynamical dark energy model and the cosmological constant. This gives a powerful

tool for comparing the statistical power of competing experiments. It should also be possible to

extend this concept to survey optimization, whereby one tunes survey parameters to optimize the

ability to carry out model selection tests, but it is less clear that this will be fruitful.

We have extensively discussed the philosophy of model selection forecasting, with specific application

to dark energy experiments, in Mukherjee et al. (2006b). In Pahud et al. (2006) we applied these ideas

to determination of the nature of the primordial power spectrum of density perturbations, focussing on

the ability of the Planck Satellite mission to perform model selection of this type. In this article we will

focus on applications to real data.

5.1 A toy model

To help understand what is going on, we can carry out a simple toy model investigation into the spatial

curvature of the Universe. According to the three-year data from WMAP (henceforth WMAP3), the

total density, in units of the critical density, is Ω = 1.003 ± 0.015 (where we took the liberty of
symmetrizing the uncertainty and where the Hubble Key project determination of the Hubble parameter

is also used). Given this, how likely is it that the Universe is flat? For simplicity we’ll assume a gaussian
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than thermodynamic integration. To achieve an improved accep-

tance ratio and efficiency, their algorithm uses an elliptical bound

containing the current point set at each stage of the process to re-

strict the region around the posterior peak from which new samples

are drawn. Shaw et al. (2007) point out that this method becomes

highly inefficient for multimodal posteriors, and hence introduce

the notion of clustered nested sampling, in which multiple peaks

in the posterior are detected and isolated, and separate ellipsoidal

bounds are constructed around each mode. This approach signifi-

cantly increases the sampling efficiency. The overall computational

load is reduced still further by the use of an improved error cal-

culation (Skilling 2004) on the final evidence result that produces

a mean and standard error in one sampling, eliminating the need

for multiple runs. In our previous paper (Feroz & Hobson 2008 –

hereinafter FH08), we built on the work of Shaw et al. (2007) by

pursuing further the notion of detecting and characterising multi-

ple modes in the posterior from the distribution of nested samples,

and presented a number of innovations that resulted in a substantial

improvement in sampling efficiency and robustness, leading to an

algorithm that constituted a viable, general replacement for tradi-

tional MCMC sampling techniques in astronomical data analysis.

In this paper, we present further substantial development of

the method discussed in FH08 and make the first public release of

the resulting Bayesian inference tool, called MULTINEST. In par-

ticular, we propose fundamental changes to the ‘simultaneous ellip-

soidal sampling’ method described in FH08, which result in a sub-

stantially improved and fully parallelized algorithm for calculat-

ing the evidence and obtaining posterior samples from distributions

with (an unkown number of) multiple modes and/or pronounced

(curving) degeneracies between parameters. The algorithm also

naturally identifies individual modes of a distribution, allowing for

the evaluation of the ‘local’ evidence and parameter constraints as-

sociated with each mode separately.

The outline of the paper is as follows. In Section 2, we briefly

review the basic aspects of Bayesian inference for parameter es-

timation and model selection. In Section 3, we introduce nested

sampling and discuss the use of ellipsoidal bounds in Section 4.

In Section 5, we present the MULTINEST algorithm. In Section 6,

we apply our new algorithms to two toy problems to demonstrate

the accuracy and efficiency of the evidence calculation and param-

eter estimation as compared with other techniques. In Section 7,

we consider the use of our new algorithm for cosmological model

selection focussed on the extension of the vanilla ΛCDM model to

include spatial curvature and a varying equation of state for dark

energy. We compare the efficiency of MULTINEST and standard

MCMC techniques for cosmological parameter estimation in Sec-

tion 7.3. Finally, our conclusions are presented in Section 8.

2 BAYESIAN INFERENCE

Bayesian inference methods provide a consistent approach to the

estimation of a set parametersΘ in a model (or hypothesis) H for

the dataD. Bayes’ theorem states that

Pr(Θ|D, H) =
Pr(D|Θ,H) Pr(Θ|H)

Pr(D|H)
, (1)

where Pr(Θ|D, H) ≡ P(Θ) is the posterior probability distri-
bution of the parameters, Pr(D|Θ, H) ≡ L(Θ) is the likelihood,
Pr(Θ|H) ≡ π(Θ) is the prior, and Pr(D|H) ≡ Z is the Bayesian

evidence.

In parameter estimation, the normalising evidence factor is

usually ignored, since it is independent of the parameters Θ, and

inferences are obtained by taking samples from the (unnormalised)

posterior using standard MCMC sampling methods, where at equi-

librium the chain contains a set of samples from the parameter

space distributed according to the posterior. This posterior consti-

tutes the complete Bayesian inference of the parameter values, and

can be marginalised over each parameter to obtain individual pa-

rameter constraints.

In contrast to parameter estimation problems, in model selec-

tion the evidence takes the central role and is simply the factor re-

quired to normalize the posterior overΘ:

Z =

Z
L(Θ)π(Θ)dD

Θ, (2)

where D is the dimensionality of the parameter space. As the av-

erage of the likelihood over the prior, the evidence automatically

implements Occam’s razor: a simpler theory with compact param-

eter space will have a larger evidence than a more complicated one,

unless the latter is significantly better at explaining the data. The

question of model selection between two models H0 and H1 can

then be decided by comparing their respective posterior probabili-

ties given the observed data setD, as follows

Pr(H1|D)
Pr(H0|D)

=
Pr(D|H1) Pr(H1)
Pr(D|H0) Pr(H0)

=
Z1

Z0

Pr(H1)
Pr(H0)

, (3)

where Pr(H1)/Pr(H0) is the a priori probability ratio for the two
models, which can often be set to unity but occasionally requires

further consideration.

Evaluation of the multidimensional integral (2) is a challeng-

ing numerical task. The standard technique of thermodynamic in-

tegration draws MCMC samples not from the posterior directly but

from Lλπ where λ is an inverse temperature that is slowly raised
from ≈ 0 to 1 according to some annealing schedule. It is pos-
sible to obtain accuracies of within 0.5 units in log-evidence via

this method, but in cosmological model selection applications it

typically requires of order 106 samples per chain (with around 10

chains required to determine a sampling error). This makes evi-

dence evaluation at least an order of magnitude more costly than

parameter estimation.

3 NESTED SAMPLING

Nested sampling (Skilling 2004) is a Monte Carlo technique aimed

at efficient evaluation of the Bayesian evidence, but also pro-

duces posterior inferences as a by-product. A full discussion of the

method is given in FH08, so we give only a briefly description here,

following the notation of FH08.

Nested sampling exploits the relation between the likelihood

and prior volume to transform the multidimensional evidence inte-

gral (Eq. 2) into a one-dimensional integral. The ‘prior volume’ X
is defined by dX = π(Θ)dD

Θ, so that

X(λ) =

Z

L(Θ)>λ

π(Θ)dD
Θ, (4)

where the integral extends over the region(s) of parameter space

contained within the iso-likelihood contour L(Θ) = λ. The evi-
dence integral (Eq. 2) can then be written as

Z =

Z 1

0

L(X)dX, (5)

where L(X), the inverse of Eq. 4, is a monotonically decreasing

c© 2008 RAS, MNRAS 000, 1–14
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Figura 1. Lower bound (dark shading) and upper bound (all
shading) on area. The thick line indicates the trapezoidal rule.

Figura 2. The nested likelihood countours are classified accor-
ding to the X closed prior mass.

Z is estimated as a weighted sum of these values, in which
the area of the Figure 1 is, approximately, a set of height
L y weight ! ⇠ �X.

3. Bayesian Evidence

The integral of Z is dominated by where most of the
posterior mass is located. Commonly, this occupies a
small fraction exp�H of the prior, where:

H = information =

Z
log(dP/dX)dP (9)

The sampling should be linear in logX, instead of X it
is established:

X1 = t1, X2 = t1t2......, Xi = t1t2...gi, ......, Xm = t1t2t3...tm

(10)
where each ti is between 0 and 1. It is these relations
t that control the posterior calculation. Any sequence t

leads to an estimate of Z, which we can make explicit:

Z(t) 
mX

i=1

!i(t)Li (11)

Figura 3. Nested sampling for five steps with a collection of
3 points. The contours of likelihood are contracted in their
area by an exp(�1/3) factor and are followed approximately
by successive sample points.

A. MULTINEST

The needs of research in cosmology have led to impro-
vements in nested sampling. MULTINEST [7], for exam-
ple, clusters the sampling points using the k -means al-
gorithm, and has proved to be quite robust, which is why
it has also been used in biology and medicine.
Usually, MULTINEST is able to reduce the number of

samples by one or two orders of magnitude, compared to
MCMC methods [6].

B. SKYNET and BAMBI

SKYNET, developed by the same group of MULTI-
NEST, is an algorithm consisting of an artificial neural
network capable of performing regression, classification,
density estimation, grouping and dimensional reduction.
In the article where the authors release the code [6], the
algorithm is tested on tasks with toy examples and simple
astrophysical applications.
The neural network has a sigmoid activation function.

The authors found that the optimal number of nodes in
the hidden layer, for estimates of cosmological models, is
between 50 and 100.
An outstanding feature of SKYNET is its pre-training

method, which consists of the inputs of the neural net-
work being points sampled by MULTINEST. Thus, the
initial inputs of the perceptron are not random and the
training time is reduced.
The SKYNET application that interests us in the esti-

mation of parameters, is the regression. In this case, the
objective function of the neural network is the logarithm
of the function of Likelihood for the parameters of the
network, given by a standard fit function of chi-square.
In each iteration, SKYNET has a method of optimizing
this objective function that, later, allows to avoid the
overfitting and guarantee the convergence [6].
BAMBI is an extension of the MULTINEST algorithm,

with the subtle di↵erence that while the MCMC sampling
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La búsqueda cient́ıfica de un modelo que describa al Uni-
verso, ha guiado la producción de sofisticadas explora-
ciones cosmológicas y, por tanto, de una inmensidad de
datos observacionales. Para explorar y analizar esta gran
cantidad de información, la ciencia computacional resulta
imprescindible.

El idilio entre cosmoloǵıa y computación podŕıa ser te-
ma de varios libros; sin embargo, en este art́ıculo nos limi-
taremos a analizar una aplicación de las redes neuronales
artificiales en la estimación de parámetros de modelos
cosmológicos.

La cosmoloǵıa y sus datos

La cosmoloǵıa es la ciencia que estudia el Universo a
gran escala, donde las galaxias pueden ser descritas co-
mo puntos (Fig. 1). Su objetivo es describir el origen, la
evolución, composición y destino del Universo a través de

Figura 1: Distribución de galaxias locales gene-
rada con los datos del Sloan Digital Sky Survey
(SDSS). Cada punto representa una galaxia. Fuente:
www.sdss.org/science/orangepie.

aElectronic address: igomezv0701@alumno.ipn.mx
bElectronic address: medetl@hotmail.com

teoŕıas fundamentales de la f́ısica, que luego se confrontan
con observaciones astronómicas.
En la actualidad, el modelo cosmológico que mejor des-

cribe los datos observacionales es el modelo de materia os-
cura fŕıa con constante cosmológica (abreviado en inglés,
⇤CDM). Se basa en la teoŕıa general de la relatividad de
Einstein, la teoŕıa del Big Bang, la existencia de materia
oscura fŕıa (materia lenta en comparación con la luz y so-
lo detectable por sus efectos gravitacionales) y de enerǵıa
oscura (componente misterioso que explica la expansión
acelerada del Universo).
Sin embargo, el modelo ⇤CDM es incapaz de explicar

algunas cuestiones f́ısicas importantes. Esto ha propicia-
do la generación de una amplia gama de modelos, algunos
basados en teoŕıas alternas a la relatividad general y otros
en hipótesis sobre la existencia de materia no ordinaria.
La cosmoloǵıa es una ciencia muy singular debido a su

objeto de estudio. El Universo es un sistema único, de
fronteras inaccesibles, que debe estudiarse desde adentro
sin la posibilidad de realizar experimentos. Esto motiva y
exige dos caracteŕısticas metodológicas de la cosmoloǵıa
contemporánea: el análisis intensivo de datos y el uso de
la estad́ıstica bayesiana.
Jim Gray1 pronosticó el advenimiento de un cuarto pa-

radigma en la ciencia. El primer paradigma ocurrió hace
mil años cuando la ciencia se limitaba a ser descriptiva y
emṕırica; el segundo tuvo su inicio con las investigaciones
de Isaac Newton al adquirir un carácter teórico; el terce-
ro surgió a mediados del siglo XX, con la incorporación
de simulaciones computacionales en las investigaciones
cient́ıficas. El cuarto paradigma seŕıa la ciencia de datos
o e-ciencia, como lo denominó Jim Gray, una mezcla de
ciencia emṕırica y teórica basada en el cómputo y análi-
sis exhaustivo de una cantidad exorbitante de datos, con
la finalidad de extraer conocimiento útil [1].
Información sobre supernovas, galaxias, radiación

cósmica de fondo, oscilaciones acústicas de bariones y
otros fenómenos cósmicos es recolectada desde la Tierra
o el espacio. Proyectos como COBE2, WMAP3, el satélite
Planck4 y SDSS5 proveen información valiosa para com-

1 Premio Turing en 1998, creador del concepto de Cubo de Datos
y desarrollador de la base de datos del SDSS.

2 science.nasa.gov/missions/cobe
3 map.gsfc.nasa.gov
4 www.phy.cam.ac.uk/research/research-groups/ap/plank
5 www.sdss.org
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La cosmoloǵıa y sus datos
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teoŕıas fundamentales de la f́ısica, que luego se confrontan
con observaciones astronómicas.
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Figura 5: Paraboloide (función objetivo).

Figura 6: Resultados de MULTINEST y BAMBI.

También realizamos un comparativo entre los tiempos
de ejecución, de los dos algoritmos, con diferentes
tamaños de muestreo. La Tabla I resume los resultados.

No. Eval. Tiempo MULTINEST Tiempo BAMBI

1 000 0.0482 s 0.495 s

10 000 0.416 s 0.771 s

100 000 4.318 s 3.719 s

1 000 000 46.187 s 32.716 s

Tabla I: Tiempos de ejecución para diferentes números de
evaluaciones de la Verosimilitud de la función paraboloide.

Nótese que mientras mayor el tamaño del muestreo,
mejor desempeño tiene BAMBI gracias a su red neuro-
nal. En este ejemplo de juguete, para probar esta cua-

lidad nos limitamos a aumentar el número de muestras;
sin embargo, en modelos complejos, como algunos cos-
mológicos, un muestreo grande es una exigencia y, por
ende, los métodos que optimicen el cálculo de funciones
de Verosimilitud son necesarios.
Por último, en la Tabla II se muestra que al utilizar

BAMBI no solo se gana tiempo, además no se pierde
precisión en el cálculo de la Evidencia Bayesiana.

MULTINEST BAMBI

Log(Evidencia) �0,782±�0,06 �0,783±�0,06

Tabla II: Cálculos finales para la Evidencia

Figura 7: Tres diferentes etapas del muestreo con BAMBI.

Conclusión

La estimación de parámetros de un modelo matemático
mediante el muestreo anidado implementado en MUL-
TINEST es más eficiente que los métodos MCMC y,
además, permite calcular la Evidencia Bayesiana para
comparación de modelos. Sin embargo, el uso de la red
neuronal para evaluar las funciones de probabilidad, me-
jora la velocidad y no pierde la exactitud de los cálculos.
La generación de datos cosmológicos seguirá a la alza

en próximos años. Será crucial escudriñar esta informa-
ción para mejorar nuestra concepción del Universo y, pa-
ra ello, la cosmoloǵıa tendrá la mirada atenta en lo que
la inteligencia artificial y otras áreas de la computación
puedan ofrecer.
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La estimación de parámetros de un modelo matemático
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The Bayesian evidence

4

is in process an Artificial Neural Network (a multilayer
perpectron) is training and, in certain time, this ANN
substitutes the original likelihood function.

BAMBI (Blind Accelerated Multimodal Bayesian In-
ference) [7] It is based on the two previous algorithms of
the same authors, MULTINEST and SKYNET. Its re-
levance lies in the fact that, for cosmological problems,
the calculation time of the Likelihood function is reduced
from seconds to milliseconds [7].

Unlike SKYNET, BAMBI intends to replace at some
point the calculations resulting from MULTINEST. Ho-
wever, he trains with them and his predictions are compa-
red with the respective outputs of the nested sampling.
Once the established precision is reached, it dispenses
with the calculation of the Likelihood functions and uses
the neural network trained for later stages.

In problems of estimation of simple parameters, the
time that is lost training the neural network is not fruit-
ful. However, when it comes to multivariable functions,
as in the case of cosmological models (with at least four
parameters), the time that is invested in training is mo-
re than rewarded by a decrease in the total computation
time. Moreover, the more complex the model or the ob-
servational data, the more e�cient BAMBI is compared
to MULTINEST. In addition, the accuracy of the results
is of the same order in both codes.

V. PYTHON IMPLEMENTATIONS

With the exception of MCEVIDENCE, it can found
very illustrative examples of how to fit a straight line with
random numbers in Ref. [8] (jav: muy util, y tienes razon,
esto se podrian poner en simplemc, y simplemc instalar
con pip. De esta manera seria muy sencillo utilizarlo). In
this paper we tested the codes within SimpleMC (descri-
bed in the next section) with the ⇤CDM cosmological
model. In this section, only the algorithms used in the
previously mentioned python codes will be described.

A. MCEVIDENCE

MCEVIDENCE is a code included in Ref. [9] named
by its authors as a method to calculate the marginal pro-
bability, that is, the Bayesian evidence of an MCMC.
With the di↵erence of the other methods exposed in
this article, MCEVIDENCE is not a sampler, but ta-
kes an MCMC (jav: de hecho toma las cadenas y calcula
la evidencia. Seria util hacer una prueba con las cade-
nas de que produce simpleMC) –or other sampled poste-
rior distributions– and calculates the Bayesian Evidence.
Therefore, its use is necessary to complement it with an

MCMC algorithm such as Metropolis-Hastings or anot-
her with the ability to generate these chains.
This method applies the knearest-neighbor distances

algorithm in parameter space, using the Mahalanobis dis-
tance metric [10], assuming that the points in the chain
are independent.
Via kth nearest neighbour distance MCEVIDENCE in-

fers the a constant:

p̂(✓|x,M) = an(✓|x,M) (12)

B. NESTLE

NESTLE was developed by Kyle Barbary [11] and in-
cludes the single nested sampling [4] and the multimodal
nested sampling [7].

C. CPNEST

CPNEST is an algorithm of Parallel Nested Sampling
developed by John Veitch [12].

D. Dynesty

Dynamic Nested Sampling [13, 14].

E. DELFI

Density-estimation likelihood-free inference [15] is ba-
sed on the previous works of the Refs [16, 17].

VI. SIMPLEMC

This code has been developed by Dr. Anže Slosar and
Dr. Jose Alberto Vazquez. Actually this is a MCMC co-
de without the option of model selection. However our
future work is, precisely, to implement the calculation of
bayesian evidence with artificial intelligence techniques.

VII. COMPARISON BETWEEN SAMPLERS
FOR BAYESIAN EVIDENCE CALCULATION

ACKNOWLEDGEMENTS

(rgs: Al ser un paper de revisión, es necesario tener
más referencias. Cada que se escriba algo, buscar las re-
ferencias más importantes!)

[1] Liddle, A. R. (2007). Information criteria for astrophysi-
cal model selection. Monthly Notices of the Royal Astro-

nomical Society: Letters, 377(1), L74-L78.

4

is in process an Artificial Neural Network (a multilayer
perpectron) is training and, in certain time, this ANN
substitutes the original likelihood function.

BAMBI (Blind Accelerated Multimodal Bayesian In-
ference) [7] It is based on the two previous algorithms of
the same authors, MULTINEST and SKYNET. Its re-
levance lies in the fact that, for cosmological problems,
the calculation time of the Likelihood function is reduced
from seconds to milliseconds [7].

Unlike SKYNET, BAMBI intends to replace at some
point the calculations resulting from MULTINEST. Ho-
wever, he trains with them and his predictions are compa-
red with the respective outputs of the nested sampling.
Once the established precision is reached, it dispenses
with the calculation of the Likelihood functions and uses
the neural network trained for later stages.

In problems of estimation of simple parameters, the
time that is lost training the neural network is not fruit-
ful. However, when it comes to multivariable functions,
as in the case of cosmological models (with at least four
parameters), the time that is invested in training is mo-
re than rewarded by a decrease in the total computation
time. Moreover, the more complex the model or the ob-
servational data, the more e�cient BAMBI is compared
to MULTINEST. In addition, the accuracy of the results
is of the same order in both codes.

V. PYTHON IMPLEMENTATIONS

With the exception of MCEVIDENCE, it can found
very illustrative examples of how to fit a straight line with
random numbers in Ref. [8] (jav: muy util, y tienes razon,
esto se podrian poner en simplemc, y simplemc instalar
con pip. De esta manera seria muy sencillo utilizarlo). In
this paper we tested the codes within SimpleMC (descri-
bed in the next section) with the ⇤CDM cosmological
model. In this section, only the algorithms used in the
previously mentioned python codes will be described.

A. MCEVIDENCE

MCEVIDENCE is a code included in Ref. [9] named
by its authors as a method to calculate the marginal pro-
bability, that is, the Bayesian evidence of an MCMC.
With the di↵erence of the other methods exposed in
this article, MCEVIDENCE is not a sampler, but ta-
kes an MCMC (jav: de hecho toma las cadenas y calcula
la evidencia. Seria util hacer una prueba con las cade-
nas de que produce simpleMC) –or other sampled poste-
rior distributions– and calculates the Bayesian Evidence.
Therefore, its use is necessary to complement it with an

MCMC algorithm such as Metropolis-Hastings or anot-
her with the ability to generate these chains.
This method applies the knearest-neighbor distances

algorithm in parameter space, using the Mahalanobis dis-
tance metric [10], assuming that the points in the chain
are independent.
Via kth nearest neighbour distance MCEVIDENCE in-

fers the a constant:

p̂(✓|x,M) = an(✓|x,M) (12)

B. NESTLE

NESTLE was developed by Kyle Barbary [11] and in-
cludes the single nested sampling [4] and the multimodal
nested sampling [7].

C. CPNEST

CPNEST is an algorithm of Parallel Nested Sampling
developed by John Veitch [12].

D. Dynesty

Dynamic Nested Sampling [13, 14].

E. DELFI

Density-estimation likelihood-free inference [15] is ba-
sed on the previous works of the Refs [16, 17].

VI. SIMPLEMC

This code has been developed by Dr. Anže Slosar and
Dr. Jose Alberto Vazquez. Actually this is a MCMC co-
de without the option of model selection. However our
future work is, precisely, to implement the calculation of
bayesian evidence with artificial intelligence techniques.

VII. COMPARISON BETWEEN SAMPLERS
FOR BAYESIAN EVIDENCE CALCULATION

ACKNOWLEDGEMENTS

(rgs: Al ser un paper de revisión, es necesario tener
más referencias. Cada que se escriba algo, buscar las re-
ferencias más importantes!)

[1] Liddle, A. R. (2007). Information criteria for astrophysi-
cal model selection. Monthly Notices of the Royal Astro-

nomical Society: Letters, 377(1), L74-L78.

4

is in process an Artificial Neural Network (a multilayer
perpectron) is training and, in certain time, this ANN
substitutes the original likelihood function.

BAMBI (Blind Accelerated Multimodal Bayesian In-
ference) [7] It is based on the two previous algorithms of
the same authors, MULTINEST and SKYNET. Its re-
levance lies in the fact that, for cosmological problems,
the calculation time of the Likelihood function is reduced
from seconds to milliseconds [7].

Unlike SKYNET, BAMBI intends to replace at some
point the calculations resulting from MULTINEST. Ho-
wever, he trains with them and his predictions are compa-
red with the respective outputs of the nested sampling.
Once the established precision is reached, it dispenses
with the calculation of the Likelihood functions and uses
the neural network trained for later stages.

In problems of estimation of simple parameters, the
time that is lost training the neural network is not fruit-
ful. However, when it comes to multivariable functions,
as in the case of cosmological models (with at least four
parameters), the time that is invested in training is mo-
re than rewarded by a decrease in the total computation
time. Moreover, the more complex the model or the ob-
servational data, the more e�cient BAMBI is compared
to MULTINEST. In addition, the accuracy of the results
is of the same order in both codes.

V. PYTHON IMPLEMENTATIONS

With the exception of MCEVIDENCE, it can found
very illustrative examples of how to fit a straight line with
random numbers in Ref. [8] (jav: muy util, y tienes razon,
esto se podrian poner en simplemc, y simplemc instalar
con pip. De esta manera seria muy sencillo utilizarlo). In
this paper we tested the codes within SimpleMC (descri-
bed in the next section) with the ⇤CDM cosmological
model. In this section, only the algorithms used in the
previously mentioned python codes will be described.

A. MCEVIDENCE

MCEVIDENCE is a code included in Ref. [9] named
by its authors as a method to calculate the marginal pro-
bability, that is, the Bayesian evidence of an MCMC.
With the di↵erence of the other methods exposed in
this article, MCEVIDENCE is not a sampler, but ta-
kes an MCMC (jav: de hecho toma las cadenas y calcula
la evidencia. Seria util hacer una prueba con las cade-
nas de que produce simpleMC) –or other sampled poste-
rior distributions– and calculates the Bayesian Evidence.
Therefore, its use is necessary to complement it with an

MCMC algorithm such as Metropolis-Hastings or anot-
her with the ability to generate these chains.
This method applies the knearest-neighbor distances

algorithm in parameter space, using the Mahalanobis dis-
tance metric [10], assuming that the points in the chain
are independent.
Via kth nearest neighbour distance MCEVIDENCE in-

fers the a constant:

p̂(✓|x,M) = an(✓|x,M) (12)

B. NESTLE

NESTLE was developed by Kyle Barbary [11] and in-
cludes the single nested sampling [4] and the multimodal
nested sampling [7].

C. CPNEST

CPNEST is an algorithm of Parallel Nested Sampling
developed by John Veitch [12].

D. Dynesty

Dynamic Nested Sampling [13, 14].

E. DELFI

Density-estimation likelihood-free inference [15] is ba-
sed on the previous works of the Refs [16, 17].

VI. SIMPLEMC

This code has been developed by Dr. Anže Slosar and
Dr. Jose Alberto Vazquez. Actually this is a MCMC co-
de without the option of model selection. However our
future work is, precisely, to implement the calculation of
bayesian evidence with artificial intelligence techniques.

VII. COMPARISON BETWEEN SAMPLERS
FOR BAYESIAN EVIDENCE CALCULATION

ACKNOWLEDGEMENTS

(rgs: Al ser un paper de revisión, es necesario tener
más referencias. Cada que se escriba algo, buscar las re-
ferencias más importantes!)

[1] Liddle, A. R. (2007). Information criteria for astrophysi-
cal model selection. Monthly Notices of the Royal Astro-

nomical Society: Letters, 377(1), L74-L78.

4

is in process an Artificial Neural Network (a multilayer
perpectron) is training and, in certain time, this ANN
substitutes the original likelihood function.

BAMBI (Blind Accelerated Multimodal Bayesian In-
ference) [7] It is based on the two previous algorithms of
the same authors, MULTINEST and SKYNET. Its re-
levance lies in the fact that, for cosmological problems,
the calculation time of the Likelihood function is reduced
from seconds to milliseconds [7].

Unlike SKYNET, BAMBI intends to replace at some
point the calculations resulting from MULTINEST. Ho-
wever, he trains with them and his predictions are compa-
red with the respective outputs of the nested sampling.
Once the established precision is reached, it dispenses
with the calculation of the Likelihood functions and uses
the neural network trained for later stages.

In problems of estimation of simple parameters, the
time that is lost training the neural network is not fruit-
ful. However, when it comes to multivariable functions,
as in the case of cosmological models (with at least four
parameters), the time that is invested in training is mo-
re than rewarded by a decrease in the total computation
time. Moreover, the more complex the model or the ob-
servational data, the more e�cient BAMBI is compared
to MULTINEST. In addition, the accuracy of the results
is of the same order in both codes.

V. PYTHON IMPLEMENTATIONS

With the exception of MCEVIDENCE, it can found
very illustrative examples of how to fit a straight line with
random numbers in Ref. [8] (jav: muy util, y tienes razon,
esto se podrian poner en simplemc, y simplemc instalar
con pip. De esta manera seria muy sencillo utilizarlo). In
this paper we tested the codes within SimpleMC (descri-
bed in the next section) with the ⇤CDM cosmological
model. In this section, only the algorithms used in the
previously mentioned python codes will be described.

A. MCEVIDENCE

MCEVIDENCE is a code included in Ref. [9] named
by its authors as a method to calculate the marginal pro-
bability, that is, the Bayesian evidence of an MCMC.
With the di↵erence of the other methods exposed in
this article, MCEVIDENCE is not a sampler, but ta-
kes an MCMC (jav: de hecho toma las cadenas y calcula
la evidencia. Seria util hacer una prueba con las cade-
nas de que produce simpleMC) –or other sampled poste-
rior distributions– and calculates the Bayesian Evidence.
Therefore, its use is necessary to complement it with an

MCMC algorithm such as Metropolis-Hastings or anot-
her with the ability to generate these chains.
This method applies the knearest-neighbor distances

algorithm in parameter space, using the Mahalanobis dis-
tance metric [10], assuming that the points in the chain
are independent.
Via kth nearest neighbour distance MCEVIDENCE in-

fers the a constant:

p̂(✓|x,M) = an(✓|x,M) (12)

B. NESTLE

NESTLE was developed by Kyle Barbary [11] and in-
cludes the single nested sampling [4] and the multimodal
nested sampling [7].

C. CPNEST

CPNEST is an algorithm of Parallel Nested Sampling
developed by John Veitch [12].

D. Dynesty

Dynamic Nested Sampling [13, 14].

E. DELFI

Density-estimation likelihood-free inference [15] is ba-
sed on the previous works of the Refs [16, 17].

VI. SIMPLEMC

This code has been developed by Dr. Anže Slosar and
Dr. Jose Alberto Vazquez. Actually this is a MCMC co-
de without the option of model selection. However our
future work is, precisely, to implement the calculation of
bayesian evidence with artificial intelligence techniques.

VII. COMPARISON BETWEEN SAMPLERS
FOR BAYESIAN EVIDENCE CALCULATION

ACKNOWLEDGEMENTS

(rgs: Al ser un paper de revisión, es necesario tener
más referencias. Cada que se escriba algo, buscar las re-
ferencias más importantes!)

[1] Liddle, A. R. (2007). Information criteria for astrophysi-
cal model selection. Monthly Notices of the Royal Astro-

nomical Society: Letters, 377(1), L74-L78.

4

is in process an Artificial Neural Network (a multilayer
perpectron) is training and, in certain time, this ANN
substitutes the original likelihood function.

BAMBI (Blind Accelerated Multimodal Bayesian In-
ference) [7] It is based on the two previous algorithms of
the same authors, MULTINEST and SKYNET. Its re-
levance lies in the fact that, for cosmological problems,
the calculation time of the Likelihood function is reduced
from seconds to milliseconds [7].

Unlike SKYNET, BAMBI intends to replace at some
point the calculations resulting from MULTINEST. Ho-
wever, he trains with them and his predictions are compa-
red with the respective outputs of the nested sampling.
Once the established precision is reached, it dispenses
with the calculation of the Likelihood functions and uses
the neural network trained for later stages.

In problems of estimation of simple parameters, the
time that is lost training the neural network is not fruit-
ful. However, when it comes to multivariable functions,
as in the case of cosmological models (with at least four
parameters), the time that is invested in training is mo-
re than rewarded by a decrease in the total computation
time. Moreover, the more complex the model or the ob-
servational data, the more e�cient BAMBI is compared
to MULTINEST. In addition, the accuracy of the results
is of the same order in both codes.

V. PYTHON IMPLEMENTATIONS

With the exception of MCEVIDENCE, it can found
very illustrative examples of how to fit a straight line with
random numbers in Ref. [8] (jav: muy util, y tienes razon,
esto se podrian poner en simplemc, y simplemc instalar
con pip. De esta manera seria muy sencillo utilizarlo). In
this paper we tested the codes within SimpleMC (descri-
bed in the next section) with the ⇤CDM cosmological
model. In this section, only the algorithms used in the
previously mentioned python codes will be described.

A. MCEVIDENCE

MCEVIDENCE is a code included in Ref. [9] named
by its authors as a method to calculate the marginal pro-
bability, that is, the Bayesian evidence of an MCMC.
With the di↵erence of the other methods exposed in
this article, MCEVIDENCE is not a sampler, but ta-
kes an MCMC (jav: de hecho toma las cadenas y calcula
la evidencia. Seria util hacer una prueba con las cade-
nas de que produce simpleMC) –or other sampled poste-
rior distributions– and calculates the Bayesian Evidence.
Therefore, its use is necessary to complement it with an

MCMC algorithm such as Metropolis-Hastings or anot-
her with the ability to generate these chains.
This method applies the knearest-neighbor distances

algorithm in parameter space, using the Mahalanobis dis-
tance metric [10], assuming that the points in the chain
are independent.
Via kth nearest neighbour distance MCEVIDENCE in-

fers the a constant:

p̂(✓|x,M) = an(✓|x,M) (12)

B. NESTLE

NESTLE was developed by Kyle Barbary [11] and in-
cludes the single nested sampling [4] and the multimodal
nested sampling [7].

C. CPNEST

CPNEST is an algorithm of Parallel Nested Sampling
developed by John Veitch [12].

D. Dynesty

Dynamic Nested Sampling [13, 14].

E. DELFI

Density-estimation likelihood-free inference [15] is ba-
sed on the previous works of the Refs [16, 17].

VI. SIMPLEMC

This code has been developed by Dr. Anže Slosar and
Dr. Jose Alberto Vazquez. Actually this is a MCMC co-
de without the option of model selection. However our
future work is, precisely, to implement the calculation of
bayesian evidence with artificial intelligence techniques.

VII. COMPARISON BETWEEN SAMPLERS
FOR BAYESIAN EVIDENCE CALCULATION

ACKNOWLEDGEMENTS

(rgs: Al ser un paper de revisión, es necesario tener
más referencias. Cada que se escriba algo, buscar las re-
ferencias más importantes!)

[1] Liddle, A. R. (2007). Information criteria for astrophysi-
cal model selection. Monthly Notices of the Royal Astro-

nomical Society: Letters, 377(1), L74-L78.



70JAVazquez

PR(k) is the power spectrum of the initial curvature perturbations 


The spectrum is a featureless power law with scalar spectral index ns. scale-invariant?

Primordial power spectrum 


The Bayesian evidence

Bayesian Analysis Dark Energy w(z) Primordial SpectrumPR(k) ConclusionsReconstruction Power-law and running spectra Lasenby & Doran model

Conclusions of PR(k)

We fit an optimal degree of structure for the primordial spectrum using Bayesian
model selection as our discriminating criterion.

Model Npar �2
min Bayes factor

HZ 8 0.0 +0.0± 0.3

ns 9 -8.6 +3.3± 0.3

LD 10 -9.4 +4.9± 0.3

k1 11 -9.1 +4.3± 0.3
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The presence of a turn-over at large scales and the reduced power at small scales
provide an important contribution on choosing the best-fit model through its
Bayesian evidence.

JA Vázquez P(k) and w(z)
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Table 4. Summary of model comparison results against the ΛCDM concordance model (see Table 3) using Bayesian model comparison for nested
models. A negative (positive) value for ln B indicates that the competing model is disfavoured (supported) with respect to the ΛCDM model. The
column ∆Npar gives the difference in the number of free parameters with respect to the ΛCDM concordance model. A negative value means that one
of the parameters has been fixed. See references for full details and in particular for the choice of priors on the model parameters, which control the
strengths of the Occam’s razor effect.

Competing model ∆Npar lnB Ref Data Outcome

Initial conditions
Isocurvature modes

CDM isocurvature +1 −7.6 [58] WMAP3+, LSS Strong evidence for adiabaticity
+ arbitrary correlations +4 −1.0 [46] WMAP1+, LSS, SN Ia Undecided
Neutrino entropy +1 [−2.5,−6.5]p [60] WMAP3+, LSS Moderate to strong evidence for adiabaticity
+ arbitrary correlations +4 −1.0 [46] WMAP1+, LSS, SN Ia Undecided
Neutrino velocity +1 [−2.5,−6.5]p [60] WMAP3+, LSS Moderate to strong evidence for adiabaticity
+ arbitrary correlations +4 −1.0 [46] WMAP1+, LSS, SN Ia Undecided

Primordial power spectrum
No tilt (ns = 1) −1 +0.4 [47] WMAP1+, LSS Undecided

[−1.1,−0.6]p [51] WMAP1+, LSS Undecided
−0.7 [58] WMAP1+, LSS Undecided
−0.9 [70] WMAP1+ Undecided
[−0.7,−1.7]p,d [185] WMAP3+ ns = 1 weakly disfavoured
−2.0 [184] WMAP3+, LSS ns = 1 weakly disfavoured
−2.6 [70] WMAP3+ ns = 1 moderately disfavoured
−2.9 [58] WMAP3+, LSS ns = 1 moderately disfavoured
< −3.9c [65] WMAP3+, LSS Moderate evidence at best against ns "= 1

Running +1 [−0.6, 1.0]p,d [185] WMAP3+, LSS No evidence for running
< 0.2c [165] WMAP3+, LSS Running not required

Running of running +2 < 0.4c [165] WMAP3+, LSS Not required
Large scales cut–off +2 [1.3, 2.2]p,d [185] WMAP3+, LSS Weak support for a cut–off

Matter–energy content
Non–flat Universe +1 −3.8 [70] WMAP3+, HST Flat Universe moderately favoured

−3.4 [58] WMAP3+, LSS, HST Flat Universe moderately favoured
Coupled neutrinos +1 −0.7 [192] WMAP3+, LSS No evidence for non–SM neutrinos

Dark energy sector
w(z) = weff "= −1 +1 [−1.3,−2.7]p [186] SN Ia Weak to moderate support for Λ

−3.0 [50] SN Ia Moderate support for Λ
−1.1 [51] WMAP1+, LSS, SN Ia Weak support for Λ
[−0.2,−1]p [187] SN Ia, BAO, WMAP3 Undecided
[−1.6,−2.3]d [188] SN Ia, GRB Weak support for Λ

w(z) = w0 + w1z +2 [−1.5,−3.4]p [186] SN Ia Weak to moderate support for Λ
−6.0 [50] SN Ia Strong support for Λ
−1.8 [187] SN Ia, BAO, WMAP3 Weak support for Λ

w(z) = w0 + wa(1 − a) +2 −1.1 [187] SN Ia, BAO, WMAP3 Weak support for Λ
[−1.2,−2.6]d [188] SN Ia, GRB Weak to moderate support for Λ

Reionization history
No reionization (τ = 0) −1 −2.6 [70] WMAP3+, HST τ "= 0 moderately favoured
No reionization and no tilt −2 −10.3 [70] WMAP3+, HST Strongly disfavoured

d Depending on the choice of datasets.

p Depending on the choice of priors.

c Upper bound using Bayesian calibrated p–values, see section 4.5.

Data sets: WMAP1+ (WMAP3+): WMAP 1st year (3–yr) data and other CMB measurements. LSS: Large scale structures data. SN Ia:
supernovae type Ia. BAO: baryonic acoustic oscillations. GRB: gamma ray bursts.

spectrum. Whether such anomalies are of cosmological origin remains however an open question [193,194].
If extensions of the model are not supported, reduction of ΛCDM to simpler models is not viable, either:
recent studies employing WMAP 3–yr data find that a scale invariant spectrum with no spectral tilt is
now weakly to moderately disfavoured [58, 65, 70, 184]. Also, a Universe with no reionization is no longer
a good description of CMB data, and a non–zero optical depth τ is indeed required [70].

A few further comments about the results reported in Table 4 are in place:

(i) Regarding the type of initial conditions for cosmological perturbations, all parameter extraction studies
to date (with the exception of [195]) find that a purely adiabatic mode is in agreement with observations,
and constrain the isocurvature fraction to be below about 10% for one single isocurvature mode at

Model comparison



JAVazquez 72

Since DE is an unknown component, 

one is ‘forced’ to either take into account additional features

or assume a parameterisation w(z)

– 13 –

model equation α z → 0 z → ∞

CPL w(z) = w0 + w1z/(1 + z) w0 w0 + w1

Ia w(z) = w0 + w1z/(1 + z)[1 + 1/(1 + z)] w0 w0 + w1

Ib w(z) = w0 + w1zln[(1 + z)/z] w0 w0 + w1

Ic w(z) = w0 + w1(1− ln(1 + z)/z) w0 w0 + w1

IIa w(z) = w0 + w1[1/(1 + z)]αln(1/(1 + z))α
α ≥ 0 w0 w0

α < 0 w0 ∞

IIb w(z) = w0 + w1[z/(1 + z)]αln(z/(1 + z))α
α ≥ 0 w0 w0

α < 0 ∞ w0

IIc w(z) = w0 + w1ln(1 + z)/zα

α > 1 ∞ w0

α = 1 w0 + w1 w0

0 < α < 1 w0 w0

α ≤ 0 w0 ∞

IId w(z) = w0 + w1zαln[(1 + z)/z]

α > 1 w0 ∞
α = 1 w0 w0 + w1

0 < α < 1 w0 w0

α ≤ 0 ∞ w0

IIe w(z) = w0 + w1z/(1 + z)α
α > 1 w0 w0

α = 1 w0 w0 + w1

α < 1 w0 ∞

A w(z) = w0 + w1z4/9ln[(1 + z)/z] α=4/9 w0 w0

B w(z) = w0 + w1ln(1 + z)/z5/6 α=5/6 w0 w0

Table 1: The boundary behaviors of all models
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540.5. The contours of w0 and wa are plotted in Fig. 1(a), and the

contours of Ωm and Ωk are plotted in Fig. 4(b).

For the flat CPL model, Om(z) becomes

Om(z) =
Ωm(1 + z)3 + ΩDE(z)− 1

(1 + z)3 − 1
, (28)

where ΩDE(z) is defined in equation (27) with Ωk = 0. By fit-
ting the combined data to the flat CPL model, we get the marginal-

ized 1σ constraints, Ωm = 0.267+0.019
−0.01 , w0 = −1.05+0.17

−0.1 , and

wa = 0.07+0.32
−0.88 with χ2 = 541.1. Using this result, we recon-

struct Om(z) with equation (28) and the result is shown in Fig.
2(a).

3.6 JBP parametrization

For the Jassal-Bagla-Padmanabhan (JBP) parametrization

(Jassal, Bagla & Padmanabhan 2005), the equation of state

parameter is

w(z) = w0 +
waz

(1 + z)2
, (29)

so w(z = 0) = w0 and w(z) ∼ w0 when z # 1. In this model,
the parameter w0 determines the property of the equation of state

parameter w(z) at both low and high redshifts. The corresponding
dimensionless dark energy density is then

ΩDE(z) = Ωx(1 + z)3(1+w0)e[3waz2/2(1+z)2], (30)

where Ωx = 1 − Ωm − Ωr − Ωk . In this model, we also have

four parameters p = (Ωm, Ωk, w0, wa). Fitting the model to
the combined SN Ia, Bao2, Baoz, WMAP7 and H(z) data, we
get the marginalized 1σ constraints, Ωm = 0.263+0.02

−0.01 , Ωk =
0.004 ± 0.006, w0 = −1.21+0.32

−0.18 , and wa = 1.29+1.35
−2.33 with

χ2 = 540.6. The contours of Ωm and Ωk are plotted in Fig. 4(c),

and the contours of w0 and wa are plotted in Fig. 1(b).

For the flat JBP model, Om(z) becomes

Om(z) =
Ωm(1 + z)3 + ΩDE(z)− 1

(1 + z)3 − 1
, (31)

where ΩDE(z) is defined in equation (30) with Ωk = 0. By fit-
ting the combined data to the flat JBP model, we get the marginal-

ized 1σ constraints, Ωm = 0.265+0.019
−0.011 , w0 = −1.08+0.24

−0.19 , and

wa = 0.32+1.01
−1.72 with χ2 = 541.0. Using this result, we recon-

struct Om(z) with equation (31) and the result is shown in Fig.
2(b).

3.7 Wetterich parametrization

Now we consider the parametrization proposed by Wetterich

(2004),

w(z) =
w0

[1 + wa ln(1 + z)]2
. (32)

For this model, w(z = 0) = w0 and w(z) ∼ 0 when z # 1, so
the behaviour of w(z) at high redshift is limited. The dark energy
density is

ΩDE = (1− Ωm − Ωk − Ωr)(1 + z)3+3w0/[1+wa ln(1+z)]. (33)

In this model, the model parameters are p = (Ωm, Ωk, w0, wa).
Fitting the model to the combined SN Ia, Bao2, Baoz, WMAP7

and H(z) data, we get the marginalized 1σ constraints, Ωm =
0.264 ± 0.013, Ωk = 0.009+0.014

−0.005 , w0 = −1.17+0.09
−0.23 , and

wa = 0.32+0.46
−0.16 with χ2 = 540.4. The contours of w0 and wa
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Figure 1. The marginalized 1σ and 2σ contour plots of w0 (Ωm) and wa

(q0) for the CPL (a), JBP (b), Wetterich (c) and q(z) (d) parametrisations.
The dashed line in the upper left panel denotes the conditionw0+wa = 0.

are plotted in Fig. 1(c), and the contours of Ωm and Ωk are plotted

in Fig. 4(d).

For the flat Wetterich model, Om(z) becomes

Om(z) =
Ωm(1 + z)3 +ΩDE(z)− 1

(1 + z)3 − 1
, (34)

where ΩDE(z) is defined in equation (33) with Ωk = 0. By fitting
the combined data to the flat Wetterich model, we get the marginal-

ized 1σ constraints, Ωm = 0.266+0.01
−0.015 , w0 = −1.05+0.02

−0.16 , and

wa = 0.14 ± 0.1 with χ2 = 541.1. Using this result, we recon-
struct Om(z) with equation (34) and the result is shown in Fig.
2(c).

3.8 Piecewise parametrization of w(z)

Finally, we consider a more model-independent parametrization of

w(z), the piecewise parametrization of w(z). In this parametriza-
tion, the equation of state parameter is a constant, w(z) = wi for

the redshift in the range zi−1 < z < zi. For convenience, we
choose z0 = 0. We also assume that w(z > 1.8) = −1. For a flat
Universe, if zi−1 ! z < zi,

ΩDE(z) = (1−Ωm)(1+z)3(1+wN )
N
∏

i=1

(1+zi−1)
3(wi−1−wi).(35)

Again, the four parameters wi are correlated and we follow

Huterer & Cooray (2005) to transform these parameters to decor-

related parameters Wi. By fitting the model to the combined SN

Ia, Bao2, Baoz, WMAP7 and H(z) data, we get the error estima-
tions ofWi and the results are shown in Fig. 5.

4 CONCLUSIONS

We summarize all the results in Table 1 and some results are shown

in Figs. 1-5. By parametrizing the deceleration parameter q(z), we
find very strong evidence for the current acceleration. For the piece-

wise parametrization of q(z), we find that q(z) < 0 in the redshift
range 0 ! z " 0.6, and q(z) > 0 in the redshift range z > 0.8 as
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2

the early-time EOS of dark energy. For example, the EOS of

dark energymight exhibit oscillating feature during the evolu-

tion [2]. This is a fascinating possibility, deserving a detailed

investigation. Based on this consideration, we further extend

the above new parametrization (2) to an oscillating one, by

replacing the logarithm function with a sine function:

w(z) = w0 + w1

(

sin(1 + z)

1 + z
− sin(1)

)

. (4)

Such a replacement is rather reasonable, lying in the fact that

the two parametrizations roughly coincide in the recent epoch

(low redshifts), since sin(1) ≈ ln 2 and cos(1) ≈ 1/2 [note that
sin(1) ≈ 0.841, ln 2 ≈ 0.693, and cos(1) ≈ 0.540]. Hence, the
parametrization (4) describes the same behavior as the loga-

rithm form (2) at low redshifts, but exhibits oscillating feature

from a long term point of view. Also, we list the values of

w(z) in the following limiting cases:

w(z) =







































w0, for z = 0,

w0 − w1 sin(1), for z→ +∞,

w0 + w1(1 − sin(1)), for z→ −1.

(5)

We find that the two parametrizations, (2) and (4), also

roughly coincide in the limiting cases, z→ ∞ and z→ −1.
In what follows, we shall explore the dynamical evolu-

tion of dark energy via the CPL parametrization and the

new parametrizations. For convenience, we call the new

parametrizations the logarithm form and oscillating form, re-

spectively, hereafter. Since our aim is to probe the dynamics

of dark energy, we should try to avoid other indirect factors

weakening the observational limits on the EOS; thus we as-

sume a flat universe, Ωk = 0, consistent with the inflationary

cosmology. From the Friedmann equation, the Hubble expan-

sion rate can be written as

H(z) = H0
[

Ωm(1 + z)
3 +Ωr(1 + z)

4 + (1 −Ωm −Ωr) f (z)
]1/2
,

(6)

whereΩr = Ωγ(1+0.2271Neff), withΩγ = 2.469×10−5h−2 for
Tcmb = 2.725 K, Neff the effective number of neutrino species
(in this Letter we take its standard value, 3.04 [3]), and f (z) =

exp[3
∫ z

0
dz′(1 + w(z′))/(1 + z′)].

For constrainingw(z), we use the current observational data

from the type Ia supernovae (SN), the baryon acoustic oscilla-

tions (BAO), and the cosmic microwave background (CMB).

Such a combination of data sets is the most widely used one,

sufficiently satisfying our aim of testing the new parametriza-

tions and making a comparison. Of course, one can also add

other data sets such as gamma-ray bursts, H(z), and so on, but

we feel that this is not necessary for our present aim and leave

a more sophisticated analysis to a future work with different

goal.

For the SN data, we use the 557 Union2 data compiled in

Ref. [4]. The theoretical distance modulus is defined as

µth(zi) ≡ 5 log10 DL(zi) + µ0, (7)

where µ0 ≡ 42.38 − 5 log10 h with h the Hubble constant H0
in units of 100 km/s/Mpc, and the Hubble-free luminosity dis-

tance

DL(z) = (1 + z)

∫ z

0

dz′

E(z′; θ)
, (8)

where E ≡ H/H0, and θ denotes the model parameters. Cor-
respondingly, the χ2 function for the 557 Union2 SN data is
given by

χ2SN(θ) =

557
∑

i=1

[

µobs(zi) − µth(zi)
]2

σ2(zi)
, (9)

where σ is the corresponding 1σ error of distance modulus
for each supernova. The parameter µ0 is a nuisance parameter
but it is independent of the data points. Following Ref. [5],

the minimization with respect to µ0 can be made trivially by
expanding χ2 of Eq. (7) with respect to µ0 as

χ2SN(θ) = A − 2µ0B + µ
2
0C, (10)

where

A(θ) =

557
∑

i=1

[

µobs(zi) − µth(zi; µ0 = 0, θ)
]2

σ2µobs(zi)
,

B(θ) =

557
∑

i=1

µobs(zi) − µth(zi; µ0 = 0, θ)
σ2µobs(zi)

,

C =

557
∑

i=1

1

σ2µobs(zi)
.

Evidently, Eq. (10) has a minimum for µ0 = B/C at

χ̃2SN (θ) = A(θ) −
B(θ)2

C
. (11)

Since χ2
SN,min = χ̃

2
SN,min, instead minimizing χ

2
SN
we will min-

imize χ̃2
SN
which is independent of the nuisance parameter µ0.

For the BAO measurement, we use the data from SDSS

DR7 [6]. The distance ratio (dz) at z = 0.2 and z = 0.35
are

d0.2 =
rs(zd)

DV (0.2)
, d0.35 =

rs(zd)

DV (0.35)
, (12)

where rs(zd) is the comoving sound horizon at the baryon drag

epoch [7], and

DV (z) =















(∫ z

0

dz′

H(z′)

)2
z

H(z)















1/3

(13)

encodes the visual distortion of a spherical object due to the

non Euclidianity of a FRW spacetime. The inverse covariance

matrix of BAO is

(C−1BAO) =

(

30124 −17227
−17227 86977

)

. (14)

... amongst many others
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3. STATISTICS IN COSMOLOGY

3.3.1 Parameter estimation

A Bayesian analysis provides a consistent approach to estimating the values

of the parameters � within a model M , which best describe the data D. The

method is based on the assignment of probabilities to the quantities of interest,

and then the manipulation of these probabilities given a series of rules, in which

Bayes’ theorem plays the main role [138]. Bayes’ theorem states that

P (�|D,M) =
P (D|�,M) P (�|M)

P (D|M)
. (3.14)

In this expression, the prior probability P(�|M) ⇥ � represents what we thought

the probability of � was before considering the data. This probability is modi-

fied through the likelihood P(D|�,M) ⇥ L. The posterior probability P(�|D,M)

represents the state of knowledge once we have taken the experimental data D

into account. The normalisation constant in the denominator is the marginal

likelihood or Bayesian evidence P(D|M) ⇥ Z, as is normally called in cosmology.

Since this quantity is independent of the parameters �, it is commonly ignored

in parameter estimation but it takes the central role for model comparison.

The central step for parameter estimation is to construct the likelihood func-

tion L for the measurements, and then the exploration of the region around its

maximum value Lmax. A simple chi-squared function is often used ⇥2 = �2 lnL.
when the distributions are Gaussian. However, some current problems in cos-

mology present obstacles for carrying out this procedure straightforwardly (some

of them discussed by Liddle [138]). Fortunately, models of our interest can be

easily tackled by numerical techniques developed on statistical fields, in partic-

ular the methods known as Markov Chain Monte Carlo (MCMC). There have

been developed di�erent codes employing MCMC techniques to carry out the

exploration of the cosmological parameter-space, for instance CosmoMC [134],

CosmoHammer [4], CMBEASY [63]. Although some of them use a simple

Metropolis-Hasting algorithm by default, nowadays improved algorithms have

been adapted to explore complex posterior probability distributions.
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3. STATISTICS IN COSMOLOGY

3.3.1 Parameter estimation

A Bayesian analysis provides a consistent approach to estimating the values

of the parameters � within a model M , which best describe the data D. The

method is based on the assignment of probabilities to the quantities of interest,

and then the manipulation of these probabilities given a series of rules, in which

Bayes’ theorem plays the main role [138]. Bayes’ theorem states that

P (�|D,M) =
P (D|�,M) P (�|M)

P (D|M)
. (3.14)

In this expression, the prior probability P(�|M) ⇥ � represents what we thought

the probability of � was before considering the data. This probability is modi-

fied through the likelihood P(D|�,M) ⇥ L. The posterior probability P(�|D,M)

represents the state of knowledge once we have taken the experimental data D

into account. The normalisation constant in the denominator is the marginal

likelihood or Bayesian evidence P(D|M) ⇥ Z, as is normally called in cosmology.

Since this quantity is independent of the parameters �, it is commonly ignored

in parameter estimation but it takes the central role for model comparison.

The central step for parameter estimation is to construct the likelihood func-

tion L for the measurements, and then the exploration of the region around its

maximum value Lmax. A simple chi-squared function is often used ⇥2 = �2 lnL.
when the distributions are Gaussian. However, some current problems in cos-

mology present obstacles for carrying out this procedure straightforwardly (some

of them discussed by Liddle [138]). Fortunately, models of our interest can be

easily tackled by numerical techniques developed on statistical fields, in partic-

ular the methods known as Markov Chain Monte Carlo (MCMC). There have

been developed di�erent codes employing MCMC techniques to carry out the

exploration of the cosmological parameter-space, for instance CosmoMC [134],

CosmoHammer [4], CMBEASY [63]. Although some of them use a simple

Metropolis-Hasting algorithm by default, nowadays improved algorithms have

been adapted to explore complex posterior probability distributions.
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The freedom of the position of the internal z-nodes  allows us to localise the best 
position for a turn-over (if any) and the amplitudes 

are able to describe the global structure of w(z). 


Constraining the dark energy equation of state 3

y(x)

xxmin xmax

ymin

ymax

(x1, y1)

(x2, y2)

(x3, y3)

(x4, y4)

(x5, y5)

Figure 1. Piecewise linear interpolation function. We place a n internal nodes (xi, yi) in the rectangle bounded by (xmin, ymin) and (xmax, ymax), where the
positions xi and amplitudes yi are model parameters to be varied. At xmin and xmax fixed-position nodes are placed with varying amplitude only, such that for
the model defined by n internal nodes there are 2 + 2n parameters. Linear interpolation between the nodes (xi, yi) is used to construct y at all points, with y(x)
set constant outside the range [xmin, xmax].

data we use the likelihood codes described by Font-Ribera et al.
(2014) (ALy↵; BOSS auto-correlation) and Delubac et al. (2015)
(BLy↵; BOSS cross-correlation). For a good summary of the BAO
data see Aubourg et al. (2015). Using the above notation, the whole
dataset combination can be referred to as Planck + BAO + JLA +
ALy↵ +BLy↵.

2.3 Computational tools

To carry out Bayesian inference we use CosmoMC (Lewis & Bri-
dle 2002) containing the Boltzmann CAMB code (Lewis et al.
2000; Howlett et al. 2012). We substitute the default Metropolis-
Hastings sampler with the PolyChord nested sampling plug-in
(Handley et al. 2015a,b), an e↵ective nested sampling implemen-
tation (Sivia & Skilling 2006; Skilling 2004, 2006) for evidence
calculations and parameter estimation with proven e�cacy using
Planck era data (Planck Collaboration et al. 2015b). Aside from
the Ly↵ datasets, all datasets used are default CosmoMC options.
To facilitate deviations from the standard ⇤CDM equation of state
parameter w=�1 we implement the Parameterized Post-Friedmann
framework (PPF) modification to CAMB (Fang et al. 2008), which
has sound speed equal to c and no scalar anisotropic stress. The
free-form reconstruction we use is the nodal reconstruction as pro-
posed by Vázquez et al. (2012b) and successfully used in sev-
eral cosmological applications to date (Vázquez et al. 2012a,b;
Aslanyan et al. 2014; Planck Collaboration et al. 2015b; Hee et al.
2015).

2.4 Nodal reconstruction

We model a one-dimensional function y(x) using a piecewise lin-
ear interpolation between a set of n nodes (Figure 1), where the
positions of the nodes are model parameters to be varied. Alter-
native interpolation schemes may be used, for example, the cubic
spline studied by Vázquez et al. (2012a), although we do not con-
sider these here since the continuity requirements of the interpola-
tion functions and its derivatives limit its ability to model sharply
changing functions y(x).

A model is defined by how many nodes are used in recon-
structing y(x). We use Bayes factors to compare models with in-
creasing numbers of nodes, which quantify how many nodes are
needed to fit the data.

Further, as each posterior sample defines a function in y(x),
we can calculate the posterior probability of y in normalised slices

Model name Description

⇤CDM w = �1
wCDM w constant in z, but allowed to vary
tCDM tilted spectrum: two fixed-position nodes at z = 0, 3
1CDM One internal node
2CDM Two internal nodes
3CDM Three internal nodes

Table 3. The six models we consider. Priors on each w parameter are uni-
form on the range [�2, 0], and were chosen to be conservative (Vázquez
et al. 2012b). Priors on each z parameter are uniform on [0, 3] and sorted,
such that for more than one internal node we have zi<zi+1 (i.e. sorted uni-
form priors).

of constant x, Pr(y|x,D,M), to obtain the plane reconstruction of a
model. We plot these as a function of � confidence intervals to
show the statistical significance of deviations from the maximal
y at each x. One can plot Pr(y|x, n?), where n? denotes the num-
ber of nodes in the most favoured model. In order to identify the
nature of constraints from various models, one should also plot
Pr(y|x) averaged over all models weighted by their posterior odds
ratios (Parkinson & Liddle 2013; Planck Collaboration et al. 2015b;
Hee et al. 2015).

A key strength of this reconstruction procedure is its free-form
nature, which can capture any shape of function in the y(x) plane
by adding arbitrarily large numbers of nodes. The Bayes factor
penalises over-complex models, identifying how much complex-
ity the data is able to support. Model selection techniques can thus
be used to solve questions on the constraining power of the data in
cosmological applications (Vázquez et al. 2012a,b; Aslanyan et al.
2014; Planck Collaboration et al. 2015b; Hee et al. 2015).

We apply this reconstruction to w(z). The models we consider,
along with their priors are detailed in Table 3. The previous work
using WMAP satellite era data by Vázquez et al. (2012b) found
that ⇤CDM was favoured, whilst 2CDM had the second largest
evidence, pointing to structure in w(z) that could not be captured
by a constant equation of state parameter wCDM, or even the 1
internal node model. Subsequent work with Planck 2013 era data
by Hee et al. (2015) showed that ⇤CDM was again favoured, and
that each model of increasing complexity was more disfavoured
than the last. We now investigate this more fully with Planck 2015
era datasets, the addition of Ly↵ data and further dataset analysis
tools.

MNRAS 000, 1–9 (2016)
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5. TENSOR-TO-SCALAR RATIO
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Figure 5.3: Left panel: 1D and 2D probability posterior distributions for the
power spectrum parameters, assuming a two internal-node reconstruction (2ki);
using both current cosmological observations (black line) and future experiments
(red for Planck and green for CMBPol). 2D constraints are plotted with 1� and
2� confidence contours. Right panel: Reconstruction of the scalar spectrum using
present data; lighter regions represents an improved fit. Top label denotes the
Bayes factor of the 2ki-model compared to the power-law ns-model, using current
observations.

scales (k2), however at the largest scales (k1) the cosmic variance still dominates,

as seen in the 1D posterior distribution of A1. Current and future constraints of

the inflationary parameters are summarised in the bottom panel of Figure 5.3.
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4.4 Discussion and Conclusions

Model Npar -2� lnLmax Bayes factor

HZ 8 0.0 B1,1 = +0.0± 0.3

ns 9 -8.6 Bns,1 = +3.3± 0.3

nv 10 -9.4 Bnv,1 = +4.7± 0.3

LD 10 -9.4 BLD,1 = +4.9± 0.3

k1 11 -9.1 Bk1,1 = +4.3± 0.3
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Figure 4.11: Comparison of the primordial scalar power spectra for the preferred
models along with their Bayesian evidence. We also include the maximum likelihood
Lmax for a model with number of parameters Npar. Each Bayes factor is compared
respect to the one-node model (HZ).

nrun = [�0.1, 01], to illustrate the robustness of a model over small variations of

the prior range:

Bns,1 = +2.25± 0.30 (wide priors)

Bnv,1 = +4.24± 0.30 (wide priors)

BLD,1 = +4.47± 0.30 (wide priors)

Brun,1 = +2.85± 0.30 (narrow priors)

We observe that even when wider priors are considered, the HZ model is strongly

disfavoured when compared to nv and LD models. Similarly, the simple tilted and

running model are still significantly disfavoured.

To summarise the analysis, in Figure 4.11 we plot the reconstructed spectra

for the preferred selected models together with their corresponding Bayesian ev-

idence. It shows that the HZ spectrum is decisively excluded as a viable model

to describe PR(k). The preferred model given current observations is provided

by the LD model followed by a modified power-law version. We have found that

the power-law parameterisation, including either cases ns and ns + nrun, are both
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We allow the data to decide the level of

complexity of the model 
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The small-scale Planck temperature likelihood is based
on pseudo cross-spectra between pairs of maps at 100, 143,
and 217 GHz, masked to retain 49%, 31%, and 31% of
the sky, respectively. This results in angular auto- and cross-
correlation power spectra covering multipole ranges of 50 ⌅
⌅ ⌅ 1200 at 100 GHz, 50 ⌅ ⌅ ⌅ 2000 at 143 GHz,
and 500 ⌅ ⌅ ⌅ 2500 at 217 GHz and for the 143 ⇥
217 GHz cross-spectrum. In addition to instrumental uncer-
tainties, mitigated here by using only cross-spectra among dif-
ferent detectors, small scale foreground and CMB secondary
anisotropies need to be accounted for. The foreground model
used in the Planck high-⌅ likelihood is described in de-
tail in Planck Collaboration XV (2013); Planck Collaboration
XVI (2013), and includes contributions to the cross-frequency
power spectra from unresolved radio point sources, the cos-
mic infrared background (CIB), and the thermal and kinetic
Sunyaev-Zeldovich effects. There are eleven adjustable nuisance
parameters: (APS

100, A
PS
143, A

PS
217, r

PS
143⇥217, ACIB

143 , A
CIB
217 , r

CIB
143⇥217, �

CIB,
AtSZ

143, A
kSZ, ⇥tSZ�CIB). In addition, the calibration parameters for

the 100 and 217 GHz channels, c100 and c217, relative to the
143 GHz channel, and the dominant beam uncertainty eigen-
mode amplitude B1

1 are left free in the analysis, with other beam
uncertainties marginalized analytically, so the Planck high-⌅
likelihood includes 14 nuisance parameters.

The low-⌅ Planck likelihood combines the Planck tempera-
ture data with the large scale 9-year WMAP polarization data for
this release. Using the procedure introduced in Page et al. (2007),
the temperature and polarization likelihood can be separated as-
suming negligible noise in the temperature map. The temper-
ature likelihood is based on a Gibbs approach (Eriksen et al.,
2007), mapping out the distribution of the ⌅ < 50 CMB temper-
ature multipoles from a foreground-cleaned combination of the
30 � 353 GHz maps. The polarization likelihood uses a pixel-
based approach using the WMAP 9-year polarization maps at
33, 41, and 61 GHz , and includes the temperature-polarization
cross-correlation (Page et al., 2007). Its angular range is ⌅ ⌅ 23
for T E, EE, and BB.

3.2.2. Planck lensing data

The primary CMB anisotropies are distorted by the gravitational
potential induced by intervening matter. Such lensing, which
tends to broaden and smooth out the acoustic oscillations, is
taken into account as a correction to the observed temperature
power spectrum. The lensing power spectrum can also be recov-
ered by measuring higher-order correlation functions.

For some of our analysis we include the Planck lensing
likelihood, derived in Planck Collaboration XVII (2013), which
measures the non-Gaussian trispectrum of the CMB, which is
proportional to the power spectrum of the lensing potential. As
described in Planck Collaboration XVII (2013), this potential
is reconstructed using quadratic estimators (Okamoto & Hu,
2003), and its power spectrum is used to estimate the lensing de-
flection power spectrum. The spectrum is estimated from the 143
and 217 GHz maps, using multipoles in the range 40 < ⌅ < 400.
The theoretical predictions for the lensing potential power spec-
trum are calculated at linear order.

3.2.3. ACT and SPT temperature data

In some of our analysis we include data from ACT and SPT.
ACT measures the power spectrum at 148 and 218 GHz, and
the cross-spectrum (Das et al., 2013), and covers angular scales

500 < ⌅ < 10000 at 148 GHz and 1500 < ⌅ < 10000 at 218
GHz. We use these data in the range ⌅ > 1000 in combina-
tion with Planck. SPT measures the power spectrum for angular
scales 2000 < ⌅ < 10000 at 95, 150, and 220 GHz (Reichardt
et al., 2012). The spectrum at larger scales is also measured at
150 GHz in Story et al. (2012) but we do not include these in our
analysis. To model the foregrounds for ACT and SPT we follow
a similar approach to the likelihood described in Dunkley et al.
(2013), extending the model used for the Planck high-⌅ likeli-
hood. Additional nuisance parameters are included to model the
Poisson source levels in each experiment, the residual Galactic
dust, and inter-frequency calibration parameters. They are de-
scribed in more detail in Planck Collaboration XVI (2013).

3.2.4. BAO data

The BAO angular scale acts as a standard ruler and allows us
to map out the expansion history of the Universe after last scat-
tering. The BAO scale, extracted from galaxy redshift surveys,
provides a constraint on the late-time geometry and breaks de-
generacies with other cosmological parameters. Galaxy surveys
constrain the ratio DV (z̄)/rs, where DV (z̄) is the spherically aver-
aged distance scale to the effective survey redshift z̄ and rs is the
sound horizon (Mehta et al., 2012).

In this analysis we consider a combination of the mea-
surements by the 6dFGRS (Beutler et al. (2011), z̄ = 0.106),
SDSS-II (Padmanabhan et al. 2012, z̄ = 0.35), and BOSS
CMASS (Anderson et al. 2012, z̄ = 0.57) surveys, assuming
no correlation between the three data points. This likelihood is
described further in Planck Collaboration XVI (2013).

3.3. Parameter estimation

Given a modelM with free parameters x̂ ⇤ {x1, · · · , xX} and a
likelihood function of the data L(data|x̂), the (posterior) proba-
bility density P as a function of the parameters can be expressed
as

P(x̂|data,M) ⇧ L(data|x̂) · P(x̂|M), (29)
where P(x̂|M) represents the data-independent prior probabil-
ity density. Unless specified otherwise, we choose wide top-hat
prior distributions for all cosmological parameters.

We construct the posterior parameter probabilities us-
ing the Markov Chain Monte Carlo (MCMC) sampler as
implemented in the CosmoMC (Lewis & Bridle, 2002) or
MontePython (Audren et al., 2012) packages. In some cases,
when the calculation of the Bayesian evidence (see below) is
desired, or when the likelihood function deviates strongly from
a multivariate Gaussian, we use the nested sampling algorithm
provided by the MultiNest add-on module (Feroz & Hobson,
2008; Feroz et al., 2009) instead of the Metropolis-Hastings al-
gorithm.

Joint two-dimensional and one-dimensional posterior distri-
butions are obtained by marginalization. Numerical values and
constraints on parameters are quoted in terms of the mean and
68% central Bayesian interval of the respective one-dimensional
marginalized posterior distribution.

3.4. Model selection

Two approaches to model selection are commonly used in statis-
tics. The first approach examines the logarithm of the likelihood
ratio, or effective ⇤2,

�⇤2
eff ⇤ 2 [lnLmax(M1) � lnLmax(M2)] , (30)
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between models M1 and M2, corrected for the fact that mod-

els with more parameters provide a better fit due to fitting away

noise, even when the more complicated model is not correct.

Various information criteria have been proposed based on this

idea (Akaike, 1974; Schwarz, 1978), see also Liddle (2007).

These quantities have the advantage of being independent of

prior choice and fairly easy to calculate. The second approach

is a Bayesian approach (Cox, 1946; Jeffreys, 1998; Jaynes &

Bretthorst, 2003), based on evaluating ratios of the model aver-
aged likelihood, or Bayesian evidence, defined by

Ei =

�
dxXP(x̂|Mi)L(data|x̂) . (31)

Evidence ratios are naturally interpreted as betting odds be-

tween models.
5

Nested sampling algorithms allow rapid numer-

ical evaluation of E. In this paper we will consider both the ef-

fective ⇥2
and the Bayesian evidence.

4. Constraints on slow-roll inflationary models
In this section we describe constraints on the slow-roll infla-

tionary paradigm, using Planck+WP data in combination with

the likelihoods described in Sects. 3.2.2–3.2.4. First we con-

centrate on characterizing the primordial power spectrum us-

ing Planck and other data. We start by showing that the em-

pirical pre-inflationary Harrison-Zeldovich (HZ) spectrum with

ns = 1 does not fit the Planck measurements. We further exam-

ine whether generalizing the cosmological model, for example

by allowing the number of neutrino species to vary, allowing the

Helium fraction to vary, or admitting a non-standard reionization

scenario could reconcile the data with ns = 1, and conclude that

ns � 1 is robust. Next we consider evidence for a running of ns
and show it constrained to be small, although we find a prefer-

ence for negative running at modest statistical significance.

We then investigate the Planck constraints on slow roll in-

flation, allowing a tilt for the spectral index and the presence of

tensor modes, and discuss the implications for the simplest stan-

dard inflationary models. In this section the question is studied

using the slow roll approximation, but later sections move be-

yond the slow roll approximation. We show that compared to

previous experiments, Planck significantly narrows the space of

possible inflationary models. Finally we comment on the impli-

cations for inflation of the Planck constraints on possible devia-

tions from spatial flatness.

4.1. Ruling out exact scale invariance

The simplest ansatz for characterizing the statistical properties

An of the primordial cosmological perturbations is the so-called

HZ model proposed by Harrison (1970); Zeldovich (1972); and

Peebles & Yu (1970). These authors pointed out that a power

spectrum with exact scale invariance for the Newtonian gravi-

tation potential fitted the data available at the time, but without

giving any theoretical justification for this form of the spectrum.

Under exact scale invariance, which would constitute a sort of

unexplained new symmetry, the primordial perturbations in the

5
Note that since the average is performed over the entire support

of the prior probability density, the evidence depends strongly on the

probability range for the adjustable parameters. Whereas in parameter

inference, the exact extent of the prior ranges often becomes irrelevant

as long as they are “wide enough” (i.e., containing the bulk of the high-

likelihood region in parameter space), the value of the evidence will

generally depend on precisely how wide the prior range was chosen.

Newtonian gravitational potential look exactly the same whether

they are magnified or demagnified. In this simple model, vector

and tensor perturbations are absent and the spectrum of curva-

ture perturbations is characterized by a single parameter, the am-

plitude As. Inflation, on the other hand, generically breaks this

rescaling symmetry. Although under inflation, scale invariance

still holds approximately, inflation must end: therefore, as dif-

ferent scales are being imprinted, the physical conditions must

also evolve. (However, see Starobinsky (2005) for the canonical

inflationary model designed to mimic ns = 1, albeit with r � 0).

Although a detection of a violation of scale invariance would

not definitively prove that inflation is responsible for the gener-

ation of the primordial perturbations, ruling out the HZ model

would confirm the expectation of small deviations from scale in-

variance, almost always on the red side, which are generic to all

inflationary models without fine tuning. We examine in detail

the viability of the HZ model using statistics to compare it to the

more general model where the spectral index is allowed to vary,

as motivated by slow-roll inflation.

When the cosmological model with ns = 1 is compared with

a model in which ns is allowed to vary, we find that allowing ns to

deviate from one decreases the best-fit effective ⇥2
by 27.9 with

respect to the HZ model. Thus the significance of the finding

that ns � 1 is in excess of 5�. The parameters and maximum

likelihood of this comparison are reported in Table 3.

One might wonder whether ns = 1 could be reconciled with

the data by relaxing some of the assumptions of the underly-

ing cosmological model. Of particular interest is exploring those

parameters known to be almost degenerate with the spectral in-

dex, such as the effective number of neutrino species Ne⇤ and

the primordial helium fraction YP, which both alter the damp-

ing tail of the temperature spectrum (Trotta & Hansen, 2004;

Hou et al., 2011), somewhat mimicking a spectral tilt. Assuming

a Harrison-Zeldovich spectrum and allowing Ne⇤ or YP to float,

and thus deviate from their standard values, gives almost as good

a fit to Planck+WP data as the ⇥CDM model with a varying

spectral index, with �⇥2
e⇤ = 2.8 and 2.2, respectively. However,

as shown in Table 3, the HZ, HZ+Ne⇤ , and HZ+YP models re-

quire significantly higher baryon densities and reionization op-

tical depths compared to ⇥CDM. In the HZ+YP model, one ob-

tains a helium fraction of YP = 0.3194 ± 0.013. This value is in-

compatible both with direct astrophysical measurements of this

quantity (Aver et al., 2012) and with standard Big Bang nucle-

osynthesis (Hamann et al., 2008b). The HZ+Ne⇤ model, on the

other hand, would imply the presence of �Ne⇤ ⇥ 1 new effective

neutrino species beyond the three known species. When BAO

measurements are included in the likelihood, �⇥2
e⇤ increases to

39.2 (HZ), 4.6 (HZ+YP), and 8.0 (HZ+Ne⇤), respectively, for the

three models. The significance of this detection is also discussed

in Planck Collaboration XVI (2013).

4.2. Constraining inflationary models using the slow roll
approximation

We now consider all inflationary models that can be described

by the primordial power spectrum parameters consisting of the

scalar amplitude, As, the spectral index, ns, and the tensor-to-

scalar ratio r, all defined at the pivot scale k�. We assume that the

spectral index is independent of the wavenumber k. Negligible

running of the spectral index is expected if the slow roll con-

dition is satisfied and higher order corrections in the slow roll

approximations can be neglected. In the next subsection we re-

lax this assumption.
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ABSTRACT

We present the implications for cosmic inflation of the Planck measurements of the cosmic microwave background (CMB) anisotropies in both
temperature and polarization based on the full Planck survey, which includes more than twice the integration time of the nominal survey used
for the 2013 Release papers. The Planck full mission temperature data and a first release of polarization data on large angular scales measure the
spectral index of curvature perturbations to be ns = 0.968 ± 0.006 and tightly constrain its scale dependence to dns/d ln k = �0.003 ± 0.007 when
combined with the Planck lensing likelihood. When the Planck high-` polarization data is included, the results are consistent and uncertainties are
further reduced. The upper bound on the tensor-to-scalar ratio is r0.002 < 0.11 (95 % CL). This upper limit is consistent with the B-mode polarization
constraint r < 0.12 (95 % CL) obtained from a joint analysis of the BICEP2/Keck Array and Planck data. These results imply that V(�) / �2 and
natural inflation are now disfavoured compared to models predicting a smaller tensor-to-scalar ratio, such as R2 inflation. We search for several
physically motivated deviations from a simple power-law spectrum of curvature perturbations, including those motivated by a reconstruction of
the inflaton potential not relying on the slow-roll approximation. We find that such models are not preferred, either according to a Bayesian model
comparison or according to a frequentist simulation-based analysis. Three independent methods reconstructing the primordial power spectrum
consistently recover a featureless and smooth PR(k) over the range of scales 0.008 Mpc�1 . k . 0.1 Mpc�1. At large scales, each method finds
deviations from a power law, connected to a deficit at multipoles ` ⇡ 20–40 in the temperature power spectrum, but at an uncompelling statistical
significance owing to the large cosmic variance present at these multipoles. By combining power spectrum and non-Gaussianity bounds, we
constrain models with generalized Lagrangians, including Galileon models and axion monodromy models. The Planck data are consistent with
adiabatic primordial perturbations, and the estimated values for the parameters of the base ⇤CDM model are not significantly altered when more
general initial conditions are admitted. In correlated mixed adiabatic and isocurvature models, the 95 % CL upper bound for the non-adiabatic
contribution to the observed CMB temperature variance is |↵non-adi| < 1.9 %, 4.0 %, and 2.9 % for cold dark matter (CDM), neutrino density, and
neutrino velocity isocurvature modes, respectively. We have tested inflationary models producing an anisotropic modulation of the primordial
curvature power spectrum finding that the dipolar modulation in the CMB temperature field induced by a CDM isocurvature perturbation is not
preferred at a statistically significant level. We also establish tight constraints on a possible quadrupolar modulation of the curvature perturbation.
These results are consistent with the Planck 2013 analysis based on the nominal mission data and further constrain slow-roll single-field inflationary
models, as expected from the increased precision of Planck data using the full set of observations.

Key words. Cosmology: theory – early Universe – inflation
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n 2 3 4

✏H < 0.0073 < 0.011 < 0.020

⌘H �0.010+0.011
�0.009 �0.012+0.015

�0.013 �0.001+0.033
�0.027

⇠2
H . . . 0.08+0.12

�0.12 �0.01+0.19
�0.19

$3
H . . . . . . 1.0+2.3

�1.8

⌧ 0.082+0.038
�0.036 0.096+0.042

�0.043 0.096+0.042
�0.042

ns 0.9693+0.0094
�0.0093 0.9680+0.0096

�0.0096 0.967+0.010
�0.010

103dns/d ln k �0.251+0.41
�0.41 �13+18

�19 �8+21
�21

r0.002 < 0.11 < 0.16 < 0.32

��2 . . . ��2
3/2 = �0.6 ��2

4/3 = �2.3

Table 9. Numerical reconstruction of the Hubble slow-roll
parameters beyond the slow-roll approximation, using Planck
TT+lowP+BAO. We also show the corresponding bounds on
some related parameters (here ns, dns/d ln k, and r0.002 are de-
rived from the numerically computed primordial spectra). All
error bars are at the 95 % CL. The effective �2 value of model n
is given relative to model n � 1.

Fig. 19. Posterior distributions for the first four Hubble slow-
roll parameters, when H(�) is Taylor expanded to nth order, us-
ing Planck TT+lowP+BAO (filled contours) or TT,TE,EE+lowP
(dashed contours). The primordial spectra are computed beyond
the slow-roll approximation.

tensor-to-scalar ratios, so that the upper bound on r0.002 is as
high as in the previous n = 4 models, r0.002 < 0.32.

Note that$3
H can be significantly larger than unity for n = 4.

This does not imply violation of slow roll within the observable
range. By assumption, for all accepted models, ✏H must remain
smaller than unity over that range. In fact, for most of the green
potentials visible in Fig. 20, we checked that ✏H either has a max-
imum very close to unity near the beginning of the observable
range or starts from unity. So the best-fit models (maximizing
the power suppression at low multipoles) correspond either to
inflation of short duration, or to models nearly violating slow
roll just before the observable window. However, such peculiar
models are not necessary for a good fit. Table 9 shows that the
improvement in �2 as n increases is negligible.

Fig. 20. Same as Fig. 15, when the Taylor expansion to nth or-
der is performed on H(�) instead of V(�), and the potential is
inferred from Eq. (60).

In summary, this section further establishes the robust-
ness of our potential reconstruction and two main conclusions.
Firstly, under the assumption that the inflaton potential is smooth
over the observable range, we showed that the simplest para-
metric forms (involving only three free parameters including
the amplitude V(�⇤), no deviation from slow roll, and nearly
power law primordial spectra) are sufficient to explain the data.
No high-order derivatives or deviations from slow roll are re-
quired. Secondly, if one allows more freedom in the potential—
typically, two more parameters—it is easy to decrease the large-
scale primordial spectrum amplitude with an initial stage of
“marginal slow roll” along a steep branch of the potential fol-
lowed by a transition to a less steep branch. This type of
model can accommodate a large tensor-to-scalar ratio, as high
as r0.002 ⇡ 0.3.

8. P(k) reconstruction
In PCI13 (section 7) we presented the results of a penalized like-
lihood reconstruction, seeking to detect any possible deviations
from a homogeneous power-law form (i.e., PR(k) / kns�1) for
the primordial power spectrum (PPS) for various values of a
smoothing parameter, �. (For an extensive set of references to
the prior literature concerning the methodology for reconstruct-
ing the power spectrum, see PCI13.) In the initial March 2013
preprint version of that paper, we reported evidence for a fea-
ture at moderate statistical significance around k ⇡ 0.15 Mpc�1.
However, in the November 2013 revision we retracted this find-
ing, because subsequent tests indicated that the feature was no
longer statistically significant when more aggressive cuts were
made to exclude sky survey rings where contamination from
electromagnetic interference from the 4 K cooler was largest, as
indicated in the November 2013 “Note Added.”

In this section we report on results using the 2015 CTT
` like-

lihood (Sect. 8.1) using essentially the same methodology as de-
scribed in PCI13. (See Gauthier & Bucher (2012) and references
therein for more technical details.) This method is also extended
to include the EE and T E likelihoods in Sect. 8.1.2. As part of
this 2015 release, we include the results of two other methods
(see Sects. 8.2 and 8.3) to search for features. We find that all
three methods yield broadly consistent reconstructions and reach
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Fig. 22. Planck TT,TE,EE+lowP likelihood primordial power spectrum reconstruction results. Top four panels: Reconstruction of
the deviation f (k) using four different roughness penalties. As in Fig. 21, the red curves represent the best-fit deviation f (k) and the
height and width of the green error bars represent the error and minimum reconstructible width, respectively. For all values of the
roughness penalty, the deviations are consistent with a featureless spectrum. Lower three panels: ±1� error bars of the three non-
PPS cosmological parameters included in the maximum likelihood reconstruction. All values are consistent with their respective
best-fit fiducial model values (indicated by the dashed lines).

8.2. Method II: Bayesian model comparison

In this section we model the PPS PR(k) using a nested family of
models where PR(k) is piecewise linear in the ln(P)-ln(k) plane

between a number of knots, Nknots, that is allowed to vary. The
question arises as to how many knots one should use, and we ad-
dress this question using Bayesian model comparison. A family
of priors is chosen where both the horizontal and vertical posi-
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where PR,fid(k) ⌘ As(k/k⇤)ns,fid�1. Here the spectral index ns,fid is
fixed. A uniform prior is imposed on each variable qb (b , p)
and the constraint �1  qb  1 is also imposed to force the re-
construction to behave reasonably near the endpoints, where it is
hardly constrained by the data. The quantity lnPR(k) is interpo-
lated between the knots using cubic splines with natural bound-
ary conditions (i.e., the second derivatives vanish at the first and
the last knots). Outside [k1, kn] we set PR(k) = eq1PR,fid(k) (for
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Fig. 25. Bayes factor (relative to the base ⇤CDM model) as a
function of the number of knots for three separate runs. Solid
line: Planck TT. Dashed line: Planck TT,TE,EE. Dotted line:
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Fig. 26. Bayesian reconstruction of the primordial power spec-
trum averaged over different values of Nint (as shown in
Fig. 24), weighted according to the Bayesian evidence. The re-
gion 30 < ` < 2300 is highly constrained, but the resolution is
lacking to say anything precise about higher `. At lower `, cos-
mic variance reduces our knowledge of PR(k). The weights as-
signed to the lower Nint models outweigh those of the higher
models, so no oscillatory features are visible here.
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Fig. 27. Reconstructed power spectra applied to the Planck 2015
data using 12 knots (with positions marked as � at the bottom
of each panel) with cubic spline interpolation. Mean spectra as
well as sample trajectories are shown for scalars and tensors, and
±1� and ±2� limits are shown for the scalars. The fiducial ten-
sor spectrum corresponds, arbitrarily, to r = 0.13. Top: uniform
prior, 0  r  1. Middle: fixed, r = 0.1. Bottom: fixed, r = 0.01.
Data sets: Planck TT+lowP+BAO+SN+HST+zre>6 prior. Drec is
the comoving distance to recombination.

k < k1) and PR(k) = eqnPR,fid(k) (for k > kn). For most knots, we
found that the upper and lower bounds of the qb prior hardly
affect the reconstruction, since the data sharpen the allowed
range significantly. However, for super-Hubble scales (i.e., k <

⇠

10�4 Mpc�1) and very small scales (i.e., k >
⇠

0.2 Mpc�1), which
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ABSTRACT
We present cosmological parameter results from the final full-mission Planck measurements of the cosmic microwave background (CMB) an-
isotropies, combining information from the temperature and polarization maps and the lensing reconstruction. Compared to the 2015 results,
improved measurements of large-scale polarization allow the reionization optical depth to be measured with higher precision, leading to signifi-
cant gains in the precision of other correlated parameters. Improved modelling of the small-scale polarization leads to more robust constraints on
many parameters, with residual modelling uncertainties estimated to a↵ect them only at the 0.5� level. We find good consistency with the standard
spatially-flat 6-parameter ⇤CDM cosmology having a power-law spectrum of adiabatic scalar perturbations (denoted “base⇤CDM” in this paper),
from polarization, temperature, and lensing, separately and in combination. A combined analysis gives dark matter density ⌦ch

2 = 0.120 ± 0.001,
baryon density ⌦bh

2 = 0.0224 ± 0.0001, scalar spectral index ns = 0.965 ± 0.004, and optical depth ⌧ = 0.054 ± 0.007 (in this abstract we quote
68 % confidence regions on measured parameters and 95 % on upper limits). The angular acoustic scale is measured to 0.03 % precision, with
100✓⇤ = 1.0411± 0.0003. These results are only weakly dependent on the cosmological model and remain stable, with somewhat increased errors,
in many commonly considered extensions. Assuming the base-⇤CDM cosmology, the inferred (model-dependent) late-Universe parameters are:
Hubble constant H0 = (67.4±0.5) km s�1Mpc�1; matter density parameter⌦m = 0.315±0.007; and matter fluctuation amplitude�8 = 0.811±0.006.
We find no compelling evidence for extensions to the base-⇤CDM model. Combining with baryon acoustic oscillation (BAO) measurements (and
considering single-parameter extensions) we constrain the e↵ective extra relativistic degrees of freedom to be Ne↵ = 2.99±0.17, in agreement with
the Standard Model prediction Ne↵ = 3.046, and find that the neutrino mass is tightly constrained to

P
m⌫ < 0.12 eV. The CMB spectra continue

to prefer higher lensing amplitudes than predicted in base ⇤CDM at over 2�, which pulls some parameters that a↵ect the lensing amplitude away
from the ⇤CDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry)
BAO data. The joint constraint with BAO measurements on spatial curvature is consistent with a flat universe,⌦K = 0.001±0.002. Also combining
with Type Ia supernovae (SNe), the dark-energy equation of state parameter is measured to be w0 = �1.03 ± 0.03, consistent with a cosmological
constant. We find no evidence for deviations from a purely power-law primordial spectrum, and combining with data from BAO, BICEP2, and
Keck Array data, we place a limit on the tensor-to-scalar ratio r0.002 < 0.07. Standard big-bang nucleosynthesis predictions for the helium and
deuterium abundances for the base-⇤CDM cosmology are in excellent agreement with observations. The Planck base-⇤CDM results are in good
agreement with BAO, SNe, and some galaxy lensing observations, but in slight tension with the Dark Energy Survey’s combined-probe results
including galaxy clustering (which prefers lower fluctuation amplitudes or matter density parameters), and in significant, 3.6�, tension with local
measurements of the Hubble constant (which prefer a higher value). Simple model extensions that can partially resolve these tensions are not
favoured by the Planck data.

Key words. Cosmology: observations – Cosmology: theory – Cosmic background radiation – cosmological parameters
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Here n
reion
e (z) is the number density of free electrons from reion-

ization, nH(z) is the total number of hydrogen nuclei, and �T is
the Thomson scattering cross-section. We set zmax = 50, which is
early enough to capture the entirety of the expected contribution
from reionization. We assume that the first reionization of he-
lium happens at the same time as the reionization of hydrogen,
so complete first reionization corresponds to xe > 1. There is
an additional increase in xe at z <⇠ 3.5 when the helium is fully
ionized; this only has a small contribution to ⌧ and in all cases
we model it with a simple smooth transition at z = 3.5.

At large scales in polarization (`<⇠ 30), anisotropies are
instead created by the rescattering of the local tempera-
ture quadrupole, which varies maximally across Hubble-sized
patches. This leads to a “bump” today in the large-scale polar-
ization power spectrum at the Hubble scale during reionization.
The amplitude of the bump scales like ⌧2, but the exact shape
encodes information on the detailed evolution of the ioniza-
tion fraction and can therefore constrain xe(z) (Zaldarriaga et al.
1997; Kaplinghat et al. 2003). Conversely, the inferred value of
⌧ depends on the model assumed for xe(z), thus the reioniza-
tion history has implications for other cosmological parameters,
which are important to quantify. Throughout the 2018 papers,
we use the simple TANH model for reionization (described be-
low and in Sect. 3.3). In this section, we augment this with two
other models to check whether our choice has any impact on
the ⌧ constraints, and to assess the extent to which Planck data
can place model-independent bounds on reionization. The three
models we use are the following.

– TANH, which assumes a smooth transition from a neutral
to ionized Universe, with a parametric form for xe(z) based
on a hyperbolic tangent (see footnote 14). This model is not
physically motivated, but makes the optical depth approxi-
mately independent of the transition width (Lewis 2008). It
has been used previously in PCP13 and PCP15, and is the
default model in these 2018 papers.

– PCA (principle-component analysis), which decomposes the
reionization history into eigenmodes that form a complete
basis for any observable history (Hu & Holder 2003). In gen-
eral, one must also specify a set of bounds to prevent the
reconstruction from giving unphysical (e.g. negative) ioniza-
tion fractions, and for this we use the optimal bounds given
in Millea & Bouchet (2018). The PCA model has some de-
ficiencies: firstly, model parameters (the eigenmode ampli-
tudes) do not have a straightforward physical interpretation;
secondly, even with the optimal physicality bounds, phys-
icality cannot be enforced exactly (Mortonson & Hu 2008;
Millea & Bouchet 2018). Nevertheless, the PCA approach
serves as a useful alternative for comparison, and although
we do not do so here, it can be used to construct an approx-
imate likelihood that can be convenient way of exploring
other models (Heinrich & Hu 2018; Miranda et al. 2017).

– FlexKnot, which reconstructs any arbitrary reionization his-
tory using an interpolating function between a varying num-
ber of knots, with marginalization over the number of knots
(Millea & Bouchet 2018). Here, the model parameters are
directly tied to the physical quantity of the ionization frac-
tion, and as such physicality can be enforced by design. This
model is the exact analogue of the model used in recon-
structing the primordial power spectrum from Planck data
(Vázquez et al. 2012; Planck Collaboration XX 2016).

For each of these models, we must also specify the prior
on the model parameters, which in turn corresponds to some

particular prior on ⌧. Previous analyses of Planck data such
as Heinrich et al. (2017), Obied et al. (2018), Hazra & Smoot
(2017), or Villanueva-Domingo et al. (2018), have not consid-
ered the impact of these (sometimes implicit) priors, which dif-
fered among the di↵erent analyses and consequently caused
some partial disagreement between results. To allow direct com-
parison of ⌧ values, unless otherwise stated we will use a prior
that is uniform on ⌧. Heinrich & Hu (2018) construct a prior
that is uniform on ⌧, but which increases the allowed unphys-
ical parameter space and is chosen a posteriori. Here we in-
stead use the flat prior constructed by the procedure described in
Millea & Bouchet (2018) and Handley & Millea (2018), which
does not admit extra unphysical models and gives the most
generic prior that leaves the prior on ⌧ uniform.

Evidence based on observations of the Gunn-Peterson
trough in the spectra of high-redshift quasars show that the
inter-galactic medium is highly ionized by z⇡ 6 (see e.g.,
Bouwens et al. 2015). We enforce this bound in the case of the
TANH model by requiring that the central redshift of reioniza-
tion be greater than z= 6.5; since the assumed duration in the
TANH model is �z= 0.5, this ensures that reionization is nearly
complete by z⇡ 6. The corresponding lower limit for the optical
depth is ⌧>⇠ 0.0430, modulo some small dependence on other
cosmological parameters. In the case of the FlexKnot model,
the Gunn-Peterson bounds are enforced by constraining the knot
redshifts to be at z> 6. Here, because the duration of reionization
is not specified and can e↵ectively be instantaneous, the optical
depth can be as low as ⌧= 0.0385. The PCA model also implic-
itly includes the Gunn-Peterson bounds, since the eigenmodes
only have support within the range z 2 [6, 30], although the im-
perfect physicality bounds do allow values of ⌧ slightly below
0.0385.

We begin by giving results using only the lowE large-scale
polarization likelihood. As discussed in Sect. 2.2.3, this likeli-
hood uses only EE information, and is restricted to `  29; we
assume that the reionization information in the polarization spec-
trum at ` � 30 is negligible, which is a good approximation for
most models that can fit the low-` data. The lowE data provide
constraints on reionization that are largely model independent,
i.e., insensitive to other cosmological parameters. For definite-
ness, we fix these other cosmological parameters to their best-
fit values from Planck TT,TE,EE, in particular holding Ase

�2⌧

rather than As fixed, which better reflects the impact that the
`>⇠ 10 data would have (we will comment at the end of this
section on how the high-` data a↵ect ⌧). We plot posterior con-
straints from lowE in the top panel of Fig. 44. One can see the
moderate extent to which the hard cuto↵ of the Gunn-Peterson
bound informs the posterior in the TANH and FlexKnot cases
(it of course also impacts the PCA case, although the imperfect
physicality priors in this case lead to the more gradual cuto↵
visible in the figure). We find in the three cases the 68 % con-
straints:

⌧ = 0.0519+0.0030
�0.0079 (lowE; flat ⌧ prior; TANH); (85a)

⌧ = 0.0504+0.0050
�0.0079 (lowE; flat ⌧ prior; FlexKnot); (85b)

⌧ = 0.0487+0.0038
�0.0081 (lowE; flat ⌧ prior; PCA). (85c)

The three results are in good agreement, showing that the Planck

data prefer a late and fast transition from a neutral to an ion-
ized universe, which all models can capture equally well. The
TANH result gives slightly higher optical depth than the oth-
ers, which is primarily driven by the fixed duration of reioniza-
tion assumed. The PCA result is slightly lower, and is partly
a↵ected by the imperfect physicality priors that allow unphys-
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Abstract. One of the main challenges of modern cosmology is to investigate the nature of
dark energy in our Universe. The properties of such a component are normally summarised
as a perfect fluid with a (potentially) time-dependent equation-of-state parameter w(z). We
investigate the evolution of this parameter with redshift by performing a Bayesian analysis
of current cosmological observations. We model the temporal evolution as piecewise linear
in redshift between ‘nodes’, whose w-values and redshifts are allowed to vary. The optimal
number of nodes is chosen by the Bayesian evidence. In this way, we can both determine
the complexity supported by current data and locate any features present in w(z). We
compare this node-based reconstruction with some previously well-studied parameterisations:
the Chevallier-Polarski-Linder (CPL), the Jassal-Bagla-Padmanabhan (JBP) and the Felice-
Nesseris-Tsujikawa (FNT). By comparing the Bayesian evidence for all of these models we
find an indication towards possible time-dependence in the dark energy equation-of-state. It
is also worth noting that the CPL and JBP models are strongly disfavoured, whilst the FNT
is just significantly disfavoured, when compared to a simple cosmological constant w = �1.
We find that our node-based reconstruction model is slightly disfavoured with respect to the
⇤CDM model.
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Figure 2. Left: Reconstruction of the dark energy equation-of-state parameter w(z) using one-
internal-node (top) and two-internal z-nodes (bottom) that move freely in both amplitude wi and
redshift zi. Right: corresponds to the 1D and 2D marginalised posterior distribution of the amplitudes
and z-node positions in each reconstruction. The colour-code indicates the ln(Likelihood), where
lighter regions represents an improved fit, and the top label in each panel denotes the associated
Bayes factor with respect to the ⇤CDM model.

figure 2 illustrates the reconstruction of w(z) from the mean posterior estimates for each node,
with 1� error bands on the amplitudes (left). Also plotted are the 1D and 2D marginalised
posterior distributions on the parameters used to describe w(z) (right). The reconstructed
shape for the two-internal-node model (middle panel) resembles the form obtained in fig-
ure 1(c), but now with a turn-over shifted to earlier times. A similar turn-over has been
found using principal component analysis by [40, 41]. The narrow waist at z ⇠ 0.3 is also
noticeable, where the SNe constraints seem to be tightest. For the one and three-internal-
nodes case (top and bottom panel of figure 2), we observe w(z) has essentially the same
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xxmin xmax
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Figure 1. Piecewise linear interpolation function. We place a n internal nodes (xi, yi) in the rectangle bounded by (xmin, ymin) and (xmax, ymax), where the
positions xi and amplitudes yi are model parameters to be varied. At xmin and xmax fixed-position nodes are placed with varying amplitude only, such that for
the model defined by n internal nodes there are 2 + 2n parameters. Linear interpolation between the nodes (xi, yi) is used to construct y at all points, with y(x)
set constant outside the range [xmin, xmax].

data we use the likelihood codes described by Font-Ribera et al.
(2014) (ALy↵; BOSS auto-correlation) and Delubac et al. (2015)
(BLy↵; BOSS cross-correlation). For a good summary of the BAO
data see Aubourg et al. (2015). Using the above notation, the whole
dataset combination can be referred to as Planck + BAO + JLA +
ALy↵ +BLy↵.

2.3 Computational tools

To carry out Bayesian inference we use CosmoMC (Lewis & Bri-
dle 2002) containing the Boltzmann CAMB code (Lewis et al.
2000; Howlett et al. 2012). We substitute the default Metropolis-
Hastings sampler with the PolyChord nested sampling plug-in
(Handley et al. 2015a,b), an e↵ective nested sampling implemen-
tation (Sivia & Skilling 2006; Skilling 2004, 2006) for evidence
calculations and parameter estimation with proven e�cacy using
Planck era data (Planck Collaboration et al. 2015b). Aside from
the Ly↵ datasets, all datasets used are default CosmoMC options.
To facilitate deviations from the standard ⇤CDM equation of state
parameter w=�1 we implement the Parameterized Post-Friedmann
framework (PPF) modification to CAMB (Fang et al. 2008), which
has sound speed equal to c and no scalar anisotropic stress. The
free-form reconstruction we use is the nodal reconstruction as pro-
posed by Vázquez et al. (2012b) and successfully used in sev-
eral cosmological applications to date (Vázquez et al. 2012a,b;
Aslanyan et al. 2014; Planck Collaboration et al. 2015b; Hee et al.
2015).

2.4 Nodal reconstruction

We model a one-dimensional function y(x) using a piecewise lin-
ear interpolation between a set of n nodes (Figure 1), where the
positions of the nodes are model parameters to be varied. Alter-
native interpolation schemes may be used, for example, the cubic
spline studied by Vázquez et al. (2012a), although we do not con-
sider these here since the continuity requirements of the interpola-
tion functions and its derivatives limit its ability to model sharply
changing functions y(x).

A model is defined by how many nodes are used in recon-
structing y(x). We use Bayes factors to compare models with in-
creasing numbers of nodes, which quantify how many nodes are
needed to fit the data.

Further, as each posterior sample defines a function in y(x),
we can calculate the posterior probability of y in normalised slices

Model name Description

⇤CDM w = �1
wCDM w constant in z, but allowed to vary
tCDM tilted spectrum: two fixed-position nodes at z = 0, 3
1CDM One internal node
2CDM Two internal nodes
3CDM Three internal nodes

Table 3. The six models we consider. Priors on each w parameter are uni-
form on the range [�2, 0], and were chosen to be conservative (Vázquez
et al. 2012b). Priors on each z parameter are uniform on [0, 3] and sorted,
such that for more than one internal node we have zi<zi+1 (i.e. sorted uni-
form priors).

of constant x, Pr(y|x,D,M), to obtain the plane reconstruction of a
model. We plot these as a function of � confidence intervals to
show the statistical significance of deviations from the maximal
y at each x. One can plot Pr(y|x, n?), where n? denotes the num-
ber of nodes in the most favoured model. In order to identify the
nature of constraints from various models, one should also plot
Pr(y|x) averaged over all models weighted by their posterior odds
ratios (Parkinson & Liddle 2013; Planck Collaboration et al. 2015b;
Hee et al. 2015).

A key strength of this reconstruction procedure is its free-form
nature, which can capture any shape of function in the y(x) plane
by adding arbitrarily large numbers of nodes. The Bayes factor
penalises over-complex models, identifying how much complex-
ity the data is able to support. Model selection techniques can thus
be used to solve questions on the constraining power of the data in
cosmological applications (Vázquez et al. 2012a,b; Aslanyan et al.
2014; Planck Collaboration et al. 2015b; Hee et al. 2015).

We apply this reconstruction to w(z). The models we consider,
along with their priors are detailed in Table 3. The previous work
using WMAP satellite era data by Vázquez et al. (2012b) found
that ⇤CDM was favoured, whilst 2CDM had the second largest
evidence, pointing to structure in w(z) that could not be captured
by a constant equation of state parameter wCDM, or even the 1
internal node model. Subsequent work with Planck 2013 era data
by Hee et al. (2015) showed that ⇤CDM was again favoured, and
that each model of increasing complexity was more disfavoured
than the last. We now investigate this more fully with Planck 2015
era datasets, the addition of Ly↵ data and further dataset analysis
tools.

MNRAS 000, 1–9 (2016)

The freedom of the position of the internal z-nodes  allows us to localise the best 
position for a turn-over (if any) and the amplitudes 

are able to describe the global structure of w(z). 
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Abstract. One of the main challenges of modern cosmology is to investigate the nature of
dark energy in our Universe. The properties of such a component are normally summarised
as a perfect fluid with a (potentially) time-dependent equation-of-state parameter w(z). We
investigate the evolution of this parameter with redshift by performing a Bayesian analysis
of current cosmological observations. We model the temporal evolution as piecewise linear
in redshift between ‘nodes’, whose w-values and redshifts are allowed to vary. The optimal
number of nodes is chosen by the Bayesian evidence. In this way, we can both determine
the complexity supported by current data and locate any features present in w(z). We
compare this node-based reconstruction with some previously well-studied parameterisations:
the Chevallier-Polarski-Linder (CPL), the Jassal-Bagla-Padmanabhan (JBP) and the Felice-
Nesseris-Tsujikawa (FNT). By comparing the Bayesian evidence for all of these models we
find an indication towards possible time-dependence in the dark energy equation-of-state. It
is also worth noting that the CPL and JBP models are strongly disfavoured, whilst the FNT
is just significantly disfavoured, when compared to a simple cosmological constant w = �1.
We find that our node-based reconstruction model is slightly disfavoured with respect to the
⇤CDM model.
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ABSTRACT

Data-driven model-independent reconstructions of the dark energy equation of state w(z) are
presented using Planck 2015 era CMB, BAO, SNIa and Lyman-↵ data. These reconstructions
identify the w(z) behaviour supported by the data and show a bifurcation of the equation of
state posterior in the range 1.5<z<3. Although the concordance ⇤CDM model is consistent
with the data at all redshifts in one of the bifurcated spaces, in the other a supernegative equa-
tion of state (also known as ‘phantom dark energy’) is identified within the 1.5� confidence
intervals of the posterior distribution. To identify the power of di↵erent datasets in constrain-
ing the dark energy equation of state, we use a novel formulation of the Kullback–Leibler
divergence. This formalism quantifies the information the data add when moving from priors
to posteriors for each possible dataset combination. The SNIa and BAO datasets are shown to
provide much more constraining power in comparison to the Lyman-↵ datasets. Further, SNIa
and BAO constrain most strongly around redshift range 0.1 � 0.5, whilst the Lyman-↵ data
constrains weakly over a broader range. We do not attribute the supernegative favouring to
any particular dataset, and note that the ⇤CDM model was favoured at more than 2 log-units
in Bayes factors over all the models tested despite the weakly preferred w(z) structure in the
data.

Key words: equation of state – methods: data analysis – methods: statistical – cosmological
parameters – dark energy

1 INTRODUCTION

The nature of dark energy (DE) remains a significant outstanding
problem in cosmology. The ⇤CDM model considers a constant
equation of state (EoS) parameter w=�1 motivated by vacuum en-
ergy. The most frequent generalisation of the ⇤CDM dark energy
EoS is to allow an alteration of the time-independent EoS param-
eter so that w , �1 (hereafter referred to as wCDM). Allowing
w to vary in time w = w(z) results in quintessence DE models.
Many quintessence models (Ratra & Peebles 1988; Caldwell et al.
1998; Tsujikawa 2013), including phantom DE (Caldwell 2002;
Sahni 2005), as well as modified GR theories (Sahni 2005) make
predictions for the behaviour of w(z) which may be tested against
cosmological datasets (Planck Collaboration et al. 2015a). Time-
dependent behaviour can also be investigated by choosing equa-
tions that are simple or mathematically appealing, to test as a DE
model. These phenomenological models include the CPL (Cheval-
lier & Polarski 2001; Linder 2003), JPB (Jassal et al. 2004) and
FNT (Felice et al. 2012) models. Lastly, free-form approaches at-
tempt to avoid any commitment to particular equations and instead

? Contact e-mail: sh767@cam.ac.uk

aim to allow the observational data to define any time-dependent
features in w(z) (Huterer & Starkman 2003; Zunckel & Trotta 2007;
Zhao et al. 2008; Serra et al. 2009; Lazkoz et al. 2012; Vázquez
et al. 2012b). Other free-form reconstruction methods include gaus-
sian processes (Holsclaw et al. 2010a,b; Seikel et al. 2012). We re-
fer the reader to an older review by Sahni & Starobinsky (2006)
which describes the general reconstruction process and new results
by Planck Collaboration et al. (2015a) for further reading on dark
energy constraints.

In this paper, we use Bayes factors combined with a ‘nodal’
free-form method, which reconstructs a function using a spline be-
tween nodes whose amplitude and position can vary, as first pro-
posed by Vázquez et al. (2012a), to investigate the constraints
on w(z). This approach has subsequently been used by Vázquez
et al. (2012b); Aslanyan et al. (2014); Planck Collaboration et al.
(2015b); Hee et al. (2015) and has the benefit of remaining general
and focussing on the cosmological datasets rather than a specific
model. The first aim of this paper is to investigate potential devia-
tions from the ⇤CDM constant dark energy equation of state using
Bayesian model selection. The second aim is to analyse the con-
straining power on w(z) of the datasets using the Kullback-Leibler
divergence (DKL). Observational data are improving in quality with

c� 2016 The Authors
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B⇤w = �2.34 ± 0.29

B⇤ t = �2.68 ± 0.29

B⇤ 1 = �2.68 ± 0.29

B⇤ 2 = �2.82 ± 0.29

B⇤ 3 = �3.36 ± 0.29

Figure 2. The w(z) priors, w(z) reconstructions and parameter constraints for each of the 5 model extensions beyond ⇤CDM. The leftmost plots are the prior
space on the function w(z) as a result of our uniform nodal reconstruction parameters and CosmoMC’s sampling, and the central plots show the constraints
on w(z) as a result of the data. These plots show the posterior probability Pr(w|z): the probability of w as normalised in each slice of constant z, with colour
scale in confidence interval values. The 1� and 2� confidence intervals are plotted as black lines. Note that the sigma-deviations are plotted assuming a central
value such that a flat prior would not have a uniform colour, thus interpreting regions of the posterior space that are highly unconstrained is more di�cult,
such as when interpreting the lower bounds of w at high redshifts. Reviewing priors we see a slight favouring in w(z) of the central values, as expected when
calculating priors analytically and given that CosmoMC restricts the permissible parameter space. The posteriors show that the data constrains w(z) strongly
compared to our priors. Rightmost are the 1D and 2D marginalised posteriors of the additional model parameters. Marginalised plots were produced using
GetDist and w(z) reconstructions were produced in python with the cubehelix colour scheme by Green (2011) for linearity in grey scale.
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ABSTRACT

Data-driven model-independent reconstructions of the dark energy equation of state w(z) are
presented using Planck 2015 era CMB, BAO, SNIa and Lyman-↵ data. These reconstructions
identify the w(z) behaviour supported by the data and show a bifurcation of the equation of
state posterior in the range 1.5<z<3. Although the concordance ⇤CDM model is consistent
with the data at all redshifts in one of the bifurcated spaces, in the other a supernegative equa-
tion of state (also known as ‘phantom dark energy’) is identified within the 1.5� confidence
intervals of the posterior distribution. To identify the power of di↵erent datasets in constrain-
ing the dark energy equation of state, we use a novel formulation of the Kullback–Leibler
divergence. This formalism quantifies the information the data add when moving from priors
to posteriors for each possible dataset combination. The SNIa and BAO datasets are shown to
provide much more constraining power in comparison to the Lyman-↵ datasets. Further, SNIa
and BAO constrain most strongly around redshift range 0.1 � 0.5, whilst the Lyman-↵ data
constrains weakly over a broader range. We do not attribute the supernegative favouring to
any particular dataset, and note that the ⇤CDM model was favoured at more than 2 log-units
in Bayes factors over all the models tested despite the weakly preferred w(z) structure in the
data.
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1 INTRODUCTION

The nature of dark energy (DE) remains a significant outstanding
problem in cosmology. The ⇤CDM model considers a constant
equation of state (EoS) parameter w=�1 motivated by vacuum en-
ergy. The most frequent generalisation of the ⇤CDM dark energy
EoS is to allow an alteration of the time-independent EoS param-
eter so that w , �1 (hereafter referred to as wCDM). Allowing
w to vary in time w = w(z) results in quintessence DE models.
Many quintessence models (Ratra & Peebles 1988; Caldwell et al.
1998; Tsujikawa 2013), including phantom DE (Caldwell 2002;
Sahni 2005), as well as modified GR theories (Sahni 2005) make
predictions for the behaviour of w(z) which may be tested against
cosmological datasets (Planck Collaboration et al. 2015a). Time-
dependent behaviour can also be investigated by choosing equa-
tions that are simple or mathematically appealing, to test as a DE
model. These phenomenological models include the CPL (Cheval-
lier & Polarski 2001; Linder 2003), JPB (Jassal et al. 2004) and
FNT (Felice et al. 2012) models. Lastly, free-form approaches at-
tempt to avoid any commitment to particular equations and instead
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aim to allow the observational data to define any time-dependent
features in w(z) (Huterer & Starkman 2003; Zunckel & Trotta 2007;
Zhao et al. 2008; Serra et al. 2009; Lazkoz et al. 2012; Vázquez
et al. 2012b). Other free-form reconstruction methods include gaus-
sian processes (Holsclaw et al. 2010a,b; Seikel et al. 2012). We re-
fer the reader to an older review by Sahni & Starobinsky (2006)
which describes the general reconstruction process and new results
by Planck Collaboration et al. (2015a) for further reading on dark
energy constraints.

In this paper, we use Bayes factors combined with a ‘nodal’
free-form method, which reconstructs a function using a spline be-
tween nodes whose amplitude and position can vary, as first pro-
posed by Vázquez et al. (2012a), to investigate the constraints
on w(z). This approach has subsequently been used by Vázquez
et al. (2012b); Aslanyan et al. (2014); Planck Collaboration et al.
(2015b); Hee et al. (2015) and has the benefit of remaining general
and focussing on the cosmological datasets rather than a specific
model. The first aim of this paper is to investigate potential devia-
tions from the ⇤CDM constant dark energy equation of state using
Bayesian model selection. The second aim is to analyse the con-
straining power on w(z) of the datasets using the Kullback-Leibler
divergence (DKL). Observational data are improving in quality with
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and H(z) from H0, SNe, OHD, gBAO and Lyα FB, and evaluate the 
corresponding Surprise and the standard deviation (see Methods 
for details). Results are shown as cyan bars in Fig. 1a. They indicate 
that the H0, Lyα FB and SNe measurements are in tension with the 
combined dataset. Introducing tension T as the number of standard 
deviations by which Surprise is greater than zero, we find values 
of T =  4.4, 3.5 and 1.7 for the H0, Lyα FB and SNe measurements, 
respectively (shown in Fig. 1b), with the first two values signalling 
significant tension.

Next, we check whether the tension within the ΛCDM model 
can be interpreted as evidence for a dynamical dark energy. The 
dynamics of dark energy can be probed in terms of its equation of 
state w, which is equal to − 1 for Λ, but is different in dynamical 
dark energy models, where it will generally be a function of red-
shift z. Commonly considered alternatives to Λ are a model with 
a constant w (wCDM) and one in which w is a linear function of 
the scale factor (w0waCDM)16. We allow for a general evolution 
of the dark energy equation of state and use the correlated prior 
probability distribution method17 (hereafter, the prior probability 
distribution is simply called the ‘prior’) to perform a Bayesian non-
parametric reconstruction of w(z) using the Markov chain Monte 
Carlo method with other cosmological parameters marginalized 
over (see Methods for details). Figure 2 presents the reconstructed 
w(z), along with the 68% confidence-level uncertainty, shown 
with a light blue band, derived from the combined dataset ALL16. 
Table 1 shows the change in χ2 relative to ΛCDM for each individ-
ual dataset for the best-fit w(z)CDM model derived from ALL16. 
Overall, the χ2 is improved by − 12.3, which can be interpreted as 
the reconstructed dynamical dark energy model being preferred at 
3.5σ. The reconstructed dark energy equation of state evolves with 
time and crosses the − 1 boundary, which is prohibited in single-
field minimally coupled quintessence models18, but can be realized 
in models with multiple scalar fields, such as Quintom19, or if the 
dark energy field mediates a new force between matter particles20. 
In the latter case, which is commonly classified as modified grav-
ity, it is generic for the effective dark energy equation of state to 
be close to − 1 around z =  0, but to evolve towards more negative 
values at intermediate redshifts, before eventually approaching 
0 during matter domination. Such dynamics would be consistent 
with our reconstruction and could be tested in the future when BAO 
measurements at higher redshifts become available. In addition to 
the reconstruction from the combined ALL16 dataset presented in 

Fig. 2, we present reconstructions derived from ten different data 
combinations in Supplementary Fig. 1.

The results for tension between datasets, re-evaluated for the 
ALL16 best-fit w(z)CDM model, are shown as dark blue bars in 
Fig. 1. We find T =  0.7, 1.1 and 0.7 for H0, Lyα FB and SNe, respec-
tively, indicating that tensions that existed in the ΛCDM model are 
significantly released within w(z)CDM. A plot of the relevant data 
points along with the best-fit predictions from the ΛCDM and the 
w(z)CDM models are provided in Supplementary Fig. 2.

With a large number of additional w-bin parameters, one may be 
concerned that the improvement in the fit is achieved by w(z)CDM 
at the cost of a huge increase in the parameter space. However, cor-
relations between the w-bins induced by the prior constrain most 
of that freedom. One way to estimate the effective number of addi-
tional degrees of freedom is to perform a principal-component 
analysis of the posterior covariance matrix of the w-bin parameters 
and compare it with that of the prior. Using this method, explained 
in detail in the Methods section, we find that our w(z)CDM model 
effectively has only four additional degrees of freedom compared 
with ΛCDM. We note that the demonstration that ALL16 is capa-
ble of constraining four principal components of w(z) is one of the 
interesting results of this work.

It is interesting to compare w(z) reconstructed from ALL16 with 
that obtained by Zhao et al.21 using the same prior but a different 
dataset, which we call ALL12 (a comparison of the ALL16 and the 
ALL12 datasets is provided in Supplementary Table 2). ALL16 con-
tains about 40% more SNe than ALL12, primarily provided by the 
Sloan Digital Sky Survey (SDSS)-II. Moreover, in ALL12, the BAO 
measurement derived from the Baryon Oscillation Spectroscopic 
Survey (BOSS) DR9 sample22 was at a single effective redshift, 
whereas in ALL16 it is tomographic at nine redshifts from BOSS 
DR12 (ref. 23), which contains four times more galaxies than DR9. 
In addition, ALL16 includes a high-redshift Lyα FB measurement, 
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Fig. 1 | The tension among different datasets in ΛCDM and w(z)CDM 
universes. a, The Surprise between the PDFs for DA(z) and H(z) derived 
from the best-fit model using the combined dataset of ALL16, and the 
directly observed DA(z) and H(z) from H0, JLA (the JLA sample of SNe), 
OHD, gBAO-9z (gBAO measurements at nine effective redshifts) and Lyα FB, 
respectively (see Methods for detailed explanation and references for data 
used). The cyan horizontal bars indicate the 68% confidence-level range of 
Surprise in ΛCDM, while the dark blue bars correspond to that of w(z)CDM. 
b, The corresponding values of tension T, defined as Surprise divided by its 
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Fig. 2 | Reconstructed evolution history of the dark energy equation of 
state compared with the 2012 result and the forecasted uncertainty from 
future data. The mean (white solid) and the 68% confidence level  
(CL) uncertainty (light blue band) of the w(z) reconstructed from ALL16 
compared with the ALL12 w(z) reconstructed by Zhao et al. (ref. 21) (red lines 
show the mean and the 68% CL band). The red point with 68% CL error 
bars is the value of w(z) at z!= !2 ‘predicted’ by the ALL12 reconstruction. 
The dark blue band around the ALL16 reconstruction is the forecasted 68% 
CL uncertainty from DESI+ + . The green dashed curve and the light green 
band show the mean and the 68% CL of w(z), respectively, reconstructed 
from ALL16 using a different prior strength (σD!= !0.4), for which the Bayesian 
evidence is equal to that of ΛCDM. See the text for details.
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A flat Friedmann–Robertson–Walker universe dominated by 
a cosmological constant (Λ) and cold dark matter (CDM) has 
been the working model preferred by cosmologists since the 
discovery of cosmic acceleration1,2. However, tensions of vari-
ous degrees of significance are known to be present among 
existing datasets within the ΛCDM framework3–11. In particu-
lar, the Lyman-α  forest measurement of the baryon acoustic 
oscillations (BAO) by the Baryon Oscillation Spectroscopic 
Survey3 prefers a smaller value of the matter density frac-
tion ΩM than that preferred by cosmic microwave background 
(CMB). Also, the recently measured value of the Hubble con-
stant, H0!= !73.24!± !1.74!km!s−1!Mpc−1 (ref. 12), is 3.4σ higher 
than the 66.93!± !0.62!km!s−1!Mpc−1 inferred from the Planck 
CMB data7. In this work, we investigate whether these ten-
sions can be interpreted as evidence for a non-constant 
dynamical dark energy. Using the Kullback–Leibler diver-
gence13 to quantify the tension between datasets, we find that 
the tensions are relieved by an evolving dark energy, with the 
dynamical dark energy model preferred at a 3.5σ significance 
level based on the improvement in the fit alone. While, at 
present, the Bayesian evidence for the dynamical dark energy 
is insufficient to favour it over ΛCDM, we show that, if the 
current best-fit dark energy happened to be the true model, 
it would be decisively detected by the upcoming Dark Energy 
Spectroscopic Instrument survey14.

The observational datasets considered in this work include 
the latest cosmic microwave background (CMB) temperature and 
polarization anisotropy spectra, the supernovae (SNe) luminosity 
distance data, the baryon acoustic oscillations (BAO) angular diam-
eter distance data from the clustering of galaxies (gBAO) and from 
the Lyman-α  forest (Lyα FB), the estimate of the current value of the 
Hubble constant (H0), the measurements of the Hubble parameter 
H(z) at redshifts z using the relative age of old and passively evolving 
galaxies (OHD), the three-dimensional galaxy power spectra and 
the two-dimensional weak-lensing shear angular power spectra. 
Further details about the datasets and associated systematic effects 
can be found in the Methods.

The Kullback–Leibler (KL) divergence, also known as relative 
entropy, quantifies the proximity of two probability density func-
tions (PDFs). Rather than focusing on particular model parameters, 
it is designed to compare the overall concordance of datasets within 
a given model. We use the difference between the actual and the 
expected KL divergence, called ‘Surprise’15, as a measure of tension 
between datasets. Rather than comparing the PDFs for the Λ cold 
dark matter model (ΛCDM, where Λ is the cosmological constant) 
parameters for every pair of datasets, we take the combined data-
set, ALL16 (see Supplementary Table 1), and find the derived PDFs 
for the angular diameter distance DA(z) and H(z) at redshifts cor-
responding to the available data. We then compute the KL diver-
gence between the derived PDFs and the directly observed DA(z) 
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ABSTRACT

The dark energy component of the universe still remains as a mystery, however, several
papers based on observational data have shown that its equation of state may have
an oscillatory behaviour. In this paper, we provide a general description for the dark-
energy equation-of-state w(z) in the form of Fourier series. This description generalises
some previous dynamical dark energy models and is in agreement with the w(z) re-
constructions. We make use of a modified version of a simple and fast Markov Chain
Monte Carlo code to constraint the model parameters. For the analysis we use data
from supernovae type-Ia , baryon acoustic oscillations, H(z) measurements and cosmic
microwave background. We provide a comparison of the proposed model with ⇤CDM,
wCDM and the standard Taylor approximation. The Fourier series expansion of w(z)
is preferred from ⇤CDM at more than 3� significance level based on the improvement
in the fit alone. We use the Akaike criteria to perform the model comparison and
found that, even though there are extra parameters, there is a slight preference of the
Fourier series compared with the ⇤CDM model. The preferred shape of w(z) found
here puts in jeopardy the single scalar field models, as they as they cannot reproduce
the crossing the phantom divide line w = �1.

Key words: Cosmology – Dark Energy

1 INTRODUCTION

The dark energy is still an unknown negative pressure cosmic component for which the simplest case is given in terms of a

perfect fluid with an equation of state (EoS) p = w⇢ with w = �1, this particular model is commonly named as the cosmological

constant ⇤ and it is a key piece of the standard cosmological model: the ⇤CDM model. Even though the standard cosmological

model fits well with most of the current astronomical observations, there exist important tensions among di↵erent recent data

sets. For instance, the value of H0 measured from CMB data by the Planck Collaboration Ade et al. (2016) is 3.4� lower than

the local value reported by Riess et al. Riess et al. (2016). The matter density fraction consistent with the Lyman-↵ forest

measurement of the baryon acoustic oscillations (BAO) is smaller than the one preferred by CMB measurements Delubac

et al. (2015). On the other hand, based on the most minimal a priori assumptions, model independent reconstructions of

the evolution of the dark energy EoS parameter exhibit a dynamical behaviour of w(z) Alberto Vazquez et al. (2012); Wang

et al. (2018); Zhao et al. (2017); Hee et al. (2017), putting in tension the ⇤CDM model amongst several models for which

w = constant. From the theoretical point of view, the standard cosmological model also carries out several important theoretical

problems such as the absence of physical grounds to justify the cosmological constant, the coincidence problem and fine tuning,

see Padilla (2015); Velten et al. (2014); López-Corredoira (2017). In order to get around these issues, there have been plenty

of proposals to describe the general behaviour of this dark component, i.e. scalar fields (quintessence, K-essence, phantom,

quintom, non-minimally coupled scalar fields, etc.) Arun et al. (2017), modified gravity Clifton et al. (2012), interacting dark

energy Zimdahl (2012) and divergence free parameterizations Akarsu et al. (2015), among many others Yoo & Watanabe

(2012).
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Fourier series w(a) 7

Figure 3. These plots show the posterior probability Pr(w |z): the probability of w as normalised in each slice of constant z, with
colour scale in confidence interval values. The 1� and 2� confidence intervals are plotted as black lines. Left panel for each set contains
SN+BAO+HD datasets, while the right panel includes additionally PLK data.

Figure 4. Left panel: 1D and 2D probability posterior distributions of the parameters used in model (g) with the incorporation of PLK
data. Vertical dashed lines correspond to the ⇤CDM values. Right panel: w(z) and ⇢(z) contributions from each term in the Fourier
expansion. The best-fit values of the left panel were used in this plot.
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Figure 2. Red bar plots show the inclusion of extra parameters improves the fit to the data, seen through �2� ln Lmax (compare to
⇤CDM). We can go even further adding parameters, however this increment causes that penalty term (gray bar plot) dominates and
hence the AICC value raises back again. Therefore, the preferred model is the one that minimises the AICC (solid lines). Blue colour
additionally includes PLK data.

interest are the last three models where deviations from the standard values a1 = b1 = a2 = 0 are more noticeable, and hence

leading to a significant improvement on the likelihood. For instance model (f), with three extra parameters and fixed w0,
has deviations from ⇤CDM at about 2� –according to the signal-to-noise ratio in the fit alone–. Moreover, if w0 is let to be

a free parameter in model (g), the best-fit improves significantly as a consequence of w0 being di↵erent from the standard

value w0 = �2 and deviations from ⇤CDM increment up to 3�. The inclusion of extra parameters improves the fit to the data

(dash lines in Figure 2), however, also carries out a penalisation factor that a↵ects directly the Akaike criteria (solid lines in

Figure 2). That is, even though model (h) contains an extra parameter b2, however, it has no impact on improving the fit

considerably. This is a consequence of b2 being close to zero and hence providing no contribution to enhance the description

of the data. Nevertheless, because of this increment of the number of parameters the penalty term takes over and hence the

AIC value raises back again. We can go even further adding parameters, however as we have seen, the penalisation factor

dominates and also more freedom brings more correlations between parameters and therefore noisier reconstructions. Figure

3 shows the posterior distribution (with 1� and 2� confidence levels) for the equation-of-state w(z) given the set of MC chains

for each description. As expected, adding parameters provides more structure than the cosmological constant. Let us have a

look again at the last three models, where the shape of w(z) resembles a similar form already obtained in previous analyses, i.e.

Alberto Vazquez et al. (2012); Hee et al. (2017); Zhao et al. (2017). Throughout these reconstructions we notice the presence

of two peaks, the major one located at z ⇠ 0.8 and a small one at z ⇠ 0.2 (similar positions to the ones obtained in paper Zhao

et al. (2017)). It is also observed that at the present time (z = 0) and high redshifts (z > 1) slightly favoured w < �1, while at

redshift (z ⇠ 0.8) w > �1 is preferred, and hence the reconstructed w(z) exhibits the crossing of the PDL several times. The

crossing of the PDL plays a key role in identifying the correct dark energy model. If future surveys confirm its existence, single

scalar field theories (with minimal assumptions) might be in serious problems as they cannot reproduce this essential feature,

and therefore alternative models should be considered. A key point to stress out is that the cosmological constant w = �1
lays down far outside of the 2� region (outer solid black line), particularly at high redshift on the second plot of model (g)

of Figure 3. The richness of this form is a consequence of releasing some tensions between datasets, specially for the high-z

BAO.

Of all the models presented in Table 1, model (g) deviates the most from the cosmological constant (3.1�). Figure 4

displays 1D and 2D marginalised posterior distributions for the parameters used to describe model (g). The vertical dashed

lines, which correspond to the ⇤CDM model, give an insight to the amount of deviation that each parameter presents, in

particular parameters b1 and a2 deviate the most from the standard values. Here we also notice some parameters are highly

correlated. In a future work we would perform a dimensional reduction analysis (i.e. PCA) which decreases the penalty factor,

but still preserves a similar shape of w(z) and hence �2 lnL keeps a similar value. On the other hand, the right panel of Figure

4 displays the w(z) and ⇢(z) contributions from each term in the Fourier expansion. The a2 parameter contribution looks very

alike to the full Fourier expansion, and hence its importance in the reconstruction. Similarly the b1 parameter enhances the

amplitude of the major peak and provides contributions to the low-negative values of w(z) and redshift today.
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Abstract In the present paper, we investigate the dark
energy equation of state using the Gaussian processes anal-
ysis method, without confining a particular parametrization.
The reconstruction is carried out by adopting the background
data including supernova and Hubble parameter, and pertur-
bation data from the growth rate. It suggests that the back-
ground and perturbation data both present a hint of dynami-
cal dark energy. However, the perturbation data have a more
promising potential to distinguish non-evolution dark energy
including the cosmological constant model. We also test the
influence of some parameters on the reconstruction. We find
that the matter density parameter !m0 has a slight effect on
the background data reconstruction, but has a notable influ-
ence on the perturbation data reconstruction. While the Hub-
ble constant presents a significant influence on the recon-
struction from background data.

1 Introduction

Multiple experiments have consistently approved the cosmic
late-time accelerating expansion. Observations contributing
to this pioneering discovery contain the type Ia supernova
(SNIa) [1,2], large scale structure [3], cosmic microwave
background (CMB) anisotropies [4], and baryon acoustic
oscillation (BAO) peaks [5]. Theoretical paradigms trying
to explain this discovery include the exotic dark energy with
repulsive gravity, or modification to general relativity [6,7],
or violation of cosmological principle [8–10]. In which, dark
energy theory attracts lots of interests. For understanding the
nature of dark energy, a crucial parameter is the equation of
state (EoS)w, which is the ratio of pressure to energy density.
Basing on the value of w, dark energy can be classified to
different categories. The cosmological constant model with
w = −1 is the most notable candidate. In addition to this
one, the time evolution model, Chevallier–Polarski–Linder

a e-mail: hongli@ihep.ac.cn

(CPL) [11,12] is also a potential competitor. A short review
can be seen in Ref. [13].

However, above understanding of the dark energy is a
parametrization on w. It is, after all, an ansatz of the dark
energy. To extract the information of EoS honestly, Huterer
and Starkman [14] first proposed the principal component
analysis technique in dark energy study. It is a model-
independent way which treats the w as a piecewise constant
in each redshift bin. By extracting essential information from
multiple observational data, one can obtain a series of orthog-
onal eigenfunctions to expand the EoS w. In following Refs.
[15–18], this method was greatly adopted and improved in
different forms.

Another effective technique, Gaussian processes (GP),
is also model-independent. Unlike the parametrization con-
straint, this approach does not rely on any artificial dark
energy template. It can reconstruct the w directly via its rela-
tionship with the observational variable. In this process, it
firstly assumes that each observational data satisfies a Gaus-
sian distribution. Thus, the observational data should satisfy
a multivariate normal distribution. Relationship between two
different data points is connected by a covariance function.
Using this covariance function, values of data at other red-
shift points which have not be observed also can be obtained
because they all obey this probability distribution. More-
over, derivative of these data also can be calculated using the
covariance function. Finally, with the preparation of more
data, a variable or goal function can be reconstructed at
any redshift point via their relationship with the data and
its derivatives. We note that the primary task in this Gaussian
processes is to determine the covariance function at different
redshift points using the observational data. Moreover, deter-
mination of the covariance function has nothing to do with the
w. Thus, its understanding on the w is more faithful. In cos-
mology, it has incurred a wide application in reconstructing
dark energy [19,20] and cosmography [21], or testing stan-
dard concordance model [22] and distance duality relation
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Fig. 3 Dark energy reconstruction for different matter density parameter using the combination of Union2.1 and H(z) data

Table 2 Current EoS of dark energy w0 at different cases for different
observational data

!m0 Union2.1 + H(z)

!m0 = 0.25 w0 = −1.1433 ± 0.1460

WMAP-9 prior w0 = −1.1898 ± 0.1560

Planck 2015 prior w0 = −1.2393 ± 0.1588

!m0 JLA+H(z)

!m0 = 0.25 w0 = −1.3196 ± 0.0942

WMAP-9 prior w0 = −1.3725 ± 0.1075

Planck 2015 prior w0 = −1.4301 ± 0.1050

H0 JLA+H(z)

H0 = 73.24 ± 1.74 w0 = −1.4297 ± 0.1046

H0 = 71.00 ± 2.80 w0 = −1.2612 ± 0.1158

δ(z = 0) RSD

Normalization value w0 = −0.8745 ± 0.2490

Fiducial value w0 = −0.8745 ± 0.2490

σ8(z = 0) RSD

WMAP-9 prior w0 = −0.8653 ± 0.2496

Planck 2015 prior w0 = −0.8980 ± 0.2477

!m0 RSD

!m0 = 0.25 w0 = −0.6433 ± 0.2430

WMAP-9 prior w0 = −0.9490 ± 0.2522

Planck 2015 prior w0 = −0.9026 ± 0.2502

w = −1 at 95% C.L. cannot be ruled out by the background
observational data, especially for high redshift. Third, mean
values of reconstruction hint a dynamical dark energy, but
they cannot rule out the non-evolution model at 95% C.L.
Last, uncertainty of reconstruction at redshift z > 0.5 has
becomes very large. It indicates that a precise evaluation on
w(z) at high redshift is still a luxury from current background
data.

4.3 Reconstruction from the JLA and H(z) data

We test the influence of parameter !m0 and H0 on the w

reconstruction from JLA and H(z) data.

4.3.1 Effect of the parameter !m0

We show the test of parameter !m0 onw reconstruction from
JLA and H(z) data in Fig. 4. From the comparison with Fig.
3, we find that this combination presents a similar w recon-
struction as the Union2.1 and H(z) data. For low redshift,
EoS w < −1 can be highlighted, which can be seen from
the w0 in Table 2. We also note that errors of w from the
JLA combination is smaller. This is because the JLA data
have more samples with high precision, which can present a
tighter constraint. Same as the Union2.1 data combination,
the JLA combination also hint a dynamical dark energy. How-
ever, because of its smaller errors, the cosmological constant
model is not so consistent with the reconstruction from JLA
and H(z) data.

4.3.2 Effect of the parameter H0

We present the test of influence of different Hubble constant
in Fig. 5. Firstly, we find that JLA data combination in this
case give a similar w as above reconstruction. A dynamical
w is also presented. Secondly, The Hubble constant has a
notable influence on the w, as shown in Table 2 on the cur-
rent EoS w0. Moreover, errors of w in the upper panel is
smaller, due to its smaller uncertainty of Hubble constant.
The cosmological constant model in the lower panel cannot
be distinguished from the reconstruction.

4.4 Reconstruction from the RSD data

Using the GP method, we obtain the current growth rate
f σ8(z = 0) = 0.3854 ± 0.0239 and f σ ′

8(z = 0) =
0.1660 ± 0.0706, as shown in Fig. 6. We should emphasize
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ABSTRACT

Knowing the late time evolution of the Universe and finding out the causes for this
evolution are the important challenges of modern cosmology. In this work, we adopt
a model-independent cosmographic approach and approximate the Hubble parameter
considering the Pade approximation which works better than the standard Taylor
series approximation for z > 1. With this, we constrain the late time evolution of the
Universe considering low-redshift observations coming from SNIa, BAO, H(z), H0 ,
strong-lensing time-delay as well as the Megamaser observations for angular diameter
distances. We confirm the tensions with ⇤CDM model for low-redshifts observations.
The present value of the equation of state for the dark energy has to be phantom-like
and for other redshifts, it has to be either phantom or should have a phantom crossing.
For lower values of ⌦m0, multiple phantom crossings are expected. This poses serious
challenges for single, non-interacting scalar field models for dark energy. We derive
constraints on the statefinders (r, s) and these constraints show that a single dark
energy model cannot fit data for the whole redshift range 0  z  2: in other words,
we need multiple dark energy behaviors for di↵erent redshift ranges. Moreover, the
constraint on sound speed for the total fluid of the Universe, and for the dark energy
fluid (assuming them being barotropic), rules out the possibility of a barotropic fluid
model for unified dark sector and barotropic fluid model for dark energy, as fluctuations
in these fluids are unstable as c

2
s < 0 due to constraints from low-redshift observations.

1 INTRODUCTION

The observed late time acceleration of the Universe is one of the most important milestones for research in cosmology as

well as gravitational physics. It behoves us to go beyond the standard attractive nature of gravity and compels us to think

out of the box to explain the repulsive nature of gravity that is at work on large cosmological scales. Whether the reason

for this repulsive gravity is due to the presence of non-standard component with negative pressure in the Universe ( called

dark energy) (Padmanabhan 2003; Peebles & Ratra 2003; Sahni 2002, 2005; Sahni et al. 2000) or due to large scale (infrared)

modification of Einstein’s General Theory of Gravity (GR) (Barreiro et al. 2004; Burrage et al. 2011; Capozziello et al. 2005,

2011; Dvali et al. 2000; Freese et al. 2002; Nicolis et al. 2009; Nojiri et al. 2011, 2017), is not settled yet. Still, recent results by

Planck-2015 (Ade et al. 2016a,b) for Cosmic Microwave Background Radiation (CMB), equally complimented by observations

from Baryon-Acoustic-Oscillations (BAO) (Beutler et al. 2011, 2012; Blake et al. 2012; Lauren et al. 2013, 2014), Supernova-

Type-Ia (SNIa) (Betoule et al. 2014; Perlmutter et al. 1997; Riess et al. 1998), Large Scale Galaxy Surveys (LSS) (Parkinson

et al. 2012), Weak-Lensing (WL) (Heymans et al. 2013) etc, have put very accurate bound on the late time evolution of the

Universe. It tells that the concordance ⇤CDM Universe is by far the best candidate to explain the present acceleration of the

present Universe. But the theoretical puzzle continues to exists as we still do not know any physical process to generate a

small cosmological constant, which is consistent with observations but is far too small (of the order of 10�120) compared to

what one expects from standard theory of symmetry breaking. Problem like cosmic coincidence also remains.

Interestingly, few recent observational results have indicated inconsistencies in the cosmological credibility of the ⇤CDM

model. The model independent measurement of H0 by Riess et al. (R16) (Riess et al. 2016) and its recent update (Riess et
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Figure 5. Reconstructed equation of state for dark energy wDE(z) taking values of ⌦m0 =0.28(upper left), 0.30(upper right), 0.31(lower)
respectively. Contour shadings are the same as in Figure 4.

wDE (assuming that late time acceleration is caused by dark energy) for specific choices of ⌦m0. But this does not allow us

to pin point the actual dark energy model as there is a huge degeneracy between cosmographic parameters and di↵erent dark

energy models. One needs some further model independent geometrical quantities that shed light on actual model dependence

for dark energy. (Sahni et al. 2003) have introduced one such sensitive diagnostic pair (r, s), called “Statefinder Diagnostics”

(Sahni et al. 2003; Alam et al. 2003). They are defined as:

r =
...
a

aH3
= q2 +

H
00

H
(1 + z)2, (15)

s =
r � 1

3(q � 0.5)
. (16)

Here “prime” represents the derivative with respect to redshift. Remember the statefinder r is same as the jerk parameter

j defined earlier. But we keep the original notation of statefinders as proposed by Sahni et al. (Sahni et al. 2003). One of

the main goal of constructing any diagnostic is to distinguish any dark energy model from ⇤CDM and statefinders (r, s) do

exactly this as for ⇤CDM (r, s) = (1, 0) for all redshifts. Any deviation from this fix point in (r, s) plane, signals departure

from ⇤CDM behaviour. Moreover the di↵erent trajectories in (r, s) plane indicate di↵erent dark energy models including

scalar field models with di↵erent potentials, di↵erent parametrizations for dark energy equation of state and even brane-world

models for dark energy ( we refer readers to Figure 1 and Figure 2 (Alam et al. 2003)).

We reconstruct the behaviours of (r, s) and show di↵erent aspects of these reconstruction in Figure 6. Following are the

results that one can infer from these plots:

• The first observation from Figure 6 is that there is no (r, s) = (1, 0) fixed point for all redshifts ruling out the ⇤CDM

behaviour convincingly from low-redshift data. As one sees from the behaviour of (r, s) as function of redshift ( Top, Left in
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Knowing the late time evolution of the Universe and finding out the causes for this
evolution are the important challenges of modern cosmology. In this work, we adopt
a model-independent cosmographic approach and approximate the Hubble parameter
considering the Pade approximation which works better than the standard Taylor
series approximation for z > 1. With this, we constrain the late time evolution of the
Universe considering low-redshift observations coming from SNIa, BAO, H(z), H0 ,
strong-lensing time-delay as well as the Megamaser observations for angular diameter
distances. We confirm the tensions with ⇤CDM model for low-redshifts observations.
The present value of the equation of state for the dark energy has to be phantom-like
and for other redshifts, it has to be either phantom or should have a phantom crossing.
For lower values of ⌦m0, multiple phantom crossings are expected. This poses serious
challenges for single, non-interacting scalar field models for dark energy. We derive
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we need multiple dark energy behaviors for di↵erent redshift ranges. Moreover, the
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model for unified dark sector and barotropic fluid model for dark energy, as fluctuations
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The observed late time acceleration of the Universe is one of the most important milestones for research in cosmology as

well as gravitational physics. It behoves us to go beyond the standard attractive nature of gravity and compels us to think

out of the box to explain the repulsive nature of gravity that is at work on large cosmological scales. Whether the reason

for this repulsive gravity is due to the presence of non-standard component with negative pressure in the Universe ( called

dark energy) (Padmanabhan 2003; Peebles & Ratra 2003; Sahni 2002, 2005; Sahni et al. 2000) or due to large scale (infrared)

modification of Einstein’s General Theory of Gravity (GR) (Barreiro et al. 2004; Burrage et al. 2011; Capozziello et al. 2005,

2011; Dvali et al. 2000; Freese et al. 2002; Nicolis et al. 2009; Nojiri et al. 2011, 2017), is not settled yet. Still, recent results by

Planck-2015 (Ade et al. 2016a,b) for Cosmic Microwave Background Radiation (CMB), equally complimented by observations

from Baryon-Acoustic-Oscillations (BAO) (Beutler et al. 2011, 2012; Blake et al. 2012; Lauren et al. 2013, 2014), Supernova-

Type-Ia (SNIa) (Betoule et al. 2014; Perlmutter et al. 1997; Riess et al. 1998), Large Scale Galaxy Surveys (LSS) (Parkinson

et al. 2012), Weak-Lensing (WL) (Heymans et al. 2013) etc, have put very accurate bound on the late time evolution of the

Universe. It tells that the concordance ⇤CDM Universe is by far the best candidate to explain the present acceleration of the

present Universe. But the theoretical puzzle continues to exists as we still do not know any physical process to generate a

small cosmological constant, which is consistent with observations but is far too small (of the order of 10�120) compared to

what one expects from standard theory of symmetry breaking. Problem like cosmic coincidence also remains.

Interestingly, few recent observational results have indicated inconsistencies in the cosmological credibility of the ⇤CDM

model. The model independent measurement of H0 by Riess et al. (R16) (Riess et al. 2016) and its recent update (Riess et
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between the bins controlled by the correlation length and prior strength. Once the prior is
calibrated, the problem described in the above paragraph can be systematically resolved.

The discussion above elucidates an important characteristic of the PCA, it is dependent
on the initial description of the function. In many works the simple step function (or bins)
were used. If another basis functions were used, with different behavior at large redshifts, we
would end up with a similar problem, i.e., the large redshift behavior of the best constrained
basis function would dominate at large redshifts, providing biased estimates at these points.
We conclude that, in the specific context of constraining a function by its integral, the PCA
approach has this potential problem.

3.3 Smoothing methods

As we mentioned in section 1, these approaches are model-independent and non-parametric.
Therefore, they suit the study cases where the data probability distribution is unknown.
However, as pointed out by Montiel et al. [28], these methods find difficulties due to the
limited amount of observational data or even due to some features of the methods themselves,
such as the size of the smoothing parameter and the assumptions on priors or fiducial models.
Besides, since no assumption is made about the data distribution, one cannot use resampling
to perform a self-validation, but only bootstrap like procedures, e.g., jackknife, which usually
requires large samples.

Finally, the fact that this method makes such minimal assumptions is not necessarily
useful. As one can only reconstruct the direct variable associated to the observable, i.e., cos-
mological distances and H(z), any inference about the derived kinematic quantities is limited
since it is highly dependent on the smoothing technique as, e.g., smoothing linear splines has
always zero second derivative, and top-hat moving average filters are non-continuous. There-
fore, any analysis about kinematic quantities, different of the reconstructed one, requires new
assumptions [25, 48].

3.4 Gaussian Process

In this approach, instead of modeling a kinematic function, one chooses to model a prob-
ability distribution for the curve as a Gaussian probability distribution. This assumption
dictates the data probability distribution by relating both the curve and observable probabil-
ity distributions. In this sense, this approach unifies the two aspects of the model, the data
distribution and the curve reconstruction. All the assumptions are comprised in the mean
curve and the two-point covariance, which define the Gaussian distribution of the curve.

The drawback is similar to the parametric procedure. In general, one has to assume a
function to describe the mean of the GP and a two-point function to describe the variance.
If the considered mean function differs from the true one, it will impose a bias in the recon-
struction. See, for example, references [26, 27], where they assume a constant mean function.
Since the GP determines the observable statistical distribution, it is also necessary to include
the data distribution to calculate the joint probability distribution of both curve and data.
In this case, one has a model-independent but parametric method in the sense that one is
assuming a particular distribution for the data. The GP validation also has to be performed
for a number of realizations of the data, since the indirect curve determination through a
Gaussian distribution can lead to bias in an unpredictable way.
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Abstract. Distance measurements are currently the most powerful tool to study the expan-
sion history of the universe without specifying its matter content nor any theory of gravita-
tion. Assuming only an isotropic, homogeneous and flat universe, in this work we introduce
a model-independent method to reconstruct directly the deceleration function via a piecewise
function. Including a penalty factor, we are able to vary continuously the complexity of the
deceleration function from a linear case to an arbitrary (n+1)-knots spline interpolation. We
carry out a Monte Carlo (MC) analysis to determine the best penalty factor, evaluating the
bias-variance trade-off, given the uncertainties of the SDSS-II and SNLS supernova combined
sample (JLA), compilations of baryon acoustic oscillation (BAO) and H(z) data. The bias-
variance analysis is done for three fiducial models with different features in the deceleration
curve. We perform the MC analysis generating mock catalogs and computing their best-fit.
For each fiducial model, we test different reconstructions using, in each case, more than 104

catalogs in a total of about 5 ⇥ 105. This investigation proved to be essential in determin-
ing the best reconstruction to study these data. We show that, evaluating a single fiducial
model, the conclusions about the bias-variance ratio are misleading. We determine the re-
construction method in which the bias represents at most 10% of the total uncertainty. In all
statistical analyses, we fit the coefficients of the deceleration function along with four nuisance
parameters of the supernova astrophysical model. For the full sample, we also fit H0 and the
sound horizon rs(zd) at the drag redshift. The bias-variance trade-off analysis shows that,
apart from the deceleration function, all other estimators are unbiased. Finally, we apply the
Ensemble Sampler Markov Chain Monte Carlo (ESMCMC) method to explore the posterior
of the deceleration function up to redshift 1.3 (using only JLA) and 2.3 (JLA+BAO+H(z)).
We obtain that the standard cosmological model agrees within 3� level with the reconstructed
results in the whole studied redshift intervals. Since our method is calibrated to minimize
the bias, the error bars of the reconstructed functions are a good approximation for the total
uncertainty.
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Figure 7. The model-independent reconstructed q(z) (blue solid line) and its 68.23%, 95.45% and
99.73% confidence intervals (blue shaded areas), for �rel = 30%, using SNe Ia (left panel) and SNe Ia
+ BAO + H(z) data (right panel). The red line and contours are the q(z) mean and its CI’s obtained,
assuming XCDM model, fitting ⌦c (with w = �1) (left panel) and (H0, ⌦c, w) (right panel) along
with the SNe Ia nuisance parameters. The black lines correspond to the Planck+BAO+JLA+H0

best-fit assuming ⇤CDM model.

To compare this result with the flat ⇤CDM model, i.e., assuming GR and DE EoS given
by w = �1.0, we carry out the ESMCMC in the 5-dimensional parametric space

~✓
.
= (⌦c, ↵, �, M1, M2).

For this, we fixed the other cosmological parameters to the JLA best-fit. We obtain the
following best-fitting values and standard deviations: ⌦c = 0.244 ± 0.034, ↵ = 0.141 ± 0.007,
� = 3.103±0.081, M1 = �19.05±0.023 and M2 = �19.12±0.026. The mean q

XCDM(z) (red
line) and the CI’s (red shaded areas) are consistent with our model-independent reconstruction
overall redshift range, as shown in the left panel of figure 7. In both analyses, the SN Ia
nuisance parameters ↵ and � are weakly (anti-) correlated (. 0.1) to {q̂i} (i = 0, ..., 7) and
⌦c. M1 and M2 are also weakly correlated to most parameters excepted for q0 and ⌦c, in
which there are moderate correlations ⇠ 0.56 � 0.66. At last, we also plot the Planck best-
fitting curve (black line), q

Planck(z), which we computed using the Planck+BAO+JLA+H0

best-fitting parameters obtained assuming ⇤CDM [40], namely, H0 = 67.74, ⌦c = 0.259 and
⌦b = 0.049. We note that q

Planck(z) is inside the 68.27% CI in the entire redshift interval.
We follow the same procedure to compute q(z) and their CI in the redshift interval

[0.0, 2.3] given the JLA, BAO and H(z) data. In this case, 8 ⇥ 105 points are calculated
in the 18-dimensional parametric space [eq. (6.4)], getting MPSRF = 1.033. In this case,
the best-fitting and standard deviation values of the non-qi parameters are H0 = 71.68 ±

1.69 km s�1Mpc�1, rd = 101.15 ± 1.8 h
�1Mpc, ↵ = 0.141 ± 0.007, � = 3.111 ± 0.081, M1 =

�19.01 ± 0.05 and M2 = �19.07 ± 0.05. We note in the right panel of figure 7 an expressive
improvement on the constraints due to the combined data, regarding that we are assuming
only FLRW metric and flat space, and given the high dimension of the parametric space. In
this case, we obtain zT ' 0.58 with 68.27% CI and we can attest with significance � 99.73%
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In this work we present a nonparametric approach, which works on minimal assumptions, to recon-
struct the cosmic expansion of the Universe. We propose to combine a locally weighted scatterplot
smoothing method and a simulation-extrapolation method. The first one (Loess) is a nonparametric
approach that allows to obtain smoothed curves with no prior knowledge of the functional relation-
ship between variables nor of the cosmological quantities. The second one (Simex ) takes into account
the e↵ect of measurement errors on a variable via a simulation process. For the reconstructions we
use as raw data the Union2.1 Type Ia Supernovae compilation, as well as recent Hubble parameter
measurements. This work aims to illustrate the approach, which turns out to be a self-su�cient
technique in the sense we do not have to choose anything by hand. We examine the details of the
method, among them the amount of observational data needed to perform the locally weighted fit
which will define the robustness of our reconstruction. In view of our results, we believe that our
proposal o↵ers a promising alternative for reconstructing global trends of cosmological data when
there is little intuition on the relationship between the variables and we also think it even presents
good prospects to generate reliable mock data points where the original sample is poor.

I. INTRODUCTION

The cosmic acceleration of the Universe has been
confirmed by several independent observations includ-
ing Type Ia Supernovae (SNe Ia), the cosmic microwave
background (CMB) and the large scale structure (LSS)
of the Universe [1–8]. Typically, this accelerated expan-
sion has been attributed to the existence of a new entity
called dark energy (DE) which makes up nearly 68.6% of
the cosmic substratum but still with unknown properties
[9]. Therefore, elucidating what drives the accelerated
expansion of the Universe or establising the properties of
dark energy are real challenges in cosmology.

The community has proposed a huge amount of theo-
retical scenarios that attempt to explain this recent ac-
celeration of the Universe: ⇤CDM [10–12], quintessence
[13, 14], Chaplygin gas [15, 16], modified gravity [17],
holographic dark energy [18], braneworld models [19],
f(R) theories [20], theories with extra dimensions [21],
and quite a few others. However, despite their great
compliance with observational data, none of them has
provided a conclusive answer about the nature of the
DE.

This situation has motivated the study of other meth-
ods that can make the most of the observational data and
give as much information as possible about the properties
of the dark energy. In general, these approaches attempt
to reconstruct the properties of the DE or the history of
the expansion rate as directly as possible from observa-
tions, not establishing an association with a fundamental
physical model. They can be broadly classified into para-
metric and nonparametric methods. Parametric meth-
ods are viable approaches when the relationship between
the variables of the phenomena under study is known,
and their goal is to constrain the parameters of the cho-

sen model. Refs. [22–30] can be checked for details of data
analysis and methods of parametric reconstruction of the
properties of dark energy. However, when there is no clue
about the explicit form of the relationship between the
variables or the functional form for the quantity of inter-
est, one has to propose it, which can lead to misleading
results. At this point is where nonparametric methods
make their way into the scene. They try to provide the
general trend of the variable of interest when the relation-
ship between the variables is unknown or there is little
intuition about it because the data do not have a clear
interpretation. Indeed, they have become popular given
their usefulness for enhancing scatter plots and other di-
agnostic plots with the goal of displaying the underlying
structure in the data [31, 32].

In the literature one can find several approaches cov-
ering nonparametric and model independent reconstruc-
tions [33–60], although, most of them must deal with
the scarceness of data or some other limitation intrinsic
to the method. Such approaches include the Principal
Components Analysis (PCA) [33], the Nonlinear Inverse
Approach (NIA) [42], the Dipole of the Luminosity Dis-
tance method (DLD) [44], the Smoothing Method (SM)
[45], Gaussian Processes (GP) [53], Nodal Reconstruc-
tion (NR) [60], Genetic Algorithms (GA) [49] and three
representative approches of Model Independent Recon-
structions of the Expansion History (MIR-I), (MIR-II)
and (MIR-III), corresponding to the schemes presented
in [38], [43] and [58], respectively.

Even though each one of the above methods are well
established, none of them provides a totally compelling
procedure within which the accelerated expansion or the
nature of the DE can be understood. In this context, we
can point out some features and shortcomings that they
present in common:
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In this work we present a nonparametric approach, which works on minimal assumptions, to recon-
struct the cosmic expansion of the Universe. We propose to combine a locally weighted scatterplot
smoothing method and a simulation-extrapolation method. The first one (Loess) is a nonparametric
approach that allows to obtain smoothed curves with no prior knowledge of the functional relation-
ship between variables nor of the cosmological quantities. The second one (Simex ) takes into account
the e↵ect of measurement errors on a variable via a simulation process. For the reconstructions we
use as raw data the Union2.1 Type Ia Supernovae compilation, as well as recent Hubble parameter
measurements. This work aims to illustrate the approach, which turns out to be a self-su�cient
technique in the sense we do not have to choose anything by hand. We examine the details of the
method, among them the amount of observational data needed to perform the locally weighted fit
which will define the robustness of our reconstruction. In view of our results, we believe that our
proposal o↵ers a promising alternative for reconstructing global trends of cosmological data when
there is little intuition on the relationship between the variables and we also think it even presents
good prospects to generate reliable mock data points where the original sample is poor.

I. INTRODUCTION

The cosmic acceleration of the Universe has been
confirmed by several independent observations includ-
ing Type Ia Supernovae (SNe Ia), the cosmic microwave
background (CMB) and the large scale structure (LSS)
of the Universe [1–8]. Typically, this accelerated expan-
sion has been attributed to the existence of a new entity
called dark energy (DE) which makes up nearly 68.6% of
the cosmic substratum but still with unknown properties
[9]. Therefore, elucidating what drives the accelerated
expansion of the Universe or establising the properties of
dark energy are real challenges in cosmology.

The community has proposed a huge amount of theo-
retical scenarios that attempt to explain this recent ac-
celeration of the Universe: ⇤CDM [10–12], quintessence
[13, 14], Chaplygin gas [15, 16], modified gravity [17],
holographic dark energy [18], braneworld models [19],
f(R) theories [20], theories with extra dimensions [21],
and quite a few others. However, despite their great
compliance with observational data, none of them has
provided a conclusive answer about the nature of the
DE.

This situation has motivated the study of other meth-
ods that can make the most of the observational data and
give as much information as possible about the properties
of the dark energy. In general, these approaches attempt
to reconstruct the properties of the DE or the history of
the expansion rate as directly as possible from observa-
tions, not establishing an association with a fundamental
physical model. They can be broadly classified into para-
metric and nonparametric methods. Parametric meth-
ods are viable approaches when the relationship between
the variables of the phenomena under study is known,
and their goal is to constrain the parameters of the cho-

sen model. Refs. [22–30] can be checked for details of data
analysis and methods of parametric reconstruction of the
properties of dark energy. However, when there is no clue
about the explicit form of the relationship between the
variables or the functional form for the quantity of inter-
est, one has to propose it, which can lead to misleading
results. At this point is where nonparametric methods
make their way into the scene. They try to provide the
general trend of the variable of interest when the relation-
ship between the variables is unknown or there is little
intuition about it because the data do not have a clear
interpretation. Indeed, they have become popular given
their usefulness for enhancing scatter plots and other di-
agnostic plots with the goal of displaying the underlying
structure in the data [31, 32].

In the literature one can find several approaches cov-
ering nonparametric and model independent reconstruc-
tions [33–60], although, most of them must deal with
the scarceness of data or some other limitation intrinsic
to the method. Such approaches include the Principal
Components Analysis (PCA) [33], the Nonlinear Inverse
Approach (NIA) [42], the Dipole of the Luminosity Dis-
tance method (DLD) [44], the Smoothing Method (SM)
[45], Gaussian Processes (GP) [53], Nodal Reconstruc-
tion (NR) [60], Genetic Algorithms (GA) [49] and three
representative approches of Model Independent Recon-
structions of the Expansion History (MIR-I), (MIR-II)
and (MIR-III), corresponding to the schemes presented
in [38], [43] and [58], respectively.

Even though each one of the above methods are well
established, none of them provides a totally compelling
procedure within which the accelerated expansion or the
nature of the DE can be understood. In this context, we
can point out some features and shortcomings that they
present in common:
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Figure 4.9: Reconstruction of the Lasenby & Doran primordial scalar spectrum
based on the binning format with linear interpolation described in Section 4.1.2.
We have assumed an idealised CMB spectrum with limitation only due to cosmic
variance (left). Right panel shows the reconstructed spectrum in the binning format
together with the LD input spectrum (solid line).

the nodes, thus allowing one to reconstruct a smooth shape for the primordial

spectrum, but one that is less satisfactory than that obtained using linear inter-

polation.

4.4 Discussion and Conclusions

In this chapter we have attempted to fit an optimal degree of structure for the

primordial power spectrum of curvature perturbations using Bayesian model se-

lection as our discriminating criterion. We have modelled the spectrum as a linear

interpolation between a set of ‘nodes’ with varying amplitude and k-position. We

have also explored di⇤erent parameterisations of the primordial spectrum which

include: a power-law parameterisation with both tilt and running parameter, a

modified power-law spectrum and the Lasenby & Doran model.

All the considered models have in common the standard �CDM parameters:

⇥bh2, ⇥DMh2, �, ⇥ , as well as the secondary parameters: ASZ , Ap, Ac. Thus, pri-

ors on these parameters remained the same in each model. The best-fit values

for these standard parameters are consistent with those obtained using the con-
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Figure 3.8: Polarisation noise power spectra of forthcoming experiments. Note
that these curves include uncertainties associated with the instrumental beam. The
red line shows the B-mode power spectrum for the standard inflationary model with
r = 0.1.

distribution with variances [187]:

(�ĈXX
l )2 =

2

(2l + 1)fsky

�
CXX

l + NXX
l

⇥2
, (3.10)

(�ĈTE
l )2 =

2

(2l + 1)fsky

��
CTE

l

⇥2
+

�
CTT

l + NTT
l

⇥ �
CEE

l + NEE
l

⇥ 
,(3.11)

where X = T,E and B label the temperature and polarisations; fsky is the

fraction of the observed sky. The CXY
l ’s represent the theoretical spectra and

NXY
l the instrumental noise spectra for each experiment. In experiments with

multiple frequency channels c, the noise spectrum is approximated [24] by

NX
l =

⇧
⌥

c

1

NX
l,c

⌃�1

, (3.12)

where the noise spectrum of an individual frequency channel, assuming a Gaussian

beam, is

NX
l,c = (⇤pix ⇥fwhm)2 exp

⇤
l(l + 1)

⇥2
fwhm

8 ln 2

⌅
�XY . (3.13)

The pixel noise from temperature and polarisation maps are considered as uncor-

related. The noise per pixel ⇤X
pix (and ⇤P

pix =
�

2⇤T
pix) depends on the instrumental
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5. TENSOR-TO-SCALAR RATIO

Table 5.1: Model Selection. The input spectrum, given by the LD model, is recon-
structed using di�erent models. We show the Bayes factor for each model i, Bi,LD,
compared to the LD model.

Planck CMBPol

LD 0.0± 0.3 0.0± 0.3

ns �6.3± 0.3 �13.0± 0.3

nrun �6.5± 0.3 �15.5± 0.3

2ki �3.1± 0.3 �10.2± 0.3

primordial spectrum.

5.4 Discussion and Conclusions

In this chapter we have performed a MCMC exploration of the full cosmolog-

ical parameter-space and showed current and future constraints on the infla-

tionary parameters, with particular attention to the tensor-to-scalar ratio. We

have considered models that deviate from the standard power-law in the scalar

power-spectrum: a power-law parameterisation with running behaviour and the

spectra predicted from the Lasenby & Doran model. By implementing a model-

independent reconstruction for PR(k), we have found that a turn-over in the

scalar spectrum is preferred to explain cosmological observations. The inclusion

of a tensor component enhances this turn-over, for instance, nrun = �0.043±0.018

compared to nrun = �0.028± 0.014 without tensors. A similar form of the scalar

spectrum has been previously obtained assuming di⇥erent model-independent re-

constructions, and some of them with di⇥erent data sets [81, 82, 234]. We have

assumed that a power-law parameterisation of PT (k) is su⇧cient to describe cur-

rent data. Even though we have not given the results for the standard cosmological

parameters �bh2, �ch2, �, ⇥ , the best-fit values remained essentially una⇥ected

throughout the models, see Section 3.4. For all the models, we have computed the

Bayes factor and compared each to the simple power-law parameterisation. We
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5.2 Primordial power spectra constraints

order term in the expansion of the power spectrum (4.6):

PR(k) = As

�
k

k0

⇥ns�1+ 1
2 ln

“
k

k0

”
nrun

. (5.4)

We have kept the same tensor spectrum as in the simple power-law parameteri-

sation, with a tensor-to-scalar ratio rrun at a scale of k0 = 0.015 Mpc�1 to avoid

correlations amongst parameters [52]. We maintained the same priors for the in-

flationary parameters As, ns, and rrun and select a prior of the running parameter

of nrun = [�0.1, 0.1] as used by [175].

Figure 5.2 shows the 1D and 2D marginalised posterior distributions for the in-

flationary parameters, using current experiments (black line): ns = 0.985±0.017,

nrun = �0.043 ± 0.018 and rrun < 0.324; and Planck (red line) and CMBPol

(green line) realisations. The top label of the figure indicates the Bayes factor

using present observations, which in this case and throughout the paper is com-

pared with respect to the power-law parameterisation. We first note that in the

presence of a tensor component, the bending of the scalar spectrum is enhanced

through a larger running parameter 1. We also observe that using current exper-

iments a negative nrun parameter in preferred by more than 2.5� C.L. Hence the

necessity to include a turn-over in the power spectrum. This result is confirmed

by noticing the Bayes factor is significantly favoured compared to the simple

power-law model, Bnrun,ns = +2.0± 0.3. Considerations of the running of running

of the spectral index are also being explored [188]. Notice that correlations cre-

ated by the inclusion of the running parameter broaden the constraints on the

tensor-to-scalar ratio by about 1.5 times. Future constraints are also broadened

compared to the power-law parameterisation. The summary of the constraints on

the inflationary parameters is shown in the bottom panel of Figure 5.2, and the

reconstruction of PR(k), using present data, in the right panel.

1The constraints of the running parameter without tensor components are nrun = �0.028±
0.014.
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ABSTRACT

The next generation of weak lensing probes can place strong constraints on cosmolog-
ical parameters by measuring the mass distribution and geometry of the low redshift
universe. We show that a future all-sky tomographic cosmic shear survey with design
properties similar to Euclid can provide the statistical accuracy required to distinguish
between different dark energy models. Using a fiducial cosmological model which in-
cludes cold dark matter, baryons, massive neutrinos (hot dark matter), a running
primordial spectral index and possible spatial curvature as well as dark energy per-
turbations, we calculate Fisher matrix forecasts for different dynamical dark energy
models. Using a Bayesian evidence calculation we show how well a future weak lensing
survey could do in distinguishing between a cosmological constant and dynamical dark
energy.

Key words: cosmology: dark energy – weak gravitational lensing – methods: statis-
tical

1 INTRODUCTION

The science of cosmology finds itself at a critical point
where it has to make sense of the large quantity of data
that has become available. Data from various astrophysical
sources (large scale structure (Ahn et al. 2013, SDSS); the
cosmic microwave background (Planck Collaboration 2013a,
Planck); supernovae (Goldhaber 2009, SCP); weak lensing
(Schrabback et al. 2010)) have allowed us to measure the
parameters in our cosmological model with ever increasing
precision.

The ΛCDM Concordance Model has been very success-
ful at explaining a host of observations with only six param-
eters. In this concordance cosmology, initial quantum fluc-
tuations are believed to have seeded perturbations in the
matter distribution, leading to the Large Scale Structure we
observe today. Within this model, the Universe is composed
only of a small proportion of baryons (about 5 per cent), the
rest being dark matter (about 25 per cent, which can be hot
or cold) and dark energy. The success of the Concordance
Model has been its ability to include physical effects at dif-
ferent scales, from primordial nucleosynthesis to Large Scale
Structure evolution, in one coherent theory. Yet there still
remains the problem of parameter accuracy. Given the data,

! E-mail: ivan.debono@apc.univ-paris7.fr

we can measure the parameters within a theoretical model
to a given precision, but is the model itself correct? In other
words, together with the problem of parameter estimation,
there is the problem of model selection.

The statistical questions facing cosmologists pose some
particular problems. We observe a finite region of our Uni-
verse, which is itself a single realisation of the cosmolog-
ical theory. In other words, we have a single data point
for the cosmological model. We need to make decisions
based on this incomplete information. Bayesian inference
provides a quantitative framework for plausible conclusions
(see Hobson et al. (2010) for a detailed presentation). We
can identify three levels of Bayesian inference:

(i) Parameter inference (estimation): we assume that a
model M is true, and we select a prior for the parameters
P (θ|M).

(ii) Model comparison: there are several possible models
Mi. We find the relative plausibility of each in the light of
the data D.

(iii) Model averaging: there is no clear evidence for a best
model. We find the inference on the parameters which ac-
counts for the model uncertainty.

At the first level of Bayesian inference, we can esti-
mate the allowed parameter values of a model. Next, we can
ask which parameters we should include in our cosmolog-
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Figure 4. The evidence contours for wCDM against ΛCDM, from forecast Euclid data with the requirement survey parameters. The
position of ΛCDMα in parameter space is shown by the red cross-hairs. Darker colours indicate stronger evidence for ΛCDM. The white
space indicates regions in parameter space where the numerical value of | lnB| is close to infinity i.e. where the odds are infinitely against
ΛCDM. Outside the larger black contour line (| lnB| = 5) surrounding the dark grey region, the evidence is decisively against ΛCDM.
Outside the smaller contour lines (| lnB| = 2.5) within this region, the evidence against ΛCDM is strong but not decisive. The black
regions are points in parameter space where | lnB| < 1, i.e. where ΛCDM is favoured.

between these models and time-constant equation of state
models if wa is outside the range [−0.1, 0.15].

We find that Euclid cosmic shear data, even with the
requirement survey configuration, would be able to distin-
guish dynamical dark energy models from ΛCDM for models
within the space spanned by the (w0 = −1, wa = 0) error
ellipse.

This article concludes that a future all-sky weak lensing
survey of the Euclid type could provide robust constraints
on dark energy parameters and distinguish between a wide
range of dynamical dark energy models and a cosmological
constant.
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Dataset consistency

3.4 The concordance �CDM model

(i = 1, . . . , n), namely CMB, SNe, LSS data, so on, and analyses the model with

each dataset independently. The evidence ratio is defined as

R =
Pr(D|H)�n

i=1 Pr(Di|H)
, (3.23)

where the hypothesis H denotes the model under study. This ratio compares the

probability that all the datasets were generated from a cosmological model char-

acterised by the same parameter values, with the probability that each dataset

was generated from an independent set of cosmological parameters. Thus, one

expects R > 1 if the datasets are all consistent, and R < 1 otherwise. The Bayes

factor for data sets is given by BR = ln R.

3.4 The concordance �CDM model

In this section, we make use of the theoretical (Section 3.1), Observational (Sec-

tion 3.2.1) and Statistical (Section 3.3) tools to examine the standard cosmological

model. The minimal form of the standard cosmological model, in agreement with

several independent observations, considers a FRW background, purely Gaussian

adiabatic scalar perturbations and neglect tensor contributions. It also assumes

a flat universe fill up with baryons, cold dark matter and a dark energy compo-

nent in the form of a cosmological constant �. The key aspects that describe the

standard model here, and throughout the work, are specified by:

- Theory/Parameters

Base parameters: the physical baryon and dark matter densities ⇥b,0h2 and ⇥dm,0h2,

100� the ratio of the sound horizon to angular diameter distance at last scatter-

ing surface �, the optical depth at reionisation ⇥ , the amplitude of the primordial

spectrum As and the spectral index ns defined at a pivot scale k0 = 0.002 Mpc�1.

Aside from the base parameters, recent observations include additional secondary

parameters: the Sunyaev-Zel’dovich (SZ) amplitude ASZ , the total Poisson power

Ap at l = 3000 and the amplitude of the clustered power Ac. The parameters,

along with the flat priors, are shown in Table 3.3.
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ABSTRACT

A method is presented for performing joint analyses of cosmological datasets, in which the
weight assigned to each dataset is determined directly by it own statistical properties. The
weights are considered in a Bayesian context as a set of hyperparameters, which are then
marginalised over in order to recover the posterior distribution as a function only of the cos-
mological parameters of interest. In the case of a Gaussian likelihood function, this marginal-
isation may be performed analytically. Calculation of the Bayesian evidence for the data, with
and without the introduction of hyperparameters, enables a direct determination of whether
the data warrant the introduction of weights into the analysis; this generalises the standard
likelihood ratio approach to model comparison. The method is illustrated by application to
the classic toy problem of fitting a straight line to a set of data. A cosmological illustration
of the technique is also presented, in which the latest measurements of the cosmic microwave
background power spectrum are used to infer constraints on cosmological parameters.
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1 INTRODUCTION

It is now common practice in cosmology to estimate the values of

cosmological parameters by a joint analysis of a number of differ-

ent datasets. The standard technique for performing such an analy-

sis is to assume that the datasets are statistically independent and so

take the joint likelihood function for the parameters to be given sim-

ply by the product of the individual likelihood functions for each

separate dataset. The joint likelihood function can then be used in

the standard way to determine the optimal values of the parameters

and their associated errors.

As discussed by Lahav et al. (2000; hereinafter Paper I), how-

ever, there exists some freedom in the relative ‘weight’ that may be

given to each dataset in the analysis (see also Godwin & Lynden-

Bell 1987; Press 1996). The assignment of weights often occurs

when two or more of the datasets are inconsistent, and is usually

made in a somewhat ad-hoc manner. Typically some datasets are

excluded from the analysis, and hence given a weight of zero, while

the remainder are analysed jointly with equal weights. Despite its

widespread use, this procedure has many unsatisfactory features,

not least of which is the subjectivity associated with the choice of

which datasets to include, and which to discard. As advocated in

Paper I, a more objective procedure for assigning weights to the

datasets is provided by the introduction of hyperparameters. This

device allows the statistical properties of the data themselves to de-

termine the weight given to each dataset in the analysis.

In Paper I, a method was presented for introducing hyperpa-

rameters into the analysis of datasets for which each likelihood

function had a particular simple form. This technique was then

applied to the estimation of the Hubble parameter h from several

sets of observations of the power spectrum of cosmic microwave

background (CMB) anisotropies. It was shown that apparently dis-

crepant datasets could be analysed jointly to provide a consistent

estimate of h, together with an associated error. This approach has

also recently been applied to the joint analysis of the baryon mass

fraction in clusters and cepheid-calibrated distances (Erdogdu, Et-

tori & Lahav 2002).

In this paper, we extend the work of Paper I to accommodate

more general situations. In section 2, we review the standard ap-

proach to Bayesian parameter estimation and discuss the role of

the Bayesian evidence in model selection. In section 3, we present

a general account of hyperparameters and their use in joint esti-

mation of parameters. We also discuss how to use the Bayesian

evidence to decide whether or not the data support the inclusion

of hyperparameters in the first instance. In section 4, we consider

the use of hyperparameters in the weighting of datasets and, in sec-

tion 5, we discuss the common special case in which the likelihood

function for each dataset is Gaussian. In section 6, we illustrate

the useful properties of the hyperparameters approach by applying

the technique to the toy problem of fitting a straight-line to a num-

ber of datasets. A cosmological application of the hyperparameters

approach is discussed in section 7, in which we perform a joint

estimate of the physical baryon density Ωbh
2 and the scalar spec-

tral index n using the most recent sets of observations of the CMB

power spectrum. Finally, our conclusions are presented in section 8.
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Figure 2. As for Fig. 1, but the reported error-bars on the datasetD1 have been underestimated by a factor of 5.

6.2 Inaccurate error-bars and no systematic error

In this case, the datasets D1 and D2 are identical to those used in

the previous subsection, but we assume that the quoted errors-bars

on the datasetD1 have been underestimated by a factor of 5, while

the error-bars on the dataset D2 are quoted correctly. Thus, in the

parameter estimation procedure, we assume the (incorrect) values

σ1 = 0.02 and σ2 = 0.1. The data points and their reported error-
bars are shown in Fig. 2 (left panel).

The resulting (unnormalised) posteriors Pr(θ|D ,H0) and

Pr(θ|D ,H1) are shown in the middle and right-hand panels of
the figure. In this case, the two posteriors are very different. In

the standard approach H0, the posterior distribution is tightly con-

strained about its maximum as a result of underestimating the errors

on dataset D1. Indeed, this posterior is virtually indistinguishable

from that calculated from the dataset D1 alone. The true parame-

ter values are excluded at a confidence level that far exceeds the

99 per cent limit. In the hyperparameters case, however, the poste-

rior is much broader and resembles the corresponding distribution

in Fig. 1. In particular, the true parameter values are comfortably

contained within the 95 per cent confidence limit.

Integrating under the posterior distributions directly, the exact

evidence ratio is found to be

Pr(D |H1)
Pr(D |H0)

= 2.1×104,

which clearly implies that the data favour the introduction of hy-

perparameter weights. Using the expression (48), the approximate

evidence ratio is 1.6×104, which shows that the Gaussian approx-
imation to the hyperparameters posterior is once again reasonably

accurate.

At the peak θ̂1 of the hyperparameters posterior, we find the
effective weights assigned to the two datasets D1 and D2 to be

αeff1 (θ̂1) = 0.12 and αeff2 (θ̂1) = 1.28. Thus, the first dataset (with
error-bars underestimated by a factor of 5) has been assigned an

appropriate smaller statistical weight.

6.3 Accurate error-bars and a systematic error

We now consider the introduction of a systematic error into the

dataset D1. This is simulated by drawing this dataset from an in-

correct straight-line model, for which the parameter values m and

c differ from unity. Dataset D2, however, is still drawn from the

correct straight-line model with m= 1 and c= 1. We shall, in fact,

consider two separate complementary cases. In the first case, we

introduce a systematic error in the direction of the natural degen-

eracy line in the (m,c)-plane, whereas, in the second case, the in-
troduced systematic error is orthogonal to the natural degeneracy

line. In both cases, we assume that the error-bars on each dataset

are quoted accurately as σ1 = 0.1 and σ2 = 0.1 respectively.

6.3.1 Case 1

In our first case, datasetD1 is drawn from a straight line with slope

m= 0 and intercept c= 1.5. The datasetsD1 andD2 are shown in

Fig. 3 (left panel), together with the underlying straight-line mod-

els from which each is drawn. The resulting posterior distributions

Pr(θ|D ,H0) and Pr(θ|D ,H1) are shown in the middle and right-
hand panels of the figure. Once again, the two posteriors are very

different. In the standard approach, H0, the posterior distribution

peaks between the two sets of true values. In spite of the fact that

the two sets of parameter values define a direction along the natural

degeneracy line in the (m,c)-plane, neither is contained within the
99 per cent confidence contour, and so both models are excluded

at a high significance level. In the hyperparameters case, however,

the posterior is much further extended along the natural degener-

acy line. In particular, we note that the distribution is bimodal, with

each peak lying close to one of the true sets of parameter values.

Thus, the hyperparameters indicates the presence of two underly-

ing models for the data, which signals an inconsistency between

the two datasets. This could be interpreted as one (or both) of the

datasets containing a systematic error.

The exact evidence ratio in this case is found to be

Pr(D |H1)
Pr(D |H0)

= 11.6,

which gives a reasonably robust indication that the data favour the

introduction of hyperparameters. Using the expression (48), the ap-

proximate evidence ratio is given by 4.8. The reason for the large

inaccuracy in this case is that the Gaussian approximation to the

bimodal hyperparameters posterior is clearly rather poor. In fact, as

might be expected in this case, the Gaussian approximation under-

estimates the true value of the evidence by about a factor of two.

Although the hyperparameters posterior is bimodal, the global

maximum θ̂1 occurs at the peak close to the parameter values from
which the datasetD1 was drawn. At this peak, we find the effective

weights assigned to the two datasets D1 and D2 are α
eff
1 (θ̂1) =

3.11 and αeff2 (θ̂1) = 0.18, which indicates (correctly) that the first
dataset has been assigned a larger statistical weight at this point in

parameter space. However, at the subsidiary peak θ̂′
1 located near
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FIG. 6: 1D and 2D marginalised posterior distributions for density parameters in the double dark energy model (note that
�m,0 = 1���,0��k,0��X,0). The 2D constraints are plotted with 1� and 2� confidence contours. The top-right panel shows
the 3D posterior distribution in the (wX , �X,0, ��,0) subspace, where the colour code indicates the value of ��,0.

4.2. Double dark energy model

We now allow for the equation-of-state parameter wX

for our additional component to be a free parameter (al-
beit still independent of redshift), for which we assume
a uniform prior in the range wX = [� 3

2 ,� 1
2 ]. We thus

allow for the possibility that this second dark-energy
component could be a form of phantom energy with
wX < �1 [28]. Figure 6 shows the resulting 1D and
2D marginalised posterior distributions for wX and the
density parameters in the model (once again, note that
⇥m,0 = 1� ⇥�,0 � ⇥k,0 � ⇥X,0). At the top-right of the
Figure we also give a representation of the 3D posterior
in the (wX ,⇥X,0,⇥�,0) subspace, where the colour indi-
cates the value of ⇥�,0.

The 1D constraints on the standard parameters are
as follows: ⇥�,0 = 0.647 ± 0.573, ⇥m,0 = 0.275 ± 0.015,
⇥k,0 = �0.0031 ± 0.0058, H0 = 69.95 ± 1.80. The con-
straints on the parameters describing the additional, sec-
ond dark-energy component may be given as wX =
�1.02 ± 0.20 and ⇥X,0 = 0.080 ± 0.574, although these
numbers obscure the bi-modal nature of the marginal
(wX ,⇥X,0)-space and (wX ,⇥�,0)-space distributions (see
below). These results are clearly consistent with a stan-
dard �CDM model, although the inclusion of the addi-
tional dark-energy component has again resulted in the
uncertainties in the constraints on the standard param-
eters being much larger than those obtained assuming a
�CDM model. Indeed, the 1D marginal for ⇥X,0 shows
moderate relative probability even for ⇥X,0 ⇤ 1.

Moreover, the 2D and 3D marginal distributions in

Fig. 6 have some curious and interesting features that
are worth noting. First, as might be expected, we again
see a pronounced degeneracy between ⇥�,0 and ⇥X,0. Of
more interest, however, is the bi-modal nature of the 2D
marginals in the (wX ,⇥�,0) and (wX ,⇥X,0) planes, both
of which have a distinctive ‘butterfly’ shape, albeit ex-
hibiting opposite correlations. Focussing on the latter,
we see that the two peaks are o⇤set from the standard
�CDM model (�1, 0), although that model remains ad-
missible. Indeed, with the help of the 3D marginal in
the (wX ,⇥X,0,⇥�,0) subspace plotted in the top-right
of Figure 6, we see that the two modes of the distribu-
tion correspond to models with ⇥�,0 ⌅ 0.4, ⇥X,0 ⌅ 0.3,
wX ⌅ �1.2 and ⇥�,0 ⌅ 1.0, ⇥X,0 ⌅ �0.3, wX ⌅ �0.8,
respectively. The former model has the advantage that
the density parameters for both dark energy components
are positive, but requires the second component X to be
a form of phantom energy. In the latter model, the second
dark energy component has a more physically reasonable
value of wX , but is required to have a negative density pa-
rameter, which is di⌃cult to interpret physically (at least
more so than a negative pressure). Indeed, we see that
this latter case is broadly consistent with our findings
for the missing matter model discussed in the previous
subsection.

The marginal distribution in (⇥X,0,⇥�,0) subspace
shows a strong correlation between these energy densi-
ties that would imply the potential for a trade-o⇤ be-
tween them. One might be concerned, however, that the
marginal distribution plotted is strongly dominated by
the contribution (after marginalising over wX) from near
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The current concordance model of cosmology is dominated by two mysterious ingredients: dark
matter and dark energy. In this paper, we explore the possibility that, in fact, there exist two dark-
energy components: the cosmological constant �, with equation-of-state parameter w� = �1, and a
‘missing matter’ component X with wX = �2/3, which we introduce here to allow the Friedmann
equation written in terms of conformal time � to be form-invariant under the reciprocity transfor-
mation a(�)⌅ 1/a(�) of the scale factor. Using recent cosmological observations, we constrain the
present-day energy density of missing matter to be ⇥X,0 = �0.11± 0.14. This is consistent with the
standard �CDM model, but constraints on the energy densities of all the components are consider-
ably broadened by the introduction of missing matter; significant relative probability exists even for
⇥X,0 ⇤ 0.2, and so the presence of a missing matter component cannot be ruled out. Nonetheless,
a Bayesian model selection analysis disfavours its introduction by about 1.5 log-units of evidence.
Foregoing our requirement of form invariance of the Friedmann equation under the reciprocity trans-
formation, we extend our analysis by allowing wX to be a free parameter. For this more generic
‘double dark energy’ model, we find wX = �1.02 ± 0.20 and ⇥X,0 = 0.08 ± 0.57, which is again
consistent with the standard �CDM model, although once more the posterior distributions are su⇧-
ciently broad that the existence of a second dark-energy component cannot be ruled out. Moreover,
the two-dimensional posterior in the (wX , ⇥X,0)-plane is strongly bimodal with both peaks o⇤set
from the standard �CDM model corresponding to (�1, 0), although the latter is still admissible;
this bimodality is in contrast to the correctly-centred unimodal posterior typically obtained when
analysing realisations of simulated observations from a �CDM model. The model including the sec-
ond dark energy component also has a similar Bayesian evidence to �CDM to within the numerical
uncertainty.

1. INTRODUCTION

Over the past decade, cosmological observations have
confirmed that the background expansion of the universe
is accelerating [1, 2]. This remarkable phenomenon is usu-
ally explained by assuming the existence of a single dark-
energy component, often modelled as a perfect fluid with
a (generally time-dependent) equation-of-state parame-
ter w(z) that results in it exhibiting a negative pres-
sure. The simplest form of dark energy is a cosmological
constant �, which corresponds to a constant equation of
state w� = �1. Together with cold dark matter, which
is key to explaining the evolution of structure in the uni-
verse, the cosmological constant gives rise to the standard
�CDM model, which provides a good fit to existing cos-
mological observations. Nonetheless, there have been a
large number of other exotic forms of matter proposed to
provide alternative explanations for the current acceler-
ating universal expansion [3, 4], including, for example,
topological defects [5].

In this paper, we remain focussed on the �CDM model,
but with the inclusion of a second dark energy compo-
nent, which is introduced (in the first instance) to allow
the Friedmann equation written in terms of conformal

�Electronic address: jv292@cam.ac.uk

time � to be form invariant under the reciprocity trans-
formation a(�)⇥ 1/a(�) of the universal scale factor [6].
Such an invariance is of general interest, but may be par-
ticularly relevant for Penrose’s recent ‘Cycles of Time’
cosmological model [7], which posits a cyclic universe in
which the ultimate infinitely expanded state of one phase
(or ‘aeon’) is identified with the initial singularity of the
next.

For a homogeneous and isotropic universe described
by the Friedmann–Robertson–Walker (FRW) metric with
curvature parameter k, the Friedmann equation describ-
ing the dynamical evolution of the scale factor a(t) can
be written as

�
H

H0

⇥2

=
⌅

i

⇥i,0 a�3(1+wi), (1)

where H = ȧ/a is the Hubble parameter (the dot de-
notes di⇤erentiation with respect to cosmic time t), and
the energy density ⇤i of each of the constituent com-
ponents of the universe is taken into account through
the corresponding present-day density parameter ⇥i,0 =
8⇥G⇤i,0/(3H2

0 ) and its equation-of-state parameter wi,
which we will assume throughout to be time-independent.
The summation in (1) also includes the curvature density
parameter ⇥k,0, so that

⇤
i ⇥i,0 = 1.

In the �CDM model, the total density parameter is
usually taken to comprise of contributions from radiation
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The current concordance model of cosmology is dominated by two mysterious ingredients: dark
matter and dark energy. In this paper, we explore the possibility that, in fact, there exist two dark-
energy components: the cosmological constant �, with equation-of-state parameter w� = �1, and a
‘missing matter’ component X with wX = �2/3, which we introduce here to allow the Friedmann
equation written in terms of conformal time � to be form-invariant under the reciprocity transfor-
mation a(�)⌅ 1/a(�) of the scale factor. Using recent cosmological observations, we constrain the
present-day energy density of missing matter to be ⇥X,0 = �0.11± 0.14. This is consistent with the
standard �CDM model, but constraints on the energy densities of all the components are consider-
ably broadened by the introduction of missing matter; significant relative probability exists even for
⇥X,0 ⇤ 0.2, and so the presence of a missing matter component cannot be ruled out. Nonetheless,
a Bayesian model selection analysis disfavours its introduction by about 1.5 log-units of evidence.
Foregoing our requirement of form invariance of the Friedmann equation under the reciprocity trans-
formation, we extend our analysis by allowing wX to be a free parameter. For this more generic
‘double dark energy’ model, we find wX = �1.02 ± 0.20 and ⇥X,0 = 0.08 ± 0.57, which is again
consistent with the standard �CDM model, although once more the posterior distributions are su⇧-
ciently broad that the existence of a second dark-energy component cannot be ruled out. Moreover,
the two-dimensional posterior in the (wX , ⇥X,0)-plane is strongly bimodal with both peaks o⇤set
from the standard �CDM model corresponding to (�1, 0), although the latter is still admissible;
this bimodality is in contrast to the correctly-centred unimodal posterior typically obtained when
analysing realisations of simulated observations from a �CDM model. The model including the sec-
ond dark energy component also has a similar Bayesian evidence to �CDM to within the numerical
uncertainty.

1. INTRODUCTION

Over the past decade, cosmological observations have
confirmed that the background expansion of the universe
is accelerating [1, 2]. This remarkable phenomenon is usu-
ally explained by assuming the existence of a single dark-
energy component, often modelled as a perfect fluid with
a (generally time-dependent) equation-of-state parame-
ter w(z) that results in it exhibiting a negative pres-
sure. The simplest form of dark energy is a cosmological
constant �, which corresponds to a constant equation of
state w� = �1. Together with cold dark matter, which
is key to explaining the evolution of structure in the uni-
verse, the cosmological constant gives rise to the standard
�CDM model, which provides a good fit to existing cos-
mological observations. Nonetheless, there have been a
large number of other exotic forms of matter proposed to
provide alternative explanations for the current acceler-
ating universal expansion [3, 4], including, for example,
topological defects [5].

In this paper, we remain focussed on the �CDM model,
but with the inclusion of a second dark energy compo-
nent, which is introduced (in the first instance) to allow
the Friedmann equation written in terms of conformal

�Electronic address: jv292@cam.ac.uk

time � to be form invariant under the reciprocity trans-
formation a(�)⇥ 1/a(�) of the universal scale factor [6].
Such an invariance is of general interest, but may be par-
ticularly relevant for Penrose’s recent ‘Cycles of Time’
cosmological model [7], which posits a cyclic universe in
which the ultimate infinitely expanded state of one phase
(or ‘aeon’) is identified with the initial singularity of the
next.

For a homogeneous and isotropic universe described
by the Friedmann–Robertson–Walker (FRW) metric with
curvature parameter k, the Friedmann equation describ-
ing the dynamical evolution of the scale factor a(t) can
be written as

�
H

H0

⇥2

=
⌅

i

⇥i,0 a�3(1+wi), (1)

where H = ȧ/a is the Hubble parameter (the dot de-
notes di⇤erentiation with respect to cosmic time t), and
the energy density ⇤i of each of the constituent com-
ponents of the universe is taken into account through
the corresponding present-day density parameter ⇥i,0 =
8⇥G⇤i,0/(3H2

0 ) and its equation-of-state parameter wi,
which we will assume throughout to be time-independent.
The summation in (1) also includes the curvature density
parameter ⇥k,0, so that

⇤
i ⇥i,0 = 1.

In the �CDM model, the total density parameter is
usually taken to comprise of contributions from radiation
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wX = �1. If so, one could then not infer the potential of
a trade-o⇤ between these two energy densities at (any)
other values of wX . To investigate this possibility, we also
calculated the conditional distributions in (⇥X,0,⇥�,0)
subspace for a small set of fixed wX -values in the range
[�0.7,�1.3]. The resulting distributions were, however,
very similar to that plotted in Figure 6, and so indicat-
ing that the two energy densities can indeed be traded-o⇤
against one another.

Also of interest is our Bayesian model comparison,
which finds that the log-evidence di⇤erence (Bayes fac-
tor) between the double dark energy model and standard
�CDM is B�+X,� = �0.16±0.30. This shows that neither
model is preferred over the other; indeed they are indis-
tinguishable to within the statistical uncertainty on the
computed evidence values. Thus, the two additional pa-
rameters ⇥X,0 and wX in the double dark energy model
allow it the freedom to fit the data su⌃ciently better than
�CDM to compensate for the corresponding increase in
the prior volume, and hence the model is not penalised
by the evidence.

5. DISCUSSION AND CONCLUSIONS

We have investigated the possibility that there exist
two dark-energy components in the universe: a cosmo-
logical constant, with w = �1; and an additional compo-
nent X with equation-of-state parameter wX . In the first
instance, we fix the equation-of-state parameter of X to
the value wX = � 2

3 . This ‘missing matter’ model corre-
sponds to the special case in which the additional com-
ponent is required for the Friedmann equation written in
terms of conformal time � to be form invariant under the
reciprocity transformation a(�)⇧ 1/a(�). Foregoing this
requirement, we then consider the more general ‘double
dark energy’ model, in which wX is a free parameter as-
sumed to have uniform prior in the range wX = [� 3

2 ,� 1
2 ].

For both models, we perform a Bayesian parameter esti-
mation and model selection analysis, relative to standard
�CDM, using recent cosmological observations of cosmic
microwave background anisotropies, Type-Ia supernovae
and large scale-structure, together with constraints on
the baryon density from Big Bang Nucleosynthesis and
on the Hubble parameter from the Hubble Space Tele-
scope key project.

For the missing matter model, the introduction of the
additional component X significantly broadens the con-
straints on the standard parameters in the �CDM model,
but leaves their best-fit values largely unchanged. The 1D
marginalised constraint on the missing matter density pa-
rameter is ⇥X,0 = �0.11± 0.14. Thus, current cosmolog-
ical observations prefer a slightly negative value, which
is di⌃cult to interpret physically, but the posterior on
this parameter is su⌃ciently broad that significant rel-
ative probability exits even for ⇥X,0 ⇤ 0.2, and so the
presence of a missing matter component cannot be ruled
out. Nonetheless, our results are consistent with �CDM

and our Bayesian model selection analysis disfavours the
missing matter model, as compared to �CDM, by about
1.5 log-units of evidence.

For the double dark energy model, the constraints
on standard �CDM parameters are again considerably
broadened. The 1D marginalised constraints on the sec-
ond dark energy component are ⇥X,0 = 0.080 ± 0.574
and wX = �1.02 ± 0.20, respectively, which are again
consistent with �CDM. Once more, however, the 1D
marginalised posterior on ⇥X,0 is su⌃ciently broad that
even ⇥X,0 ⇤ 1.0 is not ruled out. More interestingly,
the 2D marginal distributions in the (wX ,⇥�,0) and
(wX ,⇥X,0) planes are both bi-modal, exhibiting a ‘but-
terfly’ shape. In particular, the peaks in the (wX ,⇥X,0)-
plane are o⇤set from the �CDM value (�1, 0), although
the latter is still acceptable. The two modes of the distri-
bution correspond to models with ⇥�,0 ⌅ 0.3, ⇥X,0 ⌅
0.4, wX ⌅ �1.15 and ⇥�,0 ⌅ 1.05, ⇥X,0 ⌅ �0.35,
wX ⌅ �0.88, respectively. We also find that the dou-
ble dark energy model has a similar Bayesian evidence to
�CDM to within the numerical uncertainty, and hence
neither model is preferred over the other.

One potential cause for the observed bimodality in the
2D marginalised posteriors would be some mutual incon-
sistency between two or more of the datasets used in
our analysis, such that they preferred significantly di⇤er-
ent values for cosmological parameters. We therefore per-
formed a Bayesian consistency analysis [26, 27] by par-
titioning the full combined dataset D into its four con-
stituent parts Di (i = 1, . . . , 4), namely WMAP, ACT,
SCP and BAO, and analysing each independently (to-
gether, in each case, with the constraints from BBN and
HST). In particular, we calculated the evidence ratio

R =
Pr(D|H)

�4
i=1 Pr(Di|H)

, (8)

where the hypothesis H denotes our double dark-energy
model. This ratio compares the probability that all the
datasets were generated from a cosmological model char-
acterised by the same parameter values with the proba-
bility that each dataset was generated from an indepen-
dent set of cosmological parameters. Thus, one expects
R > 1 if the datasets are all consistent, and R < 1 other-
wise. We find that R = 2.15 indicating that the bimodal-
ity in the posterior is not caused by any inconsistencies
between the individual datasets.

To investigate the significance of the observed bimodal-
ity of the posterior, we performed simulated observations
of the CMB power spectrum and Type-Ia supernovae ap-
parent brightness versus redshift, assuming a standard
concordance �CDM model and observational data qual-
ity commensurate with the real CMB and supernovae
data used in our analysis. These were combined with the
same constraints on the baryon density from BBN [19]
and Gaussian prior on H0 from the HST key project [20]
that were used in the analysis of the real data. The result-
ing posterior distribution of the density parameters is il-
lustrated in Fig. 7. As one might expect, the 2D marginal
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FIG. 7: Datasets D1 and D2 measured by our straight-line theory. Case 1 (left) and case 2 (right).

random variables and p is the density. A sampler is said to be a�ne invariant if, for any a�ne
transformation Ax+ b,

R(AX(t) + b, (t), pA,b) = AR(X(t), (t), p) + b. (66)

There are already several algorithms that are a�ne invariant, one of the easiest is known as
the stretch move [28]. An algorithm fully implemented in Python under the name EMCEE [29]
is also a�ne invariant, and there are also some other algorithms that can be found in [30].

Even more samplers. The generation of the elements in a Markov chain is probabilistic
by construction and it depends on the algorithm we are working with. The MHA is the easiest
algorithm used in Bayesian inference. However, there are several algorithms that can help us to
fulfill our mission. For instance, some of the most popular and e↵ective ones, are the Hamiltoninan
Monte Carlo (see e.g. [31, 32]) or the Adaptative Metropolis-Hastings (AMH) (see e.g. [33]).

5. FITTING A STRAIGHT-LINE

In this section we apply the tools learned so far to the simplest example: fitting a straight-line.
That is, we assume that we have a certain theory where our measurements should follow a straight
line. Then, in order to apply our techniques, we simulate several datasets along this line. One of
the principal topics we want to analyse is the hyperparameter method and how it works, so we will
apply our analysis to two di↵erent cases (Figure 7):

1. Consider two datasets taken from the same straight-line but with di↵erent errors.

2. Consider two datasets but now we simulate both of them from di↵erent straight-lines and
di↵erent errors.

In our analysis we used the PyMC3 module implemented in Python. Our complete code can be
downloaded from the git repository [34]. This code is simple to use and can be modified easily for
any model to be tested. We recommend to use the file called “new model” where the reader can
find a blank project. Here the data and model can be added up and, by running all the notebook,
obtain all the analysis we present in this section. One can find as well several notes that will help
in programming the model with PyMC3, even if the model contains functions that are not defined
in PyMC3.
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FIG. 11: Top left panel: confidence regions for the parameters in model H0. Top right panel: confidence regions
for the parameters in model H1. Bottom panel: Best-fit values for the straight-lines for Case 2 inferred by our with

data.

6. BAYESIAN STATISTICS IN COSMOLOGY

6.1. Theoretical Background

Bayesian statistics is a very useful tool in Cosmology to determine for instance the combination
of model parameters that best describes the Universe. In this section we present the basics of
Cosmology necessary to apply the Bayesian statistics. In our examples we will focus only on the
background Universe –for the moment we avoid perturbations–, since the main purpose of this
article is the applications of these techniques rather than the cosmology by itself. It should be
clear, however, that the extension to consider perturbations is immediate, i.e. there is only an
increment in the number of parameters, and the expressions turn out to be just a little more
complicated.

6.1.1. Einstein Field equations

In order to specify the geometry of the Universe, an essential assumption is the Cosmologi-
cal Principle: for a particular time and on su�ciently large scales the observable Universe can
be considered homogeneous and isotropic, with great precision. For example, at scales greater
than 100 Mega-parsecs the distribution of galaxies observed on the celestial sphere justifies the
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Dataset consistency

3.4 The concordance �CDM model

(i = 1, . . . , n), namely CMB, SNe, LSS data, so on, and analyses the model with

each dataset independently. The evidence ratio is defined as

R =
Pr(D|H)�n

i=1 Pr(Di|H)
, (3.23)

where the hypothesis H denotes the model under study. This ratio compares the

probability that all the datasets were generated from a cosmological model char-

acterised by the same parameter values, with the probability that each dataset

was generated from an independent set of cosmological parameters. Thus, one

expects R > 1 if the datasets are all consistent, and R < 1 otherwise. The Bayes

factor for data sets is given by BR = ln R.

3.4 The concordance �CDM model

In this section, we make use of the theoretical (Section 3.1), Observational (Sec-

tion 3.2.1) and Statistical (Section 3.3) tools to examine the standard cosmological

model. The minimal form of the standard cosmological model, in agreement with

several independent observations, considers a FRW background, purely Gaussian

adiabatic scalar perturbations and neglect tensor contributions. It also assumes

a flat universe fill up with baryons, cold dark matter and a dark energy compo-

nent in the form of a cosmological constant �. The key aspects that describe the

standard model here, and throughout the work, are specified by:

- Theory/Parameters

Base parameters: the physical baryon and dark matter densities ⇥b,0h2 and ⇥dm,0h2,

100� the ratio of the sound horizon to angular diameter distance at last scatter-

ing surface �, the optical depth at reionisation ⇥ , the amplitude of the primordial

spectrum As and the spectral index ns defined at a pivot scale k0 = 0.002 Mpc�1.

Aside from the base parameters, recent observations include additional secondary

parameters: the Sunyaev-Zel’dovich (SZ) amplitude ASZ , the total Poisson power

Ap at l = 3000 and the amplitude of the clustered power Ac. The parameters,

along with the flat priors, are shown in Table 3.3.
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ors from each model are summed together, weighted by
the model posterior values,

P (θ̄|D) =

∑

k P (θ̄|D,Mk)P (Mk|D)
∑

k P (Mk|D)
. (3)

This model-averaged posterior encodes the uncertainty
as to the correct model.1 This model-averaging proce-
dure has been used before in cosmology [15] and astro-
physics/geophysics [16].

III. APPLICATION TO DATA

The primordial power spectrum of scalar perturbations
is normally modeled through a modified power-law func-
tion of wavenumber k,

∆2
R(k) = ∆2

R(k∗)

(

k

k∗

)(ns−1)+ 1

2
ln(k/k∗)nrun

, (4)

where the amplitude is defined at a pivot scale (k∗), ns

is the spectral index (also known as the tilt), and nrun is
the running of the spectral index. We also refer to ∆2

R at
the pivot scale as As. A maximally-symmetric Harrison–
Zel’dovich (HZ) [17] model has equal power on all scales,
so the spectral index is unity and the running is zero. We
discuss the choice of k∗ below.
Inflation, currently our best model for the generation of

the spectrum of Gaussian, adiabatic superhorizon pertur-
bations, additionally predicts a spectrum of tensor per-
turbations, which are also modeled through a power law,

∆2
h(k) = ∆2

h(k∗)

(

k

k∗

)nT

, (5)

where nT is the spectral index of the tensor perturbations
(the tensor running is normally neglected). Single-field,
slow-roll inflation predicts a consistency relation between
the scalar and tensor amplitudes (measured at the same
scale) in terms of the tensor spectral index,

∆2
h(k∗)

∆2
R
(k∗)

≡ r = −8nT , (6)

and we will enforce this throughout.
We considered five different models of the spectrum of

primordial perturbations in this analysis:

I. A scale-invariant HZ spectrum of scalar perturba-
tions with no tensor component (ns = 1, r = 0).

II. A tilted model, where the spectral index is allowed
to vary, still with no tensors.

1 Though it may be that in the end the ‘true’ model is not even one
that we have considered at the time of the analysis. “Essentially,
all models are wrong, but some are useful.” [14]

Models Parameter Min Max

All Ωbh
2 0.018 0.032

Ωch
2 0.04 0.16

θ 0.98 1.1

τ 0.01 0.3

ln[1010As] 2.6 4.2

ASZ 0 2

tilt, tensor, run, tensor+run ns 0.8 1.2

tensor, tensor+run r 0 1

run, tensor+run nrun -0.1 0.1

TABLE I: Prior ranges for the parameters in the different
models. We considered only uniform priors in this analy-
sis. The priors on power spectrum parameters are set at
k0 = 0.05Mpc−1, the default for CosmoMC, but are so wide
compared to the posteriors that the subsequent translation to
the pivot scale is unaffected.

III. A running model, where both the spectral index and
the running of the spectrum (nrun) are allowed to
vary.

IV. A tensor model, where the spectral index of the
scalar perturbations and the tensor-to-scalar ampli-
tude ratio (r) are allowed to vary.

V. A tensor+running model, where the spectral index,
tensor-to-scalar ratio, and running all vary.

The priors on the parameters in these models are given
in Table I.
In this analysis we used measurements of the CMB

temperature and polarization power spectra from both
the WMAP 5yr [2] and 7yr [3] releases, to explore how
WMAP has improved in its ability to distinguish between
different models of the primordial power spectrum. A
compilation of WMAP 7yr and ground-based CMB ex-
periments (ACBAR [18], CBI [19] and BOOMERanG
[20]), along with the Sloan Digital Sky Survey (SDSS)
Data Release 7 [21] measurements of the galaxy cluster-
ing power spectrum, was also studied.
We used nested sampling [22] to compute the evidence

values and posterior distributions for the different mod-
els, making use of CosmoNest [4] and MultiNest [23] as
additional modules for the CosmoMC [24] analysis code.
The evidence values for the various models and differ-

ent data compilations are given in Table II. We find that
the tilted model is the favored model for all data compila-
tions, except for WMAP 7yr+ext where it is tied with the
tensor+running model within the evidence uncertainties.
The tilted model is favored over the HZ with strong, but
not decisive, evidence (as defined in the Jeffrey’s scale)
using the combined data sets. The tensor model is dis-
favored compared to the HZ using WMAP 5yr, and 7yr
data alone, but becomes mildly favored when the other
data is included (though the evidence differences are too
small to be conclusive). The running model has approxi-
mately the same evidence as the HZ for WMAP 5yr and

This model-averaged posterior encodes the uncertainty as to the correct model

Model Averaging
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FIG. 3: The posterior probability distributions for the different models, using only the WMAP 7yr data plus other datasets.
The models are HZ (black), tilted (red), running ns+nrun (blue), ‘inflation’ ns+r (magenta) and tensor+running (green).

prior model probabilities are equal. Variation of this as-
sumption could readily be explored using the quoted evi-
dence values; for instance one might want to downweight
HZ as it is not based on a physical model, or models
with running as inflationary models with large running
are hard to construct. Model averages are carried out by
combining the posterior samples from different models
weighted by the appropriate model probability.

We do not show a model-averaged result for As, as we
did not optimize the pivot scale for the amplitude; in the
figures one sees that the central amplitude is shifted in
the running models. This means that the amplitude is
best determined at some other scale, and a model aver-
aging should only be carried out at that pivot scale if
constraining power is not to be lost. In any case one

can see by eye that model averaging will have little effect
on the constraints on As, which is well determined in all
models.

The tilt ns is more interesting, as it is not so well de-
termined due the residual probability that HZ is correct.
Its model-averaged posterior is shown in Fig. 4. Note
that in analyses with WMAP data alone the HZ ‘spike’
is prominent in the model-averaged posteriors, containing
a significant fraction of the posterior probability. Only
once other data are brought in does its effect become
small. From the complete data compilation, we find that
the model-averaged limits on the tilt at the pivot scale
are 0.940 < ns < 1.000 (95% credible interval), the upper
limit being precisely at one as it happens to fall within
the delta-function component from the HZ model.
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FIG. 4: The model-averaged posterior distributions for the
spectral index ns, using the WMAP 5yr data only (top), the
WMAP 7yr data only (middle) and the WMAP 7yr+ext com-
pilation (bottom). The probability distribution includes a
delta function around ns = 1, artificially broadened in the
plot by the binning process.

Variation of prior assumptions can modify these re-
sults somewhat. Changes to the prior ranges of param-
eters common to all models, such as h and τ , will have
no effect, at least as long as the data constrains the val-
ues to lie well within the prior as it does in these cases.
Modifying the priors on the parameters that are varied
only in some models can shift the results. As an example,
we consider doubling the prior range of ns, to [0.6, 1.4].
As the added range fits the data poorly, it has negligi-
ble likelihood and this halves the evidence of models in
which ns varies, i.e. their log evidences in Table II are
reduced by ln 2 ∼ 0.69, which changes the quantitative
outcome but not the qualitative one. If one recomputes
the 95% confidence range of ns under this assumption
the range is unchanged. Changes to the assumed prior
model probabilities can be handled similarly.

Finally, we consider the tensors. As they are not de-
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0
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(<
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all 5 models
tensor & tensor + n

run
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FIG. 5: The model-averaged cumulative probability distribu-
tion for the tensor-to-scalar ratio r using the WMAP 7yr+ext
compilation. The solid curve gives the probability averaged
over all five models, whereas the dashed curve gives the proba-
bility averaged just over those models where r is varied (tensor
and tensor+running). The dotted line shows the 95% credible
limit.

tected, model uncertainty can have a significant impact
by lending support to models in which they are entirely
absent, i.e. r is precisely zero. If we average over all
five models, the model-averaged 95% upper limit on the
tensor-to-scalar ratio is r < 0.16 (again at the pivot
scale). This is indeed somewhat tighter than results from
individual models (e.g. the equivalent upper limit from
the ‘inflation’ model is 0.18) because it allows for the pos-
sibility of no tensors. Nevertheless, this result is clearly
highly prior dependent, and would for instance change
if one decided that a logarithmic prior on r were more
appropriate.2

An alternative tensor limit can be obtained by averag-
ing only over the two models which permit tensors, which
gives r < 0.30. The cumulative model-averaged proba-
bilities for r under both assumptions are shown in Fig. 5.
It is clear that any upper limit quoted on the tensor frac-
tion has significant model and prior uncertainty, as well
as observational uncertainty.

2 In practice a logarithmic prior on r puts almost all the prior
model probability at very small r values, yielding results near
identical to a tensorless model provided tensors are not detected.
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Abstract

We review the use of Bayesian Model Averaging in astrophysics. We first introduce the statistical
basis of Bayesian Model Selection and Model Averaging. We discuss methods to calculate the model-
averaged posteriors, including Markov Chain Monte Carlo (MCMC), nested sampling, Population
Monte Carlo, and Reversible Jump MCMC. We then review some applications of Bayesian Model
Averaging in astrophysics, including measurements of the dark energy and primordial power spectrum
parameters in cosmology, cluster weak lensing and Sunyaev–Zel’dovich effect data, estimating distances
to Cepheids, and classifying variable stars.
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1 Introduction

We are in an unparalleled time in modern astrophysics, a belle epoque where more datasets and theoretical
models are available than ever before, with the number increasing at an exponential rate. This is driven
by Moore’s law, as new technology has allowed the development of better detectors to make observations
and more powerful computers to produce simulations.

In the middle, acting as the interface between these two areas, is the field of statistical analysis, and
again the growth in available processing power has had a remarkable impact. Before the last decade,
Bayesian statistics were rarely applied in astrophysics, due to the computationally intensive nature of
computing the relevant quantities accurately. Now posterior samples and model selection statistics can
be computed fast enough that the space of possible theories can be fully investigated. Comprehensive
overviews of Bayesian methodology are given by MacKay, Gregory, and Sivia & Skilling [1, 2, 3]; for a
collection of articles on such methods as applied to cosmology see ref [4].

The strength of Bayesian methods is the ability to assign a probability value to a model directly, based
on the parameter ranges allowed and the data available. Model selection should proceed first, before
parameter estimation, and only once the best model has been found should the parameters be estimated.
Often though, the data is not strong enough to distinguish decisively between the models. In this case,
computing the parameter constraints under the assumption of an individual model underestimate the true
uncertainty of those parameters.

The solution to this problem is Bayesian Model Averaging, where the uncertainty as to the correct
model is folded into the calculation of the parameter probabilities. Each individual posterior, generated
under the assumption of a particular model, is weighted by the model likelihood and then combined with
the others to give the model-independent posterior. In this paper we review Bayesian Model Averaging
and its previous applications in astrophysics and cosmology.

In our review we found that Bayesian Model Averaging is used in two manners. Firstly there are
those situtations where the likelihood is well understood and it is only the nature of the prior models
and parameters that are varied and averaged over. This is typically the case in cosmology, where the
cosmic microwave background (CMB) and distance rulers are well measured observables. However, these
observations indicate the existence of new physical processes, such as inflation and dark energy, for which
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again the growth in available processing power has had a remarkable impact. Before the last decade,
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computing the relevant quantities accurately. Now posterior samples and model selection statistics can
be computed fast enough that the space of possible theories can be fully investigated. Comprehensive
overviews of Bayesian methodology are given by MacKay, Gregory, and Sivia & Skilling [1, 2, 3]; for a
collection of articles on such methods as applied to cosmology see ref [4].

The strength of Bayesian methods is the ability to assign a probability value to a model directly, based
on the parameter ranges allowed and the data available. Model selection should proceed first, before
parameter estimation, and only once the best model has been found should the parameters be estimated.
Often though, the data is not strong enough to distinguish decisively between the models. In this case,
computing the parameter constraints under the assumption of an individual model underestimate the true
uncertainty of those parameters.

The solution to this problem is Bayesian Model Averaging, where the uncertainty as to the correct
model is folded into the calculation of the parameter probabilities. Each individual posterior, generated
under the assumption of a particular model, is weighted by the model likelihood and then combined with
the others to give the model-independent posterior. In this paper we review Bayesian Model Averaging
and its previous applications in astrophysics and cosmology.

In our review we found that Bayesian Model Averaging is used in two manners. Firstly there are
those situtations where the likelihood is well understood and it is only the nature of the prior models
and parameters that are varied and averaged over. This is typically the case in cosmology, where the
cosmic microwave background (CMB) and distance rulers are well measured observables. However, these
observations indicate the existence of new physical processes, such as inflation and dark energy, for which
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:     model selection

3.3 Bayesian Analysis

where N is the dimensionality of the parameter space. More explicitly, it is the

average likelihood weighted by the prior for a specific model choice:

Evidence =

�
(Likelihood⇥ Prior)dN�. (3.20)

A model containing wider regions of prior parameter-space along with higher like-

lihoods will have a high evidence and vice versa. Therefore, the Bayesian evidence

does provide a natural mechanism to balance the complexity of cosmological mod-

els and then, elegantly incorporates Occam’s razor.

When comparing two models, Mi and Mj, the important quantity to bear in

mind is the ratio of the posterior probabilities, or posterior odds, given by

P (Mi|D)

P (Mj|D)
=

Zi

Zj

P (Mi)

P (Mj)
, (3.21)

where P (Mi)/P (Mj) is the prior probability ratio for the two models, usually set

to unity. The ratio of two evidences Zi/Zj (or equivalently the di⇥erence in log

evidences lnZi � lnZj) is often termed the Bayes factor Bi,j:

Bi,j = ln
Zi

Zj
. (3.22)

Then, the quantity Bi,j measures the relative probability of how well model i

may fit the data when is compared to model j. Je⇥reys [112] provided a suitable

guideline scale on which we are able to make qualitative conclusions (see Table

3.2). In this work, we refer to positive (negative) values of Bi,j when the i model

being favoured (disfavoured) over model j.

The calculation of the integral in Equation (3.19) is a very computation-

ally demanding process, since it requires a multidimensional integration over the

likelihood and prior. For many years much progress has been made in the con-

struction of e⌅cient algorithms to allow faster and more accurate computation of

the Bayesian evidence. Until recently, algorithms such as simulating annealing or

thermodynamic integration [27], required around 107 likelihood evaluations mak-

ing the procedure hardly treatable. A powerful algorithm was recently invented
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model averaging

2

ors from each model are summed together, weighted by
the model posterior values,

P (θ̄|D) =

∑

k P (θ̄|D,Mk)P (Mk|D)
∑

k P (Mk|D)
. (3)

This model-averaged posterior encodes the uncertainty
as to the correct model.1 This model-averaging proce-
dure has been used before in cosmology [15] and astro-
physics/geophysics [16].

III. APPLICATION TO DATA

The primordial power spectrum of scalar perturbations
is normally modeled through a modified power-law func-
tion of wavenumber k,

∆2
R(k) = ∆2

R(k∗)

(

k

k∗

)(ns−1)+ 1

2
ln(k/k∗)nrun

, (4)

where the amplitude is defined at a pivot scale (k∗), ns

is the spectral index (also known as the tilt), and nrun is
the running of the spectral index. We also refer to ∆2

R at
the pivot scale as As. A maximally-symmetric Harrison–
Zel’dovich (HZ) [17] model has equal power on all scales,
so the spectral index is unity and the running is zero. We
discuss the choice of k∗ below.
Inflation, currently our best model for the generation of

the spectrum of Gaussian, adiabatic superhorizon pertur-
bations, additionally predicts a spectrum of tensor per-
turbations, which are also modeled through a power law,

∆2
h(k) = ∆2

h(k∗)

(

k

k∗

)nT

, (5)

where nT is the spectral index of the tensor perturbations
(the tensor running is normally neglected). Single-field,
slow-roll inflation predicts a consistency relation between
the scalar and tensor amplitudes (measured at the same
scale) in terms of the tensor spectral index,

∆2
h(k∗)

∆2
R
(k∗)

≡ r = −8nT , (6)

and we will enforce this throughout.
We considered five different models of the spectrum of

primordial perturbations in this analysis:

I. A scale-invariant HZ spectrum of scalar perturba-
tions with no tensor component (ns = 1, r = 0).

II. A tilted model, where the spectral index is allowed
to vary, still with no tensors.

1 Though it may be that in the end the ‘true’ model is not even one
that we have considered at the time of the analysis. “Essentially,
all models are wrong, but some are useful.” [14]

Models Parameter Min Max

All Ωbh
2 0.018 0.032

Ωch
2 0.04 0.16

θ 0.98 1.1

τ 0.01 0.3

ln[1010As] 2.6 4.2

ASZ 0 2

tilt, tensor, run, tensor+run ns 0.8 1.2

tensor, tensor+run r 0 1

run, tensor+run nrun -0.1 0.1

TABLE I: Prior ranges for the parameters in the different
models. We considered only uniform priors in this analy-
sis. The priors on power spectrum parameters are set at
k0 = 0.05Mpc−1, the default for CosmoMC, but are so wide
compared to the posteriors that the subsequent translation to
the pivot scale is unaffected.

III. A running model, where both the spectral index and
the running of the spectrum (nrun) are allowed to
vary.

IV. A tensor model, where the spectral index of the
scalar perturbations and the tensor-to-scalar ampli-
tude ratio (r) are allowed to vary.

V. A tensor+running model, where the spectral index,
tensor-to-scalar ratio, and running all vary.

The priors on the parameters in these models are given
in Table I.
In this analysis we used measurements of the CMB

temperature and polarization power spectra from both
the WMAP 5yr [2] and 7yr [3] releases, to explore how
WMAP has improved in its ability to distinguish between
different models of the primordial power spectrum. A
compilation of WMAP 7yr and ground-based CMB ex-
periments (ACBAR [18], CBI [19] and BOOMERanG
[20]), along with the Sloan Digital Sky Survey (SDSS)
Data Release 7 [21] measurements of the galaxy cluster-
ing power spectrum, was also studied.
We used nested sampling [22] to compute the evidence

values and posterior distributions for the different mod-
els, making use of CosmoNest [4] and MultiNest [23] as
additional modules for the CosmoMC [24] analysis code.
The evidence values for the various models and differ-

ent data compilations are given in Table II. We find that
the tilted model is the favored model for all data compila-
tions, except for WMAP 7yr+ext where it is tied with the
tensor+running model within the evidence uncertainties.
The tilted model is favored over the HZ with strong, but
not decisive, evidence (as defined in the Jeffrey’s scale)
using the combined data sets. The tensor model is dis-
favored compared to the HZ using WMAP 5yr, and 7yr
data alone, but becomes mildly favored when the other
data is included (though the evidence differences are too
small to be conclusive). The running model has approxi-
mately the same evidence as the HZ for WMAP 5yr and

     dataset consistency

3.4 The concordance �CDM model

(i = 1, . . . , n), namely CMB, SNe, LSS data, so on, and analyses the model with

each dataset independently. The evidence ratio is defined as

R =
Pr(D|H)�n

i=1 Pr(Di|H)
, (3.23)

where the hypothesis H denotes the model under study. This ratio compares the

probability that all the datasets were generated from a cosmological model char-

acterised by the same parameter values, with the probability that each dataset

was generated from an independent set of cosmological parameters. Thus, one

expects R > 1 if the datasets are all consistent, and R < 1 otherwise. The Bayes

factor for data sets is given by BR = ln R.

3.4 The concordance �CDM model

In this section, we make use of the theoretical (Section 3.1), Observational (Sec-

tion 3.2.1) and Statistical (Section 3.3) tools to examine the standard cosmological

model. The minimal form of the standard cosmological model, in agreement with

several independent observations, considers a FRW background, purely Gaussian

adiabatic scalar perturbations and neglect tensor contributions. It also assumes

a flat universe fill up with baryons, cold dark matter and a dark energy compo-

nent in the form of a cosmological constant �. The key aspects that describe the

standard model here, and throughout the work, are specified by:

- Theory/Parameters

Base parameters: the physical baryon and dark matter densities ⇥b,0h2 and ⇥dm,0h2,

100� the ratio of the sound horizon to angular diameter distance at last scatter-

ing surface �, the optical depth at reionisation ⇥ , the amplitude of the primordial

spectrum As and the spectral index ns defined at a pivot scale k0 = 0.002 Mpc�1.

Aside from the base parameters, recent observations include additional secondary

parameters: the Sunyaev-Zel’dovich (SZ) amplitude ASZ , the total Poisson power

Ap at l = 3000 and the amplitude of the clustered power Ac. The parameters,

along with the flat priors, are shown in Table 3.3.
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3. STATISTICS IN COSMOLOGY

3.3.1 Parameter estimation

A Bayesian analysis provides a consistent approach to estimating the values

of the parameters � within a model M , which best describe the data D. The

method is based on the assignment of probabilities to the quantities of interest,

and then the manipulation of these probabilities given a series of rules, in which

Bayes’ theorem plays the main role [137]. Bayes’ theorem states that

P (�|D, M) =
P (D|�, M) P (�|M)

P (D|M)
. (3.14)

In this expression, the prior probability P(�|M) ⇥ � represents what we thought

the probability of � was before considering the data. This probability is modi-

fied through the likelihood P(D|�,M) ⇥ L. The posterior probability P(�|D,M)

represents the state of knowledge once we have taken the experimental data D

into account. The normalisation constant in the denominator is the marginal

likelihood or Bayesian evidence P(D|M) ⇥ Z, as is normally called in cosmology.

Since this quantity is independent of the parameters �, it is commonly ignored

in parameter estimation but it takes the central role for model comparison.

The central step for parameter estimation is to construct the likelihood func-

tion L for the measurements, and then the exploration of the region around its

maximum value Lmax. A simple chi-squared function is often used ⇥2 = �2 lnL.

when the distributions are Gaussian. However, some current problems in cos-

mology present obstacles for carrying out this procedure straightforwardly (some

of them discussed by Liddle [137]). Fortunately, models of our interest can be

easily tackled by numerical techniques developed on statistical fields, in partic-

ular the methods known as Markov Chain Monte Carlo (MCMC). There have

been developed di�erent codes employing MCMC techniques to carry out the

exploration of the cosmological parameter-space, for instance CosmoMC [133],

CosmoHammer [4], CMBEASY [62]. Although some of them use a simple

Metropolis-Hasting algorithm by default, nowadays improved algorithms have

been adapted to explore complex posterior probability distributions.
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3. STATISTICS IN COSMOLOGY

3.3.1 Parameter estimation

A Bayesian analysis provides a consistent approach to estimating the values

of the parameters � within a model M , which best describe the data D. The

method is based on the assignment of probabilities to the quantities of interest,

and then the manipulation of these probabilities given a series of rules, in which

Bayes’ theorem plays the main role [138]. Bayes’ theorem states that

P (�|D,M) =
P (D|�,M) P (�|M)

P (D|M)
. (3.14)

In this expression, the prior probability P(�|M) ⇥ � represents what we thought

the probability of � was before considering the data. This probability is modi-

fied through the likelihood P(D|�,M) ⇥ L. The posterior probability P(�|D,M)

represents the state of knowledge once we have taken the experimental data D

into account. The normalisation constant in the denominator is the marginal

likelihood or Bayesian evidence P(D|M) ⇥ Z, as is normally called in cosmology.

Since this quantity is independent of the parameters �, it is commonly ignored

in parameter estimation but it takes the central role for model comparison.

The central step for parameter estimation is to construct the likelihood func-

tion L for the measurements, and then the exploration of the region around its

maximum value Lmax. A simple chi-squared function is often used ⇥2 = �2 lnL.
when the distributions are Gaussian. However, some current problems in cos-

mology present obstacles for carrying out this procedure straightforwardly (some

of them discussed by Liddle [138]). Fortunately, models of our interest can be

easily tackled by numerical techniques developed on statistical fields, in partic-

ular the methods known as Markov Chain Monte Carlo (MCMC). There have

been developed di�erent codes employing MCMC techniques to carry out the

exploration of the cosmological parameter-space, for instance CosmoMC [134],

CosmoHammer [4], CMBEASY [63]. Although some of them use a simple

Metropolis-Hasting algorithm by default, nowadays improved algorithms have

been adapted to explore complex posterior probability distributions.
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3.3.1 Parameter estimation

A Bayesian analysis provides a consistent approach to estimating the values

of the parameters ⇥ within a model M , which best describe the data D. The

method is based on the assignment of probabilities to the quantities of interest,

and then the manipulation of these probabilities given a series of rules, in which

Bayes’ theorem plays the main role [138]. Bayes’ theorem states that

P (⇥|D, M) =
P (D|⇥, M) P (⇥|M)

P (D|M)
. (3.14)

In this expression, the prior probability P(⇥|M) ⌘ ⇡ represents what we thought

the probability of ⇥ was before considering the data. This probability is modi-

fied through the likelihood P(D|⇥,M) ⌘ L. The posterior probability P(⇥|D,M)

represents the state of knowledge once we have taken the experimental data D

into account. The normalisation constant in the denominator is the marginal

likelihood or Bayesian evidence P(D|M) ⌘ Z, as is normally called in cosmology.

Since this quantity is independent of the parameters ⇥, it is commonly ignored

in parameter estimation but it takes the central role for model comparison.

The central step for parameter estimation is to construct the likelihood func-

tion L for the measurements, and then the exploration of the region around its

maximum value Lmax. A simple chi-squared function is often used �
2 = �2 ln L.

when the distributions are Gaussian. However, some current problems in cos-

mology present obstacles for carrying out this procedure straightforwardly (some

of them discussed by Liddle [138]). Fortunately, models of our interest can be

easily tackled by numerical techniques developed on statistical fields, in partic-

ular the methods known as Markov Chain Monte Carlo (MCMC). There have

been developed di↵erent codes employing MCMC techniques to carry out the

exploration of the cosmological parameter-space, for instance CosmoMC [134],

CosmoHammer [4], CMBEASY [63]. Although some of them use a simple

Metropolis-Hasting algorithm by default, nowadays improved algorithms have

been adapted to explore complex posterior probability distributions.
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Materia Oscura

 Uno de los enigmas m�ás fascinantes en la Fí��sica, es el problema de la existencia de materia 
oscura  en el Universo. Seis veces m�as abundante que la materia ordinaria, una cuarta parte 

de la densidad total y el componente principal para la formaci�ón de estructura en el Universo.
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Dark Energy

SN Ia Accelerated expansion
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2. THEORETICAL FRAMEWORK

Figure 2.5: Schematic behaviour of the comoving Hubble radius during the Infla-
tionary period (sketched by the red circle).

Because in standard physics it is commonly assumed ⇢ as positive, then to satisfy

the acceleration condition it is necessary for the overall pressure to have p < �⇢/3.

Nonetheless, neither a radiation nor a matter dominated epoch satisfies such

condition. A typical solution would be a universe dominated by a cosmological

constant ⇤ at the earliest stages. As we have shown in Table 2.1, a cosmological

constant leads to an exponential expansion, and hence the condition (2.57) would

be naturally fulfilled; this epoch is called de Sitter stage. Let us postpone for a bit

the problem of finding a component which may satisfy this inflationary condition,

and look what happens when a general solution is considered.

Flatness solution

If somehow there was an accelerated expansion, 1/(aH) tends to decrease with

time, and hence from the expression (2.53), ⌦T is driven towards the unity rather

than away from it. In this sense, inflation magnifies the curvature radius of the

universe, so locally the universe seems to be flat with great precision, as shown

in Figure 2.6. Then, we may ask ourselves by how much should 1/(aH) decrease.

If the inflationary period started at time t = ti and ended approximately at the

beginning of the radiation dominated era (t = tf ), then

| ⌦T (10�34sec)� 1 |t=tf
⇠ 10�54

,
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2.2 Inflation

field which appear in Grand Unified Theories (GUTs). From particle physics

models, the number density of monopoles, at TGUT ' 1015 GeV, is estimated to

be nM > 10�10
n�. Any subsequent physical processes are expected to be ine�cient

at reducing the ratio nM/n�. Hence, the present density of monopoles per volume

is

n0,M > 10�10
n0,� ' n0,b. (2.54)

For typical GUTs, mGUT ' 1014
�1015 GeV, we have mM ' 1016 GeV (' 10�8

g),

which corresponds to a density parameter of order [47]:

⌦M,0 >
mM

mp

⌦b ' 1016
. (2.55)

According to this prediction, the universe would be dominated by magnetic

monopoles, in contrast with current observations: no one has found any monopole

yet [9].

2.2.2 Cosmological Inflation

Inflation is defined as the epoch in the evolution of the universe in which the

scale factor is quickly accelerated in just a fraction of a second:

INFLATION () ä > 0, (2.56)

()
d

dt

✓
1

aH

◆
< 0. (2.57)

The factor 1/(aH) corresponds to the comoving Hubble radius (2.47), which is

interpreted as the observable universe becoming smaller during the inflationary

period (sketched by the red circle in Figure 2.5). This process allowed our present

observable universe to lie within a region located well inside the Hubble radius

early on during inflation [139]. If this brief period of accelerated expansion oc-

curred, then it is possible that the aforementioned problems of the Big Bang can

be solved. From the acceleration equation, we can write the condition for inflation

in terms of the required material to drive the expansion:

ä > 0 () (⇢ + 3p) < 0. (2.58)

-23-
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Figure 14. The “Hubble diagram” from the world collection of spectroscopic BAO detections. Blue, red, and green points show BAO measurements of DV /rd,
DM/rd, and DH/rd, respectively, from the sources indicated in the legend. These can be compared to the correspondingly coloured lines, which represents
predictions of the fiducial Planck ⇤CDM model (with ⌦m = 0.3156, h = 0.6727). The scaling by

p
z is arbitrary, chosen to compress the dynamic range

sufficiently to make error bars visible on the plot. For visual clarity, the Ly↵ cross-correlation points have been shifted slightly in redshift; auto-correlation
points are plotted at the correct effective redshift. Measurements shown by open points are not incorporated in our cosmological parameter analysis because
they are not independent of the BOSS measurements. [TODO: DW: It might be better to use filled for BOSS and open for the rest, which is what the
caption previously said (but didn’t correspond to the figure. For labels, I suggest “SDSS DR7” and “BOSS Galaxy DR12”, “BOSS Ly↵-auto DR11,”
“BOSS Ly↵-cross DR11”; at least use SDSS DR7. JAV: In the telecon we discussed about the filled points, so for the moment I leave them unchanged.]

al. 2016a), which is presented in Table 9 and denoted as G-M et
al. (2016 a+b+c). HGM: The individual RSD and BAO mea-
surements incorporate the systematic budget specified in the
corresponding papers: 0.003 in the BAO ↵k and ↵? measure-
ments (see table 2 of Gil-Marı́n et al. 2016a); 0.018 in the f�8,
0.012 in ↵k, and 0.0054 in ↵?, for the RSD power spectrum
only (see xxx section in Tinker et al. 2016); and 3 per cent in
f�8, and 1 per cent for ↵k and ↵? for the RSD power spec-
trum in combination with the bispectrum (see tables 2 and 3 of
Gil-Marı́n et al. 2016c). After the systematic budget is added
in quadrature with the statistical contribution, the individual
measurements are combined as described in section 8.4 of Gil-
Marı́n et al. 2016c which yields to the G-M et al. (2016 a+b+c)
measurement quoted in this paper. As before, this case is com-
pared to our full-shape column of Table 7, approximating LOWZ
to our low redshift bin and CMASS to our high redshift bin, where
the volume difference factor has been taken into account. Our DM

measurement of 1.7% in the low redshift bin and 1.8% in the high
redshift bin compares to 1.5% and 1.1%, respectively, in Gil-Marı́n
2016 a+b+c. Regarding H(z), our measurement of 2.8% in both
the low and high redshift bins compares to 2.5% and 1.8% in Gil-
Marı́n 2016 a+b+c. Finally our f�8 constraint of 9.5% and 8.9% in
the low and high redshift bin compares to the LOWZ and CMASS
measurements of 9.2% and 6.0% by Gil-Marin 2016a+b+c, which
again show the improvement from adding information from the bis-
pectrum. The lower precision of our measurement can be attributed

to omitting use of the bispectrum, which adds more signal to the
power spectrum BAO and full-shape, and has not been used in our
analysis. In addition, the analysis in Gil-Marı́n et al. (2016c) which
includes the bispectrum, full shape power-spectrum and BAO mea-
surement does not include the systematic error from the BAO nor
full shape power-spectrum analysis, but only from the bispectrum
analysis. This can in principle increase the error budget in the Gil-
Marı́n 2016 a+b+c. The same is true for H(z) and f�8 comparison.
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We derive constraints on cosmological parameters and tests of dark energy models from the com-
bination of baryon acoustic oscillation (BAO) measurements with cosmic microwave background
(CMB) data and a recent reanalysis of Type Ia supernova (SN) data. In particular, we take advan-
tage of high-precision BAO measurements from galaxy clustering and the Lyman-↵ forest (LyaF)
in the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Treating the BAO scale as an
uncalibrated standard ruler, BAO data alone yield a high confidence detection of dark energy; in
combination with the CMB angular acoustic scale they further imply a nearly flat universe. Adding
the CMB-calibrated physical scale of the sound horizon, the combination of BAO and SN data
into an “inverse distance ladder” yields a measurement of H0 = 67.3 ± 1.1 km s�1 Mpc�1, with
1.7% precision. This measurement assumes standard pre-recombination physics but is insensitive
to assumptions about dark energy or space curvature, so agreement with CMB-based estimates
that assume a flat ⇤CDM cosmology is an important corroboration of this minimal cosmologi-
cal model. For constant dark energy (⇤), our BAO+SN+CMB combination yields matter density
⌦m = 0.301 ± 0.008 and curvature ⌦k = �0.003 ± 0.003. When we allow more general forms of
evolving dark energy, the BAO+SN+CMB parameter constraints are always consistent with flat
⇤CDM values at ⇡ 1�. While the overall �2 of model fits is satisfactory, the LyaF BAO measure-
ments are in moderate (2 � 2.5�) tension with model predictions. Models with early dark energy
that tracks the dominant energy component at high redshift remain consistent with our expansion
history constraints, and they yield a higher H0 and lower matter clustering amplitude, improving
agreement with some low redshift observations. The BAO+CMB combination sharply limits decay
of dark matter into radiation, to < 3% over the history of the universe (95% confidence). Expansion
history alone yields an upper limit on the summed mass of neutrino species,

P
m⌫ < 0.56 eV (95%

confidence), improving to
P

m⌫ < 0.25 eV if we include the lensing signal in the Planck CMB power
spectrum. In a flat ⇤CDM model that allows extra relativistic species, our data combination yields
Ne↵ = 3.43 ± 0.26; while the LyaF BAO data prefer higher Ne↵ when excluding galaxy BAO, the
galaxy BAO alone favor Ne↵ ⇡ 3. When structure growth is extrapolated forward from the CMB
to low redshift, standard dark energy models constrained by our data predict a level of matter
clustering that is high compared to most, but not all, observational estimates.

I. INTRODUCTION

Acoustic oscillations that propagate in the pre-
recombination universe imprint a characteristic scale in
the clustering of matter, providing a cosmological “stan-
dard ruler” that can be measured in the power spectrum
of cosmic microwave background (CMB) anisotropies and
in maps of large-scale structure at lower redshifts [1–5].

While distance scale measurements with Type Ia super-
novae (SNIa) are calibrated against systems in the local
Hubble flow [6–8], the baryon acoustic oscillation (BAO)
scale is computed from first principles, using physical
parameters (such as the radiation, matter, and baryon
densities) that are well constrained by CMB data. The
di↵erence between absolute and relative measurements,
the sharpening of BAO precision with increasing red-

9

Figure 1. The BAO “Hubble diagram” from a world collection of detections. Blue, red, and green points show BAO measure-
ments of DV /rd, DM/rd, and DH/rd, respectively, from the sources indicated in the legend. These can be compared to the
correspondingly colored lines, which represents predictions of the fiducial Planck ⇤CDM model (with ⌦m = 0.3183, h = 0.6704,
see §II C). The scaling by

p
z is arbitrary, chosen to compress the dynamic range su�ciently to make error bars visible on the

plot. Filled points represent BOSS data, which yield the most precise BAO measurements at z < 0.7 and the only measurements
at z > 2. For visual clarity, the Ly↵ cross-correlation points have been shifted slightly in redshift; auto-correlation points are
plotted at the correct e↵ective redshift.

nova data can be combined to yield an “inverse distance
ladder” measurement of H0, which utilizes the CMB mea-
surements of !cb and !b but no other CMB information.
This value of H0 is robust to very flexible assumptions
about dark energy evolution and space curvature, though
it does assume a standard radiation background for the
calculation of rd. We plot the resulting determination of
H0 = 67.3±1.1 km s�1 Mpc�1 as the open square in both
panels.

The grey swath in both panels represents the 1� re-
gion for fiducial Planck ⇤CDM model, with the top panel
clearly showing the transition from deceleration to accel-
eration at z ⇡ 0.6. Formally, we are scaling both panels
by (rd/rd,fid), so that the comparison of the BAO data
points to the CMB prediction is invariant to changes in
the sound horizon. The galaxy BAO measurements of
DM (z) from BOSS and MGS are in excellent agreement
with the predictions of this model (as are the other mea-
surements shown previously in Fig. 1), and the combi-

nation of BAO and SNe yields an H0 value in excellent
agreement with this model’s prediction. The expansion
rate H(z = 0.57) from CMASS is high compared to the
model prediction, at moderate significance. Compared
to Planck, the best-fit value of ⌦mh

2 from the 9-year
WMAP analysis [57] is lower, 0.143 vs. 0.137, imply-
ing lower ⌦m and slightly higher h for a ⇤CDM model.
The model using these best-fit parameters, shown by the
dashed lines, agrees better with the CMASS H(z) mea-
surement but is in tension with the distance data, espe-
cially the CMASS value of DM (z = 0.57).

The Ly↵ forest measurements are much more di�cult
to reconcile with the ⇤CDM model: compared to the
Planck curve, the LyaF BAO H(z) is low and [DM (z)]�1

is high. It is important to keep the error anti-correlation
in mind when assessing significance — if H(z) fluctuates
up then DM (z) will fluctuate down, which tends to re-
duce the tension relative to the CMB. However, our sub-
seqent analyses (and those already reported by [27]) will

new
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• The tension of the LyaF BAO with the Planck LCDM 
model manifests itself here as a best fit at relatively low 

matter density and high Hubble parameter.
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in a galaxy with a stellar mass < 1010M�.

Our best-fit H0 and its 1� uncertainty are shown by the
open square and error bar in Figures 2 and 5. To charac-
terize the sources of error, we have repeated our analyses
after multiplying either the CMB, SN, or BAO covari-
ance matrix by a factor of ten (and thus reducing errors
by

p
10). Reducing the CMB errors, so that they yield

an essentially perfect determination of rd, makes almost
no di↵erence to our H0 error, because the 0.4% uncer-
tainty in rd is already small. Reducing either the SNIa or
BAO errors shrinks the H0 error by approximately a fac-
tor of two, indicating that the BAO measurement uncer-
tainties and the SNIa measurement uncertainties make
comparable contributions to our error budget; the errors
add (roughly) linearly rather than in quadrature because
both measurements constrain the redshift evolution in
our joint fit. If we replace PolyCDM with ow0waCDM in
our analysis, substituting a di↵erent but still highly flex-
ible dark energy model, the derived value of H0 drops by
less than 0.2� and the error bar is essentially unchanged.
If we instead fix the dark energy model to ⇤CDM, the
central value and error bar are again nearly unchanged,
because with the dense sampling provided by SNe the ex-
trapolation from the BAO redshifts down to z = 0 is also
only a small source of uncertainty. To test sensitivity to
the SN data set, we constructed a compressed description
of the Union 2.1 compilation [64] analogous to that of the
JLA compilation; substituting Union 2.1 for JLA makes
negligible di↵erence to our best-fit H0 while increasing
the error bar by about 30% (see Table III). Finally, if we
substitute the WMAP9 constraints on !m and !b for the
Planck constraints, the central H0 decreases by 0.5% (to
66.9 km s�1 Mpc�1) and the error bar grows by 8% (to
1.2 km s�1 Mpc�1).

To summarize, this 1.7% determination of H0 is ro-
bust to details of our analysis, with the error dominated
by the BAO and SNIa measurement uncertainties. The
key assumptions behind this method are (a) standard
matter and radiation content, with three species of light
neutrinos, and (b) no unrecognized systematics at the
level of our statistical errors in the CMB determinations
of !m and !b, in the BAO measurements, or in the SNIa
measurements used to tie them to z = 0. Note that the
SNIa covariance matrix already incorporates the detailed
systematic error budget of [30]. The measurement sys-
tematics are arguably smaller than those that a↵ect the
traditional distance ladder. Thus, with the caveat that
it assumes a standard matter and radiation content, this
measurement of H0 is more precise and probably more
robust than current distance-ladder measurements.

Non-standard radiation backgrounds remain a topic of
intense cosmological investigation, and a convincing mis-
match between H0 determinations from the forward and
inverse distance ladders could be a distinctive signature
of non-standard physics that alters rd. We can express
our constraint in a more model-independent form as

H0 = (67.3±1.1)⇥(147.49 Mpc/rd) km s�1 Mpc�1
. (23)

55 60 65 70 75 80 85 90

H0[kms�1Mpc�1]

ow0wa-CDM GBAO+SN+rd

PolyCDM GBAO+SN + rdInverse
Distance Ladder

�CDM Planck (full)
�CDM WMAP (full)CMB+�CDM

Riess++
Freedman++

EfstathiouDistance Ladder

Figure 6. Constraints on the Hubble constant H0 from this
paper’s inverse distance ladder analysis (blue, at bottom),
from three direct distance ladder estimates (red, at top), and
from Planck or WMAP CMB data assuming ⇤CDM (green,
middle). All error bars are 1�. The inverse distance ladder
estimates assume rd = 147.49 ± 0.59 Mpc, based on Planck
constraints for a standard radiation background, while the
green points make the much stronger assumptions of a flat
universe with a cosmological constant.

Raising Ne↵ from 3.046 to 4.0 would increase our central
value of H0 to 69.5 km s�1 Mpc�1 (eq. 17, but see further
discussion in Section VI D).

Figure 6 compares our H0 determination to several
other values from the literature. The lower two points
show our results using either the PolyCDM model or
the ow0waCDM model. The top three points show re-
cent distance-ladder determinations from Riess et al. [70],
Freedman et al. [71], and a reanalysis of the Riess et
al. data set by [73]. There is mild (⇡ 2�) tension be-
tween these determinations and our value. The central
two points show the values of H0 inferred from Planck or
WMAP CMB data assuming a flat ⇤CDM model, with
values and uncertainties taken from the MCMC chains
provided by the Planck collaboration. These inferences
of H0 are much more model dependent than our inverse
distance ladder measurement; with the ow0waCDM or
PolyCDM dark energy models the errors on H0 from
CMB data alone increase by more than order of mag-
nitude because of the CMB geometric degeneracy. Con-
sistency of these H0 values is therefore a consistency test
for the ⇤CDM model, which it passes here with flying
colors.

Our results can be compared to those of several other
recent analyses. [74] determine H0 from a collection of
BAO data sets using the Planck-calibrated value of rd.
They do not incorporate SNIa, but they assume a flat
⇤CDM model, which allows them to obtain a tight con-
straint H0 = 68.11 ± 0.86 km s�1 Mpc�1. [75] carry out
a more directly comparable inverse distance ladder mea-
surement with essentially the same data sets but cosmo-
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(jav: Este art. śı recomendaria que fuese en ingles. De esta manera se podria subir al Arxiv y por
tanto mas investigadores tendrian acceso a el. Ademas, solo viendo los temas/subtemas, parece que
sera un poco extenso >⇠ 15 pags. Tambien podria servir como carta de presentacion para hacer
una estancia en el extranjero. Que opinan?) (isidro:  Me parece perfecto.) In this paper,
we review the types of samplers used in cosmology for the calculation of Bayesian Evidence. The
selected samplers are available in pure Python language.

Keywords:

PACS numbers: ...

I. INTRODUCTION

There are many methods for parameter estimation gi-
ven a mathematical model, in particular, for cosmologi-
cal models. However, two di↵erent models could have the
same quality in their estimates. Therefore, an additional
statistical tool is required: the model comparison.

The more accepted method for the cosmological model
comparison is via the Bayesian Evidence. There are anot-
her methods with lower complexity (Refs. [1, 2]), however
they have the disadvantage that are approximations of
the Bayesian Evidence and they carry errors of accuracy.

In the literature we can find several algorithms of nes-
ted sampling algorithms and of calculation of Bayesian
evidence; however, in this paper we only focus on the al-
gorithms that have a pure Python implementation avai-
lable. It is known that a code based on C or C ++ is
more e�cient, but for the scientific community (single
researchers and not institutional groups) it has several
inconveniences in the installation and its complex use is
the main di�culty.

II. BAYESIAN STATISTICS

To test theoretical models, Bayes’theorem takes the
following form:

P (✓|D,H) =
P (D|✓, H)P (✓|H)

P (D|H)
, (1)

where D represents the observational (or experimental)
dataset, H is the hypothesis or model under test, and
✓ is the set of parameters. The prior P (✓|H) represents
our knowledge about the parameters ✓ before considering
the observational data. This probability is modified th-
rough likelihood P (D|✓, H) when the experimental data

a igomezv0701@alumno.ipn.mx
b medetl@hotmail.com

D is included. The final goal of the Bayesian inference is
to obtain the posterior probability P (✓|D,H), which re-
presents the state of our knowledge of the parameters of
the model once we have taken into account the informa-
tion provided for the data. The normalization constant
P (D|H), or Bayesian Evidence, is the average of the li-
kelihood in the probability prior :

P (D|H) =

Z
d
N
✓P (D|✓, H)P (✓|H), (2)

where N is the dimension of the parameter space. Becau-
se this quantity is a constant, it can be omitted in the
process of parameter estimation, but it is fundamental in
the model comparison.

The Bayesian Evidence is significant because it pena-
lizes the models with the largest number of parameters,
through the previous distribution. Therefore, Occam’s ra-
zor is obeyed, a philosophical guide that says: “Under
equal conditions, the simplest explanation is usually the
most probable”. In other words, the simpler a model is,
the better.

The MCMC methods are good for estimating parame-
ters, but ine�cient when calculating Bayesian Evidence,
therefore, other more e�cient algorithms have been pro-
posed in this field. Such is the case of the nested sampling
proposed by John Skilling in 2003.

The main drawback of the MCMC methods is the
computational cost. There are several attempts to im-
prove MCMC methods with artificial intelligence techni-
ques, such as clustering, genetic algorithms and artificial
neural networks.

III. MCMC SAMPLERS

(isidro: ¿son necesarios?¿podŕıan solo mencio-
narse?)
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they have the disadvantage that are approximations of
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evidence; however, in this paper we only focus on the al-
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lable. It is known that a code based on C or C ++ is
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zor is obeyed, a philosophical guide that says: “Under
equal conditions, the simplest explanation is usually the
most probable”. In other words, the simpler a model is,
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The MCMC methods are good for estimating parame-
ters, but ine�cient when calculating Bayesian Evidence,
therefore, other more e�cient algorithms have been pro-
posed in this field. Such is the case of the nested sampling
proposed by John Skilling in 2003.
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computational cost. There are several attempts to im-
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