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0.1 The Friedmann-Lemâıtre equations

0.1 The Friedmann-Lemâıtre equations

The Friedmann equation describes the expansion of the Universe, and is therefore the most

important equation in cosmology. Let us derive the equations by using Newton theory and after

that through Einstein theory.

Example 0.1.1: The Friedmann equation

Let us consider an observer in a uniform expanding medium with mass m and density
ρ. Then, the total mass M = 4πρr3/3 contributes to a force, see Figure 1

F =
GMm

r2
=

4πGρrm

3
.

Our particle has a gravitational potential energy

V = −GMm

r
= −4πGρr2m

3
,

with the velocity of the particle ṙ giving the kinetic energy

T =
1

2
mṙ2.

Energy conservation for that particle U = T + V , where U is a constant

U =
1

2
mṙ2 − 4π

3
Gρr2m,

using comoving coordinates ~r = R(t)~x (r the physical coordinates and x the fix location),
then

U =
1

2
mṘ2x2 − 4π

3
GρR2x2m,

if we multiply for 2/mR2x2 and rearranging, we have

Ṙ2 =
8πG

3
ρR2 − kc2,

where kc2 = −2U/mx2. k is just a constant unchanging with either space or time, often
called the curvature.

• k > 0- the expansion will at some time, halt and reverse itself.

• k < 0- the expansion will continue forever.

• k = 0- the expansion of the universe will slow down, but only halt at t =∞.
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Example 0.1.2: Evolution of the density

From thermodynamics second law dE + PdV = TdS and using E = mc2,

E =
4π

3
R3ρc2,

→ dE

dt
= 4πR2ρc2

da

dt
+

4π

3
R3 dρ

dt
c2,

and for the volume change
dV

dt
= 4πR2 da

dt
,

assuming a reversible expansion dS = 0, we get the fluid equation

ρ̇+ 3
Ṙ

R

(
ρ+

p

c2

)
= 0.

The first term in the parenthesis corresponds to the dilution because the volume has
increased, while the second is the loss of energy because the pressure has done work as
the Universe’s volume increased (gravitational potential energy).

Example 0.1.3: The accelerated equation

Differentiating the Friedmann equation, we have

2
Ṙ

R

RR̈− Ṙ2

R2
=

8πG

3
ρ̇+

2kc2Ṙ

R3
,

using ρ̇

R̈

R
−

(
Ṙ

R

)2

= −4πG
(
ρ+

p

c2

)
+
kc2

R2
,

R̈

R
= −4πG

3

(
ρ+

3p

c2

)
.

independent of the constant k
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0.1 The Friedmann-Lemâıtre equations

Figure 1: Figure of a mass in a solid gravity sphere.

Once we have specified the metric that describes the homogeneous and isotropic expanding

universe, the evolution of both the scale factor and matter density follows from Einstein’s

equations :

Gµν ≡ Rµν −
1

2
gµνR = κ0 Tµν . (1)

As we have seen previously Gµν is the Einstein metric tensor, the Ricci tensor Rµν is a com-

bination of first and second derivatives of the metric gµν , and its trace is defined by the Ricci

scalar R ≡ gµνRµν ; G is Newton’s constant and κ0 = 8πG/c4. On the right hand side, the

energy-momentum tensor Tµν contains the constituents of the universe. An acceptable modi-

fication to Einstein’s equations is the introduction of a Lorentz-invariant constant-term Λgµν

into the field equations:

Rµν −
1

2
gµνR+ Λgµν = κ0 Tµν , (2)

where Λ is called the cosmological constant and its value, according to astrophysical observa-

tions, is Λ ∼ 10−52m−2 [3, 9]; we will see more about this component in subsequent sections.

Equation (2) is in general a complicated set of coupled quasilinear second-order partial differ-

ential equations for the ten elements of the metric gµν . Nevertheless, they may exhibit simple

analytical solutions in the presence of generic symmetries, for instance, under the assumption

of the FRW metric. Considering gµν in the form of (??), the Christoffel symbols

Γ0
ij = R2Hgij , Γi0j = Γij0 = Hδij ,

Γ1
11 =

kr

1− kr2
, Γ1

22 = −r(1− kr2), Γ1
33 = −r(1− kr2) sinθ,

Γ2
33 = − sin θ cos θ, Γ2

12 = Γ2
21 = Γ3

13 = Γ3
31 =

1

r
, Γ3

23 = Γ3
32 = cot θ.
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and the non-vanishing curvature terms are given by

R00 = −3
R̈

R
= −3(Ḣ +H2), (3)

Rij =

 R̈
R

+ 2

(
Ṙ

R

)2

+
2c2k

R2

 gij , (4)

R = 6

 R̈
R

+

(
Ṙ

R

)2

+
c2k

R2

 , (5)

and the Einstein tensor

G0
0 = −3

( Ṙ
R

)2

+
c2k

R2

 , (6)

Gij = −

2
R̈

R
+

(
Ṙ

R

)2

+
c2k

R2

 δij . (7)

where an overdot indicates again derivative with respect to cosmic time t (� ≡ d/dt).

HW: Compute R and G

The geometry of the space-time is determined by equations (6)-(7), then to solve Einstein’s

equations we just need to specify the matter content under consideration.

0.2 The Energy-momentum tensor

Tµν =


T 00

... T i0

· · ·
... · · · · · · · · ·

T 0j
... T ij

 .

• T 00- total energy density.

• T i0 - energy flux (×c−1) in the i-direction.

• T 0j - momentum density (×c) in the j-direction.

• T ij - momentum flow (random thermal motions).

– T ii - Isotropic pressure in the i-direction.
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0.2 The Energy-momentum tensor

– T ij (i 6= j) viscous stresses.

If look for a Tµν to be consistent with the requirements of homogeneity and isotropy, we need

the following:

• Isotropy requires the mean values of the 3-vector vanish, i.e. T 0i = T 0j = 0.

• T ij at any point (more specifically at x = 0) be proportional to δij and hence to gij

(= R2δij at x = 0), then

Tij(x = 0) ∝ δij ∝ gij(x = 0). (8)

• Homogeneity requires the proportionality coefficient to be only a function of time

T00 = ρ(t), πi ≡ Ti0 = 0, Tij = p(t)gij(t, ~x). (9)

Tµν = gµλTλν =


ρ 0 0 0
0 −p 0 0
0 0 −p 0
0 0 0 −p

 , (10)

where ρ is the energy density and p the isotropic pressure of the fluid, both of them measured

by an observer in a local inertial frame in which the fluid is at rest. This is the stress-energy

tensor of a perfect-fluid as seen by a comoving observer.

More generally

Tµν =
( p
c2

+ ρ
)
uµuν − pgµν , (11)

in the rest frame, where the 4-velocity of the fluid uµ between the fluid and the observer. For a

comoving observer uµ = (1, 0, 0, 0), the energy-momentum tensor reduces to Tµν = diag(ρ, giip).

Thus, Einstein’s equations for a perfect fluid in a FRW background provide two independent

expressions (time-time and space-space components), which together yield to the Friedmann

and acceleration equations:

G0
0 ⇒

(
Ṙ

R

)2

=
8πG

3
ρ− k

R2
+

1

3
Λc2, (12)

Gij ⇒ R̈

R
= −4πG

3

(
ρ+

3p

c2

)
+

1

3
Λc2. (13)

The cosmological equations, in which R(t) is computed under the aforementioned conditions,

are known as Friedmann-Lemâitre-Robertson-Walker equations; we simply refer to them as

Friedmann equations.

-5-



Another equation of interest is the conservation of the energy-momentum tensor, ∇µTµν =

∂µT
µ
ν + ΓµµλT

λ
ν − ΓλµνT

µ
λ = 0, which leads to the continuity equation:

ρ̇+ 3
Ṙ

R

(
ρ+

p

c2

)
= 0. (14)

In order to solve the full set of cosmological equations, we still need to specify an extra condition,

for instance the pressure for every kind of material the universe is filled with. The usual, and

well-founded, assumption is that there is a pressure contribution associated to each energy

density, so that p ≡ p(ρ). Such a relationship is known as the equation-of-state. The Friedmann

equations (12), the energy-momentum conservation (14), and the equation-of-state p = p(ρ)

are therefore the fundamental expressions that describe the dynamics of a homogeneous and

isotropic universe.

0.2.1 Cosmic Inventory

In order to understand the dynamical properties of the universe, we first need to bear in mind

the whole content of it. Let us focus on single-barotropic perfect-fluids that satisfy, in general,

a time-dependent equation-of-state w(z), of the form

p = c2w(z)ρ. (15)

For any component, with constant w, the continuity equation (14) can be easily integrated to

give 1

ρ ∝ R−3(1+w). (17)

Moreover, in a universe dominated by the energy density ρ, the Friedmann equation leads to

the time evolution of the scale factor:

R(t) ∝ t2/3(1+w), ∀ w 6= −1, (18)

or, in conformal time

R(η) = η2/(1+3w), ∀ w 6= −1. (19)

That is, the evolution of a universe filled with a given perfect fluid is known once its equation-

of-state is specified. The standard Λ-Cold Dark Matter model (ΛCDM) relies upon four main

1For a more general description of w(a), the evolution of the energy density is given by

ρ ∝ exp[−3X(a)], with X(a) =

∫ a

1
[1 + w(a′)]d ln a′. (16)

-6-



0.2 The Energy-momentum tensor

ingredients, described by radiation (photons, massless neutrinos), matter (baryons), the inclu-

sion of a dark matter component (DM) and vacuum energy (Λ). The behaviour of each of these

components is summarised as follows:

Radiation

This relativistic component dominates during the earliest stages of the universe. Radiation

is characterised by an associated pressure pr = ρr/3
1, with equation-of-state wr = 1/3. The

evolution of its energy-density and scale factor are thus given by

ρr(t) = ρr,0

[
R(t)

R0

]−4

, and R(t) ∝ t1/2. (20)

The energy density of the blackbody radiation

ρr(T ) = αT 4, (21)

where α is the Stefan-Boltzmann constant. If the present day temperature is pin-up to be

T0 = 2.726K then the number density of radiation today is nγ,0 ' 4× 108m−3 (see more about

them in the next section). On the other hand, comparing eqns. (20) and (21) we have that the

universe was denser and hotter in the past

T ∝ R−1. (22)

The big bang is somehow explain.

t→ 0, R→ 0, ρ→∞, T →∞. (23)

Extrapolating our assumptions, at the beginning of the universe (t → 0), the universe was

denser and hotter concentrated in a minusculous tiny region.

The total radiation energy-density ρr in the universe may be written as the sum of two main

contributions: photons (γ) and massless neutrinos (ν):

ρr(t) = ργ(t) + ρν(t). (24)

Photons - Primordial photons play a key role in observational cosmology as they constitute

the cosmic microwave background radiation we nowadays observe, as we shall see in more detail

in Sections ?? and ??.

1we’ll obtain this result with statistical mechanics in the following sections
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Massless Neutrinos - Neutrinos are very weakly interacting leptons, which come in three

types or ‘flavours’: electron, muon, and tau; all of them with an associated antiparticle. The

amount of massless neutrinos in the cosmic background (estimated from theoretical arguments)

is given by

ρν = Neff ×
7

8
×
(

4

11

)4/3

ργ , (25)

where Neff is the effective number of neutrino species; note that Neff = 3.046 for the standard

neutrino species [8]. Nevertheless, several experiments suggest they do have a very small mass.

For instance experiments detecting atmospheric neutrinos, solar neutrinos, also reactor neutri-

nos and accelerator beam neutrinos. Cosmological observations have also provided limits on

the neutrino mass; some reviews in the subject can be found in: Dolgov [4], Elgarøy and Lahav

[5], Hannestad [6], Lesgourgues and Pastor [7].

Matter

Any type of material with negligible pressure is often referred as ‘dust’. It is represented by an

equation-of-state wm = 0, with energy-density given by

ρm(t) ∝ R−3, and R(t) ∝ t2/3. (26)

that is, the dilution of the energy-density is because the expansion of the volume V ∝ R3.

Combining expressions in (26) we have

H =
Ṙ

R
=

2

3t
. (27)

that is, the universe expands forever but an even decreasing rate. Notice that t0 = 2
3

1
H0

and

using the hubble parameter we have that the age of the Universe with content purely giving

in the form of matter is t0 = 9.3 Gyrs. This type of universe is called as Einstein de-Sitter

Universe.

The total matter content of the universe comes in several different forms. In addition to the

familiar baryonic matter, observations of the Large-Scale Structure (LSS) suggest that most of

the galactic content is in the form of non-baryonic matter, called dark-matter. The total matter

density may be expressed as the sum of baryonic (b) and dark-matter (dm) contributions:

ρm(t) = ρb(t) + ρdm(t). (28)

-8-



0.2 The Energy-momentum tensor

Baryons - make up the familiar matter of our universe (protons and neutrons). Since the

universe is charge neutral, there must be equal number of protons and electrons (charged

leptons). An elaborated review of Big Bang Nucleosynthesis (BBN) is given by Steigman [12]

(see also next section).

Dark matter - The existence of non-baryonic dark matter has been inferred from its gravi-

tational manifestations through the flat rotation curves of galaxies, the mass-to-light ratios in

clusters of galaxies, and gravitational lensing of background sources. An extended discussion

of the current status of particle dark matter, including experimental evidence and theoretical

motivations, is presented by Bertone et al. [2], Sellwood and Kosowsky [11].

Vacuum

If the cosmological constant term is moved to the right-hand-side on Einstein’s equations, it

can be associated to the vacuum energy-density, given by

ρΛ ≡
Λ

8πG
. (29)

At future cosmic times, while the matter and radiation density dilute away, the vacuum energy-

density remains with the same constant value ρΛ. The vacuum energy can be modelled as a

perfect fluid with negative pressure equal to pΛ = −ρΛ, which corresponds to an equation-of-

state wΛ = −1: a De-Sitter Universe. For a review about the cosmological constant term see e.g.

Carroll [3], Padmanabhan [9], Peebles and Ratra [10]. The cosmological constant is also seen

as the simplest form of a more generic ‘dark energy’ component, commonly considered as the

main candidate to explain the current acceleration of the universe. We shall see in Chapter ??

that wDE(a) evolving in time provides a slightly better description for the current observational

data. (jav: add brief dark energy review.)

Curvature

The contribution of the spatial curvature can be considered as any other energy component by

defining a fictitious energy density:

ρk ≡ −
3k

8πG
R−2. (30)

This energy-density is described by an equation-of-state wk = −1/3, for which the scale factor

evolves proportionally to the cosmic time a ∝ t. The general behaviour of the curvature term is

-9-



easily understood if we rewrite the Friedmann equation, with a vanish cosmological constant,

in the following way (
Ṙ

R

)2

=
8πG

3
(ρ+ ρk). (31)

For a positive density contribution ρ, the universal expansion can only be stopped if the universe

is closed k > 0 (ρk < 0), otherwise it will expand forever.

Missing matter

If the Friedmann equation is written in terms of the present energy-density components, we

have(
Ṙ

R

)2

=
8πG

3

[
ρr,0

(
R

R0

)−4

+ ρm,0

(
R

R0

)−3

+ ρk,0

(
R

R0

)−2

+ ρΛ,0

(
R

R0

)−0
]
. (32)

Notice that the right-hand-side can be seen as a power series expansion, however with a missing

component with contribution R−1. To complete the series, we include this term and named it

as the missing-energy component [? ], for which its energy-density satisfies

ρX(t) = ρX,0

[
R

R0

]−1

, and R ∝ t2. (33)

The missing-energy component has therefore an equation-of-state wX = −2/3, and behaves

similarly to domain walls [1, 13]. We explain in more detail about this new term in Chapter

??.

A summary of the main components of the universe, along with their behaviour, is shown

in Table 1. Before solving the cosmological equations for the whole mixture of perfect-fluid

components, we include some essential notation:

Density parameter: We also introduce the ratio of the energy-density relative to the critical

density ρc ≡ 3H2/8πG, as the dimensionless density parameter:

Ωi(t) ≡
ρi(t)

ρc(t)
, (34)

where the index ‘i’ labels a single type of component, such as matter, radiation, etcetera. The

present critical density is ρc,0 = 1.88h2 × 10−22 gcm−3.

-10-



0.2 The Energy-momentum tensor

component Ωi wi ρ(R) R(t) H(t)

radiation Ωr 1/3 ∝ R−4 ∝ t1/2 1/2t

matter Ωm 0 ∝ R−3 ∝ t2/3 2/3t

curvature Ωk -1/3 ∝ R−2 ∝ t 1/t

missing matter ΩX -2/3 ∝ R−1 ∝ t2 2/t

cosmological constant ΩΛ -1 ∝ R0 ∝ exp(
√

Λ
3 t) const

Table 1: Constituents of the universe and their cosmological parameters: density parameter Ωi,

equation-of-state parameter wi; and their behaviour: density evolution ρ(R), scale factor R(t),

Hubble parameter H(t). (jav: agregar comoving quantities, r : η, dm : η2,Λ : −η−1)

0.2.2 The cosmological field equations

We have computed the evolution of the scale factor for a universe made up by single-independent

fluids: radiation, matter, vacuum, spatial curvature, vacuum energy and missing energy. To make

the basic Friedmann models more realistic, we need to take into account the whole mixture of

these components. Suppose that within the mixture, the distinct fluids do not interact with each

other but only through their mutual gravitation (perfect fluids). The total energy-momentum

tensor of a multiple-component fluid is thus given by

Tµν =
∑
i

(Tµν)i, (35)

where i labels the sum over various constituents, each of them individually modelled as a single

perfect-fluid with pi = wiρi. Using the definitions introduced above, the Friedmann equations

(12) and (13) for a multi-fluid universe are now written in the following way

(
H

H0

)2

=
∑
i

Ωi,0

(
R

R0

)−3(1+wi)

+ Ωk,0

(
R

R0

)−2

, (36)

Ḣ +H2 = −4πG

3

∑
i

ρi(1 + 3wi) =
RR̈

Ṙ2
. (37)

The density parameters at any given time are

Ωi = Ωi,0

(
H0

H

)2(
R

R0

)−3(1+wi)

. (38)
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Figure 2: The evolution of density parameters Ωi(a) are seen as a succession of several epochs,

each of them dominated by different components: radiation, matter, curvature and cosmological

constant. (jav: move this figure and 1 after the 1 and two fluid equations)

Therefore, these equations, at any cosmic time, can be written in the elegant forms:

ΩT ≡
∑
i

Ωi + ΩΛ = 1− Ωk, (39)

q =
1

2

∑
i

Ωi(1 + 3wi). (40)

In particular, the curvature density-parameter Ωk = −k/H2R2, determines the normalisa-

tion of the scale factor (??), or curvature radius:

R0 = H−1
0

√
−k/Ωk,0 =

H−1
0√
|Ωk,0|

. (41)

In a universe with positive curvature, R0 is just the radius of the 3-sphere. On the other hand,

we notice that the matter distribution (39) clearly determines the spatial geometry of the

universe: ΩT < 1 (open), ΩT = 1 (flat) and ΩT > 1 (closed).

The Friedmann equations have exact solutions in just a few simple cases, for instance in a

universe modelled by perfect-fluids. For this particular case, the density parameters and their

dependence on the scale factor are plotted in Figure 2. In this Figure, the cosmic evolution of

the different constituents are seen as a succession of several epochs, each of them corresponding

to a different perfect-fluid. At the earliest stages, radiation dominates because of its behaviour

ρr ∝ a−4. Then, at aeq ≈ 4.2 × 10−5h−2, the radiation contribution equals that of matter,

-12-



0.3 Scalar Fields
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Figure 3: Deceleration parameter q(z) as a function of redshift z for a multi-fluid universe. Notice

that the universe is currently accelerating (q(z = 0) < 0).

which starts dominating afterwards. It is noticeable that the curvature term is almost negligible

due to the initial conditions taken (see Section ??). Finally, the cosmological constant term

dominates over the late-time evolution of the universe, and remains so for all time due to its

constant energy-density behaviour.

From expression (40), we observe that the sign of (1+3wi) determines whether the universe is

accelerating (q < 0) or decelerating (q > 0). If the major contribution comes from a fluid(s) with

wi > −1/3 the expansion of the universe will gradually slow-down due to the action of gravity.

On the other hand, if wi < −1/3 the pressure component acts as a ‘repulsive’ term leading to an

accelerated expansion. For instance the cosmological constant term, which dominates over the

dynamics of the universe at low-redshift, is considered the principal responsible for the present

accelerated expansion of the universe, seen in Figure 3.

0.3 Scalar Fields

S =

∫
d4x
√
−g

[
1

2
∂µφ∂

µφ− V (φ)

]
. (42)

The corresponding field equation for φ is obtained from the Euler-Lagrange equations and

reads

�2φ+
dV

dφ
= 0. (43)
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Tµν = ∂µφ∂νφ− gµν [
1

2
∂σφ∂

σφ− V (φ)]. (44)

T00 = ρφ =
1

2
φ̇2 + V (φ) +

1

2
(~∇φ)2, (45)

Tii = pφ =
1

2
φ̇2 − V (φ)− 1

6
(~∇φ)2, (46)

From the structure of the effective energy-density and pressure, the Friedmann and the

acceleration equations for a homogeneous single-scalar field become

H2 =
8πG

3

[
1

2
φ̇2 + V (φ)

]
, (47)

ä

a
= −8πG

3

[
φ̇2 − V (φ)

]
. (48)

with an analogous equation of state

wφ =
φ̇2 − 2V (φ)

φ̇2 + 2V (φ)
. (49)

Therefore, the inflationary condition to be satisfied is φ̇2 � V (φ), which is easily fulfilled with

a suitable flat potential. Inflation is driven by the vacuum energy of the inflaton field pφ ≈ −ρφ.
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