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0.1 The spacetime metric gµν

0.1 The spacetime metric gµν

The most general expression for the metric gµν can be represented by a sequence of non-

intersecting spacelike hypersurfaces labelled by some parameter t, see Figure 1.

Figure 1: Worldlines.

This parameter may be taken to be the proper time along the worldline of any fundamental

observer. The parameter t is then called the synchronous time coordinate. In addition, we may

also introduce spatial coordinates (x1, x2, x3) that are constant along any worldline. Thus, each

fundamental observer has fixed (x1, x2, x3) coordinates, and so the latter are called comoving

coordinates, see for instance Figure 2.

Then the line element takes the form

ds2 = gµνdx
µdxν = g00c

2dt2 + 2g0ic dtdx
i + gijdx

idxj , (1)

where the components of the spatial metric gij are functions of the coordinates (ct, x1, x2, x3).

Because the hypersurfaces t = constant may be naturally constructed in such a way that the

4-velocity of any fundamental observer is orthogonal to the hypersurface, then the term g0i

must be zero. On the other hand, we may use the proper time of the coordinate system given

by the fundamental observers to label the spacelike hypersurfaces (see Figure 1). This choice of

coordinate time implies that g00 = 1, and therefore the space-time interval becomes

ds2 = c2dt2 − gijdxidxj . (2)
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0.2 The Friedmann-Robertson-Walker metric

Let us now incorporate the postulates of homogeneity and isotropy to the geometry of the

Universe. The former demands that all points on a particular spacelike hypersurface are

equivalent, whereas the latter demands that all directions on the hypersurface are equivalent

for fundamental observers.

Isotropy requires that the distribution of galaxies at two different times must be similar,

and homogeneity requires that the magnification factor must be independent of the

position for the distribution.

It thus follows that the time t can enter the gij only through a common factor, and hence the

metric must take the following form

ds2 = c2dt2 − S2(t)dσ2, (3)

where S(t) is a time-dependent scale factor (length-dimensions) and dσ2 = γijdx
idxj contains

functions of the coordinates (x1, x2, x3) only. As we will see in the following section, the physical

distance (r) is proportional to the comoving distance (x) times the scale factor S(t) and hence

it gets larger as time evolves. See Figure 2.

Figure 2: Comoving coordinates.

Over the years, cosmological observations have provided decisive evidence that the universe

is currently expanding, therefore the scale factor satisfies Ṡ(t) > 0 as we shall come back later,
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0.2 The Friedmann-Robertson-Walker metric

see Hubble [3], Perlmutter et al. [4], Riess et al. [5].

On the other hand, a maximally symmetric space is specified by just one number – the

curvature K, which is independent of the coordinates. Such constant curvature spaces must be

homogeneous and isotropic, a the key property we are looking for to describe the Universe at

large scales.

Example 0.2.1: maximally symmetric spaces

A maximally symmetric space is defined as both homogeneous and isotropic. Such
space possesses the largest possible number of Killing vectors which in an n-dimensional
manifold equals n(n+ 1)/2. The following holds for such spaces:

1.- The scalar curvature R is a constant, i.e.

R = n(n− 1)K.

2.- The Ricci tensor is proportional to the metric tensor, i.e.

Rµν =
1

n
Rgµν .

3.- The Riemman curvature tensor is given by

Rµνλρ =
R

n(n− 1)
(gµλgνρ − gνλgµρ).

Assuming general static isotropy, the line element of an isotropic 3-space in spherical coordinates

(r, θ, φ) can be written as

dσ2 = B(r)dr2 + r2(dθ2 + sin2 θdφ2), (4)

and its scalar curvature 3R is computed to be

3R =
2

r2
d

dr

[
r

(
1− 1

B(r)

)]
. (5)

Homogeneity implies that all geometrical properties are independent of r and therefore 3R must

be constant. That is, equating Eq. (5) to a constant value 6K and integrating the result, this

yields to the expression

r

(
1− 1

B

)
= Kr3 + c, (6)

with K and c constants. In order to avoid any singularity at r = 0 is compulsory to select c = 0

and therefore B(r) = (1−Kr2)−1.
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Example 0.2.2: An isotropic 3-space.

For the line element dσ2 = B(r)dr2 + r2dΩ the components of the metric tensor are,
along with the inverse components:

gab =

 B(r) 0 0
0 r2 0
0 0 r2 sin2 θ

 , gab =

 1
B2(r) 0 0

0 1
r2 0

0 0 1
r2 sin2 θ

 .

By using the symmetric properties of the Christoffel symbols, the identity (??), that for
three different indices (i.e. Γrθφ) the symbols are null, thus the non zero components
are:

Γrrr =
1

2B(r)

dB(r)

dr
, Γrθθ = − r

B(r)
, Γrφφ = −r sin2 θ

B(r)
.

Γθrθ = Γφrφ =
1

r
, Γθφφ = − sin θ cos θ, Γφφθ = cot θ.

The Riemann tensor components

Rrθrθ = Γrθθ,r − Γrrθ,θ + ΓrrλΓλθθ − ΓrθλΓλrθ =
r

2B2(r)

dB(r)

dr
.

Rrφrφ = Γrφφ,r − Γrrφ,φ + ΓrrλΓλφφ − ΓrφλΓλrφ =
r sin2 θ

2B2(r)

dB(r)

dr
.

Rθrθr = Γθrr,θ − Γθθr,r + ΓθθλΓλrr − ΓθrλΓλθr =
1

2rB(r)

dB(r)

dr
.

Rθφθφ = Γθφφ,θ − Γθθφ,φ + ΓθθλΓλφφ − ΓθφλΓλθφ = sin2 θ

(
1− 1

B(r)

)
.

Rφrφr = Γφrr,φ − Γφφr,r + ΓφφλΓλrr − ΓφrλΓλφr =
1

2rB(r)

dB(r)

dr
.

Rφθφθ = Γφθθ,φ − Γφφθ,θ + ΓφφλΓλθθ − ΓφθλΓλφθ = 1− 1

B(r)
.

The non-null Ricci tensor components:

Rrr =
1

rB

dB

dr
, Rθθ = 1− 1

B
+

r

2B2

dB

dr
, Rφφ = Rθθ sin2 θ.

Finally, the curvature scalar:

R = grrRrr + gθθRθθ + gφφRφφ =
2

r2
d

dr

[
r

(
1− 1

B(r)

)]
.

Considering Rjk = 2Kgjk

1

rB

dB

dr
= 2KB(r), & 1− 1

B
+

r

2B2

dB

dr
= 2Kr2.

Integrating the first equation

B(r) =
1

A−Kr2
.

Substituting into the second expression, then it gives 1−A+Kr2 = Kr2, from which we
see that A = 1. Thus, we have constructed the line element for the maximally symmetric
3-space.
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0.2 The Friedmann-Robertson-Walker metric

Finally, with the previous results we have that the spatial part of the metric is written as

dσ2 = γijdx
idxj =

dr2

1−Kr2
+ r2dΩ2, (7)

where r is the radial coordinate and dΩ2 = dθ2 +sin2 θdφ2 is the metric on the 2-sphere. Notice

it has a similar form as the metric for a 3-sphere embedded in four-dimensional Euclidean

space. The metric contains a ‘hidden symmetry’, since the origin of the radial coordinate is

completely arbitrary. We can choose any point in this space as our origin since all points are

equivalent. There is no centre in this space.

HW- Take metric (4) and compute Christoffel and Riemann to get (7). Make sure you

do Rij = 2Kgij .

Plugging everything together into (3), we get the Friedmann-Robertson-Walker metric

ds2 = c2dt2 − S2(t)

[
dr2

1−Kr2
+ r2dΩ2

]
. (8)

Let us assume that K 6= 0, then we can define the variable k̃ = K/|K| such that k̃ = ±1

depending on the sign of K. Moreover we introduce the rescale coordinate

r̃ = |K|1/2r, (9)

so Eqn. (8) becomes

ds2 = c2dt2 − S2(t)

|K|

[
dr̃2

1− k̃r̃2
+ r̃2dΩ2

]
. (10)

and then, introducing the rescaled function R(t) by (we keep R(t) as the factor as it does

contain the units, and the coordinates are still comoving [dimensionless])

R(t) =


S(t)
|K|1/2 if K 6= 0,

S(t) if K = 0.

(11)

Eqn. (10) yields to

ds2 = c2dt2 −R2(t)

[
dr̃2

1− k̃r̃2
+ r̃2dΩ2

]
. (12)
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Figure 3: Three curvatures allowed for an Isotropic and Homogeneous space-time.

The constant k classifies the curvature of the spatial sections, with closed (S3), flat (R3) and

open (H3) universes corresponding to k̃ = +1, 0,−1, respectively (see Figure 3).

Example 0.2.3: Curvature metrics.

For the flat case k̃ = 0 the spatial metric is

dσ2 = dr2 + r2dΩ2

= dx2 + dy2 + dz2,

which is simply a flat Euclidean space. For the closed case k̃ = +1 we can define r = sinχ
to write the metric as

dσ2 = dχ2 + sin2 χdΩ2,

which is the metric of a three-sphere. In the open k̃ = −1 case we can set r = sinhχ to
obtain

dσ2 = dψ2 + sinh2 ψdΩ2.

This is the metric for a three-dimensional space of constant negative curvature.

Notice the line element (12) has a rescaling symmetry, that leaves the metric invariant

R→ λR, r̃ → r/λ, k̃ → λ2k. (13)

A convenient form to express the FRW metric is by choosing the rescaling factor as λ = 1/R0

That is, using coordinates normalised to present time, labelled with subscript ‘0’, to defined the

normalised scale factor

a(t) ≡ R(t)

R0
. (14)
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0.2 The Friedmann-Robertson-Walker metric

Curvature Geometry Angles of triangle circumference of circle Type of Universe

k > 0 Spherical > 180◦ c < 2πr Closed

k = 0 Flat 180◦ c = 2πr Flat

k > 0 Hyperbolic < 180◦ c > 2πr Open

Table 1: A Summary of possible geometries

Therefore the scale factor is set to unity today a0 ≡ a(t0) ≡ 1, r̃ → R0r has units of [length]

and the curvature parameter k̃ → k/R2
0 has dimensions of [length]−2. Note that in this case,

k can take any value and not just be restricted to {+1, 0,−1}. The general properties of these

three spaces can be summarised in Table 1. The general FRW metric written in terms of the

normalised scale factor a(t) is thus given by

ds2 = c2dt2 − a2(t)

[
dr2

1− kr2
+ r2dΩ2

]
. (15)

In general and throughout this book, we will use the metric (12) but dropping the tilde for

convenience.

0.2.1 Geometric properties of the FRW metric

The physical meaning of the curvature term becomes more apparent by redefining the radial

coordinate dχ ≡ dr/
√

1− kr2 in the metric (12), that leads to

ds2 = c2dt2 −R2(t)
[
dχ2 + S2

k(χ)dΩ2
]
, (16)

where the function Sk(χ) is specified by the curvature term:

Sk(χ) =

 sinχ, for k = 1 (closed universe)
χ, for k = 0 (flat universe)
sinhχ, for k = −1 (open universe)

(17)

where the comoving coordinates remained. When using the symmetry shown above they get

units by χ→ χ/λ and S2
k → S2

k/λ.

The comoving radial χ-coordinate, on a null geodesic (ds2 = 0), is computed from

χ =

∫
c dt

R(t)
. (18)

The form of the metric (16) is particularly convenient to study the propagation of light. For

this purpose, it is useful to introduce the conformal time:
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Figure 4: Figures for curve spaces. (jav: redo this figure)

dη =
c dt

R(t)
. (19)

so that (16) becomes

ds2 = R2(η)︸ ︷︷ ︸
Conformal

[
dη2 − (dχ2 + S2

k(χ)dΩ2)
]︸ ︷︷ ︸

Minkowski

. (20)

We notice the presence of the static Minkowski space multiplied by a conformal factor R2(η).

Because light moves along null geodesics, ds2 = 0, the propagation of light in a FRW is the

same as in Minkowski space firstly transformed to conformal time, and along the path we have

dη = dχ. (21)

Therefore the dynamics of the space-time, in a homogeneous and isotropic universe, reduces to

determining the scale factor R(t), which is computed from Einstein’s equations once the matter

content is specified, as we shall see below.
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0.2 The Friedmann-Robertson-Walker metric

Introduction

In the Λ-CDM model a basic assumption is given by the cosmological principle, which establishes

that the Universe where we live is homogeneous and isotropic at large scales. However, in

this paper some models that do not meet those requirements are discussed.

Non-isotropic cosmological models

This type of models are characterised for being homogeneous but not necessarily isotropic in

its spatial part, therefore they can be seen as generalisation of the FLRW Universe. Among the

most famous are those known as Bianchi models, they are described by the metric (in natural

units)[1]:

ds2 = −dt2 + ax(t)dx2 + ay(t)dy2 + az(t)dz
2.

Supposing a comoving test particle in this solution, it will follow the geodesic where (x, y, z)

keep constant, however, since the scale factor is different in each direction, its volume and

shape could be modified in general.

In order to test this models according to the experimental data, several calculation of nucle-

osynthesis and CMB anisotropies have been realised, nevertheless, the results have shown that

these models are inconsistent with some cosmological parameters, ergo, they are usually only

considered as toy models that are tractable exact solutions of Einstein’s field equations.

Non-homogeneous cosmological models

These inhomogeneous models are those exact solutions of Einsteins equations that in analogy

with the non-isotropic ones, can reproduce the FLRW solution as a limit. There are several

proposals in these directions, where the best known are [2]:

(a) The Szekeres - Szafron family: These models are characterised by the metric:

ds2 = dt2 − e2α(t,x,y,r)dr2 − e2β(t,x,y,r)(dx2 + dy2),

and they meet the following properties

– They obey the Einstein equations with a perfect fluid source.

– The flow-lines of the perfect fluid are geodesic and nonrotating.
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– The hypersurfaces orthogonal to the flow-lines are conformally flat.

– The Ricci tensor of those hypersurfaces has two of its eigenvalues equal. 5. The shear

tensor has two of its eigenvalues equal.

(b) The Lemaitre model: This describes a spherically symmetric inhomogeneous fluid

with anisotropic pressure. In comoving coordinates it has the following form.

ds2 = eA(t,r)dt2 − eB(t,r)dr2 −R2(t, r)(dυ2 + sin2 υdφ2).

(c) In the special case of dust with the cosmological constant, the above model repro-

duces the Lemaitre-Tolman (LT) model which is described by the metric

ds2 = dt2 − R,2r
1 + 2E

dr2 −R2(t, r)(dυ2 + sin2 υdφ2).

Conclusion

Some non-standard cosmological models have been discussed. It is worth mentioning that these

models can be seen as a generalisation of the FLRW solution which provides a good phenomeno-

logical landscape, and since the existence of gravitational lenses, we know that we do not live

in a FLRW Universe, thus, considering more general and tractable exact solutions to Einstein’s

equations is very important.
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ical models: exact solutions and their applications. Classical and Quantum Gravity, 28(16):

164002, aug 2011. doi: 10.1088/0264-9381/28/16/164002. URL https://dx.doi.org/10.

1088/0264-9381/28/16/164002.

[3] Edwin Hubble. A relation between distance and radial velocity among extra-galactic

nebulae. Proceedings of the National Academy of Sciences, 15(3):168–173, 1929. doi:

10.1073/pnas.15.3.168. URL http://www.pnas.org/content/15/3/168.short.

[4] S. Perlmutter, G. Aldering, G. Goldhaber, and et al. Measurements of Ω and Λ from

42 High-Redshift Supernovae. The Astrophysical Journal, 517(2):565, 1999. URL http:

//stacks.iop.org/0004-637X/517/i=2/a=565.

[5] Adam G. Riess, Alexei V. Filippenko, Peter Challis, and et al. Observational evidence from

supernovae for an accelerating universe and a cosmological constant. The Astronomical

Journal, 116(3):1009, 1998. URL http://stacks.iop.org/1538-3881/116/i=3/a=1009.

11

https://dx.doi.org/10.1088/0264-9381/28/16/164002
https://dx.doi.org/10.1088/0264-9381/28/16/164002
http://www.pnas.org/content/15/3/168.short
http://stacks.iop.org/0004-637X/517/i=2/a=565
http://stacks.iop.org/0004-637X/517/i=2/a=565
http://stacks.iop.org/1538-3881/116/i=3/a=1009

	0.1 The spacetime metric g
	0.2 The Friedmann-Robertson-Walker metric
	0.2.1 Geometric properties of the FRW metric

	Bibliography

