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0.1 The Einstein Tensor

0.1 The Einstein Tensor

(jav: perhaps write a bibliography for each topic)

0.1.1 Christoffel symbols

The coefficients Γabc are known as the affine connection, or traditionally called as the Christof-

fel symbol (of the second kind). It can be easily shown that Γabc do not transform as the

components of a tensor, however

T abc = Γabc − Γacb, (1)

is indeed a third-rank tensor, namely the torsion tensor. For convenience we can assume

torsion free T abc = 0, that is, the affine connection is symmetric in its covariant indices, i.e.

Γabc = Γacb. (2)

Assumption 0.1.1:

Torsion free: T abc = 0 ⇒ Γabc = Γacb .

We will use the ansatz that the covariant derivative of the metric tensor vanishes

gab;c = 0. (3)

The covariant derivative (expressed by ∇ or ; ) of a tensor is

Aab;c = Aab,c − ΓdacAdb − ΓdbcAad.

By cyclically permuting the three indices of Eqn. (3), summing them all over, and using the

covariant derivative of a tensor, we get

Γabc =
1

2
gad(∂cgdb + ∂bgdc − ∂dgbc)

=
1

2
gad(gdb,c + gdc,b − gbc,d). (4)

Then, for the torsionless case, the quantity on the right hand side of Eqn. (4) is properly called

the metric connection and often denoted by the symbol { abc}. In a torsionless manifold the

affine and metric connections are equivalent.
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The quantity Γabc, traditionally known as the Christoffel symbol of the first kind, is given

by

Γabc ≡ gadΓ
d
bc

=
1

2
(∂cgab + ∂bgac − ∂agbc). (5)

Adding Γabc to Γbac gives

gab,c = Γabc + Γbac, (6)

which relates partial derivatives of the metric components to the connection coefficients. The

contraction of the connection coefficients, leads to

Γaab = ∂b ln
√
|g| = 1√

|g|
∂b
√
|g|. (7)

where the derivative of the determinant g of gab is

g,c = ggabgab,c,

= 2gΓaac. (8)

HW1: Show that the components of Γabc do not transform as the components of a tensor,
but T abc do.

HW2: Prove (4), (6) and (8).

0.1.2 The curvature tensor

The curvature tensor (or the Riemann-Christoffel tensor) is defined in terms of the metric

tensor gab and its first and second derivatives.

Rabcd ≡ Γabd,c − Γabc,d + ΓebdΓ
a
ec − ΓebcΓ

a
ed. (9)

In a flat space-time, Γabc and its derivatives are zero, and hence

Rabcd = 0. (10)

The curvature tensor possesses a number of symmetries and satisfies certain identities, that are

most easily derived in terms of its covariant components. An alternative way, and useful for

this purpose, is the lowered version

Rabcd = gaeR
e
bcd, (11)
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0.1 The Einstein Tensor

and after considerable algebra, we have

Rabcd =
1

2
(gbc,ad − gac,bd + gad,bc − gbd,ac)− gef (ΓeacΓfbd − ΓeadΓfbc) , (12)

and the symmetries can be expressed as follow

Rabcd = −Rbacd, (13)

= −Rabdc,

= Rcdab.

From the first set of symmetries, we notice that for a = b or c = d all the components of

the Riemann tensor are zero. Then, we may easily deduce the cyclic identity (or 1st Bianchi

identity)

Rabcd +Radbc +Racdb = 0, (14)

which may be written as Ra[bcd] = 0. The conditions (13) and (14) reduce the number of

independent components from N4 to N2(N2−1)/12 (jav: do the math). In general, considering

several dimensions, we have

No. of dimensions 2 3 4

No. of independent components of Rabcd 1 6 20

You can see from this table that in four dimensions the number of independent components is

reduced from a possible 256 to 20.

Another useful relation we will need is the 2nd Bianchi identity

Rabcd;e +Rabde;c +Rabec;d = 0, (15)

and it can be written in the compact cyclic form Rab[cd;e].

HW: Show the validity of the expressions (13), (14) and (15).

0.1.3 Ricci tensor

From the symmetry properties, raising the index a and then contracting on the first two indices,

gives

Raacd = 0. (16)
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Example 0.1.1: Show that Raacd=0.

Take the expression (11)

Rabcd = gaeR
e
bcd,

multiply ×gab both sides

gabRabcd = gabgaeR
e
bcd,

because the mood indices, we can interchanged a↔ b on the right hand side to get

gba gbeR
e
acd︸ ︷︷ ︸

contraction

= gbaRbacd = gabRbacd = −gabRabcd,

where we have used the symmetry gba = gab and the anti-symmetric relation in (13).
Therefore Raacd = 0.

Contracting on the first and third indices, however, gives in general a non-zero result and

this leads to a new tensor, the Ricci tensor (the trace of the Riemann tensor):

Rab ≡ Rcacb = gcdRcadb. (17)

By raising the index a in the cyclic identity and contracting with d, one may easily show that

the Ricci tensor is symmetric, Rab = R b
a , and hence we can denote both by Rba. A further

contraction gives the Ricci scalar, also known as the curvature scalar, which is the trace of

the Ricci tensor:

R ≡ Raa = gabRab = gabgcdRcadb. (18)

Example 0.1.2: Show Rab=Rba.

First, we write the cyclic expression (14) and multiply it by gcd to get

gcdRdacb + gcdRdcba + gcdRdbac = 0,

notice the second term (gcdRdcba) vanishes by the first identity in (13). To then

gcdRdacb + gcdRdbac = 0,

Rcacb − gcdRdbca = 0,

Rcacb −Rcbca = 0,

Rab = Rba.
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0.1 The Einstein Tensor

pb. The traceless part of the tensor Rabcd is defined by the equation

Rabcd =
1

2
(gacRbd − gadRbc − gbcRad + gbdRac) (19)

−1

6
(gacgbd − gadgbc)R

+Cabcd.

The expressions in the first two lines have the symmetries of the curvature tensor, and Cabcd

is called the Weyl tensor. The coefficients in the first two lines are chosen so the contraction of

the Weyl tensor vanishes,

Cabac = 0.

The Weyl tensor will be helpful in simplifying the optical equation for the distortion in an

inhomogeneous universe.

Another scalar that can be constructed from the Riemann tensor is the Kretschmann scalar :

K = RabcdR
abcd. (20)

For a Schwarzschild black hole of mass M , the Kretschmann scalar is

K =
48G2M2

c4r6
,

which is not infinite at the event horizon r = 2M , hence we can tell immediately that the event

horizon is a coordinate singularity not a real one. Likewise we can tell immediately that there

is a real singularity at r = 0.

HW: Compute the Kretschmann scalar for a FRW spacetime.

0.1.4 Einstein tensor

Taking the Bianchi identities (15), and raising a and contracting with c (i.e. ×gac) gives

∇eRbd +∇cRcbde +∇dRcbec = 0, (21)

which, on using the antisymmetry property in the third term, gives the Ricci tensor

∇eRbd +∇cRcbde −∇dRbe = 0. (22)

If we now raise b and contract with e (×gbe), we find

∇eRed +∇cRcede −∇dR = 0, (23)
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Using the antisymmetry properties of Ricci tensor we may write the second term as

∇cRcede = ∇cReced = ∇cRcd = ∇eRed, (24)

so the first and secod terms in (23) are identical and we obtain

2∇eRed −∇dR = ∇e(2Red − δedR) = 0. (25)

Finally, raising the index d (×gdb), we obtain the important result

∇a(Rab − 1

2
gabR) = 0. (26)

The term in parentheses is called the Einstein tensor

Gab ≡ Rab − 1

2
gabR. (27)

It is clearly symmetric Gab = Gba and thus possesses only one independent divergence ∇aGab

which vanishes.

HW: Show that ∇aGab = 0.

Hint: by contracting the second Bianchi identities, show that Rab;a = 1
2R;b.

The trace

gabGab = gabRab −
1

2
gabgabR, (28)

G = R− 1

2
nR,

G =
2− n

2
R.

The special case of n = 4 dimensions gives the trace of the Einstein tensor as the negative

of the Ricci tensor’s trace, i.e. G = −R. Thus another name for the Einstein tensor is the

trace-reversed Ricci tensor.
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0.1 The Einstein Tensor

Example 0.1.3: The 2D sphere.

Let us get back to the metric of the surface of a sphere, with radius a, in spherical polar
coordinates.

ds2=a2dθ2 + a2 sin2 θdφ2.

Then, we have the metric and its inverse

gab =

(
a2 0
0 a2 sin2 θ

)
gab =

(
1/a2 0

0 1/a2 sin2 θ

)
Therefore, gθθ = a2, gφφ = a2 sin2 θ, gθθ = 1/a2, gφφ = 1/a2 sin2 θ. In two dimensions
there are only six (23 minus the symmetric part) independent connection coefficients,

Γθθθ, Γθθφ, Γθφφ, Γφθθ, Γφθφ, Γφφφ.

and the only derivative different from zero is gφφ,θ = 2a2 sin θ cos θ. Therefore the
Christoffel symbols are given by

Γθθθ = 0, Γθθφ = 0, Γθφφ = − sin θ cos θ,

Γφφφ = 0 Γφθθ = 0, Γφθφ = cot θ.

In two dimensions the Riemann tensor has only one independent non zero component,
due to all the symmetries it satisfies: Rθφθφ = Rφθφθ = −Rθφφθ = −Rφθθφ. And accord-
ing to previous calculations:

Rθφθφ = ∂θΓ
θ
φφ − ∂φΓθφθ + ΓiφφΓθiθ − ΓiφθΓ

θ
iφ.

Since there are no φ derivatives, the second term vanishes. Since Γθiθ = 0, the first
double Γ term vanishes too. Therefore, we get

Rθφθφ = ∂θΓ
θ
φφ − ΓφφθΓ

θ
φφ − ΓθφθΓ

θ
θφ

= ∂θ(− sin θ cos θ)− (cot θ)(− sin θ cos θ)

= sin2 θ − cos2 θ + cos2 θ = sin2 θ.

Therefore Rθφθφ = gθiR
i
φθφ = sin2 θ and

Rφθφθ = gφφRφθφθ =
1

sin2 θ
sin2 θ = 1.
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Example 0.1.4: The 2D sphere.

The Ricci tensor is then:

Rθθ = Riθiθ = Rθθθθ +Rφθφθ = 1.

Rφφ = Riφiφ = Rθφθφ +Rφφφφ = sin2 θ.

Rθφ = Rφθ = Riθiφ = Rθθθφ +Rφθφφ = 0.

The Ricci scalar is:

R = gabRab = gθθRθθ + gφφRφφ =
1

a2
+

(
1

a2 sin2 θ

)
(sin2 θ) =

2

a2
.

The resulting Einstein tensor:

Gab = Rab −
1

2
Rgab = 0,

for all a, b ∈ [θ, φ]. Thus the Gaussian curvature K (defined later) of a spherical surface
is given by

K =
R1212

|g|
=
a2 sin2 θ

a4 sin2 θ
=

1

a2
.

-8-



0.1 The Einstein Tensor

Alternatives to GR

“In general relativity (GR) it is assumed, without empirical support, that torsion vanishes

identically. Of course, one may claim that the experimental success of GR justifies the vanishing-

torsion hypothesis. However, as it is argued below, all GR tests are compatible with a non-

vanishing torsion, and, as a basic assumption of the theory, it is paramount to experimentally

test it.”[? ] Furthermore, another important hypothesis is the fact that c,G, and α are constant,

nevertheless, some important cosmological implications emerge when these are not. In this paper

some models where all this standard assumptions may change are discussed.

Einstein-Cartan theory

The theory was first proposed by Élie Cartan in 1922 [? ] and expounded in the following few

years. This model states that GR must be extended in order to include an affine torsion, which

in contrast with GR, allows the possibility of having an asymmetric Ricci tensor. Nowadays,

this theory that extend the Riemannian geometry in that direction is better known as Riemann-

Einstein-Cartan geometry and is determined by the following features:

• A specific choice of the metric tensor.

• A specific affine torsion tensor.

• Parallel transport must preserve lengths and angles as in the usual Riemannian geometry.

The corresponding equations of motion derived from the action variation are given by:

Rak −
1

2
gakR =

8πG

c4
Pak,

Skab =
8πG

c4
σkab,

where σkab is the spin tensor of the source. Skab = T kab + gkaT
m
bm − gkb Tmam is the modified torsion

tensor. And, finally T kab is the affine torsion tensor that characterised these models. In the

first equation one can see that it has the same structure than the usual Einstein’s equations.

Meanwhile, the second equation expresses the angular momentum conservation considering the

spin-orbit interaction. Therefore, GR can be understood as a limit of the more general Riemann-

Einstein-Cartan theory of gravity. Moreover, it is expected that this theory will prove to be a

better classical limit of a future quantum theory of gravitation than the theory without torsion

[? ].
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Variable c and G

In contrast with what know from GR, the idea of a variable (non-constant) speed of

light (VSL) has been considered over the years. Actually, Einstein itself thought seriously

this idea in 1911 [? ], where he assumed that clocks in a gravitational field run slower,

whereby the corresponding frequencies are influenced by the gravitational potential. Later, in

1915 he concluded that light speed is constant when gravity does not have to be considered

but that the speed of light cannot be constant in a gravitational field with variable strength [? ].

Nowadays, this idea is still present but in cosmological models such as the alternative to

inflation proposed by Jean-Pierre Petit, John Moffat, Andreas Albrecht and JoÃ£o Magueijo

[? ? ? ], where also the Newton’s constant G is no longer a constant. In the minimally coupled

theory one then simply replaces c by a field in a preferred frame. Hence, the action is given by

S =

∫
d4x

(√
−g
(
ψ(R+ 2Λ)

16πG
+ Lmat

)
+ Lψ

)
,

where ψ(xµ) = c4. One can solve the cosmological field equations that define it for general

power-law variations of “c” and “G”. This allows us to determine the rate and sense of the

changes required in “c” if the flatness, horizon, and cosmological constant problems are to be

solved. The period when “c” varies is expected to happen only during the very early universe,

therefore its observational remnants should be observable through the CMB fluctuations.

Variable α

It has been suggested by some astronomical observation that perhaps α, the fine structure

constant, should not be strictly a constant, and this idea led to a serious consideration of a

variable α by Jacob Bekenstein in 1981 [? ]. However, one big consequence is that Maxwell’s

equations must be modified, but in order to test the viability of this conception, purely

electromagnetic experiments are not enough. On the other hand, since the cosmological

perspective, the framework predicts an α̇
α which can be compatible with the astronomical

constraints; hence, these are too insensitive to determine any possible variability. In VSL

theories a varying α is interpreted as c ∝ h ∝ α−1/2 and e is constant, Lorentz invariance is

broken, and so by construction there is a preferred frame for the formulation of the physical laws.
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0.1 The Einstein Tensor

Thus, so far, this idea cannot be ruled out with the experimental evidence, and more future

tests are needed in order to determine its viability.

Some model with torsion and c,G and α varying has been discussed. Although most of these

theories are not in contradiction with observational evidence, sometimes the framework looks

more complicated than the ordinary one. Nevertheless, they are a valid and consistent approach

that could be helpful to solve for example some cosmological problems.
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