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0.1 Distances and Horizons

0.1 Distances and Horizons

Now we have all the components of the universe and its dynamics, let’s see how they may affect

the distances in the universe.

The particle horizon is the distance light could have travelled since the origin of the

universe. Regions further apart could never have been causally connected. In a time dt light

travels a comoving distance dχ = cdt/R, thus the total comoving distance travelled since the

big-bang corresponds to,

χ
p ≡ c

∫ t

0

dt

R(t)
. (1)

considering

dz = d(1 + z) = d

(
R0

R

)
= −R0

R2
dR = −R0

R2
Ṙdt = −(1 + z)H(z)dt, (2)

therefore,

χ
p =

c

R0

∫ R

0

dR

R2H(R)
=

c

R0

∫ ∞
z

dz

H(z)
. (3)

We must know how H(z) varies with z, which requieres knowledge of the evolution of the scale

factor. No information could have propagated further than χ
p on the comoving grid since the

beginning of time [2].

Moreover, by changing the order of integration of (3), we can also define the comoving distance

dc, or event horizon, as the distance light could have travelled between a source at scale factor

R and an observer today [2], as

χ
e = c

∫ t0

t

dt

R(t)
=

c

R0

∫ z

0

dz

H(z)
. (4)

Considering the FRW metric in terms of the conformal time (??), the distance multiplying the

solid angle provides the metric distance

dm = Sk(χ). (5)

In a flat universe (k = 0) the metric distance is equal to the comoving distance χ. We emphasize

that the comoving distance dc and the metric distance dm are not observables.

A related concept is the proper distance dp corresponding to the particle horizon:

dp(t) ≡ cR(t)

∫ t

0

dt

R(t)
= R(t)χp(t). (6)
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Regions separated by distances greater that the proper distance dp are not causally connected.

Furthermore, the Hubble radius or Hubble distance is defined by

dH(t) = cH−1(t). (7)

The Hubble distance dH(t), often described simply as the ‘horizon’ and corresponds to the

typical length-scale over which physical processes in the universe operate coherently. It is also

the length-scale at which general-relativistic effects become important; on scales much less

than dH(t) (within the horizon), Newtonian theory is often sufficient to describe the effects of

gravitation [4].

We also introduce the comoving Hubble distance as:

χ
H =

dH(t)

R(t)
=

c

H(t)R(t)
=

c

Ṙ(t)
, (8)

which gives the χ-coordinate corresponding to the Hubble distance.

Figure 1: Supernovae

A classical way of measuring distances in astronomy is to measure the flux from an object of

known luminosity, for example from Supernovae Type Ia (SNe Ia). Let us consider the observed

flux Fo at a distance dL from an emitting source of known luminosity Le (J s−1):

Fo =
Le

4πd2
. (9)

The quantity

dL =

(
Le

4πFo

)1/2

(10)
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0.1 Distances and Horizons

is called the luminosity distance of the source.

In a FRW Universe, the proper area of this sphere is

A = 4πR2(t0)S2
k(χ). (11)

The photon frequency received by an observer is redshifted by a factor

ν0

νe
=
R(te)

R(t0)
=

1

1 + z
,

and also the rate of the photons that fall into the detector is also reduced by the same factor.

Therefore, the observed flux will be

F (t0) =
L(te)

4π[R0Sk(χ)]2
1

(1 + z)2
.

Then, the luminosity distance dL in terms of measurable quantities is

dL(z) ≡ (1 + z)R0Sk(χ). (12)

The distance-redshift relation is, in fact, one of the most important cosmological tests. This is

because given the observables H0, Ωi,0 and the expression (12) we can compute the luminosity

distance to an object at any redshift z. Conversely, for a population of standard candles with

absolute magnitude M , and apparent magnitude m, we can measure the object’s distance

modulus µ at a given redshift z, defined by

µ ≡ m−M = 5 log10

(
dL(z)

1Mpc

)
+ 25. (13)

Then, the relationship of µ with redshift allows us to estimate the luminosity distance and

thereby constrain the cosmological parameters, as we will see in Chapter ??.

Another classical distance measurement in astronomy is to measure the angle δθ subtended

by an object of known physical size l. The angular distance is then defined as

dA = l/δθ.

From the angular part of the FRW metric, we have

l = R(te)S(χ)δθ

so that
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Figure 2: (jav: caption)

dA = R(te)S(χ) = R(t0)
R(te)

R(t0)
S(χ) =

R(t0)S(χ)

1 + z
.

Thus the angular distance is given by

dA ≡
R0Sk(χ)

(1 + z)
, (14)

or the comoving angular distance

dM = R0Sk(χ). (15)

Figure 3: (jav: caption)

Curvature affects DM (z) both through its influence on H(z) and through the geometrical

factor. The luminosity distance (relevant to supernovae) is related to the angular distance by
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0.1 Distances and Horizons

dL = dM (1 + z).

Hubble tension: https://arxiv.org/pdf/2012.13932.pdf

Graduated paper, Fig 4: https://arxiv.org/pdf/2108.09239.pdf

If redshift-space distortions are weak, which is a good approximation for luminous galaxy

surveys after reconstruction, but not for the LyaF, then the constrained quantity is the volume

averaged distance

dV (z) = [zdH(z)d2
M (z)]1/3. (16)
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Figure 4: (jav: see: https://arxiv.org/pdf/1411.1074.pdf)

Figure 5 sketches the distances dc, dL and dA in terms of redshift. It is worthwhile noticing

that for small scales, all these distance measures coincide

d ' z

H0
, (17)

where the linear evolution of distance with redshift is referred as the Hubble law [5].

0.1.1 Look-back time

A general expression for the look-back time

t0 − t =

∫ t0

t

dt =

∫ z

0

dz

(1 + z)H(z)
= (18)

t emitted, and t0 received.
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Figure 5: Comoving distance dc, luminosity distance dL, and angular distance dA for a universe

filled with the same constituents as in Figure ??. (jav: Add a dash line with different components.

Use python)

Ωm,0 ΩΛ,0 H0=50 70 90

1.0 0.0 13.1 9.3 7.2

0.3 0.0 15.8 11.3 8.8

0.3 0.7 18.9 13.5 10.5

Table 1: Age of the Universe (Gyr). Fijar parametros, usar w0=-1.5, -1, -0.5, wa=-0.5, 0, 0.5

t0 − t =

∫ z

0

dz̄

(1 + z̄)H(z̄)
(19)

=
1

H0

∫ 1

(1+z)−1

xdx√
Ωm,0x+ Ωr,0 + ΩΛ,0x4 + Ωk,0x2

(20)

The oldest star in globular clusters tstar ≈ 11.5± 1.3 Gys, hence t0 > tstar.

0.1.1.1 Alternatives to the ΛCDM model

The ΛCDM model has had great success in modeling a wide range of astronomical observations.

However, it is in apparent conflict with some observations on small-scales within galaxies (e.g.

cuspy halo density profiles, overproduction of satellite dwarfs within the Local Group, amongst

many others, see for example [? ? ]). In addition, all attempts to detect WIMPs either directly

in the laboratory, or indirectly by astronomical signals of distant objects have failed so far.

Also, a large range of the particle parameters – predicted to be detectable – have thereby been
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0.1 Distances and Horizons

ruled out. For some of these reasons, it seems necessary to explore alternatives to the standard

ΛCDM model. With this in mind, several alternatives have been suggested. For instance the

Scalar Field Dark Matter (SFDM) model proposes the dark matter is a spin 0 bosson particle

[? ? ? ? ? ]; or the Self Interacting Dark Matter, as its name states, it relies on the cold dark

matter to be made of self interacting particles [? ]. On the other hand, in order to explain the

accelerated expansion of the universe there exist different modifications to the theory of General

Relativity, i.e. f(R) theories [3? ], braneworld models [? ? ]. There are also several candidates

to be the dark energy of the universe – alternatives to the cosmological constant –, i.e. scalar

fields (quintessence, K-essence, phantom, quintom, non-minimally coupled scalar fields [? ? ?

] ; or many more alternatives i.e. anisotropic universes [? ? ? ]. Finally, if the dark energy is

assumed to be a perfect fluid, then one of the most popular time-evolving parameterization

for its equation of state consists of expanding ω in a Taylor series, for example the Chevallier-

Polarski-Linder (CPL) ω = ω0 + ωa (1− a), with two free parameters ω0, ωa [1, 6]. It may also

be expanded into Fourier series [? ] or many more Bayesian approaches have been suggested to

account for a dynamical dark energy [? ].
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