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1.- Compute the following integral

t =
1

H0

∫ a

0

[
x√

Ωr,0 + (1− Ωr,0)x2

]
dx, (1)

for Ωr,0 < 1 (k = −1) & Ωr,0 > 1 (k = 1), to get

a(t) = (2H0Ω
1/2
r,0 t)

1/2

(
1 +

1− Ωr,0

2Ω
1/2
r,0

H0t

)1/2

. (2)

2.- Compute

t =
1

H0

∫ a

0

[
x√

Ωm,0x+ Ωr,0

]
dx, (3)

to get

H0t =
2

3Ω2
m,0

[
(Ωm,0a+ Ωr,0)1/2(Ωm,0a− 2Ωr,0) + 2Ω

3/2
r,0

]
. (4)

3.- Compute

t =
1

H0

∫ a

0

√
x

(1− ΩΛ,0) + ΩΛ,0x3
dx, (5)

to get

H0t =
2

3
√
|ΩΛ,0|

f(x) =





sinh−1[
√
a3|ΩΛ,0|(1− ΩΛ,0)], ΩΛ,0 > 0.

.

sin−1[
√
a3|ΩΛ,0|(1− ΩΛ,0)], ΩΛ,0 < 0.

(6)

4.- We start by assuming the components of the Universe behave as perfect fluids and hence

described by a barotropic equation of state pi = (γi − 1)ρic
2, where γi describes each fluid:

radiation (γr = 4/3), baryonic and dark matter (γm = 1), and dark energy in the form of cos-

mological constant (γΛ = 0). Once we introduce the dimensionless density parameters, defined

as

Ωi =
κ0

3H2
ρi, (7)

a) Show that the continuity eqns. can be written as a dynamical system with the following

form:

Ω′i = 3(Π− γi)Ωi, (8)

with Π =
∑
i γiΩi, and prime notation means derivative with respect to the e-fold parameter

N = ln(a).

b) Also, show that the Friedmann equation becomes a constraint for the density parameters at

all time
∑
i Ωi = 1.
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" i
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Density Parameter

radiation matter #

curvature

Figure 1: The evolution of the density parameters Ωi(a).

c) Considering the initial conditions (a = 1) Ωr,0 = 10−4, Ωm,0 = 0.3, Ωk,0 = −0.01, H0 =

68kms−1Mpc, with cosmological constant, solve the dynamical system (??), along with the

Friedmann constraint to get the following plot.

d) The deceleration parameter is computed in terms of the contents of the universe, as

q = 1
2

∑
i Ωi(1 + 3wi). Use the solutions from above to plot q(z), where 1 + z = 1/a.

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0  2  4  6  8  10

q
(
z
)

redshift, z

Deceleration Parameter

Figure 2: Deceleration parameter q(z) as a function of redshift z for a multi-fluid universe. Notice

that the universe is currently accelerating (q(z = 0) < 0).

5.- Consider the Universe from the previous exercise.
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The comoving distance dc is defined as

χ
e = c

∫ t0

t

dt

R(t)
=

c

R0

∫ z

0

dz

H(z)
. (9)

The luminosity distance dL is given by

dL ≡ (1 + z)R0Sk(χ). (10)

The angular distance is given by

dA ≡
R0Sk(χ)

(1 + z)
. (11)

where

R0 = h−1
0

√
−k/Ωk,0 =

H−1
0√
|Ωk,0|

. (12)

.

Plot these three distances

 0.1

 1

 10

 0.1  1  10

d(
z)

 H
0

redshift, z

Distance measures

dc
dL
dA

Figure 3: Comoving distance dc, luminosity distance dL, and angular distance dA for a universe

filled with the same constituents as in Figure 2.17.
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1) The most general spherically symmetric metric can be written as

ds2 = −e2F (r,t)dt2 + e2H(r,t)dr2 + r2(dθ2 + sin2 θdphi2). (13)

This metric is very important as it underlies the theory of both homogeneous cosmological mod-

els and of spherically symmetric fluid models for massive stars and black holes. The functions

F (r, t) and H(r, t) are determined by the material content of the space-time as described by

the energy–momentum tensor and by the boundary conditions defining the problem.

Compute the components of the Einstein tensor.

2) The Bianchi models are a large family of homogeneous but anisotropic cosmological models.

We consider the homogenous and anisotropic space-time described by Bianchi type-III metric

in the form

ds2 = dt2 −A(t)2dx2 −B(t)2e−2αxdy2 − C(t)2dz2, (14)

where A(t), B(t)andC(t) are the scale factors (metric tensors) and functions of the cosmic time

t, and α = 0 is a constant. (Bianchi type-I metric can be recovered by choosing α = 0). Here,

we assume an anisotropic fluid whose energy-momentum tensor is in diagonal form:

T µ
ν = diag[1,−wx,−wy,−wz] = diag[1,−w,−(w + γ),−(w + δ)]ρ, (15)

where ρ is the energy density of the fluid, wx, wy and wz are the directional EoS parameters

on the x, y and z axes respectively; w is the deviation-free EoS parameter of the fluid. δ and γ

are not necessarily constants and can be functions of the cosmic time t.

a) Compute the components of the Einstein’s field equations

-4-



where the over dot denotes derivation with respect to the cosmic time t.

b) Show the solution of Eqn. (4) gives B = c1A, where c1 is the positive constant of integration.

c) Substitute this solution into (7), and subtract the result from (6), to show that the the

skewness parameter on the y axis is null, i.e. δ = 0, which means that the directional EoS

parameters, hence the pressures, on the x and y axes are equal.

The directional Hubble parameters in the directions of x, y and z for the Bianchi type-III metric

may be defined as follows,

Hx ≡
Ȧ

A
, Hy ≡

Ḃ

b
, Hz ≡

Ċ

C
. (16)

and the mean Hubble parameter is given as

H =
1

3

V̇

V
=

1

3

(
Ȧ

A
+
Ḃ

B
+
Ċ

C

)
(17)

By solving the set of field equations, the difference between the expansion rates on x and z

axes could be found Hx −Hz, [see Gen Relativ Gravit (2010) 42:763–775].

3) A step further to the standard model is to consider the dark energy being dynamic, where

the evolution of its EoS is usually parameterised. A commonly used form of w(z) is to take

into account the next contribution of a Taylor expansion in terms of the scale factor w(a) =

w0 + (1 − a)wa or in terms of redshift w(z) = w0 + z
1+zwa; we refer to this model as CPL.

The parameters w0 and wa are real numbers such that at the present epoch w|z=0 = w0 and

dw/dz|z=0 = −wa; we recover ΛCDM when w0 = −1 and wa = 0.
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a) Show the Friedmann equation for the CPL parameterisation turns out to be:

H(z)2

H2
0

= Ωm,0(1 + z)3 + Ωk,0(1 + z)2 + (1− Ωm,0 − Ωk,0)(1 + z)3(1+w0+wa)e−
3waz
1+z .

By using the initial conditions from the previous homework, plot the Comoving dis-

tance dc, luminosity distance dL, and angular distance dA for [w0 = 0.9, wa = 0.5] and

[w0 = −1.1, wa = −0.5].

b) Repeat the same process in a), but now use the equation of state w(z) = w0 + waln(1 + z)

4) As part of some models that allow deviations from ΛCDM we also use the polynomial-CDM

model, that can be thought as a parameterisation of the Hubble function. This model has the

following Friedmann equation:

H(z)2

H2
0

= Ωm,0(1 + z)3 + (Ω1,0 + Ωk,0)(1 + z)2 + Ω2,0(1 + z)1 + (1−Ωm,0 −Ω1,0 −Ω2,0 −Ωk,0),

where Ω1,0 and Ω2,0 are two additional parameters, which within the ΛCDM both of them

remain absent (Ω1,0 = 0 and Ω2,0 = 0). Nevertheless, Ω2,0 could be interpreted as a ‘missing

matter’ component introduced to allow a symmetry that relates the big bang to the future

conformal singularity [see JCAP09(2012)020].

By using the initial conditions from the previous homework, plot the Comoving distance

dc, luminosity distance dL, and angular distance dA for [Ω1,0 = 0.2,Ω2,0 = −0.2] and

[Ω1,0 = −0.2,Ω2,0 = 0.2].

5) The action of a massive scalar field, with potential V (φ), is given by

S =

∫
d4x
√−g

[
1

2
∂µφ∂

µφ− V (φ)

]
. (18)

a) Show that the corresponding field equation for φ, obtained from the Euler-Lagrange equa-

tions, reads as

�2φ+
dV

dφ
= 0. (19)

where the d′Alembertian is : �2 = ∂a∂
a.
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0.1 Examen 1

0.1 Examen 1

1.- (0.5) Enunciar y explicar el Principio Cosmológico.

(0.5) Explicar homogeneidad e Isotroṕıa, diferencia y dar ejemplos.

(1.0) Esbozar la materia oscura, i.e. historia, observaciones, candidatos, problemas.

(1.0) Esbozar la enerǵıa oscura, i.e. historia, observaciones, candidatos, problemas.

2.- Para el elemento de linea dσ2 = B(r)dr2 + r2dΩ2.

(1.0) Calcular Γrrr,Γ
r
θθ,Γ

r
φφ.

Los componentes no nulos del Tensor de Ricci son:

Rrr =
1

rB

dB

dr
, Rθθ = 1− 1

B
+

r

2B2

dB

dr
, Rφφ = Rθθ sin2 θ.

(0.5) Calcular el escalar de Ricci.

(1.0) Considerando que es un espacio maximalmente simetrico, encontrar la funcion B(r).

Another scalar that can be constructed from the Riemann tensor is the Kretschmann scalar :

K = RabcdR
abcd. (20)

(0.5) Compute the Kretschmann scalar for a FRW spacetime.

3.- La metric FRW se encuentra que es

ds2 = c2dt2 −R2(t)

[
dr̃2

1− k̃r̃2
+ r̃2dΩ2

]
. (21)

(0.5) show that this metric has a rescaling symmetry, that leaves the metric invariant

R→ λR, r̃ → r/λ, k̃ → λ2k. (22)

(0.5) By redefining the radial coordinate dχ ≡ dr/
√

1− kr2 in the metric (??), show that:

ds2 = c2dt2 −R2(t)
[
dχ2 + S2

k(χ)dΩ2
]
, (23)

where the function Sk(χ) is specified by the curvature term:

Sk(χ) =





sinχ, for k = 1
χ, for k = 0
sinhχ, for k = −1

(24)

(1.0) Esbozar las tres posibles curvaturas, i.e. geometria, circunferencia, angulos del triangulo,

tipo de universo.
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component Ωi wi ρ(R) R(t) H(t) a(η)

radiation Ωr ? ∝ R−4 ∝ t1/2 1/2t η

matter Ωm 0 ? ∝ t2/3 ? η2

curvature Ωk ? ∝ R−2 ? 1/t ?

cosmological constant ΩΛ -1 ∝ R0 ? ? ?

Table 1: conformal time dη = dt/R(t)

4.- Expand the scale factor as a power series about the present epoch t0

R(t) = R[t0 − (t0 − t)], (25)

and assuming |t0 − t| � t0 (very close to today), then

(0.5) show that

z = (t0 − t)H0 + (t0 − t)2

(
1 +

1

2
q0

)
H2

0 + · · · . (26)

Since z is an absolute quantity (observable), then the look-back time t0 − t can be written in

terms of z. For z � 1, from the above equation,

(1.0) show that

t0 − t = H−1
0 z −H−1

0

(
1 +

1

2
q0

)
z2 + · · · . (27)

(0.5) Finally, show that

H(z) = H0[1 + (1 + q0)z − · · · ] (28)

5.- From the conservation of the energy-momentum tensor,∇µTµν = ∂µT
µ
ν +ΓµµλT

λ
ν −ΓλµνT

µ
λ = 0,

(1.0) for a perfect fluid, obtain the continuity equation.

(1.0) Complete table 1.

(0.5) Calcular la densidad de enerǵıa para la ecuacion de estado w(a) = w0 + wa(1− a).

(0.5) Calcular la densidad de enerǵıa para la ecuacion de estado w(z) = w0 + waz.
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0.1 Examen 1

0.1.1 Definiciones

Γabc =
1

2
gad(∂cgdb + ∂bgdc − ∂dgbc) (29)

Rabcd ≡ Γabd,c − Γabc,d + ΓebdΓ
a
ec − ΓebcΓ

a
ed. (30)

The expansion rate of the universe is characterised by the Hubble parameter defined as

H(t) ≡ Ṙ(t)

R(t)
, (31)

The deceleration parameter q(t), is defined by

q(t) ≡ − R̈(t)R(t)

Ṙ2(t)
. (32)

The Christoffel symbols for FRW are

Γ0
ij = RṘγij , Γi0j =

Ṙ

R
δij , Γijk =

1

2
γil(∂jγkl + ∂kγjl − ∂lγjk).

otherwise zero

A maximally symmetric space is defined as both homogeneous and isotropic. Such

space possesses the largest possible number of Killing vectors which in an n-dimensional

manifold equals n(n+ 1)/2. The following holds for such spaces:

1.- The scalar curvature R is a constant, i.e.

R = n(n− 1)K.

2.- The Ricci tensor is proportional to the metric tensor, i.e.

Rµν =
1

n
Rgµν .

3.- The Riemman curvature tensor is given by

Rµνλρ =
R

n(n− 1)
(gµλgνρ − gνλgµρ).

-9-
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0.2 Examen 2

1.- (0.5) Explicar el Universo estático de Einstein.

(0.5) Dado un modelo Einstein-de Sitter, probar los siguientes resultados

a(t) =

(
t

t0

)2/3

, H(t) =
2

3t
= H0(1 + z)3/2, q0 =

1

2
, ρm(t) =

1

6πGt2
. (33)

(0.5) Dado un modelo de Friedamann, con solo radiación y espacialmente plano, mostrar:

a(t) =

(
t

t0

)1/2

, H(t) =
1

2t
= H0(1 + z)2, q0 = 1, ρr(t) =

3

32πGt2
. (34)

(0.5) Para un modelo de Friedmann (con k = 0) que contiene materia y radiación, mostrar:

H0t =
2

3Ω2
m,0

[
(Ωm,0a+ Ωr,0)1/2(Ωm,0a− 2Ωr,0) + 2Ω

3/2
r,0

]
. (35)

2.- (0.5) Mostrar que el parámetro de Hubble H se puede escribir como (Cosmic Chronometers)

H = − 1

1 + z

dz

dt
. (36)

Esta relación, junto con las Large Red Galaxies, es usada para estimar el factor de Hubble.

(0.5) Considerando un Universo que contiene polvo, constante cosmológica y curvatura, mostrar

que la ecuación de Friedmann se puede reescribir como

(
H

H0

)2

= (1 + z)2(1 + zΩm,0)− z(2 + z)ΩΛ,0. (37)

Usando ambas relaciones e integrando numéricamente, es posible calcular t(z). A esta cantidad

se le conoce como lookback-time.

3.- (1.0) Para un modelo de Friedmann con solo polvo, mostrar que la relación distancia-

luminosidad varia con z como (formula de Mattig)

dL(z) =
2c

H0Ω2
m,0

[
Ωm,0z + (Ωm,0 − 2)

(√
Ωm,0z + 1− 1

)]
. (38)

(0.5) Calcular la distancia angular y el horizonte comovil para un modelo Einstein-de Sitter.

(0.5) Mostrar que esta tiene un máximo en z = 5/4.

(1.0) Evaluar ambas expresiones en el limite z → ∞, para calcular el diámetro angular sub-

tendido por el horizonte en la superficie de ultima dispersion, i.e. z = 1100 y mostrar que

θH =
dH(zrec)

dA(zrec)
' z−1/2

rec ' 1.73o. (39)
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0.2 Examen 2

Esto muestra que el CMB esta cubierto por pequeños parches, con este tamaño angular, que

evolucionan independientemente del Big Bang.

4.- (1.0) Explicar el problema de la planitud y del Horizonte.

(0.5) Definir inflación cosmológica, y como esta propone resolver los problemas.

(0.5) Mostrar tres equivalencias

INFLATION ⇐⇒ d

dt

(
1

RH

)
< 0, (40)

⇐⇒ R̈ > 0, (41)

⇐⇒ ρ+ 3p < 0, (42)

⇐⇒ − Ḣ

H2
< 1. (43)

5.- El tensor de enerǵıa momento correspondiente a un campo escalar es:

Tµν = ∂µφ∂νφ− gµν
[

1

2
∂σφ∂

σφ− V (φ)

]
. (44)

comparándolo con el de un fluido perfecto, en un sistema coordenado en el cual el fluido esta

en reposo,

(0.5) mostrar que la densidad de enerǵıa y presión efectivas son:

T00 = ρφ =
1

2
φ̇2 + V (φ) +

1

2
(∇φ)2, (45)

Tii = pφ =
1

2
φ̇2 − V (φ) +

1

6
(∇φ)2, (46)

(0.5) si el campo φ es espacialmente constante, mostrar que inflación ocurre cuando φ̇2 < V (φ).

(0.5) Mostrar que la ecuación de movimiento de un campo escalar con potencial V (φ) es

φ̈+ 3Hφ̇+ V,φ = 0. (47)

(0.5) considerando que H es aproximadamente constante, encontrar la solución general de un

campo escalar libre φ, para el cual V (φ) = 1
2m

2φ2.

6.- Considerando el mismo potencial V (φ) = 1
2m

2φ2.

(1.0) Explicar la aproximación de slow-roll y con esta encontrar las soluciones para el campo φ

y el factor de escala.

(0.5) Calcular los parámetros de slow-roll εv, ηv y encontrar la condición del campo para que

ocurra inflación.

(0.5) Calcular el numero de e-folds, y encontrar el valor del campo para explicar la isotropia

del CMB, i.e. N ∼ 60.
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0.2.1 Definiciones

The FRW Universes dominated by matter and vacuum energy are named as Lemaitre models.

Cosmological models with zero cosmological constant, and strictly non-zero matter or radiation

density, are known as the Friedmann models. Comoving horizon

dH =
c

R0

∫ ∞

z

dz

H(z)
. (48)

The luminosity distance dL in terms of measurable quantities is

dL(z) ≡ (1 + z)R0Sk(χ). (49)

The angular distance is given by

dA ≡
R0Sk(χ)

(1 + z)
, (50)

χ =
c

R0

∫ z

0

dz

H(z)
. (51)

εv(φ) ≡ 1

16πG

(
V,φ
V

)2

, |ηv(φ)| ≡ 1

8πG

|V,φφ|
V

. (52)
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0.3 Examen 3

0.3 Examen 3

1.- (1.0) El modelo estandar de part́ıculas elementales se conforma por Quarks, Leptones,

Bosones de norma y Escalar. Enunciar las part́ıculas que corresponden a cada categoŕıa.

(0.5) Cual es la principal diferencia entre part́ıculas fermionicas y bosonicas?

(0.5) De que estan hechos los bariones. Enunciar dos de ellos.

2.- (0.5) Definir equilibrio térmico.

(1.0) En el limite relativista, calcular la densidad de energia de part́ıculas

ρ =
π2

30
gT 4

{
1 bosons
7
8 fermions.

(53)

Por tanto, con la temperatura del CMB, se puede calcular el parametro de densidad de fotones

ργ,0 =
π2

15
T 4

0 ≈ 4.6× 10−34g cm−4 → Ωγ,0h
2 ≈ 2.5× 10−5.

(0.5) Mostrar que para este fluido, podemos recuperar la relación presión-densidad para un gas

relativista (radiación): P = 1
3ρ.

3.- (1.0) En el limite no-relativista mostrar que la densidad de numero de particulas es igual

para bosones que para fermiones y esta dada por 1

n = g

(
mT

2π

)3/2

e−m/T .

(1.0) En el orden mas bajo del limite no-relativista, la densidad de energia es simplemente igual

a la densidad de masa ρ ≈ mn. En este limite, mostrar que el gas de part́ıculas se comporta

como polvo sin presión (materia), – la ley de gas ideal – :

P = nT � ρ = mn.

4.- Una de las consequencias de la conservacion de la entropia implica que g∗T
3a3 =const.

(0.5) Utilizando la ecn de Friedmann para particulas relativistas, mostrar que la temperatura

se comporta como: T ∝ g−1/4
∗s t−1/2.

Si agregamos constantes, podemos obtener que la temperatura del Universo 1 segundo despues

del Big Bang era de alrededor de 1MeV.

T

1MeV
' 1.5g

−1/4
∗s

(
1sec

t

)1/2

. (54)

1Particulas masivas son exponencialmente raras a bajas temperaturas.
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(1.0) Cuando la densidad de energia y entropia de los electrones y positrones es transferida a los

fotones (e+ + e− 
 γ+ γ), se dice que los fotones ”se calientan”. Mostrar que la temperatura

de los neutrinos despues de la aniquilacion e+ + e− es ligeramente menor y esta dada por:

Tν =

(
4

11

)1/3

Tγ . (55)

(0.5) Considerando que los neutrinos no tienen masa, y que el numero efectivo de familias de

neutrinos es Neff , mostrar que

ρν =
7

8
Neff

(
4

11

)4/3

ργ . (56)

5.- (1.0) Bosquejar el proceso de Recombinacion, Desacomplamiento de fotones, esto es, explica

la sig figura:

6.- (1.0) Calcular la abundancia relativa del neutron y proton

(
nn
np

)

eq

(57)

y mostrar para que temperaturas hay el mismo numero de neutrones como de protones.

(0.5) Equilibrio termico ocurre hasta Tdec ∼ 0.8MeV (cuando los neutrinos se desacoplan).

Muestra que la fracción de neutrones Xn ≡ nn
nn+np

es aproximadamente 1/6.

(0.5) A temperaturas T > 0.2MeV (t ∼ 130 sec) la vida media del neutro se vuelve importante,

disminuyendo por un factor exponencial

Xn(T ) =
1

6
e−t/τn .

Debido a que el nucleo de helio contiene 2 neutrones, todos los neutrones terminan formando

helio (el nucleo ligero mas estable), y por tanto la densidad del numero de helio-4 es NHe−4 =
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0.3 Examen 3

Nn/2. Estimar la fraccion total de masa en helio-4

Y4 ≡
2Nn

Nn +Np
.

Este tratamiento tan simple nos indica la fraccion de materia en el universo, la cual es princi-

palmente He-4.

7.- (1.0) Explicar como la fracción de masa de Helio depende de diversos parametros iniciales

(justifica tus enunciados).

(1.0) Explicar las sigs figuras.

Figure 4: Helium production in the Universe

0.3.1 Definiciones

The number density (n), energy density (ρ) and pressure (P ) of a gas of particles are given by

n =
g

(2π)3

∫
d3pf(p), ρ =

g

(2π)3

∫
d3pf(p)E(p), P =

g

(2π)3

∫
d3pf(p)

p2

3E
. (58)

where g are the internal degrees of freedom, the particles energy E(p) =
√
m2 + p2 and its

description is based on the distribution function f(~x, ~p, t).

Some useful integrals:
∫ ∞

0

dξ
ξn

eξ − 1
= ζ(n+ 1)Γ(n+ 1),

∫ ∞

0

dξξne−ξ
2

=
1

2
Γ

(
1

2
(n+ 1)

)
, (59)

with ζ(z) is the Riemann zeta-function, and Γ(1/2) =
√
π, Γ(n+ 1) = nΓ(n).

La energia de enlace del Hidrogeno esta dada por BH = 1.3MeV.

Vida media del neutron τn = 886 sec.
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0.4 Examen 4

1.- (1.0) Explicar teoŕıa de perturbaciones Lagrangianas.

2.- (0.5) Encontrar las siguientes cantidades en coordenadas comoviles, donde la distancia f́ısica

esta dada por ~r = a(t)~x: (
∂

∂t

)

~r

, ~u ≡ d~r

dt
. (60)

(1.5) Realizando el procedimiento de teoŕıa de perturbaciones lineales, encontrar las ecuaciones

que satisfacen δ,~v,Φ, o equivalentemente, encuentra:

∂tδ, ∂t~v, ∇2Φ. (61)

3.- (0.5) A partir de las ecuaciones anteriores, obtener la ecuación de Jeans

∂2
t δ + 2H∂tδ − 4πGρ̄δ − 1

a2ρ̄
∇2δP = 0. (62)

(1.0) Para un universo con presión cero, encontrar la manera alternativa de escribir esta

ecuación, dada por:

d2δ

da2
+

1

a

[
3 +

d lnH

d ln a

]
dδ

da
− 3

2a2
Ωmδ = 0.

4.- (1.0) Muestra que los modos vectoriales en (??) pueden ser despreciados. Bajo que condi-

ciones?

5.- El campo δ(x) puede ser escrito como la transformada de Fourier de δ(k) (o viceversa)

δ(x) =

∫
δ(k)eik·xd3k (63)

(0.5) Muestra que el gradiente de δ(x) es equivalente a multiplicar su transformada de Fourier

por ik.

(1.0) En una dimension, calcula la transformada de Fourier de la función δ(k) = eiαk y de

δ(k) = e−αx
2

, con α =constante.

6.- Para un fluido barotropico P = P (ρ), escribe la ecuacion de Jeans de la forma

∂2
t δ + 2H∂tδ + w2δ = 0. (64)

(1.0) Para un Universo plano tipo Einstein-de Sitter, muestra que la solución a la ecuación esta

dada por

δ(t) = At2/3 +Bt−1.
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0.4 Examen 4

(0.5) Muestra que, para el modo creciente, el potencial gravitacional es constante.

7.- (1.0) Para un Universo con Ωm,ΩΛ y sin radiación Ωr = 0. Muestra que una solución a las

perturbaciones de materia esta dada por el parámetro de Hubble H(t) (solución decreciente).

8.- (1.0) La segunda solución linealmente independiente D(t) se encuentra construyendo el

Wronskiano (ḊH − DḢ). Encuentra que esta solución tiene la siguiente forma [hint: calcula

d
dt

(
D
H

)
]

D(t) ∝ H(t)

∫ t

0

dt′

a2(t′)H2(t′)
.

Este se le conoce como el factor lineal de crecimiento de las perturbaciones. 1

(0.5) Calcula D(z) para el caso Ωm = 1,ΩΛ = 0.

9.- Para un universo dominado por la constante cosmológica:

(0.5) Encuentra las soluciones de las perturbaciones, esto es, muestra que las perturbaciones de

materia no crecen.

(0.5) Muestra que el potential gravitacional decae con el factor de escala.

0.4.1 Definiciones

Continuity : ∂tρ+∇~r · (ρ~u) = 0, (energy density conservation), (65)

Euler : ∂t~u+ ~u · ∇~r~u = −1

ρ
∇~rρ−∇rΦ, (momentum conservation), (66)

Poisson : ∇2
~rΦ = 4πGρ, (67)

1La rapidez de crecimiento se define como g(a) = dlnD
dlna

. Una aproximación util es parametrizandola como

g(z) = [Ωm(z)]γ , con γ = 0.6.
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Numbers

1 Astronomical unit (AU)= 1.496× 1013 cm

1 Parsec = 3.086× 1018cm

1 Solar Mass (M�) = 2× 1033g

The Hubble constant: H0 = 67.5 km s−1Mpc−1

Reduced Planck constant: ~ = h/2π =

19
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Concepts

• A red dwarf is the smallest and coolest kind of star on the main sequence.

• The Cepheid variables are (stars) considered as standard candles, as they have a rela-

tionship between their absolute luminosity and the pulsation period.

• A satellite galaxy is a smaller companion galaxy bound to its host galaxy (known as

the primary galaxy).

• A manifold is a topological space that locally resembles Euclidean space near each point.

Copernican principle, Homogeneity → Isotropy?

Diferencia entre coordinate time and proper time.

Perfect Fluids

Bayesian vs Frequentists

Why MCMC (they scale approx linear with the dimension of the problem, rather than expo-

nentially)

Convergence test (Gelma-Rubin)
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Concepts

Scalar, Vectors, Tensor modes are completely decoupled? conditions

ξ is conserved for more than 1 field?

Temperature at decoupling time, z,t, T

Plots - CMB (scales, θ), first peak, odds and even peaks. color on the elipse.

when ocurred inflation? How long lasted? (a,t)

Explain equations, relevant terms.

horizon scale 1.7 degrees, l ≈ 100, thickness l ∼ 103, decoupling 1 degree, l ∼ 200

Curvature parameter k, dimensions, magnitude.

Einstein equations and symmetries (10 eqs, 6 independent)

Gauges

Adiabatic & Isocurvature

Implications of a non-scale invariant spectrum n 6= 1

why dL > dc > dA

understand step ∆→ ∆′

Implications of non-scale invariant n 6= 1

PCA

LD η = π/2, why?

Explain the shape of the LD model, why is it better than ns

Bayesian vs Frequentist

PPF, perturbations

PDL (w=-1)

When the universe started accelerating (z)

Dependence on priors (why flat)

In the LD model, what if we choose another form of dark energy instead of the cosmological

constant

Gelman Rubin and other convergence tests

Computational time for flat ∼ 10sec, non flat 50 secs 104 − 104 likelihood evaluations for. then

10 times more for model selection.

What are the MCMC methods in general, properties.

Jeffreys guideline is based on what, what are those numbers

Understand perturbation theory, parameters involved, gauge invariant quantities, sources (they

are solutions of what)

line of sight integration.
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Agregar modelos – Horota with (clase de cosmo cinves) inhomogeous (fernando, cosmo - icf)

Astronomical units, parsec

FLRW, GR, CMB, EL

mass of particles in ev, of the sun

value of H0

define conformal time, radial coordinate, rho crititcal, q, j,

epoch: aequiv,

(jav: Explain Einstein’s derivation, the weak field limit, and R in terms of T)

(jav: add torsion discussion and models).

(jav: Palatini models too)

Show that In a flat space-time, Γabc and its derivatives are zero

Explain the Weyl tensor and the Kretschmann scalar.
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1
Notation and conventions

Some of the notation adopted throughout this book is as follows:

• Whenever indicated we use the natural unit system, where measurements are based on

universal physical constants. That is, the speed of light c, the reduced Planck’s constant

~ = h/2π and the Boltzmann’s constant kB, are set equal to one (length and time have

the same units):

c = ~ = kB = 1. (1.1)

• An overdot in any quantity denotes time (t) derivative, prime represents conformal-time

(η) derivatives and a comma-subscript derivatives with respect to space coordinates or

fields (φ):

ḟ ≡ ∂f

∂t
, f ′ ≡ ∂f

∂η
, and f,φ ≡

∂f

∂φ
. (1.2)

• Quantities evaluated at present time (t = t0) are also expressed by a subscript ‘0’, whereas

vectors are represented by any of these forms: x, xi, ~x.

• Greek indices run over time coordinate (labelled by ‘0’) and three spatial-Latin coordi-

nates:

α, β, · · · ∈ {0, 1, 2, 3}, and i, j, · · · ∈ {1, 2, 3}. (1.3)

• We adopt the sign convention commonly used in relativity and cosmology:

[ηµν ] =




+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 ,
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1. NOTATION AND CONVENTIONS

where ηµν are the components of the tensor metric, and in a shorthand notation [ηµν ] =

diag(+1,−1,−1,−1), such that the square line element is ds2 = ηµνdx
µdxν = c2dt2−dx2

for the Minkowski spacetime. This is the same signature used in Particle physics but often

opposite in General Relativity.

• We adopt the Einstein’s summation convention: whenever occur repeated indices (one as

a covariant-subscript and one as a contravariant-superscript) in an expression they are

summed over their range.

Example 1.0.1: Tensor metrico

In three dimensions:

aiai ≡
3∑

i=1

aiai = (a1)2 + (a2)2 + (a3)2,

and

aijaik =

3∑

i=1

aijaik = a1ja1k + a2ja2k + a3ja3k.

Here, the repeated index i is summed over all the components, and it is called a dummy
index, as it can be replaced by any other index. Whereas the indices j and k, appearing
on both sides of this equation, are said to be free indices as they can take any value
from one to the dimension of the vector.

1.1 Fundamental constants

As we mentioned above, throughout this book we will mostly use natural units, however to

make direct comparisons to physical quantities it is necessary to introduce the units back.

Scipy has a library to perform this task.

HW 1.1.a: Covert the following quantities:

• T0 = 2.725K → 0.2348 meV, CMB temperature today.

• ργ,0 = 4σT 4
0 /c→ 0.260 eV cm−3 (411γ’s cm−3), CMB energy density.

• c/H0 → Mpc, with H0 = 70km sec−1Mpc−1, Hubble constant.
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1.2 Distances

Figure 1.1: Comparison with several books/notes, i.e. Doran, Lasenby and Challinor, Baumman.

HW 1.1.b: Show the equivalence:

• 4.48146636×10−7= 8∗pi5∗(boltzmannconstant)4/(15∗(h∗c)3))∗(1Kelvin)∗∗4/(3∗
(100km/s/Mpc)2/(8 ∗ Pi ∗G) ∗ (speedoflight)2).

• 0.2776566337 = 45 ∗ ζ(3)/(2 ∗ π4) .

• ρc,0 = 1.87840h2 × 10−26 kg m−3 = 2.775h−1 × 1011M�/(h
−1Mpc)3 .

1.2 Distances

Measuring distances is not an easy task, specially when such humongous lengths are considered

in cosmology. Let us mention some of the most useful ones.

• The radius of the Earth’s orbit around the Sun, that is, the mean distance from the centre
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1. NOTATION AND CONVENTIONS

Figure 1.2: One Parsec (pc) is defined as the distance at which one astronomical unit subtends

an angle of one second of arc.

of the earth to the centre of the sun is defined as 1 Astronomical Unit (AU) or equivalently

1 AU= 1.496× 1013 cm. Note: astronomers mostly used units in cm, gr, etc.

• 1 Parsec (pc) is defined as the distance at which one astronomical unit subtends an angle

of one second of arc (1 pc = 1 AU/tan(1”)), as shown in Figure 1.2.

1 parsec ≡ 1.496× 1013cm× 360

2π
× 60× 60 = 3.086× 1018cm ' 3.261 light years (ly),

where a light year is the distance that light travels over the lapse of one year.

• Parsec, Kiloparsec (kpc) and Megaparsec (Mpc) are the most commonly used distance

units in astronomy.

For instance:

• Proxima Centauri, meaning the nearest [star] of Centaurus, is 1.301 pc (4.244 lys) away

to the Sun. Proxima Centauri, being the third member of the Alpha Centauri system, is

a red dwarf star with a mass of about an eighth the mass of the Sun M�. The other two

members, Alpha Centauri A (Rigil Kentaurus) and Alpha Centauri B (Toliman), together

form the binary star -Alpha Centauri AB- with an average distance of 4.3 lys from the

sun.

• 8.5 kpc is the distance from the Sun to the Galactic Centre of the Milky Way1, a barred

spiral galaxy with the following features

– Radius of the disk = 12.5 kpc.

1Was formed after the trickster god Hermes suckled the infant Heracles at the breast of Hera, the queen of

the gods, while she was asleep. When Hera awoke, she tore Heracles away from her breast and splattered her

breast milk across the heavens, see Figure 1.3.
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1.2 Distances

– Thickness of the disk = 0.3 kpc.

– At our location, the galaxy rotates with a period of 200 million years.

Figure 1.3: The Origin of the Milky Way (source: Tintoretto).

• The Canis Major Dwarf Galaxy (a disputed dwarf irregular galaxy) is the closest neigh-

bour galaxy, being located at about 7.7 kpc away from the Solar System and 13 kpc from

the Galactic Centre. The previous contender for the closest galaxy corresponds to the

Sagittarius Dwarf Elliptical Galaxy with a distance of ∼16kpc.

• Another satellite galaxy of the Milky Way is the Large Magellanic Cloud (LMC) 2, located

at about 50 kpc. The Milky Way and the LMC are expected to collide in approximately

2.4 billion years [23].

• Andromeda, also known as Messier 31 or just M31, is the closest galaxy with similar size

to our own with a distance of 780 kpc. This spiral galaxy, with a diameter of ∼67 kpc, is

the largest within the Local Group. Andromeda is approaching the Milky Way at about

110 kilometres per second, and hence they are expected to collide in about 4.5 billion

years [31].

• The Local group of galaxies, the one we live in, has a total diameter of roughly 3.1 Mpc.

The Local Group comprises more than 54 galaxies, most of them are dwarf galaxies, and

the two largest members include the Andromeda galaxy and the Milky Way (Triangulum

2An intermediate between dwarf spiral galaxies and irregular galaxies.
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1. NOTATION AND CONVENTIONS

Galaxy being the third largest member). On the other hand, the Virgo cluster, comprises

approximately 1300 (and possibly up to 2000) member galaxies and along with the Local

Group they lay within the Virgo Supercluster.

• 33 Mpc is the diameter of Virgo Supercluster which contains at least 100 galaxy groups

and clusters. The Virgo SC is only one of about 10 million superclusters in the observable

universe.

• From the range of 10-100 Mpc are the sizes of Voids – spaces between filaments (Figure

1.4) – which contain very few or no galaxies. The Local void, lying adjacent to the Local

Group, has a diameter of about 60 Mpc.

Figure 1.4: List of voids.

• The Laniakea Supercluster (“immense heaven” in Hawaiian), stretched out over 160 Mpc,

encompasses approximately 100,000 galaxies. It has the approximate mass of 1017 solar

masses and the closets supercluster consists of: Hydra-Centaurus (the closest neighbour),

Perseus-Pisces and Pavo-Indus.

• The Hubble radius (radius of the observable universe) corresponds to c/H0 =4450 Mpc

(or 14.4 billion light years), as we shall see in the following sections.

-30-



1.3 Masses

Figure 1.5: Size of the Universe.

1.3 Masses

• Stellar mass of the Milky Way ' 1× 1011M�.

• Dynamical mass of the Milky Way ' 1 × 1012M�, measured from the motion of its

satellites. Its difference compared to the stellar mass gives rise to the Dark Matter idea.

• Mass of giant elliptical galaxy ' 1× 1013M�.

• Mass of the Virgo cluster ≈ 1015M� (∼ 1300 galaxies).

• Laniakea ≈ 1017M� (∼ 1× 105 galaxies).

HW 1.3: Compute the orbital speed of Neptune (5.43 km/s) given the mass of the sun

and its distance, and compare with the real measurements (see Figure 1.6). Do the same

with the Milky Way and the Sun.
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1. NOTATION AND CONVENTIONS

The scale of the Universe: https://scaleofuniverse.com/

Figure 1.6: Rotation curves.

(jav: Use scipy constants)
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2
Homogeneous and Isotropic

Universe

In this Chapter, we start by introducing the theoretical framework that underlies the standard

model of modern cosmology: the concordance ΛCDM model. We briefly review the equations

determining the evolution of an homogeneous and isotropic universe. For the sake of com-

pleteness, in the following chapters, we have included the inflationary model as a solution

to some of the shortcomings of the Hot Big Bang model. Finally, the computation of the

distance modulus, cosmic microwave background spectrum and matter power spectrum allows

us to establish a connection between cosmological models and current (future) observations

through statistical tools, described in the next chapter. Some reference books have been

used throughout this short review, they include: Dodelson [33], Hobson et al. [56], Liddle and

Lyth [81], Mukhanov [98]; as well as some lecture notes: Peiris [105], Pettini [108], Challinor [24].

The standard description of the dynamical properties of the universe is provided by the

Einstein’s theory of General Relativity (GR), which builds a connection between the geometry

of the space-time and its matter-content, through fundamental quantities: the metric gµν and

the energy-momentum tensor Tµν

Gµν [gµν ]︸ ︷︷ ︸
Geometry

=
8πG

c4
Tµν .︸︷︷︸

Matter

(2.1)

Einstein equations are very elegant, however they are indeed very difficult to solve in the general

case. Throughout this book we focus on the basic description of our Universe, an expanding
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2. HOMOGENEOUS AND ISOTROPIC UNIVERSE

€ 

w = −1

€ 

Λ

++
  GR 
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  FRW       + ?+
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      Inflation +
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Ωdm

€ 

Ωb

  Baryons   Radiation    CDM

1. THE HOMOGENEOUS UNIVERSE

component ⌦i wi ⇢(a) a(t) H(t)

radiation ⌦r 1/3 / a�4 / t1/2 1/2t

matter ⌦m 0 / a�3 / t2/3 2/3t

curvature ⌦k -1/3 / a�2 / t 1/t

missing matter ⌦X -2/3 / a�1 / t2 2/t

cosmological constant ⌦⇤ -1 / a0 / exp(
q

⇤
3 t) const

Table 1.1: Constituents of the universe and their cosmological parameters: density pa-

rameter ⌦i, equation-of-state parameter wi; and their behaviour: density evolution ⇢(a),

scale factor a(t), Hubble parameter H(t).

For a positive density contribution ⇢, the universal expansion can only be stopped if

the universe is closed  > 0 (⇢ < 0), otherwise it will expand forever.

Missing matter

If the Friedmann equation is written in terms of the present energy-density components,

we have ✓
ȧ

a

◆2

=
8⇡G

3

⇥
⇢r,0 a�4 + ⇢m,0 a�3 + ⇢k,0a

�2 + ⇢⇤,0a
0
⇤
. (1.158)

Notice that the right-hand-side can be seen as a power series expansion, however with

a missing component with contribution a�1. To complete the series, we include this

term and named it as the missing-energy component [121], for which its energy-density

satisfies

⇢X(t) = ⇢X,0 a�1, and a / t2. (1.159)

The missing-energy component has therefore an equation-of-state wX = �2/3, and

behaves similarly to domain walls [9, 124]. We explain in more detail about this new

term in Chapter ??.

A summary of the main components of the universe, along with their behaviour, is

shown in Table 1.1. Before solving the cosmological equations for the whole mixture of

perfect-fluid components, we include some essential notation:
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Standard cosmological model       

Figure 2.1: Main components of the Standard Cosmological Model.

homogeneous and isotropic described by the FLRW metric, and then move forward to the linear

perturbation theory, as we shall see below.

2.1 The cosmological principle

In order to specify the global geometry of the universe, an essential assumption to do is the

Cosmological Principle: when averaged over sufficiently large-scales at any particular time, the

universe seems to be Homogeneous and Isotropic with a high accuracy. For instance, at scales

larger than 150 Mpc, the distribution of galaxies over the celestial sphere does seem to justify

the assumption of isotropy -i.e. independent of direction [28]. Moreover, the current uniformity

in the temperature distribution of the Cosmic Microwave Background (CMB) radiation, to a

few parts in 105, is the best observational evidence we have in support of an isotropic universe

(see Figure 12.3; [67]). If isotropy is thus taken for granted and considering that our position in

the universe is by no means preferred to any other, known as the Copernican Principle, then

homogeneity -i.e. independent of position, follows from isotropy at every point.

Isotropy + Copernican Principle −→ Homogeneity.

Isotropy states that the Universe looks the same in every direction.

Homogeneity states that the Universe looks the same at any point.
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2.1 The cosmological principle

Figure 2.2: Anisotropies of the Universe seen by Planck satellite. Colours describe differences in

temperatures, blue is cold and red hot, and they’re about 10−6 (jav: use healpy to plot isotropy)

www link (jav: show the great wall figure).

It is worth noting that isotropy about every point automatically implies homogeneity. How-

ever, homogeneity does not necessarily imply isotropy. For example, a universe with a large-scale

electric field that points out in one direction everywhere and has the same magnitude at every

point would be homogeneous but not isotropic (see Figure 2.3).

Figure 2.3: Illustration of how homogeneity and isotropy are not equivalent.

For those picky astrophysicist, who want to provide an explanation up to the most minimal

detail, for instance the fingers of god (left of Figure 13.1) or the Stephen-Hawking letters (right

of Figure 13.1) observed in the CMB, there exist models considering anisotropies in the Universe
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2. HOMOGENEOUS AND ISOTROPIC UNIVERSE

(not to explain these silly things though). Some examples of anisotropic models are the Bianchi

types [cite]. The type I models contain the Kasner metric, whereas the Bianchi IX includes the

Taub metric; the isotropy of the FLRW metric is a particular case of the types I, V, VII and

IX. Some inhomogeneous models are the Lemaitre-Tolman-Bondi [40] and Zsekeres [129]. For

a review of the inhomogeneous framework, see [15]. In the following sections we will present a

brief introduction to these alternative descriptions of the Universe.

Figure 2.4: Anisotropies of the Universe seen by WMAP satellite.

HW 2.1.a: Describe some examples of non-homogeneous and non-isotropic universes

HW 2.1.b: The Anthropic Principle: Why the Universe is how it is?

Assumption 2.1.1:

Homogeneity and Isotropy.
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Anthropic Principle

Why the Universe is how it is? This doubt has triggered a big debate among the scientific

community during the last decades. However, even though the above question looks

innocent, some people are still skeptical about the answers.

Despite the idea had been used previously by R. H. Dicke, the phrase anthropic principle

was first attributed to the theoretical physicist Brandon Carter in 1974, who established

the statement: “Although our situation is not necessarily central, it is inevitably privileged

to some extent”[22]. In general, one can think about the anthropic principle as the idea

that the behaviour and evolution of the Universe must be compatible with the conscious

life we are observing and measuring. In other words, the Universe has specific physical

constants because they are the necessary ones to permit life (jav: constant books

cite[?]). However, these ideas have gone further, generating two variations of this concept

[11]:

• Weak anthropic principle: “The observed values of all physical and cosmological quan-

tities are not equally probable but they take on values restricted by the requirement

that there exist sites where carbon-based life can evolve and by the requirements

that the universe be old enough for it to have already done so”.

• Strong anthropic principle: “The Universe must have those properties which allow

life to develop within it at some stage in its history”.

However, from the weak anthropic principle one can notice that this is very restrictive

since it does not allow different kind of life apart of carbon-based, such as the possibility

of silicon-based life which has been considered since a few years ago [6]. Meanwhile, the

strong version can be criticised based upon the fact that it cannot be tested.

The philosophical conception that tries to explain why the universe is determined to be

in the way we know it, could be summarised in a shallow way as follows: The world

is necessarily as it is because there are beings who wonder why it is so. Even

though this idea has received enough criticism and skepticism, it is the best explanation to

some fundamental problems in physics, for instance, why the cosmological constant or the

electroweak scale have that precise value. Therefore, until a more fundamental explanation

to this kind of problems is proposed, the anthropic principle will be the most accepted

answer.
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2. HOMOGENEOUS AND ISOTROPIC UNIVERSE

2.2 The Geometry

The left hand side of Einstein’s equations (2.1) contain, what is called the metric tensor gµν

which describes the geometry of the space time. Let us start by defining this quantity.

2.2.1 The spatial metric gab

Consider two infinitesimally separated points P and Q in the manifold1 (see Figure 2.5), with

coordinates xa and xa + dxa respectively (a = 1, 2, ..., N), with N being the dimension of the

space.

Figure 2.5: Points in space.

The local geometry of the manifold at the point P is determined by defining the squared

invariant distance or interval (ds) between P and Q. In general, the interval is a function

represented by

ds2 = f(xa, dxa). (2.2)

For developing general relativity we are interested in an expression of the form1

ds2 = gab(x)dxadxb, (2.3)

where gab(x) are the components of the metric tensor field, in our chosen coordinate system.

Manifolds with a geometry express in the form of Eqn. (2.3) are called Riemannian manifolds.

However, strictly speaking, the manifold is only Riemannian if ds2 > 0, and because here ds2

can be either positive, negative or zero, then the manifold should properly be called pseudo-

Riemannian (we simply referred to it as Riemannian).

1In general terms, an n-dimensional manifold is an space that locally looks like Rn.
1A consequence of the equivalence principle, is that it restricts the possible geometry of the curved space-time

to a pseudo-Riemannian one.
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2.2 The Geometry

The metric functions gab(x) correspond to the elements of a position dependent squared

matrix. These metric functions can be chosen such that the matrix is symmetric, that is gab(x) =

gba(x). Let us assume for a moment the matrix is a generic one, and hence it can be decomposed

as the sum of a symmetric part and anti-symmetric component:

gab(x) =
1

2
[gab(x) + gba(x)]
︸ ︷︷ ︸

symmetric

+
1

2
[gab(x)− gba(x)]
︸ ︷︷ ︸

anti−symmetric

. (2.4)

The contribution to the interval ds2 from the antisymmetric part would be

1
2 [gab(x) − gba(x)]dxadxb which vanishes identically when the components a and b are

interchanged. Therefore the antisymmetric part of gab can be safely neglected.

Qz: How many independent variables have an N -dimensional symmetry matrix?

In a N -dimensional Riemannian manifold there are 1
2N(N+1) independent metric functions

gab(x). And since, in general, there are N arbitrary coordinate transformations, thus there are

only 1
2N(N + 1)−N = 1

2N(N − 1) independent degrees of freedom associated with gab(x).

For the particular case of a diagonal metric, i.e. gab(x) = 0 for a 6= b, the line element takes

the form

ds2 = g11(dx1)2 + g22(dx2)2 + · · ·+ gNN (dxN )2. (2.5)

Such system of coordinates is called orthogonal, since any pair of coordinate curves cross at

right angles.

Example 2.2.1: A trivial example

The Euclidean metric is the function d : Rn × Rn → R that assigns to any two
vectors in Euclidean n-space ~x = (x1, . . . , xn) and ~y = (y1, . . . , yn) the number d(~x, ~y) =√

(x1 − y1)2 + · · ·+ (xn − yn)2, that is, the standard distance between any two vectors
in Rn. The Euclidean metric (in a 3-dimensional space) is given by

gij =




1 0 0
0 1 0
0 0 1


 ,

giving the line element

ds2 = gijdx
idxj = (dx)2 + (dy)2 + (dz)2.
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Examples of line elements:

• The 3-Euclidean spacetime

ds2 = dx2 + dy2 + dz2.

• The Minkowski spacetime, or the special relativistic line element

ds2 = c2dt2 − dx2 − dy2 − dz2.

• The 3-Sphere S3 line element (with radius a)

ds2 =
a2

a2 − r2
dr2 + r2dθ2 + r2 sin2 θdφ2.

• The Friedmann-Lemaitre-Robertson-Walker line element

ds2 = c2dt2 − a2(t)

[
dr2

1− κr2
+ r2(dθ2 + sin2 θdφ2)

]
.

• The locally rotationally symmetric (LRS) Bianchi type-I metric

ds2 = c2dt2 − S2(t)
[
e

4√
6
ϕ

dx2 + e
− 2√

6
ϕ

(dy2 + dz2)
]
.

• The Kerr-Newman line element that describes the geometry of spacetime for a

rotating charged black hole with mass M , charge Q and angular momentum J , is

ds2 =

(
dr2

∆
+ dθ2

)
ρ2 − (c dt− a sin2 θdφ)2 ∆

ρ2

+((r2 + a2)dφ− ac dt)2 sin2 θ

ρ2
,

with

a =
J

Mc
, ρ2 = r2 + a2 cos2 θ, ∆ = r2 − rsr + a2 + r2

Q.

Here rs is the Schwarzschild radius of the massive body, related to its total

mass-equivalent M by rs = 2GM/c2, and rQ the length-scale corresponding to the

electric charge Q of the mass r2
Q = Q2G

4πε0c4
.

Here some particular examples for the Kerr-Newman metric

J = 0 Rotating (J 6= 0)

Q = 0 Schwarzschild Kerr

Charged (Q 6= 0) Reissner-Nordström Kerr-Newman
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2.2 The Geometry

The 3-sphere example

Let us find the metric for a 3-sphere S3 embedded in four-dimensional Euclidean space R4.

First of all, the four-dimensional Euclidean space is described by the line element

ds2 = dx2 + dy2 + dz2 + dw2, (2.6)

however, we limit ourselves to move over the 3-dimensional-space restricted by the radius a

x2 + y2 + z2 + w2 = a2. (2.7)

Differentiating both sides of the equation, it yields to

2xdx+ 2ydy + 2zdz + 2wdw = 0, (2.8)

and substituting dw in (2.6) follows the line element:

ds2 = dx2 + dy2 + dz2 +
(xdx+ ydy + zdz)2

a2 − (x2 + y2 + z2)
. (2.9)

Now, to get a better sense of the metric, transforming to spherical polar coordinates

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ, (2.10)

we obtain an alternative form for the line element (2.6)

ds2 =
a2

a2 − r2
dr2 + r2dθ2 + r2 sin2 θdφ2. (2.11)

Notice that taking the limit for the radius of the sphere a→∞, the metric gets the form

ds2 = dr2 + r2dθ2 + r2 sin2 θdφ2, (2.12)

which is the ordinary Euclidean 3-dimensional space ds2 = dx2 + dy2 + dz2 but now written

in spherical coordinates. The line element (2.11) therefore describes a non-Euclidean three-

dimensional space.

Now that we have a description of the geometry of the space, we can compute physical quantities

such as length, area and volume.
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2.2.2 Lengths, areas and volumes

The lengths of curves follow immediately from the line element (ds2). Suppose that the points

A and B are joined by some path; then the length of this curve is given by

LAB =

∫ B

A

ds =

∫ B

A

|gabdxadxb|1/2, (2.13)

where the integral is evaluated along the curve. If the equation of the curve xa(u) is given in

terms of some affine parameter u, as shown in Figure 2.6, then

LAB =

∫ uB

uA

∣∣∣∣gab
dxa

du

dxb

du

∣∣∣∣
1/2

du, (2.14)

where uA and uB are the values of the parameter u at the endpoints of the curve.

Figure 2.6: Two points describe a path defined by the line element ds = |gabdxadxb|1/2.

On the other hand, the proper lengths of two line segments will be
√
g11dx

1 and
√
g22dx

2

respectively. Thus the element of area is (see Figure 2.7)

dA =
√
|g11g22|dx1dx2. (2.15)

We can go even further and define a higher-dimensional volume elements in a similar way

until we reach the N -dimensional volume element

dNV =
√
|g11g22 · · · gNN |dx1dx2 · · · dxN . (2.16)

In the general case, where the coordinates are not orthogonal, the volume elements may be

rewritten as (with g = det[gij ]),

dNV =
√
|g|dx1dx2 · · · dxN . (2.17)
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2.2 The Geometry

Figure 2.7: Element of Area. Orthogonal coordinates.

The Two-sphere

Let us consider the two-dimensional geometry of the surface of a sphere in terms of its radius

(ρ ε [0, a]) and zenith angle (φ ε [0, 2π]), assuming it is embedded in a three-dimensional

Euclidean space (see Figure 2.8).

Figure 2.8: 2D - Sphere.

This can be seen as eliminating one dimension in (2.11) and making the substitutions

x = ρ cosφ, y = ρ sinφ, (2.18)

with some algebra we obtain

ds2 =
a2

a2 − ρ2
dρ2 + ρ2dφ2. (2.19)

Note that the line element contains a ‘hidden symmetry ’, namely our freedom to choose an

arbitrary point on the sphere as the origin ρ = 0. There is also a coordinate singularity, which
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has resulted simply from choosing coordinates with a restricted domain of validity. From Eqn.

(2.19) we see that this coordinate system is orthogonal, with gρρ = a2/(a2 − ρ2) and gφφ = ρ2.

From (2.13), the distance in the surface D from the centre to a particular radius ρ = R, at

constant φ, is

D =

∫ R

0

a

(a2 − ρ2)1/2
dρ = a sin−1

(
R

a

)
, (2.20)

while the circumference of the circle is given by

C =

∫ 2π

0

Rdφ = 2πR. (2.21)

Similarly, from (2.15) we have the area within the circumference C

A =

∫ 2π

0

∫ R

0

a

(a2 − ρ2)1/2
ρdρdφ = 2πa2

[
1−

(
1− R2

a2

)1/2
]
. (2.22)

Writing the circumference C and the area A in terms of the distance D, we have

C = 2πa sin

(
D

a

)
and A = 2πa2

[
1− cos

(
D

a

)]
. (2.23)

As D increases, the circumference of the circle C do so until the point where D = πa/2 and

then C becomes smaller as D increases. Then, the total area, by symmetry, is given by

Atot = 2

∫ 2π

0

∫ a

0

a

(a2 − r2)1/2
rdrdφ = 4πa2. (2.24)
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2.2 The Geometry

HW 2.2: hb.

1.- Compute the Volume of the 3D sphere [Eqn 2.11]. Hint:

V =

∫ 2π

0

∫ π

0

∫ R

0

ar2 sin θ

(a2 − r2)1/2
drdθdφ,

[the total volume Vtot is found when R = a].

2.- For this 3D-sphere, show that the line element can be written in the form

ds2 = a2[dχ2 + sin2 χ(dθ2 + sin2 θdφ2)].

Then, calculate the area of the 2D sphere defined by χ = χ0. Also find the total volume

of the 3D space.

3.-By identifying a suitable coordinate transformation, show that the line element

ds2 = (c2 − a2t2)dt2 − 2at dt dx− dx2 − dy2 − dz2.

can be reduced to the Minkowski line element [a is a constant].
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Python

In [1]: from sympy import *

init_printing()

Distance in the surface

D =

∫ R

0

a

(a2 − ρ2)
1
2

dρ

In [2]: a, rho, R = symbols(’a, \\rho, R’, positive=True)

half = Rational(1, 2)

D = a / (a**2 - rho**2)**half

integrate(D, (rho, 0, R))

Out[2]: a asin

(
R

a

)

Circumference

C =

∫ 2π

0

Rdφ

In [3]: phi = symbols (’\\phi’)

C = R

integrate(C,(phi,0,2*pi))

Out[3]: 2πR

Area

A =

∫ 2π

0

∫ R

0

a

(a2 − ρ2)
1
2

ρdρdφ

In [4]: A = a / (a**2 - rho**2)**half*rho

simplify(integrate(A,(rho,0,R),(phi,0,2*pi)))

Out[4]: 2πa
(
a−

√
−R2 + a2

)
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2.3 The Einstein Tensor

2.3.1 Christoffel symbols

The coefficients Γabc are known as the affine connection, or traditionally called as the Christof-

fel symbol (of the second kind). It can be easily shown that Γabc do not transform as the

components of a tensor, however

T abc = Γabc − Γacb, (2.25)

is indeed a third-rank tensor, namely the torsion tensor. For convenience we can assume

torsion free T abc = 0, that is, the affine connection is symmetric in its covariant indices, i.e.

Γabc = Γacb. (2.26)

Assumption 2.3.1:

Torsion free: T abc = 0 ⇒ Γabc = Γacb .

We will use the ansatz that the covariant derivative of the metric tensor vanishes

gab;c = 0. (2.27)

The covariant derivative (expressed by ∇ or ; ) of a tensor is

Aab;c = Aab,c − ΓdacAdb − ΓdbcAad.

By cyclically permuting the three indices of Eqn. (2.27), summing them all over, and using the

covariant derivative of a tensor, we get

Γabc =
1

2
gad(∂cgdb + ∂bgdc − ∂dgbc)

=
1

2
gad(gdb,c + gdc,b − gbc,d). (2.28)

Then, for the torsionless case, the quantity on the right hand side of Eqn. (2.28) is properly

called the metric connection and often denoted by the symbol { abc}. In a torsionless manifold

the affine and metric connections are equivalent.

The quantity Γabc, traditionally known as the Christoffel symbol of the first kind, is given

by

Γabc ≡ gadΓ
d
bc

=
1

2
(∂cgab + ∂bgac − ∂agbc). (2.29)
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Adding Γabc to Γbac gives

gab,c = Γabc + Γbac, (2.30)

which relates partial derivatives of the metric components to the connection coefficients. The

contraction of the connection coefficients, leads to

Γaab = ∂b ln
√
|g| = 1√

|g|
∂b
√
|g|. (2.31)

where the derivative of the determinant g of gab is

g,c = ggabgab,c,

= 2gΓaac. (2.32)

HW 2.3.a: Show that the components of Γabc do not transform as the components of a
tensor, but T abc do.

HW 2.3.b: Prove (2.28), (2.30) and (2.32).

2.3.2 The curvature tensor

The curvature tensor (or the Riemann-Christoffel tensor) is defined in terms of the metric

tensor gab and its first and second derivatives.

Rabcd ≡ Γabd,c − Γabc,d + ΓebdΓ
a
ec − ΓebcΓ

a
ed. (2.33)

In a flat space-time, Γabc and its derivatives are zero, and hence

Rabcd = 0. (2.34)

The curvature tensor possesses a number of symmetries and satisfies certain identities, that are

most easily derived in terms of its covariant components. An alternative way, and useful for

this purpose, is the lowered version

Rabcd = gaeR
e
bcd, (2.35)

and after considerable algebra, we have

Rabcd =
1

2
(gbc,ad − gac,bd + gad,bc − gbd,ac)− gef (ΓeacΓfbd − ΓeadΓfbc) , (2.36)
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and the symmetries can be expressed as follow

Rabcd = −Rbacd, (2.37)

= −Rabdc,

= Rcdab.

From the first set of symmetries, we notice that for a = b or c = d all the components of

the Riemann tensor are zero. Then, we may easily deduce the cyclic identity (or 1st Bianchi

identity)

Rabcd +Radbc +Racdb = 0, (2.38)

which may be written as Ra[bcd] = 0. The conditions (2.37) and (2.38) reduce the number of

independent components from N4 to N2(N2−1)/12 (jav: do the math). In general, considering

several dimensions, we have

No. of dimensions 2 3 4

No. of independent components of Rabcd 1 6 20

You can see from this table that in four dimensions the number of independent components is

reduced from a possible 256 to 20.

Another useful relation we will need is the 2nd Bianchi identity

Rabcd;e +Rabde;c +Rabec;d = 0, (2.39)

and it can be written in the compact cyclic form Rab[cd;e].

HW 2.3.c: Show the validity of the expressions (2.37), (2.38) and (2.39).

2.3.3 Ricci tensor

From the symmetry properties, raising the index a and then contracting on the first two indices,

gives

Raacd = 0. (2.40)
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Example 2.3.1: Show that Raacd=0.

Take the expression (2.35)

Rabcd = gaeR
e
bcd,

multiply ×gab both sides

gabRabcd = gabgaeR
e
bcd,

because the mood indices, we can interchanged a↔ b on the right hand side to get

gba gbeR
e
acd︸ ︷︷ ︸

contraction

= gbaRbacd = gabRbacd = −gabRabcd,

where we have used the symmetry gba = gab and the anti-symmetric relation in (2.37).
Therefore Raacd = 0.

Contracting on the first and third indices, however, gives in general a non-zero result and this

leads to a new tensor, the Ricci tensor (the trace of the Riemann tensor):

Rab ≡ Rcacb = gcdRcadb. (2.41)

By raising the index a in the cyclic identity and contracting with d, one may easily show that

the Ricci tensor is symmetric, Rab = R b
a , and hence we can denote both by Rba. A further

contraction gives the Ricci scalar, also known as the curvature scalar, which is the trace of

the Ricci tensor:

R ≡ Raa = gabRab = gabgcdRcadb. (2.42)

Example 2.3.2: Show Rab=Rba.

First, we write the cyclic expression (2.38) and multiply it by gcd to get

gcdRdacb + gcdRdcba + gcdRdbac = 0,

notice the second term (gcdRdcba) vanishes by the first identity in (2.37). To then

gcdRdacb + gcdRdbac = 0,

Rcacb − gcdRdbca = 0,

Rcacb −Rcbca = 0,

Rab = Rba.
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pb. The traceless part of the tensor Rabcd is defined by the equation

Rabcd =
1

2
(gacRbd − gadRbc − gbcRad + gbdRac) (2.43)

−1

6
(gacgbd − gadgbc)R

+Cabcd.

The expressions in the first two lines have the symmetries of the curvature tensor, and Cabcd

is called the Weyl tensor. The coefficients in the first two lines are chosen so the contraction of

the Weyl tensor vanishes,

Cabac = 0.

The Weyl tensor will be helpful in simplifying the optical equation for the distortion in an

inhomogeneous universe.

Another scalar that can be constructed from the Riemann tensor is the Kretschmann scalar :

K = RabcdR
abcd. (2.44)

For a Schwarzschild black hole of mass M , the Kretschmann scalar is

K =
48G2M2

c4r6
,

which is not infinite at the event horizon r = 2M , hence we can tell immediately that the event

horizon is a coordinate singularity not a real one. Likewise we can tell immediately that there

is a real singularity at r = 0.

2.3.4 Einstein tensor

Taking the Bianchi identities (2.39), and raising a and contracting with c (i.e. ×gac) gives

∇eRbd +∇cRcbde +∇dRcbec = 0, (2.45)

which, on using the antisymmetry property in the third term, gives the Ricci tensor

∇eRbd +∇cRcbde −∇dRbe = 0. (2.46)

If we now raise b and contract with e (×gbe), we find

∇eRed +∇cRcede −∇dR = 0, (2.47)
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Using the antisymmetry properties of Ricci tensor we may write the second term as

∇cRcede = ∇cReced = ∇cRcd = ∇eRed, (2.48)

so the first and secod terms in (2.47) are identical and we obtain

2∇eRed −∇dR = ∇e(2Red − δedR) = 0. (2.49)

Finally, raising the index d (×gdb), we obtain the important result

∇a(Rab − 1

2
gabR) = 0. (2.50)

The term in parentheses is called the Einstein tensor

Gab ≡ Rab − 1

2
gabR. (2.51)

It is clearly symmetric Gab = Gba and thus possesses only one independent divergence ∇aGab

which vanishes.

HW 2.3.d: Show that ∇aGab = 0.

Hint: by contracting the second Bianchi identities, show that Rab;a = 1
2R;b.

The trace

gabGab = gabRab −
1

2
gabgabR, (2.52)

G = R− 1

2
nR,

G =
2− n

2
R.

The special case of n = 4 dimensions gives the trace of the Einstein tensor as the negative

of the Ricci tensor’s trace, i.e. G = −R. Thus another name for the Einstein tensor is the

trace-reversed Ricci tensor.
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Example 2.3.3: The 2D sphere.

Let us get back to the metric of the surface of a sphere, with radius a, in spherical polar
coordinates.

ds2=a2dθ2 + a2 sin2 θdφ2.

Then, we have the metric and its inverse

gab =

(
a2 0
0 a2 sin2 θ

)
gab =

(
1/a2 0

0 1/a2 sin2 θ

)

Therefore, gθθ = a2, gφφ = a2 sin2 θ, gθθ = 1/a2, gφφ = 1/a2 sin2 θ. In two dimensions
there are only six (23 minus the symmetric part) independent connection coefficients,

Γθθθ, Γθθφ, Γθφφ, Γφθθ, Γφθφ, Γφφφ.

and the only derivative different from zero is gφφ,θ = 2a2 sin θ cos θ. Therefore the
Christoffel symbols are given by

Γθθθ = 0, Γθθφ = 0, Γθφφ = − sin θ cos θ,

Γφφφ = 0 Γφθθ = 0, Γφθφ = cot θ.

In two dimensions the Riemann tensor has only one independent non zero component,
due to all the symmetries it satisfies: Rθφθφ = Rφθφθ = −Rθφφθ = −Rφθθφ. And accord-
ing to previous calculations:

Rθφθφ = ∂θΓ
θ
φφ − ∂φΓθφθ + ΓiφφΓθiθ − ΓiφθΓ

θ
iφ.

Since there are no φ derivatives, the second term vanishes. Since Γθiθ = 0, the first
double Γ term vanishes too. Therefore, we get

Rθφθφ = ∂θΓ
θ
φφ − ΓφφθΓ

θ
φφ − ΓθφθΓ

θ
θφ

= ∂θ(− sin θ cos θ)− (cot θ)(− sin θ cos θ)

= sin2 θ − cos2 θ + cos2 θ = sin2 θ.

Therefore Rθφθφ = gθiR
i
φθφ = sin2 θ and

Rφθφθ = gφφRφθφθ =
1

sin2 θ
sin2 θ = 1.
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Example 2.3.4: The 2D sphere.

The Ricci tensor is then:

Rθθ = Riθiθ = Rθθθθ +Rφθφθ = 1.

Rφφ = Riφiφ = Rθφθφ +Rφφφφ = sin2 θ.

Rθφ = Rφθ = Riθiφ = Rθθθφ +Rφθφφ = 0.

The Ricci scalar is:

R = gabRab = gθθRθθ + gφφRφφ =
1

a2
+

(
1

a2 sin2 θ

)
(sin2 θ) =

2

a2
.

The resulting Einstein tensor:

Gab = Rab −
1

2
Rgab = 0,

for all a, b ∈ [θ, φ]. Thus the Gaussian curvature K (defined later) of a spherical surface
is given by

K =
R1212

|g| =
a2 sin2 θ

a4 sin2 θ
=

1

a2
.
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Alternatives to GR

“In general relativity (GR) it is assumed, without empirical support, that torsion vanishes

identically. Of course, one may claim that the experimental success of GR justifies the vanishing-

torsion hypothesis. However, as it is argued below, all GR tests are compatible with a non-

vanishing torsion, and, as a basic assumption of the theory, it is paramount to experimentally

test it.”[? ] Furthermore, another important hypothesis is the fact that c,G, and α are constant,

nevertheless, some important cosmological implications emerge when these are not. In this paper

some models where all this standard assumptions may change are discussed.

Einstein-Cartan theory

The theory was first proposed by Élie Cartan in 1922 [? ] and expounded in the following few

years. This model states that GR must be extended in order to include an affine torsion, which

in contrast with GR, allows the possibility of having an asymmetric Ricci tensor. Nowadays,

this theory that extend the Riemannian geometry in that direction is better known as Riemann-

Einstein-Cartan geometry and is determined by the following features:

• A specific choice of the metric tensor.

• A specific affine torsion tensor.

• Parallel transport must preserve lengths and angles as in the usual Riemannian geometry.

The corresponding equations of motion derived from the action variation are given by:

Rak −
1

2
gakR =

8πG

c4
Pak,

Skab =
8πG

c4
σkab,

where σkab is the spin tensor of the source. Skab = T kab + gkaT
m
bm − gkb Tmam is the modified torsion

tensor. And, finally T kab is the affine torsion tensor that characterised these models. In the

first equation one can see that it has the same structure than the usual Einstein’s equations.

Meanwhile, the second equation expresses the angular momentum conservation considering the

spin-orbit interaction. Therefore, GR can be understood as a limit of the more general Riemann-

Einstein-Cartan theory of gravity. Moreover, it is expected that this theory will prove to be a

better classical limit of a future quantum theory of gravitation than the theory without torsion

[? ].
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Variable c and G

In contrast with what know from GR, the idea of a variable (non-constant) speed of

light (VSL) has been considered over the years. Actually, Einstein itself thought seriously

this idea in 1911 [? ], where he assumed that clocks in a gravitational field run slower,

whereby the corresponding frequencies are influenced by the gravitational potential. Later, in

1915 he concluded that light speed is constant when gravity does not have to be considered

but that the speed of light cannot be constant in a gravitational field with variable strength [? ].

Nowadays, this idea is still present but in cosmological models such as the alternative to

inflation proposed by Jean-Pierre Petit, John Moffat, Andreas Albrecht and JoÃ£o Magueijo

[? ? ? ], where also the Newton’s constant G is no longer a constant. In the minimally coupled

theory one then simply replaces c by a field in a preferred frame. Hence, the action is given by

S =

∫
d4x

(√−g
(
ψ(R+ 2Λ)

16πG
+ Lmat

)
+ Lψ

)
,

where ψ(xµ) = c4. One can solve the cosmological field equations that define it for general

power-law variations of “c” and “G”. This allows us to determine the rate and sense of the

changes required in “c” if the flatness, horizon, and cosmological constant problems are to be

solved. The period when “c” varies is expected to happen only during the very early universe,

therefore its observational remnants should be observable through the CMB fluctuations.

Variable α

It has been suggested by some astronomical observation that perhaps α, the fine structure

constant, should not be strictly a constant, and this idea led to a serious consideration of a

variable α by Jacob Bekenstein in 1981 [? ]. However, one big consequence is that Maxwell’s

equations must be modified, but in order to test the viability of this conception, purely

electromagnetic experiments are not enough. On the other hand, since the cosmological

perspective, the framework predicts an α̇
α which can be compatible with the astronomical

constraints; hence, these are too insensitive to determine any possible variability. In VSL

theories a varying α is interpreted as c ∝ h ∝ α−1/2 and e is constant, Lorentz invariance is

broken, and so by construction there is a preferred frame for the formulation of the physical laws.
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Thus, so far, this idea cannot be ruled out with the experimental evidence, and more future

tests are needed in order to determine its viability.

Some model with torsion and c,G and α varying has been discussed. Although most of these

theories are not in contradiction with observational evidence, sometimes the framework looks

more complicated than the ordinary one. Nevertheless, they are a valid and consistent approach

that could be helpful to solve for example some cosmological problems.
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2.4 The spacetime metric gµν

The most general expression for the metric gµν can be represented by a sequence of non-

intersecting spacelike hypersurfaces labelled by some parameter t, see Figure 2.9.

Figure 2.9: Worldlines.

This parameter may be taken to be the proper time along the worldline of any fundamental

observer. The parameter t is then called the synchronous time coordinate. In addition, we may

also introduce spatial coordinates (x1, x2, x3) that are constant along any worldline. Thus, each

fundamental observer has fixed (x1, x2, x3) coordinates, and so the latter are called comoving

coordinates, see for instance Figure 2.10.

Then the line element takes the form

ds2 = gµνdx
µdxν = g00c

2dt2 + 2g0ic dtdx
i + gijdx

idxj , (2.53)

where the components of the spatial metric gij are functions of the coordinates (ct, x1, x2, x3).

Because the hypersurfaces t = constant may be naturally constructed in such a way that the

4-velocity of any fundamental observer is orthogonal to the hypersurface, then the term g0i

must be zero. On the other hand, we may use the proper time of the coordinate system given

by the fundamental observers to label the spacelike hypersurfaces (see Figure 2.9). This choice

of coordinate time implies that g00 = 1, and therefore the space-time interval becomes

ds2 = c2dt2 − gijdxidxj . (2.54)
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2.5 The Friedmann-Robertson-Walker metric

Let us now incorporate the postulates of homogeneity and isotropy to the geometry of the

Universe. The former demands that all points on a particular spacelike hypersurface are

equivalent, whereas the latter demands that all directions on the hypersurface are equivalent

for fundamental observers.

Isotropy requires that the distribution of galaxies at two different times must be similar,

and homogeneity requires that the magnification factor must be independent of the

position for the distribution.

It thus follows that the time t can enter the gij only through a common factor, and hence the

metric must take the following form

ds2 = c2dt2 − S2(t)dσ2, (2.55)

where S(t) is a time-dependent scale factor (length-dimensions) and dσ2 = γijdx
idxj contains

functions of the coordinates (x1, x2, x3) only. As we will see in the following section, the physical

distance (r) is proportional to the comoving distance (x) times the scale factor S(t) and hence

it gets larger as time evolves. See Figure 2.10.

Figure 2.10: Comoving coordinates.

Over the years, cosmological observations have provided decisive evidence that the universe

is currently expanding, therefore the scale factor satisfies Ṡ(t) > 0 as we shall come back later,
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see Hubble [59], Perlmutter et al. [106], Riess et al. [115].

On the other hand, a maximally symmetric space is specified by just one number – the

curvature K, which is independent of the coordinates. Such constant curvature spaces must be

homogeneous and isotropic, the key property we are looking for to describe the Universe at

large scales.

Example 2.5.1: Maximally symmetric spaces

A maximally symmetric space is defined as both homogeneous and isotropic. Such
space possesses the largest possible number of Killing vectors which in an n-dimensional
manifold equals n(n+ 1)/2. The following holds for such spaces:

1.- The scalar curvature R is a constant, i.e.

R = n(n− 1)K.

2.- The Ricci tensor is proportional to the metric tensor, i.e.

Rµν =
1

n
Rgµν .

3.- The Riemman curvature tensor is given by

Rµνλρ =
R

n(n− 1)
(gµλgνρ − gνλgµρ).

Assuming general static isotropy, the line element of an isotropic 3-space in spherical coordinates

(r, θ, φ) can be written as

dσ2 = B(r)dr2 + r2(dθ2 + sin2 θdφ2), (2.56)

and its scalar curvature 3R is computed to be

3R =
2

r2

d

dr

[
r

(
1− 1

B(r)

)]
. (2.57)

Homogeneity implies that all geometrical properties are independent of r and therefore 3R must

be constant. That is, equating Eq. (2.57) to a constant value 6K and integrating the result,

this yields to the expression

r

(
1− 1

B

)
= Kr3 + c, (2.58)

with K and c constants. In order to avoid any singularity at r = 0 is compulsory to select c = 0

and therefore B(r) = (1−Kr2)−1.
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Example 2.5.2: An isotropic 3-space.

For the line element dσ2 = B(r)dr2 + r2dΩ2 the components of the metric tensor are,
along with the inverse components:

gab =




B(r) 0 0
0 r2 0
0 0 r2 sin2 θ


 , gab =




1
B2(r) 0 0

0 1
r2 0

0 0 1
r2 sin2 θ


 .

By using the symmetric properties of the Christoffel symbols, the identity (2.32), that
for three different indices (i.e. Γrθφ) the symbols are null, thus the non zero components
are:

Γrrr =
1

2B(r)

dB(r)

dr
, Γrθθ = − r

B(r)
, Γrφφ = −r sin2 θ

B(r)
.

Γθrθ = Γφrφ =
1

r
, Γθφφ = − sin θ cos θ, Γφφθ = cot θ.

The Riemann tensor components

Rrθrθ = Γrθθ,r − Γrrθ,θ + ΓrrλΓλθθ − ΓrθλΓλrθ =
r

2B2(r)

dB(r)

dr
.

Rrφrφ = Γrφφ,r − Γrrφ,φ + ΓrrλΓλφφ − ΓrφλΓλrφ =
r sin2 θ

2B2(r)

dB(r)

dr
.

Rθrθr = Γθrr,θ − Γθθr,r + ΓθθλΓλrr − ΓθrλΓλθr =
1

2rB(r)

dB(r)

dr
.

Rθφθφ = Γθφφ,θ − Γθθφ,φ + ΓθθλΓλφφ − ΓθφλΓλθφ = sin2 θ

(
1− 1

B(r)

)
.

Rφrφr = Γφrr,φ − Γφφr,r + ΓφφλΓλrr − ΓφrλΓλφr =
1

2rB(r)

dB(r)

dr
.

Rφθφθ = Γφθθ,φ − Γφφθ,θ + ΓφφλΓλθθ − ΓφθλΓλφθ = 1− 1

B(r)
.

The non-null Ricci tensor components:

Rrr =
1

rB

dB

dr
, Rθθ = 1− 1

B
+

r

2B2

dB

dr
, Rφφ = Rθθ sin2 θ.

Finally, the curvature scalar:

R = grrRrr + gθθRθθ + gφφRφφ =
2

r2

d

dr

[
r

(
1− 1

B(r)

)]
.

Considering Rjk = 2Kgjk

1

rB

dB

dr
= 2KB(r), & 1− 1

B
+

r

2B2

dB

dr
= 2Kr2.

Integrating the first equation

B(r) =
1

A−Kr2
.

Substituting into the second expression, then it gives 1−A+Kr2 = Kr2, from which we
see that A = 1. Thus, we have constructed the line element for the maximally symmetric
3-space.
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Finally, with the previous results we have that the spatial part of the metric is written as

dσ2 = γijdx
idxj =

dr2

1−Kr2
+ r2dΩ2, (2.59)

where r is the radial coordinate and dΩ2 = dθ2 +sin2 θdφ2 is the metric on the 2-sphere. Notice

it has a similar form as the metric for a 3-sphere embedded in four-dimensional Euclidean

space. The metric contains a ‘hidden symmetry’, since the origin of the radial coordinate is

completely arbitrary. We can choose any point in this space as our origin since all points are

equivalent. There is no centre in this space.

HW 2.5: Take metric (2.56) and compute Christoffel and Riemann to get (2.59). Make

sure you do Rij = 2Kgij .

Plugging everything together into (2.55), we get the Friedmann-Robertson-Walker metric

ds2 = c2dt2 − S2(t)

[
dr2

1−Kr2
+ r2dΩ2

]
. (2.60)

Let us assume that K 6= 0, then we can define the variable k̃ = K/|K| such that k̃ = ±1

depending on the sign of K. Moreover we introduce the rescale coordinate

r̃ = |K|1/2r, (2.61)

so Eqn. (2.60) becomes

ds2 = c2dt2 − S2(t)

|K|

[
dr̃2

1− k̃r̃2
+ r̃2dΩ2

]
. (2.62)

and then, introducing the rescaled function R(t) by (we keep R(t) as the factor as it does

contain the units, and the coordinates are still comoving [dimensionless])

R(t) =





S(t)
|K|1/2 if K 6= 0,

S(t) if K = 0.

(2.63)

Eqn. (2.62) yields to

ds2 = c2dt2 −R2(t)

[
dr̃2

1− k̃r̃2
+ r̃2dΩ2

]
. (2.64)
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Figure 2.11: Three curvatures allowed for an Isotropic and Homogeneous space-time.

The constant k classifies the curvature of the spatial sections, with closed (S3), flat (R3) and

open (H3) universes corresponding to k̃ = +1, 0,−1, respectively (see Figure 2.11).

Example 2.5.3: Curvature metrics.

For the flat case k̃ = 0 the spatial metric is

dσ2 = dr2 + r2dΩ2

= dx2 + dy2 + dz2,

which is simply a flat Euclidean space. For the closed case k̃ = +1 we can define r = sinχ
to write the metric as

dσ2 = dχ2 + sin2 χdΩ2,

which is the metric of a three-sphere. In the open k̃ = −1 case we can set r = sinhχ to
obtain

dσ2 = dψ2 + sinh2 ψdΩ2.

This is the metric for a three-dimensional space of constant negative curvature.

Notice the line element (2.64) has a rescaling symmetry, that leaves the metric invariant

R→ λR, r̃ → r/λ, k̃ → λ2k. (2.65)

A convenient form to express the FRW metric is by choosing the rescaling factor as λ = 1/R0.

That is, using coordinates normalised to the present time, labelled with subscript ‘0’, to defined

the normalised scale factor

a(t) ≡ R(t)

R0
. (2.66)
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Curvature Geometry Angles of triangle circumference of circle Type of Universe

k > 0 Spherical > 180◦ c < 2πr Closed

k = 0 Flat 180◦ c = 2πr Flat

k > 0 Hyperbolic < 180◦ c > 2πr Open

Table 2.1: A Summary of possible geometries

Therefore the scale factor is set to unity today a0 ≡ a(t0) ≡ 1, r̃ → R0r has units of [length]

and the curvature parameter k̃ → k/R2
0 has dimensions of [length]−2. Note that in this case,

k can take any value and not just be restricted to {+1, 0,−1}. The general properties of these

three spaces can be summarised in Table 2.1. The general FRW metric written in terms of the

normalised scale factor a(t) is thus given by

ds2 = c2dt2 − a2(t)

[
dr2

1− kr2
+ r2dΩ2

]
. (2.67)

In general and throughout this book, we will use the metric (2.64) but dropping the tilde for

convenience.

2.5.1 Geometric properties of the FRW metric

The physical meaning of the curvature term becomes more apparent by redefining the radial

coordinate dχ ≡ dr/
√

1− kr2 in the metric (2.64), that leads to

ds2 = c2dt2 −R2(t)
[
dχ2 + S2

k(χ)dΩ2
]
, (2.68)

where the function Sk(χ) is specified by the curvature term:

Sk(χ) =





sinχ, for k = 1 (closed universe)
χ, for k = 0 (flat universe)
sinhχ, for k = −1 (open universe)

(2.69)

where the comoving coordinates remained. When using the symmetry shown above they get

units by χ→ χ/λ and S2
k → S2

k/λ.

The comoving radial χ-coordinate, on a null geodesic (ds2 = 0), is computed from

χ =

∫
c dt

R(t)
. (2.70)

The form of the metric (2.68) is particularly convenient to study the propagation of light.

For this purpose, it is useful to introduce the conformal time:
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Figure 2.12: Figures for curve spaces. (jav: redo this figure)

dη =
c dt

R(t)
. (2.71)

so that (2.68) becomes

ds2 = R2(η)︸ ︷︷ ︸
Conformal

[
dη2 − (dχ2 + S2

k(χ)dΩ2)
]

︸ ︷︷ ︸
Minkowski

. (2.72)

We notice the presence of the static Minkowski space multiplied by a conformal factor R2(η).

Because light moves along null geodesics, ds2 = 0, the propagation of light in a FRW is the

same as in Minkowski space firstly transformed to conformal time, and along the path we have

dη = dχ. (2.73)

Therefore the dynamics of the space-time, in a homogeneous and isotropic universe, reduces to

determining the scale factor R(t), which is computed from Einstein’s equations once the matter

content is specified, as we shall see below.
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Introduction

In the Λ-CDM model a basic assumption is given by the cosmological principle, which establishes

that the Universe where we live is homogeneous and isotropic at large scales. However, in

this paper some models that do not meet those requirements are discussed.

Non-isotropic cosmological models

This type of models are characterised for being homogeneous but not necessarily isotropic in

its spatial part, therefore they can be seen as generalisation of the FLRW Universe. Among the

most famous are those known as Bianchi models, they are described by the metric (in natural

units)[6]:

ds2 = −dt2 + ax(t)dx2 + ay(t)dy2 + az(t)dz
2.

Supposing a comoving test particle in this solution, it will follow the geodesic where (x, y, z)

keep constant, however, since the scale factor is different in each direction, its volume and

shape could be modified in general.

In order to test this models according to the experimental data, several calculation of nucle-

osynthesis and CMB anisotropies have been realised, nevertheless, the results have shown that

these models are inconsistent with some cosmological parameters, ergo, they are usually only

considered as toy models that are tractable exact solutions of Einstein’s field equations.

Non-homogeneous cosmological models

These inhomogeneous models are those exact solutions of Einsteins equations that in analogy

with the non-isotropic ones, can reproduce the FLRW solution as a limit. There are several

proposals in these directions, where the best known are [15]:

(a) The Szekeres - Szafron family: These models are characterised by the metric:

ds2 = dt2 − e2α(t,x,y,r)dr2 − e2β(t,x,y,r)(dx2 + dy2),

and they meet the following properties

– They obey the Einstein equations with a perfect fluid source.

– The flow-lines of the perfect fluid are geodesic and nonrotating.
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– The hypersurfaces orthogonal to the flow-lines are conformally flat.

– The Ricci tensor of those hypersurfaces has two of its eigenvalues equal. 5. The shear

tensor has two of its eigenvalues equal.

(b) The Lemaitre model: This describes a spherically symmetric inhomogeneous fluid

with anisotropic pressure. In comoving coordinates it has the following form.

ds2 = eA(t,r)dt2 − eB(t,r)dr2 −R2(t, r)(dυ2 + sin2 υdφ2).

(c) In the special case of dust with the cosmological constant, the above model repro-

duces the Lemaitre-Tolman (LT) model which is described by the metric

ds2 = dt2 − R,2r
1 + 2E

dr2 −R2(t, r)(dυ2 + sin2 υdφ2).

Conclusion

Some non-standard cosmological models have been discussed. It is worth mentioning that these

models can be seen as a generalisation of the FLRW solution which provides a good phenomeno-

logical landscape, and since the existence of gravitational lenses, we know that we do not live

in a FLRW Universe, thus, considering more general and tractable exact solutions to Einstein’s

equations is very important.
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2.6 Kinematics

In general, for a particle described with coordinates xµ, we have the action S[xµ(λ)] with an

associated Lagrangian density, given by

S[xµ(λ)] ≡ L[xµ, ẋµ]dλ, (2.74)

where overdot means derivative respect to an affine parameter λ: ẋµ ≡ dxµ

dλ .

The variation of the action yields to

Example 2.6.1: The Euler-Lagrange equations

d

dλ

(
∂L

∂ẋµ

)
− ∂L

∂xµ
= 0.

Pee. Let us consider the motion of a massive particle between points A and B, displayed in

Figure 2.13, the action is given by

S = m

∫ B

A

ds, (2.75)

with boundary conditions defined as

λ(A) ≡ 0, λ(B) ≡ 1, (2.76)

Figure 2.13: Free particle

where the interval ds in a generic space is ds2 = gµνdx
µdxν , and hence

S[xµ(λ)] = m

∫ 1

0

[gµν(x)ẋµẋν ]1/2dλ. (2.77)

The canonical momenta pµ are the derivatives of the Lagrangian with respect to the coordinate

velocities. Computing the derivatives of the density Lagrangian L = m(gµν ẋµẋν)1/2, and for
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convenience making m = 11:

pα ≡
∂L

∂ẋα
=

1

2

(
gµν ẋµẋν

)−1/2
[
∂ẋµ

∂ẋα
ẋν + ẋµ

∂ẋν

∂ẋα

]

=
1

2L
gµν [δµαẋ

ν + ẋµδνα] =
1

2L
[gαν ẋ

ν + gµαẋ
µ] =

1

L
gµαẋ

µ, (2.78)

∂L

∂xα
=

1

2L
∂αgµν ẋ

µẋν . (2.79)

By using the interval ds, we have

(
ds

dλ

)2

= gµν
dxµ

dλ

dxν

dλ
= L2 and

d

dλ
→ L

d

ds
. (2.80)

Writing the Einstein-Lagrange equations in terms of the interval ds, they yield to

d

ds

(
gµα

dxµ

ds

)
− 1

2
∂αgµν

dxµ

ds

dxν

ds
= 0. (2.81)

Expanding the first term in the previous expression

gµα
d2xµ

ds2
+ ∂βgµα

dxβ

ds

dxµ

ds
− 1

2
∂αgµν

dxµ

ds

dxν

ds
= 0, (2.82)

where the second term that contains ∂βgµα can be replaced by 1
2 (∂βgµα + ∂µgβα)dx

β

ds
dxµ

ds . By

contracting with the inverse metric, relabelling indices and using the Christoffel definition we

find the

Geodesic equation
d2xµ

ds2
+ Γµαβ

dxα

ds

dxβ

ds
= 0.

Considering the particle has a four-velocity uµ ≡ dxµ

ds , from the geodesic equation we have

duµ

ds
+ Γµαβu

αuβ = 0, (2.83)

using the chain rule
d

ds
uµ(xα(s)) =

dxα

ds

∂uµ

∂xα
= uα

∂uµ

∂xα
, (2.84)

so, we get

uα
(
∂uµ

∂xα
+ Γµαβu

β

)
= 0. (2.85)

1where we have used ∂ẋν

∂ẋµ
= δνµ.
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We notice the quantity within parenthesis defines the covariant derivative

∇αuµ ≡ ∂αuµ + Γµαβu
β , (2.86)

and therefore, we have that uα∇αuµ = 0 (same result obtain in GR using parallel transport).

Putting back the mass, and using the four-momentum of the particle pµ = −muµ [Pee], it yields

to

pα
∂pµ

∂xα
= −Γµαβp

αpβ . (2.87)
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Example 2.6.2: The Einstein-Hilbert action.

Let us consider the Einstein-Hilbert action, given by

SEH =

∫
dnx
√−gR =

∫
dnx
√−gRµνgµν ,

where, as usual, the g is the determinant of the metric gµν and R is the Ricci scalar.

In General Relativity the metric gµν is the dynamical variable, whereas the Ricci scalar
is the product of the metric and its derivatives, hence the integral contains all the
dynamical variables that conform the Lagrangian (jav: Palatini formalism). Therefore,
to minimise the action – by using the variational principle –, we perform the variation
of the action equal to zero:

δSEH = δ

∫
dnx
√−gR = 0.

Then

δSEH =

∫
dnx
√−ggµνδRµν +

∫
dnx
√−gRµνδgµν +

∫
dnxRµνg

µνδ
√−g

= δS1 + δS2 + δS3.

We compute separately the variation for each term Si with i = 1, 2, 3.
For S1, we first use the definition of the Christoffel symbols

Rµν = Rλµλν = ∂λΓλµν − ∂νΓλµλ + ΓλλεΓ
ε
νµ − ΓλνεΓ

ε
µλ.

Then, the corresponding variation is

δRµν = ∂λδΓ
λ
µν − ∂νδΓλµλ + δΓλλεΓ

ε
νµ + ΓλλεδΓ

ε
νµ − δΓλνεΓεµλ − ΓλνεδΓ

ε
µλ

= (∂λδΓ
λ
µν + ΓλλεδΓ

ε
νµ − ΓεµλδΓ

λ
νε − ΓενλδΓ

λ
µε)

−(∂νδΓ
λ
µλ + ΓλνεδΓ

ε
µλ − ΓενµδΓ

λ
λε − ΓενλδΓ

λ
µε).

Using the covariant derivative

∇cδΓcab = ∂cδΓ
c
ab + ΓccdδΓ

d
ba − ΓdacδΓ

c
bd − Γdbc, δΓ

c
ad,

in order to write the previous expression as

δRµν = ∇λδΓλµν −∇νδΓλµλ.
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Example 2.6.3:

The first part of the action, S1, results in the following form:

δS1 =

∫
d4x
√−ggµν(∇λδΓλµν −∇νδΓλµλ)

=

∫
d4x
√−g[∇λ(gµνδΓλµν)− δΓλµν∇λgµν −∇ν(gµνδΓλµλ) + δΓλµλ∇νgµν ].

Because the covariant derivative of the metric vanishes, thus the previous equation be-
comes:

δS1 =

∫
d4x
√−g[∇λ(gµνδΓλµν)−∇ν(gµνδΓλµλ)]

=

∫
d4x
√−g∇λ[gµνδΓλµν − gµλδΓνµν ]. (2.88)

Let be Jλ = gµνδΓλµν − gµλδΓνµν , a vectorial field defined over a region M with frontier
Σ. Using the Stokes theorem:

∫

M

d4x
√
|g|∇λJλ =

∫

Σ

d3x
√
|g|nλJλ,

with nλ is a unitary normal vector to the hyper-surface Σ. In infinity Jλ becomes zero
on the surfaces due to the variations in gµν tend to zero far away from the sources,
and the variation of the Christoffel symbols are proporcional to the variations of the
metric and its derivatives. Therefore, we have S1 = 0, that is, the first term does not
contribute to the variation of the Einstein-Hilbert action.

To compute the variations of S2 y S3, let us analyse the behaviour of the metric tensor
under variations. First, consider that gλµg

µν = δ νλ Then, assuming the metric tensor
has inverse, hence it exists a tensor Aνµ such that:

gµν =
1

g
(Aµν)T =

1

g
Aνµ,

where g is the determinant of gµν . From the two previous expressions, we have g =
gµνA

µν . From which we may infer that the partial derivative of the determinant is:

∂g

∂gµν
= Aµν .

Therefore

δg =
∂g

∂gµν
δgµν = Aµνδgµν = ggνµδgµν .

and given that gµν is symetric, then:

δg = ggµνδgµν .

-72-



2.6 Kinematics

Example 2.6.4:

With the previous calculations in mind, we are able to compute the variation of the√−g term:

δ
√−g = − 1

2
√−g δg

=
1

2

g√−g g
µνδgµν . (2.89)

We need δgµν instead of δgµν ; to do that, we consider the following:

δδ ε
µ = δ(gµλg

λε) = 0

gλεδgµλδg
λε = 0

gλεδgµλ = −gµλδgλε.

Multiplying both terms of the equation by gνε, we have:

gνεg
λεδgµλ = −gνεgµλδgλε
δλν δgµλ = −gνεgµλδgλε
δgµν = −gµλgνεδgελ. (2.90)

Substituting the last results into equation 2.89:

δ
√−g = −1

2

√−ggµνgµλgνεδgελ

= −1

2

√−gδνλgνεδgελ

= −1

2

√−ggλεδgελ. (2.91)

Renaming the indices, then:

δ
√−g = −1

2

√−ggµνδgµν .

Using that S1 = 0 along with equations 2.90 and 2.91, finally we’ve got:

δSEH =

∫
d4x
√−gRµνδgµν −

1

2

∫
d4R
√−ggµνδgµν

=

∫
d4x
√−g[Rµν −

1

2
gµνR]δgµν .

Notice the terms within brackets correspond to the definition of the Einstein tensor:

Gµν = Rµν −
1

2
gµνR.
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Modifications to the Einstein-Hilbert action.

The action of the f(R) models is given by

SMG =

∫
dnx
√−gf(R).

See [42], where the equations of motion are (2.15)-(2.16) and the dynamical system (4.63)-(4.66)

to find the solutions.

Also, see [91] for a Brane-World Gravity review, where the action to take into account is

Sgravity =
1

2κ2
4+d

∫
d4ddy

√
−(4+d)g

[
(4+d)R− 2Λ4+d

]
,

where d is the number of extra dimensions and κ2
4+d is the gravitation coupling constant.

2.6.1 Geodesics in the FRW metric

The FRW metric (2.64) is written in the following way

ds2 = c2dt2 −R2(t)γijdx
idxj . (2.92)

HW 2.6: Compute the Christoffel symbols to get

Γ0
ij = RṘγij , Γi0j =

Ṙ

R
δij , Γijk =

1

2
γil(∂jγkl + ∂kγjl − ∂lγjk).

otherwise zero (jav: plug back c).

The homogeneity of FRW implies that ∂ip
µ = 0 and hence only survives α = 0. From the

geodesic equation (2.87), we have

p0 dp
µ

dt
= −Γµρβp

ρpβ (2.93)

= −(2Γµ0jp
0 + Γµijp

i)pj . (2.94)

The implications of the expressions above are:

• A massive particle at rest - in the comoving frame - pj = 0, will stay at rest

pj = 0 → dpµ

dt
= 0. (2.95)
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• Considering the case µ = 0, we have that the first Christoffel vanishes (Γ0
0j = 0), and

hence

E
dE

dt
= −Γ0

ijp
ipj = − Ṙ

R
p2. (2.96)

where we have written p0 = E and the physical three-momentum p2 = −gijpipj =

R2γijp
ipj , and the components of the four momentum satisfy the constraint gµνp

µpν = m2

or E2 − p2 = m2. Using the fact that EdE = pdp, then the equation can be written as

ṗ

p
= − Ṙ

R
→ p ∝ 1

R
, (2.97)

the three momentum of any particle (either massive or massless) decays with the expansion

of the universe.

– For massless particle- The energy decays with the expansion of the scale factor

p = E ∝ 1/R. (2.98)

– For massive

p =
mv√
1− v2

∝ 1

R
, (2.99)

where vi = dxi/dt is the comoving peculiar velocity of the particles and v2 ≡
R2γijv

ivj . The freely-falling particles left on their own will converge onto the Hubble

flow.

2.6.2 Redshift

The light emitted can be viewed either quantum mechanically as a free-propagating photons,

or classically propagating electromagnetic waves

• Quantum.

The wavelength λ = h/p and since

p ∝ 1

R(t)
→ λ ∝ R(t). (2.100)

Light emitted at time t1 with wavelength λ1 will be observed at t0 with

λ0 =
R(t0)

R(t1)
λ1. (2.101)

Since R(t0) > R(t1) (with t0 > t1), then the wavelength of the light increases λ0 > λ1,

that is, is red-shifted otherwise blue-shifted.
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• Classical waves.

(jav: Figure). Consider a galaxy at fixed comoving distance d. At a time η1, the galaxy

emits a signal of short conformal duration ∆η. According to the geodesics ∆η = ∆χ

(2.73) the light arrives at our telescope at time η0. The conformal duration of the signal

measured by the detector is the same as the source, but the physical time intervals are

different at the points of emission and detection.

∆t1 = R(η1)∆η & ∆t0 = R(η0)∆η. (2.102)

If ∆t is the period of the light wave, the light is emitted with wavelength λ1 = ∆t1, but

it is observed with wavelength λ0 = ∆t0, so that

λ0

λ1
=
R(η0)

R(η1)
. (2.103)

For convenience, we express the fractional shift in wavelength of a photon emitted by a

distant galaxy at time t1 with wavelength λ1 and the observer on Earth today (t0), as:

z ≡ λ0 − λ1

λ1
, (2.104)

and therefore the gravitational redshift in terms of the scale factor is

1 + z =
R(t0)

R(t1)
.

Example 2.6.5: Cosmological redshifts

In general it is shown (see [50]) that the redshift z can be computed given the conformal
Killing vector field, giving

1 + z =

√
gαβ(yγ)ξα(yγ)ξβ(yγ)

gαβ(xγ)ξα(xγ)ξβ(yγ)
.

The redshift is used to refer to the time at which the scale factor was a fraction 1/(1 + z) of

its present value. It is also used to refer to the distance that light has travelled since that time

[81].
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Figure 2.14: Redshift

Example 2.6.6: Times in the Universe

Some particular times in the history of the Universe

R = 1, z = 0, t = 13.8Gys,

R = 0, z =∞, t = 0,

R = 1/1101, z = 1100, t = 380, 000ys.

2.6.3 Hubble and Deceleration parameter

Let us expand the scale factor as a power series about the present epoch t0

R(t) = R[t0 − (t0 − t)]

= R(t0)− (t0 − t)Ṙ|t=t0 +
1

2
(t0 − t)2R̈|t=t0 − · · ·

= R(t0)

[
1− (t0 − t)H(t0)− 1

2
(t0 − t)2q(t0)H2(t0)− · · ·

]
. (2.105)

HW: use simpy.

The expansion rate of the universe is characterised by the Hubble parameter defined as

H(t) ≡ Ṙ(t)

R(t)
, (2.106)

where the present expansion rate, being H(t = t0), is called the Hubble constant H0. Because

the Hubble constant is still not known with great accuracy, it is conventional to denote it

through the dimensionless parameter h, such that H0 = 100h km s−1Mpc−1 = h/3000 Mpc−1.

The deceleration parameter q(t), is defined by

q(t) ≡ − R̈(t)R(t)

Ṙ2(t)
. (2.107)
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Figure 2.15: Hubble parameter

As the name suggests, it describes whether the expansion of the universe is slowing down

(q > 0) or speeding up (q < 0). If the Taylor expansion keeps on going there come out several

parameters, for instance the next two ones are the jerk j ≡ R2
...
R

Ṙ3
and the snap j ≡ R3

....
R

Ṙ4

parameters. That is, the coefficients in the power series of the expansion of the scale factor are

known as the cosmography. See for instance [8]

Now, let us write the redshift parameter in terms of the look-back time t− t0
R(t0)

R(t)
=

[
1− (t0 − t)H0 −

1

2
(t0 − t)2q0H

2
0 − · · ·

]−1

≈ [1− δx]−1 (2.108)

≈ 1 + (t0 − t)H0 +
1

2
(t0 − t)2q0H

2
0 + (t0 − t)2H2

0 . (2.109)

assuming |t0 − t| � t0 (very close to today). Then, we have

z =
R(t0)

R(t)
− 1 = (t0 − t)H0 + (t0 − t)2

(
1 +

1

2
q0

)
H2

0 + · · · . (2.110)

Since z is an absolute quantity (observable), then the look-back time t0 − t can be written in

terms of z. For z � 1, from the above equation, we have

(t0 − t)H0 = z − (t0 − t)2

(
1 +

1

2
q0

)
H2

0 + · · · . (2.111)

and using the fact, at first order that (t0 − t)H0 ≈ z, therefore

t0 − t = H−1
0 z −H−1

0

(
1 +

1

2
q0

)
z2 + · · · . (2.112)

The approximations depend only on the present-day values of H0 and q0, and no knowledge of

the complete expansion history R(t) of the universe.
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The radial χ coordinate (Eq. 2.70) of the emitting galaxy

χ =

∫ t0

t

c dt

R(t)
= c R−1

0

∫ t0

t

[1− (t0 − t)H0 + · · · ]−1dt, (2.113)

assuming t0 − t� t0, expanding the terms and then integrating, we have

χ = c R−1
0 [(t0 − t) +

1

2
(t0 − t)2H0 + · · · ]. (2.114)

using the expression (2.112), assuming z � 1,

χ =
c

R0H0
[z − 1

2
(1 + q0)z2 + · · · ], (2.115)

it only depends on H0 and q0 and not on the full expansion R(t).

The proper distance dp of the emitting galaxy at cosmic time t0 is d ≡ R(t0)χ, thus for

nearby galaxies d ≈ cz/H0. Moreover, using that the cosmological redshift can be written as a

Doppler shift due to recession velocity v of the emitting galaxy

v ≡ cz = H0d.

The galaxies appear to recede from us with a recesion speed proportional to their distance:

Hubble’s law. The Hubble constant has the dimensions of the inverse time and 1/H0 gives the

age of the universe. It is important not to confuse the expansion redshift with a kinematic

redshift. Also, take into account for relativistic velocities

1 + z =

√
1 + v/c

1− v/c . (2.116)

Combining Eqn. 2.105, we get an expression (for small redshift) (jav: do it)

H(z) = H0[1 + (1 + q0)z − · · · ] (2.117)
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Example 2.6.7: Hubble expansion

The Hubble expansion is a natural property of an homogeneous an isotropic universe.
All observers see galaxies with the same Hubble law. For example, consider two observer-
s/galaxies

~vA = H0 · ~rA ~vB = H0 · ~rB , (2.118)

~vBA = ~vB − ~vA = H0~rB −H0~rA = H0(~rB − ~rA). (2.119)

In a homogeneous universe every particle moving with the substratum has a purely
radial velocity proporcional to its distance from the observer. (jav: si v = H0r

2?)

2.6.4 Integrales

In [1]: import numpy as np

from sympy import *

from gravipy import *

D =

∫ R

0

a

(a2 − ρ2)
1
2

dρ

In [11]: init_printing()

a, rho, R = symbols (’a, \\rho, R’, positive=True) #Asignamos nuestros simbolos a las variables

e = Rational(1,2) #Al no poder poner el simbolo 1/2, utilizamo esta forma para poder poner el simbolo y que funcione con cualquier función

D = a / (a**2 - rho**2)**e #La funcion que vamos a integrar

integrate(D,(rho,0,R))

#integrate(D,rho)
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Out[11]:

a asin

(
R

a

)

C =

∫ 2π

0

Rdφ

In [5]: phi = symbols (’\\phi’)

C = R

integrate(C,(phi,0,2*pi))

Out[5]:

2πR

A =

∫ 2π

0

∫ R

0

a

(a2 − ρ2)
1
2

ρdρdφ

In [149]: A = a / (a**2 - rho**2)**e*rho

simplify(integrate(A,(rho,0,R),(phi,0,2*pi)))

Out[149]:

2πa
(
−
√
−R2 + a2 +

√
a2
)

t =
1

H0

∫ a

0

[ x

Ωm,0 + (1− Ωm,0)x

] 1
2 dx

In [42]: H_0, Omega, x, a = symbols (’H_0, \\Omega_{m0}, x, a’)

t = (1/H_0) * (x / (Omega + (1-Omega)*x))**e

t_1 = t.subs(Omega,1)

integrate(t_1,(x,0,a))

Out[42]:

2a
3
2

3H0
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In [151]: #Para Omega > 1

H_0, Omega, x, a = symbols (’H_0, \\Omega_{m0}, x, a’)

psi = symbols (’psi’)

x1 = Omega / (Omega - 1)*sin(psi/2)**2 # con [0/pi] llamamos nuestra variable x1 que es la que vamos sustituir por x

t_x1 = (1/H_0) * (x / (Omega + (1-Omega)*x))**e

t = factor(t_x1.subs(x,x1))

t

#integrate(t,(psi,0,pi))

Out[151]:

√
sin2 (ψ2 )

−Ωm0 sin2 (ψ2 )+Ωm0+sin2 (ψ2 )−1

H0

In [154]: # Para Omega < 1

H_0, Omega, x, a = symbols (’H_0, \\Omega_{m0}, x, a’)

psi = symbols (’psi’)

x2 = Omega / (1 - Omega) *sinh (psi/2)**2

t_x2 = (1/H_0) * (x / (Omega + (1-Omega)*x))**e

t = factor(t_x2.subs(x,x2))

t

#integrate(t,(psi,0,pi))

Out[154]:

√
sinh2 (ψ2 )

−Ωm0 sinh2 (ψ2 )−Ωm0+sinh2 (ψ2 )+1

H0

t =
1

H0

∫ a

0

x√
Ωr,0 + (1− Ωr,0)x2
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In [126]: H_0, Omega_r0, x, a = symbols (’H_0, \\Omega_{r0}, x, a’)

t = 1/H_0* x/sqrt((Omega_r0 + (1 - Omega_r0)*x**2))

t_1 = t.subs(Omega_r0,1)

integrate(t_1,(x,0,a))

Out[126]:

a2

2H0

In [156]: # Para Omega < 1

H_0, Omega_r0, x, a = symbols (’H_0, \\Omega_{r0}, x, a’)

t = 1/H_0* x/sqrt((Omega_r0 + (1 - Omega_r0)*x**2))

integrate(t,(x,0,a))

Out[156]:

−
√

Ωr0

√
1 + a2 polar lift (−Ωr0+1)

Ωr0

H0 (Ωr0 − 1)
+

√
Ωr0

H0 (Ωr0 − 1)

t =
1

H0

∫ a

0

x√
Ωm,0x+ Ωr,0

dx

In [144]: H_0, Omega_m, Omega_r, x, a = symbols (’H_0, \\Omega_{m0}, \\Omega_{r0} x, a’)

#haciendo

y = Omega_m * x + Omega_r

t = 1/H_0 * (x/(sqrt(y)))

t_1 = simplify(integrate(t,(x,0,a)))

factor (t_1)

Out[144]:

-83-



2. HOMOGENEOUS AND ISOTROPIC UNIVERSE

2
√

Ωr0

(
Ωm0a

√
Ωm0a
Ωr0

+ 1− 2Ωr0

√
Ωm0a
Ωr0

+ 1 + 2Ωr0

)

3H0Ω2
m0

t =
1

H0

∫ a

0

√
x

1− ΩΛ,0 + ΩΛ,0x3
dx

In [191]: H_0, Omega_l, x, a , y = symbols (’H_0, \\Omega_{\\Lambda0},x, a ,y’)

t = 1/H_0*sqrt(x/(1-Omega_l + Omega_l * x**3))

#Haciendo

y2 = x**3*abs(Omega_l)/(1-Omega_l)

Ht = 2/(3*(abs(Omega_l)))*1/(sqrt(1 + y**2))

integrate(Ht,(y,0,y2))

Out[191]:

2 asinh
(
x3|ΩΛ0|
−ΩΛ0+1

)

3 |ΩΛ0|
In [192]: H_0, Omega_l, x, a , y = symbols (’H_0, \\Omega_{\\Lambda0},x, a ,y’)

t = 1/H_0*sqrt(x/(1-Omega_l + Omega_l * x**3))

#Haciendo

y2 = x**3*abs(Omega_l)/(1-Omega_l)

Ht = 2/(3*(abs(Omega_l)))*1/(sqrt(1 - y**2))

integrate(Ht,(y,0,y2))

Out[192]:

2 asin
(
x3|ΩΛ0|
−ΩΛ0+1

)

3 |ΩΛ0|
In [ ]:

-84-



2.7 The Friedmann-Lemâıtre equations

2.7 The Friedmann-Lemâıtre equations

The Friedmann equation describes the expansion of the Universe, and is therefore the most

important equation in cosmology. Let us derive the equations by using Newton’s theory and

after that through Einstein theory.

Example 2.7.1: The Friedmann equation

Let us consider an observer in a uniform expanding medium with mass m and density
ρ. Then, the total mass M = 4πρr3/3 contributes to a force, see Figure 2.16

F =
GMm

r2
=

4πGρrm

3
.

Our particle has a gravitational potential energy

V = −GMm

r
= −4πGρr2m

3
,

with the velocity of the particle ṙ giving the kinetic energy

T =
1

2
mṙ2.

Energy conservation for that particle U = T + V , where U is a constant

U =
1

2
mṙ2 − 4π

3
Gρr2m,

using comoving coordinates ~r = R(t)~x (r the physical coordinates and x the fix location),
then

U =
1

2
mṘ2x2 − 4π

3
GρR2x2m,

if we multiply for 2/mR2x2 and rearranging, we have

Ṙ2

R2
=

8πG

3
ρ− kc2

R2
,

where kc2 = −2U/mx2. k is just a constant unchanging with either space or time, often
called the curvature.

• k > 0- the expansion will at some time, halt and reverse itself.

• k < 0- the expansion will continue forever.

• k = 0- the expansion of the universe will slow down, but only halt at t =∞.
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Example 2.7.2: Evolution of the density

From thermodynamics second law dE + PdV = TdS and using E = mc2,

E =
4π

3
R3ρc2,

→ dE

dt
= 4πR2ρc2

da

dt
+

4π

3
R3 dρ

dt
c2,

and for the volume change
dV

dt
= 4πR2 da

dt
,

assuming a reversible expansion dS = 0, we get the fluid equation

ρ̇+ 3
Ṙ

R

(
ρ+

p

c2

)
= 0.

The first term in the parenthesis corresponds to the dilution because the volume has
increased, while the second is the loss of energy because the pressure has done work as
the Universe’s volume increased (gravitational potential energy).

Example 2.7.3: The accelerated equation

Differentiating the Friedmann equation, we have

2
Ṙ

R

RR̈− Ṙ2

R2
=

8πG

3
ρ̇+

2kc2Ṙ

R3
,

using ρ̇

R̈

R
−
(
Ṙ

R

)2

= −4πG
(
ρ+

p

c2

)
+
kc2

R2
,

R̈

R
= −4πG

3

(
ρ+

3p

c2

)
.

independent of the constant k.

-86-



2.7 The Friedmann-Lemâıtre equations

Figure 2.16: Figure of a mass in a solid gravity sphere.

Once we have specified the metric that describes the homogeneous and isotropic expanding

universe, the evolution of both the scale factor and matter density follows from Einstein’s

equations :

Gµν ≡ Rµν −
1

2
gµνR = κ0 Tµν . (2.120)

As we have seen previously Gµν is the Einstein metric tensor, the Ricci tensor Rµν is a com-

bination of first and second derivatives of the metric gµν , and its trace is defined by the Ricci

scalar R ≡ gµνRµν ; G is the Newton’s constant and κ0 = 8πG/c4. On the right hand side, the

energy-momentum tensor Tµν contains the constituents of the universe. An acceptable modi-

fication to Einstein’s equations is the introduction of a Lorentz-invariant constant-term Λgµν

into the field equations:

Rµν −
1

2
gµνR+ Λgµν = κ0 Tµν , (2.121)

where Λ is called the cosmological constant and its value, according to astrophysical observa-

tions, is Λ ∼ 10−52m−2 [21, 103]; we will see more about this component in subsequent sections.

Equation (2.121) is in general a complicated set of coupled quasilinear second-order partial dif-

ferential equations for the ten elements of the metric gµν . Nevertheless, they may exhibit simple

analytical solutions in the presence of generic symmetries, for instance, under the assumption

of the FRW metric. Considering gµν in the form of (2.64), the Christoffel symbols

Γ0
ij = R2Hgij , Γi0j = Γij0 = Hδij ,

Γ1
11 =

kr

1− kr2
, Γ1

22 = −r(1− kr2), Γ1
33 = −r(1− kr2) sin θ,

Γ2
33 = − sin θ cos θ, Γ2

12 = Γ2
21 = Γ3

13 = Γ3
31 =

1

r
, Γ3

23 = Γ3
32 = cot θ.
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and the non-vanishing curvature terms are given by

R00 = −3
R̈

R
= −3(Ḣ +H2), (2.122)

Rij =


 R̈
R

+ 2

(
Ṙ

R

)2

+
2c2k

R2


 gij , (2.123)

R = 6


 R̈
R

+

(
Ṙ

R

)2

+
c2k

R2


 , (2.124)

and the Einstein tensor

G0
0 = −3



(
Ṙ

R

)2

+
c2k

R2


 , (2.125)

Gij = −


2
R̈

R
+

(
Ṙ

R

)2

+
c2k

R2


 δij . (2.126)

where an overdot indicates again derivative with respect to cosmic time t (� ≡ d/dt).

HW: Compute R and G

HW: Compute the Kretschmann scalar for a FRW spacetime.

The geometry of the space-time is determined by equations (2.125)-(2.126), then to solve

Einstein’s equations we just need to specify the matter content under consideration.

2.8 The Energy-momentum tensor

The energy-momentum is divided in the following components:

Tµν =




T 00
... T i0

· · ·
... · · · · · · · · ·

T 0j
... T ij



.

• T 00- total energy density.

• T i0 - energy flux (×c−1) in the i-direction.
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2.8 The Energy-momentum tensor

• T 0j - momentum density (×c) in the j-direction.

• T ij - momentum flow (random thermal motions).

– T ii - Isotropic pressure in the i-direction.

– T ij (i 6= j) viscous stresses.

Because we seek for a Tµν consistent with the requirements of homogeneity and isotropy, we

need the following to be satisfied:

• Isotropy requires that the mean values of the 3-vector vanish, i.e. T 0i = T 0j = 0.

• T ij at any point (more specifically at x = 0) be proportional to δij and hence to gij

(= R2δij at x = 0), then

Tij(x = 0) ∝ δij ∝ gij(x = 0). (2.127)

• Homogeneity requires that the proportionality coefficient be only a function of time

T00 = ρ(t), πi ≡ Ti0 = 0, Tij = p(t)gij(t, ~x). (2.128)

Tµν = gµλTλν =




ρ 0 0 0
0 −p 0 0
0 0 −p 0
0 0 0 −p


 , (2.129)

where ρ is the energy density and p the isotropic pressure of the fluid, both of them measured

by an observer in a local inertial frame in which the fluid is at rest. This is the stress-energy

tensor of a perfect-fluid as seen by a comoving observer.

More generally

Tµν =
( p
c2

+ ρ
)
uµuν − pgµν , (2.130)

in the rest frame, where the 4-velocity of the fluid between the fluid and the observer is given

by uµ. For a comoving observer uµ = (1, 0, 0, 0), the energy-momentum tensor hence reduces to

Tµν = diag(ρ, giip). Thus, Einstein’s equations for a perfect fluid in a FRW background provide

two independent expressions (time-time and space-space components), which together yield to

the Friedmann and acceleration equations:

G0
0 ⇒

(
Ṙ

R

)2

=
8πG

3
ρ− k

R2
+

1

3
Λc2, (2.131)

Gij ⇒ R̈

R
= −4πG

3

(
ρ+

3p

c2

)
+

1

3
Λc2. (2.132)
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The cosmological equations, in which R(t) is computed under the aforementioned conditions,

are known as the Friedmann-Lemâitre-Robertson-Walker equations; we simply refer to them as

Friedmann equations.

Another equation of interest is the conservation of the energy-momentum tensor, ∇µTµν =

∂µT
µ
ν + ΓµµλT

λ
ν − ΓλµνT

µ
λ = 0, which leads to the continuity equation:

ρ̇+ 3
Ṙ

R

(
ρ+

p

c2

)
= 0. (2.133)

In order to solve the full set of cosmological equations, we still need to specify an extra condition,

for instance the pressure for every kind of material the universe is filled with. The usual, and

well-founded, assumption is that there is a pressure contribution associated to each energy

density, so that p ≡ p(ρ). Such a relationship is known as the equation-of-state. The Friedmann

equation (2.131), the energy-momentum conservation (2.133), and the equation-of-state p =

p(ρ) are therefore the fundamental expressions that describe the dynamics of a homogeneous

and isotropic universe.

2.8.1 Cosmic Inventory

In order to understand the dynamical properties of the universe, we first need to bear in mind

the whole content of it. Let us focus on single-barotropic perfect-fluids that satisfy, in general,

a time-dependent equation-of-state w(z), of the form

p = c2w(z)ρ. (2.134)

For any component, with constant w, the continuity equation (2.133) can be easily integrated

to give 1

ρ ∝ R−3(1+w). (2.136)

Moreover, in a universe dominated by the energy density ρ, the Friedmann equation leads to

the time evolution of the scale factor:

R(t) ∝ t2/3(1+w), ∀ w 6= −1, (2.137)

or, in conformal time (Eqn. 2.71):

R(η) = η2/(1+3w), ∀ w 6= −1. (2.138)

1For a more general description of w(a), the evolution of the energy density is given by

ρ ∝ exp[−3X(a)], with X(a) =

∫ a

1
[1 + w(a′)]d ln a′. (2.135)
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2.8 The Energy-momentum tensor

That is, the evolution of a universe filled with a given perfect fluid is known once its equation-

of-state is specified. The standard Λ-Cold Dark Matter model (ΛCDM) relies upon four main

ingredients, described by radiation (photons, massless neutrinos), matter (baryons), the inclu-

sion of a dark matter component (DM) and vacuum energy (Λ). The behaviour of each of these

components is summarised as follows:

Radiation

This relativistic component dominates during the earliest stages of the universe. Radiation

is characterised by an associated pressure pr = ρr/3
1, with an associated equation-of-state

wr = 1/3. The evolution of its energy-density and scale factor are thus given by

ρr(t) = ρr,0

[
R(t)

R0

]−4

, and R(t) ∝ t1/2. (2.139)

On the other hand, the energy density of the blackbody radiation

ρr(T ) = αT 4, (2.140)

where α is the Stefan-Boltzmann constant. If the present day temperature is pin-up to be

T0 = 2.726K then the number density of radiation today is nγ,0 ' 4× 108m−3 (see more about

them in the next section). On the other hand, comparing eqns. (2.139) and (2.140) we have

that the universe was denser and hotter in the past

T ∝ R−1. (2.141)

The big bang is somehow explain:

t→ 0, R→ 0, ρ→∞, T →∞. (2.142)

Extrapolating our assumptions, at the beginning of the universe (t → 0), the universe was

denser and hotter concentrated in a minusculous tiny region.

The total radiation energy-density ρr in the universe may be written as the sum of two main

contributions: photons (γ) and massless neutrinos (ν):

ρr(t) = ργ(t) + ρν(t). (2.143)

1we’ll obtain this result with statistical mechanics in the following sections.
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Photons - Primordial photons play a key role in observational cosmology as they constitute

the cosmic microwave background radiation we nowadays observe, as we shall see in more detail

in Sections 15.0.1 and 17.2.1.

Massless Neutrinos - Neutrinos are very weakly interacting leptons, which come in three

types or ‘flavours’: electron, muon, and tau; all of them with an associated antiparticle. The

amount of massless neutrinos in the cosmic background (estimated from theoretical arguments)

is given by

ρν = Neff ×
7

8
×
(

4

11

)4/3

ργ , (2.144)

where Neff is the effective number of neutrino species; note that Neff = 3.046 for the standard

neutrino species [92]. Nevertheless, several experiments suggest they do have a very small mass.

For instance experiments detecting atmospheric neutrinos, solar neutrinos, also reactor neutri-

nos and accelerator beam neutrinos. Cosmological observations have also provided limits on the

neutrino mass; some reviews in the subject can be found in: Dolgov [34], Elgarøy and Lahav

[39], Hannestad [49], Lesgourgues and Pastor [74].

Matter

Any type of material with negligible pressure is often referred as ‘dust’. It is represented by an

equation-of-state wm = 0, with energy-density given by

ρm(t) ∝ R−3, and R(t) ∝ t2/3. (2.145)

that is, the dilution of the energy-density is because the expansion of the volume V ∝ R3.

Combining expressions in (2.145) we have

H =
Ṙ

R
=

2

3t
. (2.146)

that is, the universe expands forever but with a decreasing rate. Notice that t0 = 2
3

1
H0

and

using the Hubble parameter we have that the age of the Universe with content purely giving in

the form of matter is t0 = 9.3 Gyrs. This type of universe is called Einstein de-Sitter Universe.

The total matter content of the universe comes in several forms. In addition to the familiar

baryonic matter, observations of the Large-Scale Structure (LSS) suggest that most of the

galactic content is in the form of non-baryonic matter, called Dark-Matter. The total matter

density may be expressed as the sum of baryonic (b) and dark-matter (dm) contributions:

ρm(t) = ρb(t) + ρdm(t). (2.147)
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Baryons - make up the familiar matter of our universe (protons and neutrons). Since the

charge of the universe is neutral, there must be equal number of protons and electrons (charged

leptons). An elaborated review of Big Bang Nucleosynthesis (BBN) is given by Steigman [125]

(see also next section).

Dark matter - The existence of non-baryonic dark matter has been inferred from its gravi-

tational manifestations through the flat rotation curves of galaxies, the mass-to-light ratios in

clusters of galaxies, and gravitational lensing of background sources. An extended discussion

of the current status of particle dark matter, including experimental evidence and theoretical

motivations, is presented by Bertone et al. [14], Sellwood and Kosowsky [120].

Vacuum

If the cosmological constant term is moved to the right-hand-side on Einstein’s equations, it

can be associated to the vacuum energy-density, given by

ρΛ ≡
Λc2

8πG
. (2.148)

At future cosmic times, while the matter and radiation density dilute away, the vacuum energy-

density remains with the same constant value ρΛ. The vacuum energy can be modelled as a

perfect fluid with negative pressure equal to pΛ = −ρΛ, which corresponds to an equation-of-

state wΛ = −1: a De-Sitter Universe. For a review about the cosmological constant term see e.g.

Carroll [21], Padmanabhan [103], Peebles and Ratra [104]. The cosmological constant is also seen

as the simplest form of a more generic ‘dark energy’ component, commonly considered as the

main candidate to explain the current acceleration of the universe. We shall see in Chapter ??

that wDE(a) evolving in time provides a slightly better description for the current observational

data.

Curvature

The contribution of the spatial curvature can be considered as any other energy component by

defining a fictitious energy density:

ρk ≡ −
3kc2

8πG
R−2. (2.149)
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This energy-density is described by an equation-of-state wk = −1/3, for which the scale factor

evolves proportionally to the cosmic time a ∝ t. The general behaviour of the curvature term is

easily understood if we rewrite the Friedmann equation, with a vanished cosmological constant,

in the following way (
Ṙ

R

)2

=
8πG

3
(ρ+ ρk). (2.150)

For a positive density contribution ρ, the universal expansion can only be stopped if the universe

is closed k > 0 (ρk < 0), otherwise it will expand forever.

Missing matter

If the Friedmann equation is written in terms of the present energy-density components, we

have

(
Ṙ

R

)2

=
8πG

3

[
ρr,0

(
R

R0

)−4

+ ρm,0

(
R

R0

)−3

+ ρk,0

(
R

R0

)−2

+ ρΛ,0

(
R

R0

)−0
]
. (2.151)

Notice that the right-hand-side can be seen as a power series expansion, however with a missing

component with contribution R−1. To complete the series, we include this term and named it

as the missing-energy component [131], for which its energy-density satisfies

ρX(t) = ρX,0

[
R

R0

]−1

, and R ∝ t2. (2.152)

The missing-energy component has therefore an equation-of-state wX = −2/3, and behaves sim-

ilarly to domain walls [12, 134]. We explain it in more detail about this new term in Chapter ??.

A summary of the main components of the universe, along with their behaviour, is shown

in Table 2.2. Before solving the cosmological equations for the whole mixture of perfect-fluid

components, we include some essential notation:

Density parameter: We also introduce the ratio of the energy-density relative to the critical

density ρc ≡ 3H2/8πG, as the dimensionless density parameter:

Ωi(t) ≡
ρi(t)

ρc(t)
, (2.153)

where the index ‘i’ labels a single type of component, such as matter, radiation, etcetera. The

present critical density is ρc,0 = 1.88h2 × 10−22 gcm−3.
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2.8 The Energy-momentum tensor

component Ωi wi ρ(R) R(t) H(t)

radiation Ωr 1/3 ∝ R−4 ∝ t1/2 1/2t

matter Ωm 0 ∝ R−3 ∝ t2/3 2/3t

curvature Ωk -1/3 ∝ R−2 ∝ t 1/t

missing matter ΩX -2/3 ∝ R−1 ∝ t2 2/t

cosmological constant ΩΛ -1 ∝ R0 ∝ exp(
√

Λ
3 t) const

Table 2.2: Constituents of the universe and their cosmological parameters: density parameter

Ωi, equation-of-state parameter wi; and their behaviour: density evolution ρ(R), scale factor R(t),

Hubble parameter H(t). (jav: agregar comoving quantities, r : η, dm : η2,Λ : −η−1)

2.8.2 The cosmological field equations

We have computed the evolution of the scale factor for a universe made up by single-independent

fluids: radiation, matter, vacuum, spatial curvature, vacuum energy and missing energy. To make

the basic Friedmann models more realistic, we need to take into account the whole mixture of

these components. Suppose that within the mixture, the distinct fluids do not interact with each

other but only through their mutual gravitation (perfect fluids). The total energy-momentum

tensor of a multiple-component fluid is thus given by

Tµν =
∑

i

(Tµν)i, (2.154)

where i labels the sum over various constituents, each of them individually modelled as a single

perfect-fluid with pi = wiρi. Using the definitions introduced above, the Friedmann equations

(2.131) and (2.132) for a multi-fluid universe are now written in the following way

(
H

H0

)2

=
∑

i

Ωi,0

(
R

R0

)−3(1+wi)

+ Ωk,0

(
R

R0

)−2

, (2.155)

Ḣ +H2 = −4πG

3

∑

i

ρi(1 + 3wi) =
RR̈

Ṙ2
. (2.156)

The density parameters at any given time are

Ωi = Ωi,0

(
H0

H

)2(
R

R0

)−3(1+wi)

. (2.157)
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Figure 2.17: The evolution of density parameters Ωi(a) are seen as a succession of several epochs,

each of them dominated by different components: radiation, matter, curvature and cosmological

constant.

Therefore, these equations, at any cosmic time, can be written in the elegant forms:

ΩT ≡
∑

i

Ωi + ΩΛ = 1− Ωk, (2.158)

q =
1

2

∑

i

Ωi(1 + 3wi). (2.159)

In particular, the curvature density-parameter Ωk = −kc2/H2R2, determines the normali-

sation of the scale factor (2.66), or curvature radius:

R0 = H−1
0

√
−kc2/Ωk,0 =

cH−1
0√
|Ωk,0|

. (2.160)

In a universe with positive curvature, R0 is just the radius of the 3-sphere. Notice that we

can go back and for on the scale factors a ↔ R from Eqn. (2.66), thus from now on, and for

simplicity, we shall use the normalised scale factor a. On the other hand, we notice that the

matter distribution (2.158) clearly determines the spatial geometry of the universe: ΩT < 1

(open), ΩT = 1 (flat) and ΩT > 1 (closed).

The Friedmann equations have exact solutions in just a few simple cases, for instance in

a universe modelled by perfect-fluids. For this particular case, the density parameters and

their dependence on the scale factor are plotted in Figure 2.17. In this Figure, the cosmic

evolution of the different constituents are seen as a succession of several epochs, each of them
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Figure 2.18: Deceleration parameter q(z) as a function of redshift z for a multi-fluid universe.

Notice that the universe is currently accelerating (q(z = 0) < 0).

corresponding to a different perfect-fluid. At the earliest stages, radiation dominates because

of its behaviour ρr ∝ a−4. Then, at aeq ≈ 4.2 × 10−5h−2, the radiation contribution equals

that of matter, which starts dominating afterwards. It is noticeable that the curvature term is

almost negligible due to the initial conditions taken (see Section 17.4). Finally, the cosmological

constant term dominates over the late-time evolution of the universe, and remains so for all

time due to its constant energy-density behaviour.

From expression (2.159), we observe that the sign of (1 + 3wi) determines whether the

universe is accelerating (q < 0) or decelerating (q > 0). If the major contribution comes from

a fluid(s) with wi > −1/3 the expansion of the universe will gradually slow-down due to

the action of gravity. On the other hand, if wi < −1/3 the pressure component acts as a

‘repulsive’ term leading to an accelerated expansion. For instance the cosmological constant

term, which dominates over the dynamics of the universe at low-redshift, is considered the

principal responsible for the present accelerated expansion of the universe, seen in Figure 2.18.

2.9 Scalar Fields

S =

∫
d4x
√−g

[
1

2
∂µφ∂

µφ− V (φ)

]
. (2.161)

The corresponding field equation for φ is obtained from the Euler-Lagrange equations and
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reads

�2φ+
dV

dφ
= 0. (2.162)

Tµν = ∂µφ∂νφ− gµν [
1

2
∂σφ∂

σφ− V (φ)]. (2.163)

T00 = ρφ =
1

2
φ̇2 + V (φ) +

1

2
(~∇φ)2, (2.164)

Tii = pφ =
1

2
φ̇2 − V (φ)− 1

6
(~∇φ)2, (2.165)

From the structure of the effective energy-density and pressure, the Friedmann and the

acceleration equations for a homogeneous single-scalar field become

H2 =
8πG

3

[
1

2
φ̇2 + V (φ)

]
, (2.166)

ä

a
= −8πG

3

[
φ̇2 − V (φ)

]
. (2.167)

with an analogous equation of state

wφ =
φ̇2 − 2V (φ)

φ̇2 + 2V (φ)
. (2.168)

Therefore, the inflationary condition to be satisfied is φ̇2 � V (φ), which is easily fulfilled with

a suitable flat potential. Inflation is driven by the vacuum energy of the inflaton field pφ ≈ −ρφ.
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2.10 World Models

https://www.youtube.com/watch?v=Y-dMtbHQVI0

Let us take the equation for the total density (2.158) ΩT + Ωk = 1 and the equation for

acceleration (2.159) q = 1
2

∑
i Ωi(1 + 3wi). There are some lines useful to draw in order to

identify the type of Universe we live on:

• Open-closed line (k = 0)

ΩΛ,0 = 1− Ωm,0. (2.169)

• Accelerating-decelerating line (q = 0)

ΩΛ,0 =
1

2
Ωm,0. (2.170)

• Expand-forever-recollapse & big bang - no big bang, it requires a little more work.

In general

ȧ2 = a2H2
0 (Ωr,0a

−4 + Ωm,0a
−3 + Ωk,0a

−2 + ΩΛ,0) (2.171)

with the condition (2.158) 1 = Ωr+Ωm+Ωk+ΩΛ for all time, in particular for a = 1. The FRW

Universes dominated by matter and vacuum energy are named as Lemaitre models. From

the Figure 2.19 we have that (considering present data): we live in a nearly flat accelerating

universe that presents a big bang in the past and will expand forever in the future.

Cosmological models with zero cosmological constant (ΩΛ,0 = 0), and strictly non-zero

matter or radiation density, are known as the Friedmann models.

Dust only Friedmann models (Ωr,0 = 0, Ωk,0 = 1− Ωm,0)

From the equation (2.171), we have

ȧ2 = H2
0 (Ωm,0a

−1 + 1− Ωm,0) → t =
1

H0

∫ a

0

[
x

Ωm,0 + (1− Ωm,0)x

]1/2

dx. (2.172)

• Ωm,0 = 1 (k = 0) - Einstein de-Sitter model

a(t) =

(
3

2
H0t

)2/3

. (2.173)
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Figure 2.19: (jav: I’ll do it later)

• Ωm,0 > 1 (k = 1), we write

x =

[
Ωm,0

Ωm,0 − 1
sin2 ψ/2

]
, ψ = [0, π], (2.174)

and we have

a(t) =
Ωm,0

2(Ωm,0 − 1)
(1− cosψ), t =

Ωm,0
2H0(Ωm,0 − 1)3/2

(ψ − sinψ), (2.175)

where the first term represents the expression for a cycloid, see Figure 2.20.

• Ωm,0 < 1 (k = −1), we write

x =

[
Ωm,0

1− Ωm,0
sinh2 ψ/2

]
, ψ = [0, π]. (2.176)

and we have

a(t) =
Ωm,0

2(1− Ωm,0)
(coshψ − 1), t =

Ωm,0
2H0(1− Ωm,0)3/2

(sinhψ − ψ). (2.177)

Radiation only (Ωm,0 = 0, Ωk,0 = 1− Ωr,0)

ȧ2 = H2
0 (Ωr,0a

−2 + 1− Ωr,0) → t =
1

H0

∫ a

0

[
x√

Ωr,0 + (1− Ωr,0)x2

]
dx. (2.178)
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2.10 World Models

Figure 2.20: (jav: Figure of the universe)

• Ωr,0 = 1 (k = 0)

a(t) = (2H0t)
1/2. (2.179)

• Ωr,0 < 1 (k = −1) & Ωr,0 > 1 (k = 1)

a(t) = (2H0Ω
1/2
r,0 t)

1/2

(
1 +

1− Ωr,0

2Ω
1/2
r,0

H0t

)1/2

. (2.180)

Spatially flat (Ωk,0 = 0, Ωm,0 + Ωr,0 = 1)

ȧ2 = H2
0 (Ωm,0a

−1 + Ωr,0a
−2) → t =

1

H0

∫ a

0

[
x√

Ωm,0x+ Ωr,0

]
dx, (2.181)

haciendo y = Ωm,0x+ Ωr,0

H0t =
2

3Ω2
m,0

[
(Ωm,0a+ Ωr,0)1/2(Ωm,0a− 2Ωr,0) + 2Ω

3/2
r,0

]
. (2.182)

Cannot be easily inverted to give a(t). Nevertheless t = 2
3a

3/2 for matter only, and t = 1
2a

2 for

radiation, as expected.

Lemaitre models (ΩΛ,0 6= 0) but Ωr,0 = 0

• Spatially flat (Ωm,0 + ΩΛ,0 = 1)

ȧ2 = H2
0 [(1− ΩΛ,0)a−1 + ΩΛ,0a

2] → t =
1

H0

∫ a

0

√
x

(1− ΩΛ,0) + ΩΛ,0x3
dx, (2.183)

writing y2 = x3|ΩΛ,0|/(1− ΩΛ,0), we have then

H0t =
2

3
√
|ΩΛ,0|

∫ √a3|ΩΛ,0|/(1−ΩΛ,0)

0

dy√
1± y2

, (2.184)
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with solutions

H0t =
2

3
√
|ΩΛ,0|

f(x) =





sinh−1[
√
a3|ΩΛ,0|(1− ΩΛ,0)], ΩΛ,0 > 0.

.

sin−1[
√
a3|ΩΛ,0|(1− ΩΛ,0)], ΩΛ,0 < 0.

(2.185)

• Arbitrary spatial curvature (Ωk,0 = 1− Ωm,0 − ΩΛ,0)

ȧ2 = H2
0 (Ωm,0a

−1 + ΩΛ,0a
2 + Ωk,k). (2.186)

Quite complicated, but it may have solutions by using elliptical functions to get

a(t) =

(
3

2
H0

√
Ωm,0t

)3/2

small t, radiation domination. (2.187)

a(t) ∝ exp (H0

√
ΩΛ,0t) large t, Λ domination. (2.188)

De-Sitter model (Ωm,0 = 0, Ωr,0 = 0, ΩΛ,0 = 1 → k = 0)

Not a true model but interesting to study, specially during inflation, and as we shall see in Dark

Energy domination (
ȧ

a

)2

= H2
0 , (2.189)

wit solutions of the form

a(t) = exp[H0(t− t0)] = exp[
√

Λ/3c(t− t0)]. (2.190)

Anti de-Sitter space (negative cosmological constant?).

Einstein static Universe

Before the discovery of the expansion, Einstein introduced the cosmological constant Λ to get

ȧ = ä = 0 which has the following implications

4πGρm,0 = Λc2 =
c2k

a2
, (2.191)

from the first equality (using the acceleration equation) we have that ρm,0 = 2ρΛ,0 and Λ > 0,

and from the second (using the Friedmann equation) we have that k = 1. However this type of

universe is an unstable one.

-102-



2.11 Distances and Horizons

2.11 Distances and Horizons

Now we have all the components of the universe and its dynamics, let’s see how they may affect

the distances in the universe.

The particle horizon is the distance light could have travelled since the origin of the

universe. Regions further apart could never have been causally connected. In a time dt light

travels a comoving distance dχ = cdt/R, thus the total comoving distance travelled since the

big-bang corresponds to,

χ
p ≡ c

∫ t

0

dt

R(t)
. (2.192)

considering

dz = d(1 + z) = d

(
R0

R

)
= −R0

R2
dR = −R0

R2
Ṙdt = −(1 + z)H(z)dt, (2.193)

therefore,

χ
p =

c

R0

∫ R

0

dR

R2H(R)
=

c

R0

∫ ∞

z

dz

H(z)
. (2.194)

We must know how H(z) varies with z, which requieres knowledge of the evolution of the scale

factor. No information could have propagated further than χ
p on the comoving grid since the

beginning of time [33].

Moreover, by changing the order of integration of (2.194), we can also define the comoving

distance dc, or event horizon, as the distance light could have travelled between a source at

scale factor R and an observer today [33], as

χ
e = c

∫ t0

t

dt

R(t)
=

c

R0

∫ z

0

dz

H(z)
. (2.195)

Considering the FRW metric in terms of the conformal time (2.72), the distance multiplying

the solid angle provides the metric distance

dm = Sk(χ). (2.196)

In a flat universe (k = 0) the metric distance is equal to the comoving distance χ. We emphasize

that the comoving distance dc and the metric distance dm are not observables.

A related concept is the proper distance dp corresponding to the particle horizon:

dp(t) ≡ cR(t)

∫ t

0

dt

R(t)
= R(t)χp(t). (2.197)
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Regions separated by distances greater that the proper distance dp are not causally connected.

Furthermore, the Hubble radius or Hubble distance is defined by

dH(t) = cH−1(t). (2.198)

The Hubble distance dH(t), often described simply as the ‘horizon’ and corresponds to the

typical length-scale over which physical processes in the universe operate coherently. It is also

the length-scale at which general-relativistic effects become important; on scales much less

than dH(t) (within the horizon), Newtonian theory is often sufficient to describe the effects of

gravitation [56].

We also introduce the comoving Hubble distance as:

χ
H =

dH(t)

R(t)
=

c

H(t)R(t)
=

c

Ṙ(t)
, (2.199)

which gives the χ-coordinate corresponding to the Hubble distance.

Figure 2.21: Supernovae

A classical way of measuring distances in astronomy is to measure the flux from an object of

known luminosity, for example from Supernovae Type Ia (SNe Ia). Let us consider the observed

flux Fo at a distance dL from an emitting source of known luminosity Le (J s−1):

Fo =
Le

4πd2
. (2.200)

The quantity

dL =

(
Le

4πFo

)1/2

(2.201)

-104-



2.11 Distances and Horizons

is called the luminosity distance of the source.

In a FRW Universe, the proper area of this sphere is

A = 4πR2(t0)S2
k(χ). (2.202)

The photon frequency received by an observer is redshifted by a factor

ν0

νe
=
R(te)

R(t0)
=

1

1 + z
,

and also the rate of the photons that fall into the detector is also reduced by the same factor.

Therefore, the observed flux will be

F (t0) =
L(te)

4π[R0Sk(χ)]2
1

(1 + z)2
.

Then, the luminosity distance dL in terms of measurable quantities is

dL(z) ≡ (1 + z)R0Sk(χ). (2.203)

The distance-redshift relation is, in fact, one of the most important cosmological tests. This is

because given the observablesH0, Ωi,0 and the expression (2.203) we can compute the luminosity

distance to an object at any redshift z. Conversely, for a population of standard candles with

absolute magnitude M , and apparent magnitude m, we can measure the object’s distance

modulus µ at a given redshift z, defined by

µ ≡ m−M = 5 log10

(
dL(z)

1Mpc

)
+ 25. (2.204)

Then, the relationship of µ with redshift allows us to estimate the luminosity distance and

thereby constrain the cosmological parameters, as we will see in Chapter 17.

Another classical distance measurement in astronomy is to measure the angle δθ subtended

by an object of known physical size l. The angular distance is then defined as

dA = l/δθ.

From the angular part of the FRW metric, we have

l = R(te)S(χ)δθ

so that
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Figure 2.22: (jav: caption)

dA = R(te)S(χ) = R(t0)
R(te)

R(t0)
S(χ) =

R(t0)S(χ)

1 + z
.

Thus the angular distance is given by

dA ≡
R0Sk(χ)

(1 + z)
, (2.205)

or the comoving angular distance

dM = R0Sk(χ). (2.206)

Figure 2.23: (jav: caption)

Curvature affects DM (z) both through its influence on H(z) and through the geometrical

factor. The luminosity distance (relevant to supernovae) is related to the angular distance by
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2.11 Distances and Horizons

dL = dM (1 + z).

Hubble tension: https://arxiv.org/pdf/2012.13932.pdf

Graduated paper, Fig 4: https://arxiv.org/pdf/2108.09239.pdf

If redshift-space distortions are weak, which is a good approximation for luminous galaxy

surveys after reconstruction, but not for the LyaF, then the constrained quantity is the volume

averaged distance

dV (z) = [zdH(z)d2
M (z)]1/3. (2.207)
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Figure 2.24: (jav: see: https://arxiv.org/pdf/1411.1074.pdf)

Figure 2.25 sketches the distances dc, dL and dA in terms of redshift. It is worthwhile noticing

that for small scales, all these distance measures coincide

d ' z

H0
, (2.208)

where the linear evolution of distance with redshift is referred as the Hubble law [59].

2.11.1 Look-back time

A general expression for the look-back time

t0 − t =

∫ t0

t

dt =

∫ z

0

dz

(1 + z)H(z)
= (2.209)

t emitted, and t0 received.
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Figure 2.25: Comoving distance dc, luminosity distance dL, and angular distance dA for a universe

filled with the same constituents as in Figure 2.17. (jav: Add a dash line with different components.

Use python)

Ωm,0 ΩΛ,0 H0=50 70 90

1.0 0.0 13.1 9.3 7.2

0.3 0.0 15.8 11.3 8.8

0.3 0.7 18.9 13.5 10.5

Table 2.3: Age of the Universe (Gyr). Fijar parametros, usar w0=-1.5, -1, -0.5, wa=-0.5, 0, 0.5

t0 − t =

∫ z

0

dz̄

(1 + z̄)H(z̄)
(2.210)

=
1

H0

∫ 1

(1+z)−1

xdx√
Ωm,0x+ Ωr,0 + ΩΛ,0x4 + Ωk,0x2

(2.211)

The oldest star in globular clusters tstar ≈ 11.5± 1.3 Gys, hence t0 > tstar.

2.11.1.1 Alternatives to the ΛCDM model

The ΛCDM model has had great success in modeling a wide range of astronomical observations.

However, it is in apparent conflict with some observations on small-scales within galaxies (e.g.

cuspy halo density profiles, overproduction of satellite dwarfs within the Local Group, amongst

many others, see for example [? ? ]). In addition, all attempts to detect WIMPs either directly

in the laboratory, or indirectly by astronomical signals of distant objects have failed so far.

Also, a large range of the particle parameters – predicted to be detectable – have thereby been
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ruled out. For some of these reasons, it seems necessary to explore alternatives to the standard

ΛCDM model. With this in mind, several alternatives have been suggested. For instance the

Scalar Field Dark Matter (SFDM) model proposes the dark matter is a spin 0 bosson particle

[? ? ? ? ? ]; or the Self Interacting Dark Matter, as its name states, it relies on the cold dark

matter to be made of self interacting particles [? ]. On the other hand, in order to explain the

accelerated expansion of the universe there exist different modifications to the theory of General

Relativity, i.e. f(R) theories [42? ], braneworld models [? ? ]. There are also several candidates

to be the dark energy of the universe – alternatives to the cosmological constant –, i.e. scalar

fields (quintessence, K-essence, phantom, quintom, non-minimally coupled scalar fields [? ? ?

] ; or many more alternatives i.e. anisotropic universes [? ? ? ]. Finally, if the dark energy is

assumed to be a perfect fluid, then one of the most popular time-evolving parameterization

for its equation of state consists of expanding ω in a Taylor series, for example the Chevallier-

Polarski-Linder (CPL) ω = ω0 +ωa (1− a), with two free parameters ω0, ωa [26, 87]. It may also

be expanded into Fourier series [? ] or many more Bayesian approaches have been suggested to

account for a dynamical dark energy [? ].
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3
Inflation

Even though the Hot Big Bang model possesses a strong observational support, there are still

certain inconsistencies or unexplained features to deal with: the flatness, horizon and monopole

problems, amongst many others. The inflationary model offers the most elegant way so far

proposed to solve these problems and therefore to understand why the universe is so remarkably

in agreement with the standard cosmology. This model was initially introduced by Guth [48],

followed by Linde [84]. For an extended review we refer to the textbooks Liddle and Lyth

[81], Linde [85], Mukhanov [98]; and papers: Baumann [13], Liddle [77], Lyth and Riotto [88],

Olive [101], Riotto [116]. The inflationary universe, Alan Guth, The first three minutes, Steven

Weinberg, Endless Universe, P Steinhardt and N Turok. Let us examine some of the problems

of the Hot Big Bang model.

3.0.1 Shortcomings of the Hot Big Bang

Flatness problem

HW: Show that a flat universe is an unstable fixed point if the strong energy condition is

satisfied. hint: Show that the density parameter evolves with the scale factor a as:

dΩ

d lnR
= (1 + 3w)Ω(Ω− 1) (3.1)

The Friedmann equation (2.158) can be seen in the following form

ΩT − 1 =
kc2

(RH)2
. (3.2)
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3. INFLATION

Written in this way, we notice that ΩT = 1 is a very special case. If at the beginning the

universe was perfectly flat, then it remains so for all time. Nevertheless, a flat geometry is an

unstable critical situation, that is, for even a tiny deviation from it, ΩT would have evolved

quite differently and very quickly the universe would become more curved. This can be seen as

a consequence of RH being a decreasing function of time during radiation or matter domination

epoch. We observe from (3.2) and Table 2.2 that:

| ΩT − 1 | ∝ t radiation domination,

| ΩT − 1 | ∝ t2/3 dust domination.

Since the present age of the universe is estimated to be t0 ' 1017 sec [72], from the above

equations we can deduce the required value of | ΩT − 1 | at different early-times in order to

obtain the correct value of spatial-geometry at present time | ΩT,0 − 1 |. For instance, let us

consider some particular epochs:

• Decoupling (t ' 1013 sec), we would need | ΩT − 1 | ≤ 10−3.

• Nucleosynthesis (t ' 1 sec), we would need | ΩT − 1 | ≤ 10−16.

• Planck epoch (t ' 10−43 sec), we would need | ΩT − 1 | ≤ 10−64.

Consequently, at early times | ΩT − 1 | had to be fine-tuned extremely close to zero in order to

reach its actual observed value [67].

Figure 3.1: (jav: Figure that Ωk drives away from a=1)

Horizon problem

The horizon problem is one of the most important problems within the Big Bang model, as it

refers to the communication between different regions of the universe. The age of the universe
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Figure 3.2: Temperature fluctuations observed in the CMB measured by the WMAP-7 experi-

ment. The colour scale represents temperature fluctuations: from −30µK to 30µK. Figure reprinted

from [72]. (jav: use an updated figure)

is finite and hence even light should have only travelled a finite distance by any given time.

According to the standard cosmology, photons decoupled from the rest of the components at

temperatures about Tdec ≈ 0.3 eV (zdec ≈ 1100), from this time on photons free-streamed and

travelled basically uninterrupted until reach us, giving rise to the region known as the observable

universe. This spherical surface at which decoupling process occurred is called the surface of

last scattering. The primordial photons are responsible for the CMB radiation we observe today.

Looking at their fluctuations is thus analogous to taking a snapshot of the universe at that time

(about tdec ≈ 380, 000 years after the Big Bang), as seen in Figure 3.2.

Figure 3.2 shows light seen in all directions of sky. These primordial photons have nearly

the same temperature Tcmb = 2.725 K plus small fluctuations (about one part in one hundred

thousand). Being at the same temperature is a property of thermal equilibrium, hence obser-

vations are easily explained if different regions of the sky have been able to interact and moved

towards thermal equilibrium before decoupling. Oddly, the comoving horizon over which causal

interactions occurred before photons decoupled was significantly smaller than the comoving

distance that radiation travelled after decoupling. This means that photons coming from sky

regions separated by more than the horizon scale at last scattering, typically about 1◦, would

not have been able to interact and establish thermal equilibrium before decoupling. Therefore,

the Big Bang model by itself does not offer an explanation of why temperatures seen in opposite

directions of the sky are so nearly the same; the homogeneity must have been part of the initial

conditions.
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Figure 3.3: Schematic behaviour of the comoving Hubble radius during the Inflationary period

(sketched by the red circle). (jav: Now should be CMB, check notes)

Monopole problem

The monopole problem was initially the motivation to develop the Inflationary cosmology [47].

The monopole, and other relics, are components of the universe that are expected to emerge

as a consequence of unified models. From particle physics models, monopoles would have a

mass of 106 orders the proton mass. Hence, based on their non-relativistic character, a crude

calculation predicts an extremely high abundance at present time, ΩM,0 ' 1016 [29]. According

to this prediction, the universe would be dominated by magnetic monopoles, in contrast with

current observations: no one has found any monopole yet [5]. (jav: add textures, string, etc...)

3.0.2 Cosmological Inflation

Inflation is defined as the epoch in the evolution of the universe in which decreases the comoving

horizon (comoving Hubble radius) or equivalently the scale factor is quickly accelerated in just

a fraction of a second:

INFLATION ⇐⇒ d

dt

(
1

RH

)
< 0, (3.3)

⇐⇒ R̈ > 0, (3.4)

⇐⇒ ρ+ 3p < 0, (3.5)

⇐⇒ ε ≡ − Ḣ

H2
< 1. (3.6)

HW: Probe the equivalence amongst the above relations.
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The first term corresponds to the comoving Hubble radius (2.199), which is interpreted as

the observable universe becoming smaller during the inflationary period (sketched by the red

circle in Figure 3.3). This process allowed our present observable universe to lie within a region

located well inside the Hubble radius early on during inflation [81].

Accelerated expansion:

Shrinking the comoving Hubble radius implies an accelerated expansion.

d

dt
(RH)−1 =

d

dt
(Ṙ)−1 = − R̈

Ṙ2
< 0 → R̈ > 0. (3.7)

Slowly-varying Hubble parameter:

We introduce the fractional change of the Hubble parameter per e-fold ε, as

d

dt
(RH)−1 = − ṘH +RḢ

(RH)2
= − 1

R
(1− ε). (3.8)

where the last term is defined as follows

ε ≡ − Ḣ

H2
= −d lnH

d lnR
= −d lnH

dN
< 1. (3.9)

where dN ≡ d lnR = Hdt defines de number of e-folds of the inflationary expansion. This

represents that the fractional change of the Hubble parameter per e-fold is small, so the last

term tell us that if ε is small, then inflation happens. The case ε = 0 describes a de-Sitter space

(H=constant). We want inflation to last for a sufficiently long time, then we introduce

η ≡ d ln ε

dN
=

ε̇

Hε
(3.10)

therefore if ε needs to remain small for a sufficiently large number of Hubble times, then η

should be a small quantity (we’ll show that later) (jav: η here or better use conformal time as

τ?)

|η| � 1. (3.11)

Accelerated expansion:

From the acceleration equation, we can write the condition for inflation in terms of the required

material to drive the expansion:

ε = − Ḣ

H2
=

3

2

(
1 +

p

ρ

)
< 1 → w =

p

ρ
< −1

3
. (3.12)
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Figure 3.4: Evolution of the density parameter ΩT , during the inflationary period. ΩT is driven

towards unity.

If this brief period of accelerated expansion occurred, then it is possible that the aforementioned

problems of the Big Bang can be solved. However, because in standard physics it is commonly

assumed ρ as positive, then to satisfy the acceleration condition it is necessary for the overall

pressure to have p < −ρ/3.

Nonetheless, neither a radiation nor a matter dominated epoch satisfies such condition. A typical

solution would be a universe dominated by a cosmological constant Λ at the earliest stages. As

we have shown in Table 2.2, a cosmological constant leads to an exponential expansion, a de

Sitter stage, and hence the condition (3.4) would be naturally fulfilled. Let us postpone for a

bit the problem of finding a component which may satisfy this inflationary condition, and look

what happens when a general solution is considered.

Flatness solution

If somehow there was an accelerated expansion, 1/(RH) tends to decrease with time, and hence

from the expression (3.2), ΩT is driven towards the unity rather than away from it. In this sense,

inflation magnifies the curvature radius of the universe, so locally the universe seems to be flat

with great precision, as shown in Figure 3.4. Then, we may ask ourselves by how much should

1/(RH) decrease. If the inflationary period started at time t = ti and ended approximately at

the beginning of the radiation dominated era (t = tf ), then

| ΩT (10−34sec)− 1 |t=tf∼ 10−54,

and

| ΩT − 1 |t=tf
| ΩT − 1 |t=ti

=

(
Ri
Rf

)2

≡ e−2N . (3.13)
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Figure 3.5: Physical evolution of the observable universe during the inflationary period.

So, the required condition to reproduce the value of ΩT,0 today is that inflation lasted for at

least N ≡ lnR & 50, then ΩT will be extraordinarily close to one that we still observe it today.

Horizon problem

During inflation the universe expanded drastically and there was a reduction in the comoving

Hubble length. That is, a tiny region located inside the Hubble radius evolved and constituted

our present observable universe, as seen in Figure 3.5, which represents the physical process of

Figure 3.3. Scales that were outside the horizon at CMB decoupling were in fact inside the hori-

zon before inflation. The region of space corresponding to the observable universe therefore was

in thermal equilibrium before inflation and the uniformity of the CMB is essentially explained.

Monopole problem

The monopole problem is partially solved by noticing that during the inflationary epoch the uni-

verse led to a dramatic expansion over which the density of the unwanted particles were diluted

away. Generating enough expansion, the dilution made sure that particles stayed completely

out of our observable universe, making pretty difficult to localise any single monopole.

3.0.3 Single-field Inflation

As we have pointed out, a period of accelerated expansion can be created by a cosmological

constant Λ, and hence solve the aforementioned problems. After a brief period of time, however,

inflation must end and its energy be converted into conventional matter/radiation; this process

is called reheating. In a universe dominated by a cosmological constant, the reheating process
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is seen as Λ decaying into conventional particles. Nevertheless, claiming that Λ is able to decay

is still a naive way to face the problem. On the other hand, scalar fields (spin-0 particles)

can behave like a dynamical cosmological constant. There currently exists a broad diversity

of models suggested to give rise the Inflationary period, see for instance [86, 88, 101]. Here,

we limit ourselves to single scalar-field models based on general gravity, i.e. derived from the

Einstein-Hilbert action. (jav: later present BD models, Higgs and so on) (jav: scalar field models,

inflaton, curvaton, quintessence).

Let us consider a scalar field minimally coupled to gravity, with an arbitrary potential V (φ),

specified by the action (jav: check Riotto for signature) (jav: Include the E-L equations for Scalar

fields)

S =

∫
d4x
√−g

[
1

2
∂µφ∂

µφ− V (φ)

]
. (3.14)

From the action, the Euler-Lagrange equations with a FLRW universe (
√−g = R3) lead to

the Klein-Gordon equation.

HW: obtener KG

φ̈+ 3Hφ̇−∇2φ+ V,φ = 0, (3.15)

where the second term is referred as the friction due to the expansion.

The energy-momentum tensor corresponding to this scalar field is given by

Tµν = ∂µφ∂νφ− gµν
[

1

2
∂σφ∂

σφ− V (φ)

]
. (3.16)

By comparing (3.16) to the energy-momentum tensor of perfect fluids (2.130), one can identify

an associated energy-density ρφ and pressure pφ for the scalar-field. In a FRW background,

they are found to be

T00 = ρφ =
1

2
φ̇2 + V (φ) +

1

2
(∇φ)2, (3.17)

Tii = pφ =
1

2
φ̇2 − V (φ) +

1

6
(∇φ)2, (3.18)

with its corresponding equation-of-state pφ = wφρφ.

HW: Get ρφ and pφ.
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To provide a better understanding of the inflaton field, φ can be split up as

φ(t,x) = φ(t) + δφ(t,x), (3.19)

where φ(t) is considered a classical field, that is, the mean value of the inflaton field on the

homogeneous and isotropic state; whereas δφ(t,x) describes the quantum fluctuations around

φ(t) (we will see more about perturbations of the field δφ in Section ??). The evolution equation

for the background field φ is thus given by

φ̈+ 3Hφ̇+
dV

dφ
= 0. (3.20)

From the structure of the effective energy-density and pressure, the Friedmann and the accel-

eration equations for a homogeneous single-scalar field become

H2 =
8πG

3

[
1

2
φ̇2 + V (φ)

]
, (3.21)

ä

a
= −8πG

3

[
φ̇2 − V (φ)

]
. (3.22)

with an analogous equation of state

wφ =
φ̇2 − 2V (φ)

φ̇2 + 2V (φ)
. (3.23)

Therefore, the inflationary condition to be satisfied is φ̇2 � V (φ), which is easily fulfilled with

a suitable flat potential. Inflation is driven by the vacuum energy of the inflaton field pφ ≈ −ρφ.

(jav: If I use Friedmann and acceleration with pφ and ρφ, combine them we get KG equation.)

3.0.4 Slow-Roll Inflation

HW: show that Ḣ = −4πGφ̇2.

By Substituting Ḣ into ε (Eqn. 3.9), we have

ε =
4πGφ̇2

H2
= 3

(
φ̇2

2

φ̇2

2 + V (φ)

)
(3.24)

Therefore, Inflation (ε� 1) occurs when the kinetic energy 1
2 φ̇

2 makes a small contribution

to the total energy φ̇2 � H2 ∼ ρφ, or equivalently φ̇2 � V (φ).
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Also, the acceleration of the scalar field has to be small or analogously the friction term

in the KG equation is dominated by the cosmological expansion. By differentiating the above

expression, φ̇2 � H2, we have

2φ̇φ̈ � 2HḢ ∼ −2Hφ̇2

→
∣∣∣∣∣
φ̈

Hφ̇

∣∣∣∣∣� 1. (3.25)

Then, we define the dimensionless acceleration per Hubble time.

δ ≡ − φ̈

Hφ̇
, (3.26)

to get (3.10)

ε̇ = 8πG

(
φ̇φ̈

H2
− φ̇2Ḣ

H3

)
,

→ η =
ε̇

Hε
= 2

(
φ̈

Hφ̇
− Ḣ

H2

)
= 2(ε− δ), (3.27)

therefore, the slow-roll parameters

{ε, |δ|} � 1 imply {ε, |η|} � 1. (3.28)

So far, no approximations have been made.

3.0.5 Slow-Roll approximation

Based on the single scalar-field approach, it is useful to suggest a model starting with a nearly

flat potential, i.e. initially satisfies the condition φ̇2 � V (φ) (and its derivative φ̈� V,φ). In this

case the field is slowly rolling down on its potential; such an approximation is called slow-roll

inflation [80, 82]. The equations of motion (3.20) and (3.21), under the slow-roll approximation,

then become

ε� 1 → 1

2
φ̇2 � V (φ) ∼ H2,

therefore H2 ' 8πG

3
V (φ). (3.29)

|δ| � 1 →
∣∣∣∣∣
φ̈

Hφ̇

∣∣∣∣∣� 1

therefore 3Hφ̇ ' −dV
dφ

, (3.30)
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reheating

Figure 3.6: Schematic Inflationary process followed by a reheating epoch. Figure reprinted from

[13].

The inflationary process can be summarised as an accelerated universe which takes place when

the kinetic part of the inflaton field is subdominant over the potential V (φ) term. Then, when

both quantities become comparable inflation ends giving rise to the reheating process. Figure 3.6

displays the schematic behaviour of the inflationary process. Also, the slow-roll approximation

is consistent if the slope and curvature of the potential are small: V,φ, V,φφ � V . Thus, it is

now useful to introduce the potential slow-roll parameters εv and ηv in the following way [80]:

Combining the above equations, (3.24 and 3.29), we have

ε =
4πGφ̇2

H2
' 1

16πG

(
V,φ
V

)2

≡ εv(φ), (3.31)

and combining equations (3.9) and (3.26), with the differential of (3.30), it yields to

ε+ δ = − Ḣ

H2
− φ̈

Hφ̇
' 1

8πG

V,φφ
V
≡ ηv(φ), , (3.32)

which define the potential slow-roll parameters; where εv measures the slope of the potential

and ηv its curvature

εv(φ) ≡ 1

16πG

(
V,φ
V

)2

, |ηv(φ)| ≡ 1

8πG

|V,φφ|
V

. (3.33)

Equations (3.29) and (3.30) are in agreement with the slow-roll approximation when the

following conditions hold

εv(φ)� 1, | ηv(φ) |� 1. (3.34)

However, these conditions are necessary but not sufficient since even if the potential is flat, it

may happen that the scalar field has a large velocity. Hence, one should also consider that the
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3. INFLATION

condition φ̇2 � V (φ) holds. Notice that ε and η are often called the Hubble slow-roll parameters,

and during the slow-roll approximation these are related by

εv ' ε, ηv ' 2ε− 1

2
η. (3.35)

Within these approximations, it is straightforward to find out the scale factor R between the

beginning (ti) and end (te) of inflation, defined by ε(ti) = ε(te) ≡ 1. Then, the e-fold number is

Ntot ≡
∫ Re

Ri

d ln a =

∫ te

ti

H(t)dt, (3.36)

in slow-roll

Hdt =
H

φ̇
dφ ' −3

H2

V,φ
dφ ' −8πG

V

V,φ
dφ =

√
8πG

dφ√
2εv

,

and therefore

Ntot =
√

8πG

∫ φe

φi

dφ√
2εv

. (3.37)

An estimate of the e-folds number N(k) is given by [81]:

N(k) = 62− ln
k

a0H0
+ corrections,

where the comoving wavenumber k is evaluated at the crossing Hubble radius during inflation.

The last ‘corrections’ is a small term related with energy scales during the inflationary process.

The precise value for the second quantity depends on the model as well as normalisation

factors, however it does not present any significant change to the total amount of e-folds.

Therefore, the value of the e-folds number is ranged to 50-70 [88].

The potential that describes a massive scalar field is given by:

V (φ) =
1

2
m2φ2. (3.38)

Considering the slow-roll approximation, equations (3.29) and (3.30) become:

H2 ' 4πG

3
m2φ2,

3Hφ̇ ' −m2φ.

Thus, the dynamics of this type of model is described by
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φ(t) = φi −
m√

12πG
t, (3.39)

R(t) = Ri exp

[
m

√
4πG

3

(
φit−

m√
48πG

t2
)]

,

where φi and Ri represent the initial conditions at a given initial time t = ti. The slow-roll

parameters for this particular potential are computed from equations (3.33)

εv = ηv =
1

4πG

1

φ2
, (3.40)

that is, an inflationary epoch takes place whilst the condition |φ| > 1/
√

4πG =
√

2Mpl ≡ φe
1

is satisfied, and the total amount that lapses during this accelerated period is encoded on the

e-folds number

N = 2πG
[
φ2 − φ2

e

]
= 2πGφ2 − 1

2
. (3.41)

The field value N e-folds before the end of inflation, to the scales relevant for the CMB is

φ60 ∼ 15Mpl. (3.42)

The steps shown before might, in principle, apply to any inflationary single-field model.

That is, the general information we need to characterised cosmological inflation is specified by

its potential.

1where M2
pl = 1

8πG
.
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4
Thermal history of the Universe

Introduction

Does antimatter feel gravitational interaction in the same way than ordinary matter does? Even

though this question might be in principle easy to answer with the obvious response: It does,

since if they are massive, they must feel the gravitational interaction in the same way ordinary

matter do. Nevertheless, there is still no experimental evidence to determine how antiparticles

behave according to the gravitational interaction. In this paper some theoretical ideas and

experimental attempts to answer this question are discussed.

Attraction under gravitational interaction

The first idea that someone might conjecture is that the behaviour of antimatter under the

gravitational interaction shall be the same than the ordinary matter, i.e., an attractive behaviour

among particles. This idea has been supported by arguing that otherwise (repulsion) it would

violate CPT invariance (a fundamental symmetry of every physical theory) since C-symmetry

does not modify the gravitational behaviour (mass) of particles/antiparticles. Moreover, energy

conservation would not be hold leading to vacuum instability because in the case that matter

and antimatter responded oppositely to a gravitational field, one could take advantage of the

fact that no energy would be needed to move a pair particle-antiparticle. However all these

ideas were later turned down in 1991[? ].
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4. THERMAL HISTORY OF THE UNIVERSE

Repulsion under gravitational interaction

In contrast, due to no experimental evidence has been found to confirm that antimatter should

act attractively, some ideas have been proposed to support the thought that antimatter with

repulsive behaviour should be valid. Therefore, one main idea in this direction is distinguished

and was formulated by Kowitt’s [? ]. Inpired by Dirac’s ideas about his propose of a particles

sea, Kowitt proposed that a positron should act as hole within the sea of electrons of negative

energy but possitive mass. Notice that this entails a modification on how C-inversion acts on

particles/antiparticles,i.e., this would imply that a positron has positive energy but negative

gravitational mass leading to gravitational repulsion.

Experimental tests

Since at high energies (small distances) the gravity is negligible, it is difficult to directly observe

gravitational forces at the particle level, for instance, electromagnetic force dominates over the

gravitational one for charged particles since this latter is much more weaker at these scales.

However, some experiments such as cold neutral anti-hydrogen experiments have been realised

[? ], taking advantage of the fact that anti-hydrogen is electrically neutral, which open the pos-

sibility of a direct measurement about the attractive/repulsive nature of antimatter, however

no overwhelming results were obtained. Therefore, some recent experiments with a better accu-

racy have been done recently in this direction [? ], with the goal in mind of finding a definitive

answer about this dilemma.

Conclusion

Since no experimental evidence about the nature of antimatter under gravitational interac-

tion has been found, some ideas arguing a repulsive/attractive behaviour of antiparticles have

been discussed. Finally, the ultimate theory describing antiparticles gravitational nature is still

unclear and will be determined until overwhelming experimental evidence is found.
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Hoyle-Narlikar theory of gravity

In cosmology, some alternatives to the Big Bang Theory of the evolution of the universe have

been proposed. Among these alternative one can find the steady state model where the density

of matter in the expanding universe remains unchanged due to a continuous creation of matter.

Then, the Hoyle-Narikar theory of gravity is based upon this idea, and will be discussed on

this paper.

Once we know what the Mach’s principle says, we can define the Hoyle-Narlikar model as

[6] a Machian and conformal theory of gravity proposed by Fred Hoyle and Jayant Narlikar

that originally fits into the quasi-steady state model of the universe. This theory can be derived

from the action

S =
∑

a

∑

b

∫ ∫
G(a, b) da db , a 6= b.

where G(a, b) is the Green function that holds the equation:

�G(x, y) +
1

6
RG(x, y) =

δ(x− y)√−g ,

where g is the determinant of the spacetime metric.

On the other hand, although the Einstein’s theory of relativity has been very successful,

one can realise that since it does not provide boundary conditions, a whole family of possible

solutions to describe our Universe is in general possible. In contrast, in the Hoyle-Narlikar

theory of gravity one can find exactly that, a boundary condition. Interestingly, S. Hawking

showed [? ] that this boundary condition prohibits the existence of a solution type FLRW that

is the best model that we have so far to describe our Universe. However, at that time the

accelerating expansion of the universe was unknown, and this may allow the existence of such

solutions. Furthermore, recently it has been shown[? ] that in the limit of a smooth fluid model

of particle distribution constant in time and space, the model can be reduced to Einstein’s

general relativity, and thus, FLRW Universe can be recovered.

Conclusion

The main ideas and features of the Hoyle-Narlikar theory of gravity have been discussed. Despite

this model can recover Einstein’s theory of gravity at a certain limit, perhaps the main problem
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is still its nature as a quasi-steady state model, since these kind of models do not fit into the

observational data of WMAP [? ], and thus, its approach as a phenomenological model is still

no viable.
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4.1 History

Intro: we first considered the homogeneous and isotropic universe, and now we take care

about its composition, that is, how the components form.

Some books: The first three minutes, Weinberg’s. Baryogenesis, James M. Cline. Baryogenesis,

Csaba Balazs (2014). The early universe, Turner.

4.1 History

Highly Speculative.

• T ∼ 1019GeV, t ∼ 10−43sec.

Strings?, quantum gravity?, super gravity?, quantum birth of the Universe?.

At these temperatures the Energy density is so high that the classical treatment of GR

is no longer reliable, and perhaps the necessity of a Quantum theory of Gravity.

• T ∼ 1016GeV, t ∼ 10−38sec.

Grand Unified Theories (GUT) phase transition occurs.

Strong and electroweak interactions are indistinguishable.

• T ∼ 1014GeV, t ∼ 10−34sec.

Inflation, Monopoles.

Baryogenesis: Origin of matter-antimatter asymmetry.

Relativistic QFT requires the existence of antiparticles e+ + e− → γ + γ.

• T ∼ 1012GeV, t ∼ 10−30sec.

Peccei-Quinn phase transition. Why QCD does not break CP-symmetry?.

• LHC - 13 TeV (Energies that can be reach).

• T ∼ 100GeV, t ∼ 10−10sec.

Electroweak phase transition.

Particles receive their masses through the Higgs mechanism.

• T ∼ 10′s− 100′sGeV, t ∼ 10−8sec.

If dark matter is composed of SUper SYmmetric (SUSY) particles or WIMPs, this is when

their interactions freeze out and their cosmological abundance is fixed.

• T ∼ 100− 300MeV, t ∼ 10−5sec.

Quark-hadron phase transition.
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This is when quarks and gluons first become bound into neutrons and protons (baryons

- 3 quarks, mesons → q + q̄).

This is also when axions are produced (if they exist and are the dark matter) – Pretty

sure this must have happened.

• T ∼ 0.1− 10MeV, t ∼ secs-mins.

Big Bang Nucleosynthesis (BBN) ocurred.

no and p+ first combine to form D, 3He,4He,7 Li.

The theory agrees very impressively with observations.

• T ∼ 0.8MeV, t ∼ 1000sec.

Neutrino decoupling.

Neutrino only interacts with the primordial plasma through weak interaction.

• T ∼ 3eV, t ∼ 104−5yrs.

Before the matter radiation equality → energy density is dominated by radiation.

Perturbations in the dark-matter density can begin to grow.

• T ∼eV, t ∼ 400′000yrs.

Recombination: e− + p+ → H + γ.

e− and p+ combine to form hydrogen atoms.

CMB and γ decouple→ photons are tightly coupled to the baryon fluid through Thompson

scattering from free e−. CMB observations.

• T ∼ 101−2eV, t ∼ millions of years.

Baryon drag ends → baryons are still coupled to the CMB photons so perturbations in

the baryon cannot grow.

• T ∼ 10−3eV, t ∼ 109yrs.

The first stars and (small) galaxies begin to form.

• T ∼ 0.33meV, t ∼ 9Gyr.

Dark energy-matter equality.

• T ∼ 10−4eV, t ∼ 1010yrs.

Baryons and CMB are entirely decoupled.

Stars and galaxies have been around for a long time.

Clusters of galaxies (∼ 1000s) are becoming common.
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• Dark Energy domination.

Figure 4.1: Thermal History of the Universe (jav: redo this figure)

4.1.1 The Hot Big Bang

The key to understand the thermal history of the universe is the comparison between the rate

of interactions Γ and the rate of expansion H. When Γ � H, that is, when the time-scale of

particle interactions tc is much smaller than the characteristic expansion time-scale tH , such

that

tc ≡
1

Γ
� tH ≡

1

H
. (4.1)

Therefore, local thermal equilibrium is then reached before the effect of expansion becomes

relevant.

As the universe cools down, the rate of interactions may decrease faster than the expansion

rate. When tc ∼ tH is reach, particles decouple from the thermal bath. Different particles may

decouple at different times depending of its features, as we shall see below.
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Figure 4.2: Thermal History of the Universe (jav: redo this figure)

Figure 4.3: Thermal History of the Universe (jav: redo this figure)
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4.1.2 Local Thermal equilibrium

Standard model ' 100GeV.

The rate of particle interactions can be defined as

Γ ≡ nσv. (4.2)

where

• n: number density of particles.

• σ: interaction cross section.

• v: average velocity of the particles.

For such temperatures (T ≥ 100GeV), particles are ultra-relativistic → v ∼ 1. The particle

mass can be ignored and therefore n ∼ T 3. Interactions are mediated by gauge bosons, which are

massless→ the cross sections for strong and electroweak interactions is (jav: Feymann diagram,

explain)

σ ∼ α2

T 2
, (4.3)

where α ≡ g2
A

4π is the generalized structure constant associated with the gauge boson A. Then

Γ = nσv ∼ T 3 × α2

T 2
= α2T, (4.4)

compare to the Hubble rate H ∼ √ρ/MPl with ρ ∼ T 4,

H ∼ T 2

M2
Pl

, (4.5)

Then
Γ

H
∼ α2MPl

T
∼ 1016GeV

T
, (4.6)

with α ∼ 0.01. Below T ∼ 1016GeV but above 100GeV the condition is therefore satisfied, and

hence the standard model is in thermal equilibrium.

4.1.3 Equilibrium Thermodynamics

From CMB we observe that the early universe was in local thermal equilibrium.

Statistical mechanics: Turning the microscopic laws to understanding the macroscopic

world, and its description is based on the distribution function f(~x, ~p, t):
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• homogeneity → f independent of position ~x.

• isotropy → momentum dependence is only in terms of its magnitude p = |~p|.

Therefore the particle density in phase space is then the density of states times the distri-

bution function
g

(2π)3
× f(p), (4.7)

where g are the internal degrees of freedom (i.e. spin). The number density of particles (in real

space) is then

n =
g

(2π)3

∫
d3pf(p). (4.8)

The energy density of a gas of particles assume that the particles in the early universe were

weakly interactions → ignore interactions densities. Using E(p) =
√
m2 + p2, we get

ρ =
g

(2π)3

∫
d3pf(p)E(p), (4.9)

P =
g

(2π)3

∫
d3pf(p)

p2

3E
. (4.10)

A system is said to be in kinetic equilibrium if the particles exchange energy and momentum

efficiently. In this case, they can be differentiated by the Fermi-Dirac (+) and Bose-Einstein (-)

distributions a temperature T

f(p) =
1

e(E−µ)/T ± 1
, (4.11)

where µ is the chemical potential. At low temperatures (E − µ) > T both reduce to Maxwell-

Boltzmann distribution

f(p) ≈ e−(E−µ)/T . (4.12)

If a specie i is in chemical equilibrium, then its chemical potential µi is related to the

chemical potential µj of the other species it interacts with. Chemical equilibrium implies that

µ1 + µ2 = µ3 + µ4. (4.13)

Since the number of photons is not conserved (i.e. double compton e−+γ 
 e−+γ+γ) (jav:

Compton is the Thompson low energy limit) hence µγ = 0 and then if the chemical potential

of a particle X is µX and the corresponding anti-particle X̄ is µX̄ = −µX , then

X + X̄ 
 γ + γ. (4.14)

Therefore thermal equilibrium is achieved for species that are both in kinetic and chemical

equilibrium, that is, they share a common temperature Ti = T (‘Temperature of the Universe’).
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4.1.4 Densities and Pressure

Combining the previous equations, using that µ can be neglected (for now), we have

n =
g

2π2

∫ ∞

0

dp
p2

exp[
√
p2 +m2/T ]± 1

, (4.15)

ρ =
g

2π2

∫ ∞

0

dp
p2
√
p2 +m2

exp[
√
p2 +m2/T ]± 1

, (4.16)

P =
g

6π2

∫ ∞

0

dp
p4(p2 +m2)−1/2

exp[
√
p2 +m2/T ]± 1

(4.17)

These integrals have to be evaluated numerically, however in the (ultra) relativistic and non-

relativistic limits, we can get analytical results. Some useful integrals:

∫ ∞

0

dξ
ξn

eξ − 1
= ζ(n+ 1)Γ(n+ 1), (4.18)

∫ ∞

0

dξξne−ξ
2

=
1

2
Γ

(
1

2
(n+ 1)

)
, (4.19)

with ζ(z) is the Riemann zeta-function, and

1

eξ + 1
=

1

eξ − 1
− 2

e2ξ−1
(4.20)

In the relativistic limit (T � m)

Homework

n =
ζ(3)

π2
gT 3





1 bosons

3
4 fermions,

(4.21)

ρ =
π2

30
gT 4





1 bosons

7
8 fermions,

(4.22)

P =
ρ

3
. (4.23)

using the current temperature of the Universe T0 = 2.73K.

nγ,0 =
2ζ(3)

π2
T 3

0 ≈ 410 photons cm−3

ργ,0 =
π2

15
T 4

0 ≈ 4.6× 10−34g cm−4 → Ωγ,0h
2 ≈ 2.5× 10−5.
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If we add the chemical potential, the excess of fermion species over its antiparticle, assuming

µ+ = −µ− (X + X̄ 
 γ + γ). The net particle number for T � m (an exact result) is

Homework

n− n̄ =
g

2π2

∫ ∞

0

dpp2

(
1

e(p−µ)/T + 1
− 1

e(p+µ)/T + 1

)

=
1

6π2
gT 3

[
π2
(µ
T

)
+
( µ
T 3

)3
]
. (4.24)

The non-relativistic limit (m� T )

Homework

n = g

(
mT

2π

)3/2

e−m/T . (4.25)

massive particles are exponentially rare at low temperature (T � m). In this limit E(p) =
√
p2 +m2 ≈ m and from the expressions (4.15) and (4.16) we have ρ ≈ mn

P = nT � nm = ρ, (4.26)

therefore P � ρ, non-relativistic gas of particles behaves as a pressurless matter or dust. P = nT

- ideal gas law (or PV = NkBT ), and adding the chemical potential

n = g

(
mT

2π

)3/2

e−(m−µ)/T , (4.27)

n− n̄ = 2g

(
mT

2π

)3/2

e−m/T sinh
(µ
T

)
, (4.28)

the excess of fermion species in the non-relativistic limit (compared to the relativistic limit)

the no, e−, p+ fall exponentially (are Boltzmann supressed) as the temperature drops below the

mass of the particle.

Interpretation of the annihilation of X + X̄: At high energies the annihilation occurred but

they are balanced by X, X̄ production. At low temperatures the thermal particle energies are

not sufficient for pair production.
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4.1.5 Effective number of Relativistic Species

Let us consider the temperature of the photon gas as T . Then, the total radiation density is

the sum over the energy densities of all relativistic species

ρr =
∑

ρi =
π2

30
g∗(T )T 4, (4.29)

where g∗(T ) is the effective number of relativistic degrees of freedom at temperature T . There

are two contributions:

• Relativistic species not in thermal equilibrium with photons Ti 6= T � mi

gdec∗ (T ) =
∑

i=b

gi

(
Ti
T

)4

+
7

8

∑

i=f

gi

(
Ti
T

)4

. (4.30)

• Relativistic species in thermal equilibrium with photons, Ti = T � mi

gther∗ (T ) =
∑

i=b

gi +
7

8

∑

i=f

gi. (4.31)

• At T '100 GeV, all particles of the Standard model are relativistic

gb = 28, gf = 90→ g∗ = gb +
7

8
gf = 106.75 (4.32)

• As the temperature T drops, various species become non-relativistic and annihilate

• The heaviest particles (top q)1 annihilate first at T ∼ 30GeV (1
6mt), and the effective

number of relativistic species is reduced

g∗ = 106.75− 7

8
× 12 = 96.25. (4.33)

• W±, Z0, Higgs boson (Gauge bosons) annihilate next, T ∼ 10GeV

g∗ = 96.25− (1 + 3× 3) = 86.25. (4.34)

• b quarks follow

g∗ = 86.25− 7

8
× 12 = 75.75. (4.35)

1top q decays (99.8%) into W-boson, bottom, and less likely into strange or down. Its mean lifetime is about

∼ 5× 10−25s.
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4. THERMAL HISTORY OF THE UNIVERSE

Figure 4.4: Thermal History of the Universe (jav: redo this table)

• and finally c, τ quarks

g∗ = 75.75− 7

8
× (12 + 4) = 61.75. (4.36)

• Before strange annihilate the matter undergoes to the QCD phase transition T ∼ 150MeV.

quarks combine into baryons (p+, n0) and mesons (pions). All particles except pions

(π±, π0) are non-relativistic below TQCD phase transition. Thus the only particle species

left are pions, e−, µ, ν, γ, therefore

g∗ = 2︸︷︷︸
γ

+3 +
7

8
× (4 + 4 + 6) = 17.25. (4.37)

• Next, e− & e+ annihilate and we need the Entropy.

-138-



4.1 History

Figure 4.5: Thermal History of the Universe (jav: redo this figure)

4.1.6 Conservation of Entropy

It is useful to track a conserved quantity. To a good approximation we can therefore treat the

expansion of the universe as adiabatic, so the total entropy stays constant [even beyond the

equilibrium].

Homework
∂P

∂T
=
ρ+ P

T
(4.38)

Consider the second law of Thermodynamics

TdS = dU + PdV, (4.39)

Using U = ρV

dS =
1

T
(d[(ρ+ P )V ]− V dP ) (4.40)

=
1

T
d [(ρ+ P )V ]− V

T 2
(ρ+ P )dT (4.41)

= d

(
ρ+ P

T
V

)
(4.42)

Let us show the conservation of entropy

dS

dt
=

d

dt

[
ρ+ P

T
V

]
(4.43)

=
V

T

[
dρ

dt
+

1

V

dV

dt
(ρ+ P )

]
+
V

T

[
dP

dt
− ρ+ P

T

dT

dt

]
= 0 (4.44)
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The first term in equation resembles the continuity equation, while the second term is given

by the homework. We just showed the conservation of entropy whilst in equilibrium.

It is convenient to work with the entropy density s = S/V . From dS we see that

s =
ρ+ P

T
, (4.45)

from ρ and P , we have (jav: still in relativistic limit)

s =
∑ ρi + Pi

Ti
≡ 2π2

45
g∗S(T )T 3 (4.46)

4.1.7 Effective number of degrees of freedom in entropy

g∗S(T ) = gth∗S(T ) + gdec∗S (T ), (4.47)

notice that in thermal equilibrium

gth∗S(T ) = gth∗ (T ), (4.48)

for decoupled species

gdec∗S (T ) ≡
∑

i=b

gi

(
Ti
T

)3

+
7

8

∑

i=f

gi

(
Ti
T

)3

6= gdec∗ (T ). (4.49)

Conservation of entropy has two consequences

1. The number of particles in a comoving volume is (N ≡ V n) is proportional to the number

density ni divided by the entropy density Ni ≡ ni
s . If no particles are produced or destroy

(with s ∝ a−3) then ni ∝ a−3 and Ni is constant. i.e. baryon number after baryogenesis

nB
s
≡ (nb − nb̄)

s

2. It implies

g∗S(T )T 3a3 = const, or T ∝ g−1/3
∗S a−1. (4.50)

Away from the particle mass thresholds g∗S is approximately constant and hence T ∝ a−1,

as expected.

In the previous eq use T ∝ g−1/3
∗S a−1 into the Friedmann equation (jav: planck mass)
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H =
1

a

da

dt
'
(

ρr
3M2

P

)1/2

' π

3

( g∗
10

)1/2 T 2

MP
, (4.51)

for a radiation dominated universe a ∝ t1/2 and for T ∝ t−1/2.

T

1MeV
' 1.5g

−1/4
∗

(
1sec

t

)1/2

(4.52)

The temperature of the Universe one second after the Big Bang was about 1MeV.

4.1.8 Neutrino decoupling

Neutrinos are coupled to the thermal bath via weak interactions processes like

νe + ν̄e 
 e+ + e−, (4.53)

e− + ν̄e 
 e− + ν̄e. (4.54)

The cross section for these interactions σ ∼ G2
FT

2 and hence Γ ∼ G2
FT

5. As the temperature

decrease, the interaction rate dropped much more rapidly than the Hubble rate H ∼ T 2/MP

(jav: Mp)

Γ

H
∼
(

T

1MeV

)3

. (4.55)

Neutrinos decoupled around 1MeV (more accurately Tdec ∼ 0.8MeV).

After decoupling, neutrinos move freely along geodesics and preserve the relativistic Fermi-

Dirac distribution. The neutrino number density (and particle number conservation) requires

nν ∝ a−3 and therefore Tν ∝ a−1.

4.1.9 Electron-Positron Annihilation

Shortly after neutrinos decouple, T drops below the electron mass and electron positron anni-

hilation occurs:

e+ + e− 
 γ + γ. (4.56)

The energy density and entropy of the electron and positron are transferred to the photons,

therefore the photons are thus ‘heated’.

Consider the change in the effective number of degrees of freedom in entropy

gth∗S =

{
2 + 7

8 × 4 T & me

2 T < me

(4.57)
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in equation gth∗S(aTγ)3 remains constant, therefore aTγ increases after e+ + e− annihilation

by a factor
(

4
11

)1/3
, while aTν remains the same. Hence, the temperature of neutrinos after the

e+ + e− annihilation is slightly lower

Tν =

(
4

11

)1/3

Tγ . (4.58)

For T � me, the effective number of relativistic species (in energy density and entropy)

g∗ = 2 +
7

8
× 2Neff

(
4

11

)4/3

= 3.36 (4.59)

g∗S = 2 +
7

8
× 2Neff

(
4

11

)
= 3.94 (4.60)

with Neff is the effective number of neutrino species. It explains the previous plot.

If neutrino decoupling was instantaneous, then Neff = 3. Also that neutrino spectrum af-

ter decoupling deviates slightly from Fermi-Dirac distribution Neff = 3.046. Planck satellite

constraints are Neff = 3.36± 0.34.

Figure 4.6: Thermal History of the Universe (jav: redo this fig)

4.1.10 Cosmic Neutrino Background

Tν =

(
4

11

)1/3

Tγ (4.61)

holds until the present day. Tν,0 = 1.95K = 0.17meV, lower than the CMB.

The number density of neutrinos is
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nν =
3

4
Neff ×

4

11
nγ , (4.62)

using nγ,0 implies 112 neutrinos cm−3 per flavour. If neutrinos are massless

ρν =
7

8
Neff

(
4

11

)4/3

ργ → Ωνh
2 ≈ 1.7× 10−5. (4.63)

however, neutrino oscillation experiments show that ν do have mass and the minimum
∑
mν,i >

60meV. Massive neutrinos behave as radiation like particles in the early universe, and as matter-

like particles in the late universe.

For massive neutrinos

Ωνh
2 ≈

∑
mν,i

94eV
. (4.64)

Observation of the CMB, SNIa constrain
∑
mν,i < 1eV , 25 times the energy density of

photons but still subdominant 0.001 < Ων < 0.02 (jav: [?]).

Once Big Bang Nucleosynthesis is over, at time t ∼ 300s and temperature T ∼ 8 × 108K,

the Universe is a thermal bath of photons, protons, electrons, in addition to neutrinos and

the unknown dark matter particle(s). The energy density is dominated by the relativistic

component, photons and neutrinos.

Figure 4.7: Thermal History of the Universe (jav: redo this fig)
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5
Beyond the Equilibrium

(jav: add Boltzmann figure)

5.1 Recombination

An important event in the history of the early universe is the formation of the first atoms. At

temperatures above about 1 eV, the universe still consisted of a plasma of free electrons and

nuclei. Photons were tightly coupled to the electrons via Compton scattering, which in turn

strongly interacted with protons via Coulomb scattering. There was very little neutral hydrogen.

When the temperature became low enough, the electrons and nuclei combined to form neutral

atoms (recombination), and the density of free electrons fell sharply. The photon mean free path

grew rapidly and became longer than the horizon distance. The photons decoupled from the

matter and the universe became transparent. Today, these photons form the cosmic microwave

background.

5.1.1 Saha Equilibrium

Let us start at T >1eV, when baryons and photons were still in equilibrium through electro-

magnetic reactions such as

e− + p+ 
 H + γ. (5.1)

Since T < mi, i = {e, p,H}, we have the following equilibrium abundaces

ni = gi

(
miT

2π

)3/2

exp

(
µi −mi

T

)
, (5.2)
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where µp + µe = µH .

Consider the ratio

(
nH
nenp

)

eq

=
gH
gegp

(
mH

memp

2π

T

)3/2

emp+me−mH/T , (5.3)

we can use mH ≈ mp (but the difference BH ≡ mp + me −mH = 13.6eV, the binding energy

of Hydrogen). Also, the degrees of freedom gp = ge = 2, gH = 4, and considers the universe is

electrically neutral, hence ne = np, therefore

(
nH
n2
e

)

eq

=

(
2π

meT

)3/2

eBH/T . (5.4)

We wish to follow the free electron fraction defined as the ratio

Xe ≡
ne
nb
, (5.5)

where nb is the baryon density

nb = ηnγ = η × 2ζ(3)

π2
T 3, (5.6)

and η is the baryon-to-photon ratio, η = 5.5× 10−10(Ωbh
2/0.020).

The total baryon number density nb ≈ np + nH = ne + nH , hence

(
1−Xe

X2
e

)

eq

=
nH
n2
e

nb. (5.7)

We arrive at the so-called Saha equation

(
1−Xe

X2
e

)

eq

=
2ζ(3)

π2
η

(
2πT

me

)3/2

eBH/T . (5.8)

Fig. (5.1) shows the redshift evolution of the free electron fraction as predicted both by

the Saha approximation and by a more exact numerical treatment (see below). The Saha

approximation correctly identifies the onset of recombination, but it is clearly insufficient if the

aim is to determine the relic density of electrons after freeze-out.
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Figure 5.1: Free electron fraction as a function of redshift. (jav: redo)

5.1.2 Hydrogen Recombination

Let us define the recombination temperature Trec as the temperature where Xe = 10−1, i.e.

when 90% of the electrons have combined with protons to form hydrogen. We find

Trec ≈ 0.3eV ' 3600K. (5.9)

Using Trec = T0(1 + zrec), with T0 = 2.7K, gives the redshift of recombination,

zrec ≈ 1320. (5.10)

Since matter-radiation equality is at zeq ' 3500, we conclude that recombination occurred

in the matter-dominated era. Using a(t) = (t/t0)2/3, we obtain an estimate for the time of

recombination

trec =
t0

(1 + zrec)3/2
∼ 290 000yrs. (5.11)

Recombination was not an instantaneous process but proceeded relatively quickly nevertheless,

with the fractional ionisation decreasing from X = 0.9 to X = 0.1 over a time interval ∆t ∼
70 000yrs. With the number density of free electrons dropping rapidly, the time when photons

and baryons decoupled follows soon.

5.2 Photon Decoupling

Photons are most strongly coupled to the primordial plasma through their interactions with

electrons, through Thomson scattering

e− + γ 
 e− + γ, (5.12)

-147-



5. BEYOND THE EQUILIBRIUM

Figure 5.2: Recombination process.

i.e. the elastic scattering of electromagnetic radiation by a free charged particle. Thomson

scattering is the low-energy limit of Compton scattering and is a valid description in the regime

where the photon energy is much less than the rest-mass energy of the electron. An important

feature of Thomson scattering is that it introduces polarization along the direction of motion

of the electron

The mean free path for photons (the mean distance travelled between scattering) is

λ =
1

neσT
, (5.13)

and therefore the interaction rate at which a photon undergoes scattering, given by

Γγ ≈ neσT , (5.14)

decreases as the density of free electrons drops. Where σT ≈ 2× 10−3 MeV−2 is the Thomson

cross section. Since Γγ ∝ ne, the interaction rate becomes smaller than the expansion rate, and

hence photons and electrons decouple roughly when

Γγ(Tdec) ∼ H(Tdec), (5.15)

Γγ(Tdec) = nbXe(Tdec)σT =
2ζ(3)

π2
ησTXe(Tdec)T 3

dec. (5.16)

and
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H(Tdec) = H0

√
Ωm

(
Tdec

T0

)3/2

. (5.17)

we get

Xe(Tdec)T
3/2
dec ∼

π2

2ζ(3)

H0

√
Ωm

ησTT
3/2
0

. (5.18)

Using the Saha equation for Xe(Tdec) ∼ 0.01, we find

Tdec ∼ 0.27eV. (5.19)

The redshift and time of decoupling are

zdec ∼ 1100, tdec ∼ 380 000 yrs. (5.20)

After decoupling the photons stream freely (their mean free path becomes very much longer):

the Universe is now transparent to radiation. Observations of the cosmic microwave background

today allow us to probe the conditions at last-scattering.

5.3 Last Scattering

Figure 5.3: A summary of possible geometries. (jav: redo this figure)

After their last scattering off an electron, photons were able to travel unimpeded through

the Universe. These are the Cosmic Microwave Background photons we receive today, still

with their blackbody distribution, now redshifted by a factor of 1100. They constitute a last
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scattering surface, or more appropriately a last scattering layer, since (obviously) not all photons

underwent their last scattering simultaneously.

Of course, there is nothing special about this particular surface, other than it happens to be

at the right distance for the photons to have reached us today. There are photons originating at

every point, and observers in different parts of the Universe will see photons originating from

different large spheres, of the same radius, centred on their location.
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6
Big-Bang Nucleosynthesis

Big-Bang Nucleosynthesis refers to how the light elements like H, He and Li were synthesized

in the Big Bang. In particular, the ratio of the density of helium to hydrogen

nHe
nH
∼ 1

16
(6.1)

Figure 6.1: Helium production in the Universe

Step 0: Equilibrium Abundances

No elements heavier than Helium are produced. We need to track hydrogen, helium and isotopes:

deuterium, tritium and 3He.
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At temperatures of order T ≈ 0.1 Mev only free protons and neutrons exist → we need to

solve for the neutron/proton ratio and use it for the synthesis of Deuterium, Helium, etc.

The Relative abundances of no and p+

In the early universe, no and p+ are coupled by weak interactions

n+ νe− ←→ p+ + e−

n+ e+ ←→ p+ + ν̄e−

taking into account that µe− and µν are negligibly small, we have that µn = µp and therefore

(
nn
nρ

)

eq

=

(
mn

mp

)3/2

e−(mn−mp)/T . (6.2)

A fair assumption is the mass of neutron are comparable with the mass of the proton

mn ∼ mp to get (
nn
np

)

eq

= e−Q/T (6.3)

with Q ≡ mn −mp=1.3MeV, the bounding energy of hydrogen.

Therefore, for temperatures T � 1MeV there are as many neutrons as protons. and for

T < 1MeV the neutron fractions gets smaller.

Next, Deuterium (isotope of hydrogen, with one p+ and one no)

n+ p+ ←→ D + γ

µn + µp = µD

(
nD
nnnp

)

eq

=
3

4

(
mD

mnmp

2π

T

)3/2

e−(mD−mn−mp)/T (6.4)

using that the internal degrees of freedom (gD = 3, gp = gn = 2), 2mn ≈ 2mp ≈ 1.9 GeV and

in the exponential binding energy of deuterium is given byBD ≡ mn +mp −mD = 2.22 MeV.

(
nD
np

)

eq

=
3

4
neqn

(
4π

mpT

)3/2

eBD/T (6.5)
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To get an order of magnitude

nn ∼ nb = η nγ = η
2ζ(3)

π2
T 3 (6.6)

⇒
(
nD
np

)

eq

≈ η
(
T

mp

)3/2

eBD/T (6.7)

η → inhibits the production of deuterium until T drops well beneath the binding energy

BD (approximately up to T ∼ 0.1MeV)

Step 1 Neutron Freeze-out

All neutrons incorporate into 4He

Thermal equilibrium happend until Tdec ∼ 0.8 MeV, where neutrinos decouple and then on

we need → Boltzmann eqn.

Define the neutron fraction as Xn ≡ nn
nn+np

Xeq
n (T ) =

e−Q/T

1 + e−Q/T
(6.8)

Therefore,

Xeq
n (0.8MeV ) = 0.17

X∞n ∼ Xeq
n (0.8MeV ) ∼ 1

6
(6.9)

Step 2 Neutron decay

At temperatures T > 0.2MeV (t ∼ 100 sec) the lifetime of the neutron becomes important.

Take the freeze-out abundance by an exponential decay factor

Xn(T ) = X∞n e
−t/τn =

1

6
e−t/τn (τn = 886.7± 0.8sec) (6.10)

Step 3 Helium Fusion

The Universe is mostly made of p+ and no and heavier nuclei have to be built sequentially

from lighter nuclei in two-particle reactions.
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First Deuterium

n+ p+ ←→ D + γ (6.11)

Only when D is available can helium be formed (as long as enough free neutrons are avail-

able)

D + p+ ←→ 3He+ γ (6.12)

D +3 He ←→ 4He+ p+ (6.13)

• Abundance cannot be formed until sufficient deuterium has become available→, this effect

is known as the Deuterium bottle neck. Only when there is enough Deuterium → the Helium

is produced.

When Nucleosynthesis happened

When the Deuterium fraction in equation would be of order are i.e (nD/p)eq ∼ 1, that is (using

Eqn. (6.7))

Tnuc ∼ 0.06MeV,

(
T

1MeV

)
' 1.5g

−1/4
∗

(
1sec

t

)1/2

(6.14)

with g∗ = 3.38

⇒ tnuc = 120sec

(
0.1MeV

Tnuc

)2

∼ 330sec (6.15)

and from Eqn. (6.10)

Xn(tnuc) ∼
1

8
. (6.16)

Helium is produced almost immediately after deuterium, since two no go into one nucleus

of the 4He

nHe =
1

2
nn(tnuc) or (6.17)

nHe
nH

=
nHe
np
'

1
2Xn(tnuc)

1−Xn(tnuc)
∼ 1

2
Xn(tnuc) ∼

1

16
(6.18)

sometime as the mass fraction of Helium

4nHe
nH

∼ 1

4
. (6.19)
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6.1 BBN as a Probe of BSM physics

The Helium mass fraction depends on several inputs parameters.

• g∗ - The number of relativistic degrees of freedom determines H during the radiation era,

therefore, H ∝ g1/2
F and hence affects the freeze-out temperature.

G2
FT

5
F ∼

√
GNg∗T

2
F ⇒ TF ∝ g1/6

∗ (6.20)

⇒ increasing g∗ increases TF (weak force?)

⇒ increases the n/p ratio at freeze-out

⇒ increases the final helium abundance

• τn - Large neutron lifetime (15 mins 881.5 sec) would reduce the amount of neutron decay

after freeze-out.

⇒ increases the final helium abundance.

• Q Larger mass difference (mn −mp) decreases the n/p ratio at freeze-out

⇒ decreases the final helium abundance.

• η - The amount fo helium increases with increasing η as nucleosynthesis starts earlier for

large baryon density.

• GN - increasing the strength of gravity increases the freeze-out temperature T ∝ G1/6
N .

⇒ increases the final helium abundance.

• GF - increasing the weak force, decrease the freeze-out temperature Tf ∝ G−2/3
F .

⇒ decrease the final helium abundance.

Changing the input, would change the predictions of BBN : BBN is a probe of fundamental

physics.

6.2 Light Element Synthesis

The couple Boltzmann equation have to be solved numerically
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Figure 6.2: Helium production in the Universe

Figure 6.3: Helium production in the Universe
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7
The Perturbed Universe

Introduction

As in many other areas oh physics, perturbation theory has been a powerful tool to aboard

several problems such as calculations of the power spectra of the cosmic microwave background

(CMB), recombination and so on, where the most relevant terms are linear [? ]. Therefore,

several approaches to perturbation theory in cosmology have been proposed, and in this paper

the Lagrangian perturbation theory is discussed and contrasted with the Eulerian perturbation

theory.

Eulerian perturbation theory

In comoving coordinates, the characteristic equation for this formalism is given by

∂2
t δ + 2

ȧ

a
∂tδ =

1

a2
∇[(1 + δ)∇φ] +

1

a2
∂α∂β

[
Pαβ

ρb
+ (1 + δ)vαvβ

]
. (7.1)

where δ ≡ ρ/ρ − 1, with ρ the particles density. Also, v is the mean velocity of a space phase

element, φ is a solution for the Poisson’s equation, and Pαβ is called the pressure tensor. Then,

in the Eulerian regime

δ � 1 and

(
vt

d

)2

≈ δ � 1,

where d is for the coherence length of the perturbation and t its dynamical time, t ≈ (Gρ)−1/2.

Furthermore, In linear perturbation theory the fluid equations assume the form

∂tδ +∇ · va = 0 & ∂2
t δ + 2

ȧ

a
∂tδ =

∇2p

ρba2
+ 4πGρbδ.

with a the scale FLRW scale factor.

157
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Lagrangian perturbation theory

This approach to perturbation theory was proposed by Moutarde et al in 1991 [? ]. And as

in the Eulerian case, this formalism is written in comoving coordinates, and the equivalent

characteristic equation (7.1) is given by

J(τ,q)∇xẍ = β(τ)[J(τ,q)− 1], (7.2)

with x the particles position and q the corresponding momentum. J−1 = δ−1 and β = 6
τ2+Ω(k) .

Notice that for any solution of (7.2), a divergence-free displacement field can be added, and

this composition will be a solution as well. Then, in order to take this fact into account the

following constraint is imposed

∇x × ẋ = 0.

Finally, the equation to solve is obtained through Γ ≡ ẍ as function of q as

∇xΓ = J(τ,q)−1
∑

i,j

Γi,jAji,

where the Aij are the cofactors of J .

Conclusion

An overview on the Lagrangian perturbation theory has been presented. In comparison with

the Eulerian case, perturbative solutions are obtained by means of an iterative procedure.

But in contrast, the expansion concerns the particles displacement field itself. Moreover, from

Lagrangian perturbation theory is expected that its approach to non-linear regime might lead

to finally understand deeply higher regimes. Then, it is hoped to obtain new and more precise

results from this perturbation theory formalism in the future.

The homogeneous and isotropic model provides an accurate description of the physical

properties of the universe on large scales: the expansion history and the evolution of its energy

content. Nevertheless, at small scales homogeneity and isotropy are no longer valid approxima-

tions, and therefore we have to make use of a more complex theory to describe, for instance,

the temperature anisotropies observed in the CMB and the matter distribution. We have seen

that the temperature of the photons in the CMB presents small anisotropies compared to the

background temperature ∆T/T̄ ∼ 10−5. This tiny value supports the use of linear perturba-

tion theory to predict accurately its statistical distribution. The idea of perturbation theory
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7.1 Newtonian Perturbation Theory

is straightforward: perturb the metric and the stress-energy tensor in the Einstein’s equations

about the background and, to first order, drop products of small quantities. Then solve the

coupled system of equations

δGµν = 8πGδTµν . (7.3)

This section is aimed to present an outline of linear perturbation theory, but for an extended

review, we refer to Bardeen [10], Dodelson [33], Hu and Dodelson [57], Kodama and Sasaki

[66], Liddle and Lyth [81], Ma and Bertschinger [89], Mukhanov [98], Mukhanov et al. [99];

special attention is paid to the papers written by Challinor [24], Doran [36], Durrer [38], Knobel

[65], Kurki-Suonio [70].

An outline of the theoretical concepts revised in this chapter is displayed in Figure 7.1 . The

quantities shown in the bottom panel will allow us to establish the connection with current and

future cosmological observations, as we shall see in the next chapter.

7.1 Newtonian Perturbation Theory

On scales well inside the Hubble radius and when describing non-relativistic matter, Newtonian

gravity is an adequate approximation of GR in cosmology.

Consider an ideal, self-gravitating non-relativistic fluid described by ρ, P � ρ, ~u, ~r (vector

position), t.

Continuity : ∂tρ+∇~r · (ρ~u) = 0, (energy density conservation), (7.4)

Euler : ∂t~u+ ~u · ∇~r~u = −1

ρ
∇~rρ−∇rΦ, (momentum conservation), (7.5)

where g = −∇rΦ is gravitational aceleration and ∂t~u+ ~u · ∇r~u convective derivate (follows the

fluid element as it moves).

Poisson : ∇2
~rΦ = 4πGρ, (7.6)

and ∇2
~rΦ is the gravitational potential ∇2

~rΦ = 4πGρ− Λ.
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7.1 Newtonian Perturbation Theory

7.1.1 Perturbation analysis

ρ → ρ̄(t) + δρ ≡ ρ̄(1 + δ). (7.7)

P → P̄ (t) + δP. (7.8)

u → a(t)H(t)~x+ ~v. (7.9)

Φ → Φ̄(~x, t) + φ. (7.10)

(7.11)

where we have introduced the density contrast δ as the fractional overdensity = δρ/ρ̄ density

perturbation, and φ as the perturbed gravitational potential.

0-order

Consider a uniform expanding ball of fluid satisfying Hubble’s law ~u = H(t)~r (from the

perspective of the fluid equations).

Taking Φ = 0 at ~r = 0, we have from the Poisson equation

∂

∂r

(
r2 ∂Φ

∂r

)
= (4πGρ− Λ)r2, (7.12)

∂Φ

∂r
=

1

3
(4πGρ− Λ)r, (7.13)

⇒ Φ =
1

6
(4πGρ− Λ)r2. (7.14)

The Euler equation becomes

∂H

∂t
~r +H2~r · ∇~r~r = −1

3
(4πGρ− Λ)~r, (7.15)

⇒ ∂H

∂t
+H2 =

1

3
(Λ− 4πGρ), (7.16)

with ~r · ∇~r~r = ~r. This is the Newtonian limit of one of Friedmann equations.

The continuity equation

∂tρ+∇~r · [ρ(t)H(t)~r] = 0, (7.17)

∂tρ+ 3ρH = 0, (7.18)
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7. THE PERTURBED UNIVERSE

1

ρ

∂ρ

∂t
+

3

a

∂a

∂t
= 0 ⇒ ρ ∝ a−3. (7.19)

the dilution of the mass density by expansion, (7.16) y (7.19) have a first integral (exact) given

by

−K = a2

(
H2 − 8πG

3
ρ− 1

3
Λ

)
. (7.20)

HW: Show K is a constant, hence a solution

−∂K
∂t

= 2a2H

(
H2 − 8πG

3
ρ− 1

3
Λ

)
+ a2

(
2H

∂H

∂t
− 8πG

3

∂ρ

∂t

)

= a2

[
2H3 − 16πG

3
Hρ− 2

3
HΛ + 2H

(
−H2 − 4πG

3
ρ+

1

3
Λ

)
+ 8πGHρ

]

= 0.

Therefore,

H2 − K

a2
=

1

3
(8πGρ− Λ), (7.21)

the intrinsic curvature of the surfaces of homogeneity .

Comoving coordinates

The position ~r = a(t)~x, has velocity d~r
dt = H(t)~r, with ~x the comoving spatial coordinates

(
∂

∂t

)

~r

=

(
∂

∂t

)

~x

+

(
∂~x

∂t

)

~r

· ∇~x (7.22)

=

(
∂

∂t

)

~x

−H(t)~x · ∇. (7.23)

∇ is the gradient respect to ~x at fixed t and ∇~r = a−1∇.

The velocity field

~u =
d~r

dt
=
d(a~x)

dt
= aH~x+ a

d~x

dt
, (7.24)

the second term in the r.h.s. defines the peculiar velocity, which describes changes in the co-

moving coordinates of fluid elements in time.
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7.1 Newtonian Perturbation Theory

1st order

The continuity equation (on new coordinate system)

[
∂

∂t
−H~x · ∇

]
[ρ̄(1 + δ)] +

1

a
∇ · [ρ̄(1 + δ)(Ha~x+ ~v)] = 0, (7.25)

(jav: falta un paso)

∂tρ̄+ 3ρH︸ ︷︷ ︸
0th−order

+ (∂tρ+ 3ρ̄H)δ + ρ̄∂tδ +
ρ̄

a
∇ · ~v

︸ ︷︷ ︸
1st−order

+
ρ̄

a
(~v · ∇δ + δ∇ · ~v)
︸ ︷︷ ︸

2nd−order

= 0, (7.26)

In linear perturbation theory

∂tδ +
1

a
∇ · ~v = 0. (7.27)

Homework

∂t~v +H~v = − 1

aρ̄
∇δρ− 1

a
∇φ. (7.28)

∇2Φ = 4HGa2ρ̄δ. (7.29)

Scalar/vector descomposition

We can always decompose the vector ~v as

~v = ∇v︸︷︷︸
scalar

+ ~v⊥︸︷︷︸
vector

, (7.30)

where ∇ · ~v⊥ = 0.

From the continuity equation, the vector part of ~v does not lead to clumping of the matter.

• Since ∇×~v = ∇×~v⊥, ~v⊥ describes the vorticity of the fluid. In linear theory, the escalar

and vector parts decouple.

• From perturbed Euler equation, take curl

∇× ∂t~v = ∂t(∇× ~v⊥) = −H∇× ~v⊥. (7.31)
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where the first equality uses the continuity equation, and from the second one we have that

∇× ~v⊥ decays as 1/a in a expanding universe.

Recalling ∇r = a−1∇, the physical vorticity ∇r × ~u = a−1∇ × ~v⊥, then the vorticity falls

as 1/a2, therefore vector modes can be neglected. For initial conditions from inflation,

vector modes are not excited in the first place.

7.2 The Jean’s length

The time derivate of the perturbed continuity equation (7.27)

∂2
t δ −

1

a
H∇ · ~v +

1

a
∇ · ∂t~v = 0, (7.32)

using Euler (7.28) and Poisson (7.29)

∂2
t δ −

1

a
H∇ · ~v − 1

a
∇ ·
(
H~v +

1

aρ̄
∇δP +

1

a
∇φ
)

= 0 (7.33)

⇒ ∂2
t δ −

2

a
H∇~v − 1

a2ρ̄
∇2δP − 1

a2
∇2φ = 0 (7.34)

⇒ ∂2
t δ + 2H∂tδ − 4πGρ̄δ − 1

a2ρ̄
∇2δP = 0. (7.35)

The fundamental equation for the growth of structure in Newtonian theory. It shows the

general competition between infall by gravitational attraction (4πGρ̄δ) and pressure (∇2δP )

• Consider a barotropic fluid P = P (ρ)

⇒ δP =
∂P

∂ρ
ρ̄δ ≡ c2sρ̄δ, (7.36)

where c2s is the sound speed

If we Fourier expanding ∇2 → −k2

∂2
t δ + 2H∂tδ +

(
c2sk

2

a2
− 4πGρ̄

)
δ = 0. (7.37)

w2 =
c2sk

2

a2
− 4πGρ̄. (7.38)

-164-



7.2 The Jean’s length

(jav: add three cases, static w/o gravity, static w/ gravity and expanding)

Damped oscillator (in a expanding universe)

Provided that
c2sk

2

a2 > 4πGρ̄.

⇒ The Pressure support gives rise to acoustic oscillator (sound waves) in the fluid.

• However for
c2sk

2

a2 < 4πGρ̄ the system is unstable

proper wavelength λ = 2πa/k, λJ ≡ c2s
√

π
Gρ̄

perturbations with λ > λJ are gravitational unstable (experience power low-growth)

perturbations with λ < λJ pressure supports oscillations (fluctuations oscillate with de-

creasing amplitude)

-165-



7. THE PERTURBED UNIVERSE

-166-



8
Applications to cold-Dark matter

8.1 Solutions in a Einstein -de Sitter phase (P̄ ≈ 0, k =

Λ = 0)

Large scales

After matter-radiation equality, before dark energy dominates

⇒ Einstein -de Sitter model P ≈ 0 and zero curvature or Λ

The fractional overdensity in the baryons δb approaches the CDM δc, and the matter behaves

like a single pressure-free fluid whit a total density contrast

δm =
ρ̄bδb + ρ̄cδc
ρ̄b + ρ̄c

≈ δc (8.1)

cs = 0 for linearized CDM fluctuation k << a2

Since H2 ∝ ρ̄ ∝ a−3, a ∝ t2/3 ⇒ H = 2
3t and 4πGρ̄ = 2

3t2

• Scales of cosmological interest are much larger than Jean’s scale (k2 � a2) for baryons

and CDM fluctuations

⇒ ∂2
mδm +

4

3t
∂tδm −

2

3t2
δm = 0 (8.2)
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8. APPLICATIONS TO COLD-DARK MATTER

assuming δm ∼ tp we get that δm ∝ t−1 ∝ a−3/2, and δm ∝ t2/3 ∝ a. The growing-mode →
grows like scale factor.

In expanding universe → power law-growth of δ. Exponential growth predicted in a

non-expanding universe (middle term cancels out)

• The Poisson equation

The gravitational potential is constant

−k2φ = 4πG ρ̄︸︷︷︸
a−3

δ︸︷︷︸
a

a2 = constant (8.3)

for δr we need relativistic perturbation theory.

8.2 The Meszaros effect

CDM grows only logarithmically on scales inside the sound horizon during radiation domination

∂2
t δi + 2H∂tδi − 4πG

∑

j

ρ̄jδj −
1

a2ρ̄i
∇2δPi = 0 (8.4)

∇2δPi we shall shows he properly when we develop relativistic perturbation theory

for CDM

∂2
t δc + 2H∂tδc − 4πG

∑

j

ρ̄jδj = 0 (8.5)

∂2
t δc +

1

t
∂tδc − 4πGρ̄cδc = 0 (8.6)

a ∝ t1/2, H = 1
2t

∂2
t δc ∼ H2δc ∼

8πG

3
ρ̄rδc � 4πGρ̄cδc (8.7)

since ρ̄r � ρ̄c during radiation domination

∂2
t δc +

1

t
∂tδc = 0 (8.8)
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8.3 Late-time suppression of structure formation by Λ

δc = constant, δc ∝ ln t

The effectively unclustered radiation reduces the growth of δc to only log

Need to wait until matter-domination so the DM density fluctuations grow significantly.

8.3 Late-time suppression of structure formation by Λ

Dark matter doesn’t cluster

∂2
t δm + 2H∂tδm − 4πGρ̄mδm = 0 (8.9)

when dominates a ∝ et
√

Λ/3, H ' constant, and 4πGρ̄m � H2 ∼
(

Λ
3

)
∼ 8πGρΛ

3

⇒ ∂2
t δm + 2H∂tδm ' 0 (8.10)

δm = constant, δm ∝ e−2t
√

Λ/3 ∝ a−2, Λ suppresses the growth of structure [matter

fluctuations]

Gravitational potential

−k2φ = 4πG ρ̄︸︷︷︸
a−3

δa2 ∝ a−1 (8.11)

This affects the integrated Sachs-Wolfe effect as we shall see later.

8.4 Evolution of baryon fluctuations after decoupling

The coupled dynamics of the baryon and CDM fluids after decoupling

∂2
t δb +

4

3t
∂tδb = 4πG(ρ̄cδb + ρ̄cδc) (8.12)

∂2
t δc +

4

3t
∂tδc = 4πG(ρ̄cδb + ρ̄cδc) (8.13)

substituting ∆ ≡ δc − δb, we have

∂2
t ∆ +

4

3t
∂t∆ = 0 (8.14)

which has solutions ∆ = constan or ∆ ∝ t−1/3 while δm has solutions t−1, t2/3, therefore

-169-



8. APPLICATIONS TO COLD-DARK MATTER

δc
δb

=
ρ̄mδm + ρ̄b∆

ρ̄mδm − ρ̄c∆
→ δm

δm
= 1. (8.15)
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9
Relativistic Perturbation Theory

Scales larger than the Hubble radius and for relativistic fluids (Newton is inadequate), basic

idea:

• Perturb the metric

• Perturb the stress-energy tensor in Einstein equations

• For linear perturbations, drop products of small quantities

δGµν = 8πGδTµν + Λδgµν . (9.1)

9.1 Perturbed Spacetime

gµν = ḡµν + δgµν , (9.2)

where the background metric corresponds to the spatially-flat FRW metric

ds2 = a2(η)(dη2 − δijdxidxj) = a2ηµνdx
µdxν , (9.3)

with Friedmann equations, in conformal time

H2 =
1

3
a2(8πGρ+ Λ) (9.4)

Ḣ =
1

6
a2[2Λ− 8πG(ρ+ 3P )] (9.5)
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9. RELATIVISTIC PERTURBATION THEORY

with H′ ≡ ∂ηa/a = aH. The most general perturbation to the background metric is (jav:

why?)

ds2 = a2(η)
{

(1 + 2ψ)dη2 − 2Bidx
idη − [(1− 2φ)δij + 2Eij ]dx

idxj
}
. (9.6)

• φ, ψ are scalar functions of η and xi

• Bi transforms like a three-vector

xi → x′i, Bi →
∂xj

∂x′i
Bj . (9.7)

• Eij is symmetric (Eij = Eji) and trace-free (δijEij = 0) three-tensor

xi → x′j , Eij →
∂xk

∂x′i
∂xl

∂x′j
Ekl. (9.8)

latin indices on spatial vectors and tensors are raised and lowered with δij → Bi = δijBj ,

Eij = δikEkj .

9.2 Scalar, vector and tensor decomposition

Bi = ∂iB︸︷︷︸
scalar

+ BTi︸︷︷︸
vector

. (9.9)

The vector part is transverse (divergence free) δij∂jB
T
i = 0.

Eij = ∂<i∂j>E︸ ︷︷ ︸
scalar

+ ∂(iE
T
j)︸ ︷︷ ︸

vector

+ ETij︸︷︷︸
tensor

. (9.10)

∂<i∂j>E ≡ ∂i∂jE −
1

3
δij∇2E trace− free (9.11)

ETij is symmetric, trace-free and transverse ∂iEij = 0.

δik∂kE
T
ij = 0 traceless, ETi is transverse ∂iETi = 0 (divergence-free).

For Eij

• Scalar - one degree of freedom E(~x, η), and they are ψ, φ,E,B
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9.3 Orthogornal frame vectors

• Vector - two degrees of freedom, ETi - three components, but one constraint (divergence-

vanishes) (they are Ei, Bi).

• Tensors - two degrees fo freedom, ETij - five components but δij∂k, E
T
ij are three constraints.

Total 4 + 4 + 2 = 10 degrees of freedom (Number of equations we need, - minus the

coordinates)

9.3 Orthogornal frame vectors

To construct explicity an orthonormal frame of 4 vectors (E0)µ and (Ei)
µ in the perturbed

metric

• Timelike (E0)µ - the 4 velocity uµ of an observer at rest relative to the coordinate system

gµνu
µuν = 1 ḡµν ū

µūν = 1 (9.12)

δgµν ū
µuν + 2ūµδu

µ = 0 (9.13)

(E0)µ ∼ uµ ? → uµ = a−1δ0
µ δg00 = 2a2ψ → δu0 = −ψa−1

(E0)µ = a−1δµ0 (1−ψ) Since gµν(E0)µ(E0)ν = a−2(1−2ψ)g00 = a−2(1−2ψ)a2(1+2ψ) = 1

• Spacelike

(Ei)
µ = a−1[Biδ

µ
0 + (1 + φ)δµi − Eji δµj ] (9.14)

gµν(E0)µ(Ei)
ν = a−1(1− ψ)g0ν(Ei)

ν (9.15)

= a−2(1− ψ)[g00Bi + g0i(1 + φ)− g0jE
j
i ] (9.16)

= Bi −Bi = 0 (9.17)
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9. RELATIVISTIC PERTURBATION THEORY

Homework

gµν(Ei)
µ(Ej)

ν = −δij (9.18)

9.4 Matter perturbations

• Metric perturbations

ds2 = a2(η)
{

(1 + 2ψ)dη2 − 2Bidx
idη − [(1− 2φ)δij + 2Eij ]dx

idxj
}
. (9.19)

• Orthonormal frame vectors

(E0)µ = a−1(1− ψ)δµ0 − timelike. (9.20)

(Ei)
µ = a−1[Biδ

µ
0 + (1 + φ)δµi − Eji δµj ]− Spacelike. (9.21)

In a orthonormal frame

T 0̂0̂ = ρ̄(η) + δρ energydensity (9.22)

T 0̂î = qi momentumdensity (9.23)

T îĵ = [P̄ (η) + δP ]δij −Πij fluxof3momentum (9.24)

where Πij is the trace-free anisotropic stress

If there’re several contributions Tµν =
∑
I T

I
µν

δρ =
∑

δρI , δP =
∑

δPI , qi =
∑

δqiI , Πij =
∑

I

Πij
I (9.25)

SVT descomposition qi,Πij

• Construct the coordinate components of Tµν , in terms of Tµν = (Eα)µ(Eβ)νT α̂β̂

-174-



9.4 Matter perturbations

we can derive the above expressions by using

T̄µν = (ρ̄+ P̄ )ŪµŪν − P̄ δµν (9.26)

with

Tµν = T̄µν + δTµν (9.27)

δT νµ = (δρ+ δP )~Uµ~Uν + (~ρ~P )(δUµUν + UµδUν)− δPδµν −Πµ
ν

T 00 = (E0)0(E0)0T 0̂0̂ + 2(E0)0(Ei)
0T 0̂î + (Ei)

0(Ej)
0T îĵ (9.28)

= a−2(1− 2ψ)ρ̄(1 + δ) +O(2) +O(2) (9.29)

= a−2ρ̄(1 + δ − 2ψ) (9.30)

T 0i = (E0)0(E0)iT 0̂0̂ + (E0)0(Ej)
iT 0̂ĵ + (Ej)

0(E0)iT 0̂ĵ + (Ej)
0(Ek)iT ĵk̂ (9.31)

= 0 + a−2δijq
j + 0 + a−2Bjδ

i
kP̄ δ

jk (9.32)

= a−2(qi + P̄Bi) (9.33)

T ij = (E0)i(E0)jT 0̂0̂ + (E0)i(Ek)jT 0̂k̂ + (Ek)i(E0)jT k̂0̂ + (Ek)i(El)
jT k̂l̂ (9.34)

= 0 + 0 + 0 + a−2[(1 + φ)δik − Eik][(1 + φ)δjl − E
j
l ][(P̄ + δP )δkl −Πkl] (9.35)

= a−2[P̄ δij + (2P̄ φ+ δP )δij − 2P̄Eij −Πij ] (9.36)

things look neater (in mixed coordinate components)

T 0
0 = gµ0T

0µ = g00T
00 + g0iT

0i (9.37)

= a2(1 + 2ψ)a−2ρ̄(1− 2ψ + δ)O(2) (9.38)

= ρ̄(1 + δ) (9.39)

Homework:

T i0 = qi

T ij = −(P̄ + δP )δij + Πi
j

The stress-energy tensor for a perfect fluid is
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9. RELATIVISTIC PERTURBATION THEORY

Tµν = (ρ+ P )uµuν − Pδµν (9.40)

uµ = dxµ

dτ τ proper time (jav: use t as proper time)

gµνu
µuν = 1 ⇒

1 = gµν
dxµ

dτ

dxν

dτ
(9.41)

= gµν

(
dη

dτ

)2
dxµ

dη

dxν

dη
(9.42)

=

(
dη

dτ

)2

(g00 + 2g0i
dxi

dη
+ gij

dxi

dη

dxj

dη
) (9.43)

where ui = dxi

dη is the coordinate velocity - small perturbation.

⇒ 1 =

(
dη

dτ

)2

g00 = a2(1 + 2ψ)

(
dη

dτ

)2

at linear order

dη

dτ
=

1

a
(1− ψ) (9.44)

the fluids 4 velocity uµ = a−1[1− ψ, vi]

and

u0 = g00u
0 + g0iu

i = a2(1 + 2ψ)a−1(1− ψ) +O(2) = a(1 + ψ) (9.45)

ui = gi0u
0 + giju

j = −a2Bia
−1 − a2δija

−1vj = −a(Bi + vi) (9.46)

Peculiar velocity of the matter

qi = T i0 = (ρ+ P )a−1via(1 + ψ) = (ρ+ P )vi (9.47)
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9.5 The gauge problem

9.5 The gauge problem

The metric perturbations aren’t uniquely defined, but depend on our choice of coordinates or

the gauge choice.

• We implicitly chose a specific time slicing of the spacetime and specific spatial coordinate

on these slides.

⇒ Making a different choice of coordinates, can change the values of the perturbation

variables and may even introduce fictitious perturbations

i.e FRW spacetime

change the spatial coordinates

xi → x̃i + ξi(η, x) (9.48)

⇒ dxi = dx̃i − ∂ηξidη − ∂kξidx̃k (9.49)

∂
∂η = • equiv. ∂

∂τ =′ η,τ conform ξ̇i ≡ ∂ηξi and ds2 = a2(dη2 − δijdxidxj)

and

ds2 = a2(η)[dη2 − 2ξ̇idx̃
idη − (δij + 2∂(iξj))dx̃

idx̃j ] (9.50)

we apparently have introduced the metric perturbation, but these are just fictitious gauge

modes, that can be removed by going back to the old coordinates.

Similar, we can change our time slicing η → η + ξ0(η, ~x)

ρ(η)→ ρ(η + ξ0(η, ~x)) = ρ̄(η) + ˙̄ρξ0. (9.51)

even in an unperturbed universe, a change of the coordinate can introduce a fictitious density

perturbation.

Therefore, we need a more physical way to identify true perturbations → define them in

such a way the don’t chance under change coordinates.
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9. RELATIVISTIC PERTURBATION THEORY

9.6 Gauge transformations

Consider small changes in coordinates xµ → x̃µ ≡ xµ + ξµ(η, ~x)

η̃ = η + T (η, xi) x̃i = xi + Li(η, xj).

For a scalar field Φ (i.e. inflation), the new perturbation at the same event is (Φ̄ is homoge-

neous)

δΦ̃ = Φ− Φ̄(η̃) (9.52)

= Φ− Φ̄(η + T ) (9.53)

= Φ− Φ̄(η)− T ˙̄Φ. (9.54)

to first order

δΦ̃ = δΦ− T ˙̄Φ. (9.55)

For metric perturbations

ḡµν is the metric in the background

δg̃µν = g̃µν − ḡµν(η̃, x̃i) (9.56)

=
∂xα

∂x̃µ
∂xβ

∂x̃ν
gαβ − ḡµν(η̃, x̃i) (9.57)

=
∂xα

∂x̃µ
∂xβ

∂x̃ν
[δgαβ + ḡαβ(η, xi)]− ḡµν(η̃, x̃i) (9.58)

= δgµν +

(
∂xα

∂x̃µ
∂xβ

∂x̃ν
− δαµδβν

)
ḡαβ(η, xi)− T ˙̄gµν(η, xi)− Li∂iḡµν(η, xi) (9.59)

to linear order, we need to know this, the inverse of ∂x̃µ

∂xα

The matrix of derivates

∂x̃α

∂xµ
=

(
∂η̃/∂η ∂η̃/∂xi

∂x̃i/∂η ∂x̃i/∂xj

)
=

(
1 + Ṫ ∂iT

L̇i δij + ∂jL
i

)
(9.60)

inverse of matrix with form 1 + ∆, is 1−∆ to first order in ∆

∂xα

∂x̃µ
=

(
∂η/∂η̃ ∂η/∂x̃i

∂xi/∂η̃ ∂xi/∂x̃j

)
=

(
1− Ṫ −∂iT
−L̇i δij − ∂jLi

)
(9.61)
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9.7 Gauge invariant perturbations

Substitute

δg̃00 = δg00 +

(
∂xα

∂η̃

∂xβ

∂η̃
− δα0 δβ0

)
ḡαβ − T ˙̄g00 − Li∂iḡ00 (9.62)

2a2ψ̃ = 2a2ψ +

(
∂η

∂η̃

∂η

∂η̃
− 1

)
ḡ00 + 2

∂η

∂η̃

∂xi

∂η̃
ḡ0i +

∂xi

∂η̃

∂xj

∂η̃
ḡij − T∂ηa2 (9.63)

= 2a2ψ − 2Ṫ a2 +O(2) +O(2)− 2THa2 (9.64)

ψ̃ = ψ − Ṫ −HT (9.65)

Tarea

φ̃ = φ+HT +
1

3
∂iL

i (9.66)

B̃i = Bi + ∂iT − L̇i (9.67)

Ẽij = Eij − ∂<iLj> (9.68)

9.7 Gauge invariant perturbations

SVT - decomposition

only the scalar modes

η̃ = η + T, x̃i = xi + δij∂jL (9.69)

ψ̃ = ψ − Ṫ −HT (9.70)

φ̃ = φ+HT +
1

3
∇2L (9.71)

B̃ = B + T − L̇ (9.72)

Ẽ = E − L (9.73)

4 functional degrees of freedom , and 2 gauge functions (T and L) ⇒ construct two gauge

invariant quantities (do not change under gauge transformation)
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9. RELATIVISTIC PERTURBATION THEORY

Bardeen variables

Ψ ≡ ψ +H(B − Ė) + Ḃ − Ë (9.74)

Φ ≡ φ−H(B − Ė) +
1

3
∇2E (9.75)

Φi ≡ Ėi −Bi (9.76)

Tarea: show that Φ, Ψ, Φi don’t change under a coordinate transformation

9.7.1 Gauge fixing

An alternative solution to the gauge problem is to fix the gauge and keep track of all

perturbations i.e. use the freedom of T and L to set two scalar metric perturbations to zero

Newtonian gauge (conformal)

E = B = 0 (9.77)

ds2 = a2(η)[(1 + 2ψ)dη2 − (1− 2φ)δijdx
idxj ] (9.78)

Ψ = ψ, Φ = φ Bardeen potentials (9.79)

The physics appears simple since

• hypersurfaces of constant time are orthogonal to the observers at rest (B = 0)

• induced geometry of the constant-time hypersurfaces is isotropic (E = 0)

• in the absence of anisotropic stress Ψ = Φ

• Similarity of the metric to the usual weak-field limit of GR about Minkowski

• Ψ plays the role of the gravitational potential (will see)

Therefore, preferred gauge for studying the formation of large-scale structures and CMB

anisotropies
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9.8 Perturbations of the Stress-Energy tensor

Spatially flat gauge

φ = E = 0

Convenient for computing inflationary perturbations. Fluctuations in the inflation field

Synchronous gauge

ψ = B = 0

See Ma and Betschinger.

9.8 Perturbations of the Stress-Energy tensor

Repeat the analysis (more convenient with mixed components)

δT̃µν =
∂x̃µ

∂xα
∂xβ

∂x̃ν
Tαβ − T̄µν (η + T, xi + Li) (9.80)

= δTµν +

(
∂x̃µ

∂xα
∂xβ

∂x̃ν
− δµαδβν

)
T̄αβ − T ˙̄Tµν − Li∂iT̄µν (9.81)

for T 0
0 = ρ̄+ δρ

δρ̃ = δρ+

(
∂η̃

∂xα
∂xβ

∂η̃
− δ0

αδ
β
0

)
T̄αβ − T ˙̄ρ− Li∂iρ̄ (9.82)

= δρ+

(
∂η̃

∂η

∂η

∂η̃
− 1

)
ρ̄− ∂η̃

∂xi
∂xj

∂η̃
ρ̄δij − T ˙̄ρ (9.83)

= δρ+ [(1 + ˙̄T )(1− ˙̄T )− 1]ρ̄−O(2)− T ˙̄ρ (9.84)

δρ̃ = δρ− T ˙̄ρ (9.85)

Tarea

δP̃ = δP − T ˙̄P (9.86)

q̃i = qi + (ρ̄+ P̄ )L̇i (9.87)

Π̃i
j = Πi

j (9.88)
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9. RELATIVISTIC PERTURBATION THEORY

9.9 Gauge invariant perturbations

one useful combination

ρ̄∆ ≡ δρ+ ˙̄ρ(v +B) (9.89)

= δρ− 3H(ρ̄+ p̄)(B + v) (9.90)

where qi = (ρ̄+ p̄)∂iv, ∆ comoving-gauge density perturbation

Exercise ∆ is gauge-invariant

9.10 Gauge fixing

Define the gauge in the matter sector.

9.10.1 Uniform density gauge

Use the freedom in the time-slicing to set the total density perturbation to zero

δρ = 0

9.10.2 comoving gauge

Scalar momentum density to vanish

q = 0

naturally connected to the inflationary initial conditions.

9.11 Adiabatic fluctuations

• Simple inflation models predict initial fluctuations that are adiabatic.

⇒ Energy densities of all species are constant on hypersurfaces and all species have

the same peculiar velocities.

The quantity

δρI
ρ̄I + P̄I

− δρJ
ρ̄J + P̄J

(9.91)
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9.12 Isocurvature fluctuations

is gauge invariant since δρ̃I → δρI − T ˙̄ρI , I and J labelled the species, and

˙̄ρJ = −3H(ρ̄+ P̄ )[= −(1 + wi)ρi]

Moreover, it vanished for adiabatic fluctuations since then all δρJ = 0, in a gauge for which

the constant-time hypersurfaces coincide with those of uniform total density

δ =
δρI
˙̄ρI

=
δρJ
˙̄ρJ

⇒ δI
1 + wI

=
δJ

1 + wJ
for all species I and J (9.92)

δJ is the fractional density contrast

δJ ≡
δρJ
ρ̄J

(9.93)

For adiabatic perturbations, matter (wm ≈ 0), radiation (wr = 1
3 ) obey δr = 4

3δm and the

total density perturbation

δρtot = ρ̄totδtot =
∑

I

ρ̄IδI (9.94)

is dominated by the especies that is dominated in the background since all the δI are

comparable

9.12 Isocurvature fluctuations

Adibatic perturbations correspond to a change in the total energy density

Isocurvature perturbation only correspond to perturbation betwen the different components

δIJ ≡
δI

1 + wI
− δJ

1 + wJ
(9.95)

single-field inflation predicts that the primordial perturbations are purely adiabatic δIJ = 0
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10
Linerised Evolution Equations

The perturb Einstein equations δGµν = 8πGδTµν

• We can use two gauge function T y L to set the metric perturbations E y B to zero

10.1 Conformal Newtonian Gauge

ds2 = a2[(1 + 2ψ)dη2 − (1− 2φ)δijdx
idxj ] (10.1)

φ = Φ and ψ = Ψ

Perturbed connections coefficients

we first require

Γµνρ =
1

2
gµk(∂νgkρ + ∂ρgkν − ∂kgνρ) (10.2)

with inverse

gµν =
1

a2

(
1− 2ψ 0

0 −(1− 2φ)δij

)
(10.3)
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10. LINERISED EVOLUTION EQUATIONS

Γ0
00 =

1

2
g00(2∂ηg00 − ∂ηg00) (10.4)

=
1

2
g00∂ηg00 (10.5)

=
1

2a2
(1− 2ψ)∂η[a2(1 + 2ψ)] (10.6)

= H+ ψ̇ (10.7)

Homework

Γ0
0i = ∂iψ (10.8)

Γi00 = δij∂jψ (10.9)

Γ0
ij = Hδij − [φ̇+ 2H(φ+ ψ)]δij (10.10)

Γij0 = Hδij − φ̇δij (10.11)

Γijk = −2δi(jδk)φ+ δjkδ
il∂lφ (10.12)

10.2 Perturbed Stress-Energy Conservation

Gµν = 8πGTµν+Λgµν implies conservation of energy and momentum via the contracted Bianchi

identify

∇µGµν = 0 → ∇µTµν = 0 (10.13)

it’s more convenient to work with the mixed components

∇µTµν = 0 or ∂µT
µ
ν + ΓµµρT

ρ
ν − ΓρµνT

µ
ρ = 0 (10.14)

Continuity equation

the ν = 0 component

∂0T
0
0 + ∂iT

i
0 + Γµµ0T

0
0 + ΓµµiT

i
0︸ ︷︷ ︸

O(2)

−Γ0
00T

0
0 − Γ0

i0T
i
0︸ ︷︷ ︸

O(2)

−Γi00T
0
i︸ ︷︷ ︸

O(2)

−Γij0T
j
i = 0 (10.15)

subs. the perturbed stress-energy tensor and connection coefficients

∂η(ρ̄+δρ)+∂iq
i+(H+ψ̇+3H−3φ̇)(ρ̄+δρ)−(H+ψ̇)(ρ̄+δρ)−(H− φ̇)δij [−(P̄+δP )δji +Πj

i ] = 0

(10.16)
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10.3 Euler equation

⇒ ˙̄ρ+ ∂ηδρ+ ∂iq
i + 3H(ρ̄+ δρ)− 3ρ̄φ̇+ 3H(P̄ + δP )− 3P̄ φ̇ = 0 (10.17)

the zero part

˙̄ρ+ 3H(ρ̄+ P̄ ) = 0 (10.18)

the first order part

∂ηδρ+ ∂iq
i − 3(ρ̄+ P̄ )φ̇+ 3H(δρ+ δP ) = 0 (10.19)

• ∂iq
i - describes changes due to the local fluid flow because peculiar velocity

• 3H - dilution due to the background expansion

• φ̇ - density changes caused by perturbations to the local expansion rate (1 − φ)a is the

local scale factor

δ ≡ δρ
ρ̄ - fractional overdensity

qi = (ρ̄+ P̄ )ui in terms of the peculiar velocity

δ̇ +

(
1 +

P̄

ρ̄

)
(∂iu

i − 3φ̇) + 3H
(
δP

δρ
− P̄

ρ̄

)
δ = 0 (10.20)

relativistic version of the continuity equation, limitP << ρ → recover the Newtonian con-

tinuity equation in conformal time

δ̇ + ∂iu
i − 3φ̇ = 0 (10.21)

but with a general-relastivistic correction [small on sub-horizon sacales k >> H]

10.3 Euler equation

ν = i

∂µT
µ
i + ΓµµρT

ρ
i − ΓρµiT

µ
ρ = 0 (10.22)

∂ηT
0
i + ∂jT

j
i + Γµµ0T

0
i + ΓµµjT

j
i − Γ0

0iT
0
0 − Γ0

jiT
j
0 − Γj0iT

j
0 − ΓjkiT

k
j = 0 (10.23)
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10. LINERISED EVOLUTION EQUATIONS

we have not written down explicitly before

T 0
i = giµT

0µ = gi0T
00 + gijT

0j

= 0− a2(1− 2φ)δija
−2qi

= −qi
(10.24)

then becomes

−q̇i + ∂j [−(P̄ + δP )δji + Πj
i ]− 4Hqi − (∂jψ − 3∂jφ)P̄ δji − ∂iψρ̄

− Hδijqj +Hδji qj + (−2δj(i∂k)φ+ δkiδ
il∂lφ)

︸ ︷︷ ︸
−3∂iφP̄

P̄ δkj = 0 (10.25)

⇒ −q̇i − ∂iδP + ∂jΠ
j
i − 4Hqi − (ρ̄+ P̄ )∂iψ = 0 (10.26)

using qi = (ρ̄+ P̄ )vi, the relativistic version of the Euler equation

v̇i +
1

ρ̄+ P̄
∂iδP −

1

ρ̄+ P̄
∂iΠ

j
i +Hvi +

˙̄P

ρ̄+ P̄
vi + ∂iψ = 0 (10.27)

• Hvi - redshifting of peculiar velocities

• ˙̄P/ ˙̄ρ - small corrections for relativistic fluids

• ˙̄P/ ˙̄ρ = c2s for adiabatic fluctuations

we just need the gravitational potentials ψ and φ to the close the system of equations

10.4 Perturbed Einstein equations

We requiere the Einstein tensor Gµν = Rµν − 1
2Rgµν so we need Ricci Rµν tensor and scalar R

Rµν = ∂ρΓ
ρ
µν − ∂νΓρµρ + ΓαµνΓραρ − ΓαµρΓ

ρ
να (10.28)

for 00:

R00 = ∂ρΓ
ρ
00 − ∂ηΓρ0ρ + Γα00Γραρ − Γα0ρΓ

ρ
0α (10.29)

the terms with ρ = 0 cancel
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10.4 Perturbed Einstein equations

R00 = ∂iΓ
i
00 − ∂ηΓi0i + Γα00Γiαi − Γα0iΓ

i
0α (10.30)

= ∂iΓ
i
00 − ∂ηΓi0i + Γ0

00Γi0i + Γj00Γiji︸ ︷︷ ︸
O(2)

−Γ0
0iΓ

i
00︸ ︷︷ ︸

O(2)

−Γj0iΓ
i
0j

= ∇2ψ − 3∂η(H− φ̇)− 3(H+ ψ̇)(H− φ̇)− (H− φ̇)2δji δ
i
j (10.31)

R00 = −3Ḣ+∇2ψ + 3H(φ̇+ ψ̇) + 3φ̈ (10.32)

Homework

R0i = 2∂iφ̇+ 2H∂iψ (10.33)

Rij = [Ḣ+ 2H2 − φ̈+∇2φ− 2(Ḣ+ 2H2)(φ+ ψ)−Hψ̇ − 5Hφ̇]δij

+ ∂i∂j(φ− ψ) (10.34)

Ricci scalar

R = g00R00 + 2g0iR0i︸ ︷︷ ︸
=0

+gijRij (10.35)

a2R = (1− 2ψ)R00 − (1 + 2φ)δijRij (10.36)

= (1− 2ψ)[−3Ḣ+∇2ψ + 3H(φ̇+ ψ̇) + 3φ̈] (10.37)

− δijδij︸ ︷︷ ︸
3

(1 + 2φ)[Ḣ+ 2H2 − φ̈+∇2φ (10.38)

−2(Ḣ+ 2H2)(φ+ ψ)−Hψ̇ − 5Hφ̇]− (1 + 2φ)∇2(φ− ψ) (10.39)

simplifying to linear order

a2R = −6(Ḣ+H2) + 2∇2ψ − 4∇2φ+ 12(Ḣ+H2)ψ + 6φ̈+ 6H(ψ̇ + 3φ̇) (10.40)

the Einstein tensor 00:

G00 = R00 −
1

2
g00R (10.41)

= −3Ḣ+∇2ψ + 3H(φ̇+ ψ̇) + 3φ̈+ 3(1 + 2ψ)(Ḣ+H2) (10.42)

−1

2
[2∇2ψ − 4∇2φ+ 12(Ḣ+H2)ψ + 6φ̈+ 6H(ψ̇ + 3φ̇)] (10.43)

G00 = 3H2 + 2∇2φ− 6Hφ̇ (10.44)
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10. LINERISED EVOLUTION EQUATIONS

since g0i = 0 (newtonian)

G0i = 2∂iφ̇+ 2H∂iψ (10.45)

Gij = Rij −
1

2
gijR (10.46)

= [Ḣ+ 2H2 − φ̈+∇2φ− 2(Ḣ+ 2H)(φ+ ψ)−Hψ̇ − 5Hφ̇]δij (10.47)

+∂i∂j(φ− ψ)− 3(1− 2φ)(Ḣ+H2)δij (10.48)

+
1

2
[2∇2ψ − 4∇2φ+ 12(Ḣ+H2)ψ + 6φ̈+ 6H(ψ̇ + 3φ̇)]δij (10.49)

this neates up

Gij = −(2Ḣ+H2)δij + [∇2(ψ − φ) + 2φ̈+ 2(2Ḣ+H2)(φ+ ψ)

+2Hψ̇ + 4Hφ̇]δij + ∂i∂j(φ− ψ) (10.50)

10.5 Einstein equations

00:

G00 = 8πGT00 + Λg00 (10.51)

3H2 + 2∇2φ− 6Hφ̇ = 8πG(g00T
0
0 + g0iT

i
0) + Λa2(1 + 2ψ) (10.52)

= 8πGa2ρ̄(1 + 2ψ)(1 + δ) + Λa2(1 + 2ψ) (10.53)

zero-order

H2 =
8πG

3
a2ρ̄+

1

3
Λa2 (10.54)

first order

∇2φ = (8πGa2ρ̄+ Λa2)ψ + 3Hφ̇+ 4πGa2ρ̄δ (10.55)

∇2φ = 3H(φ̇+Hψ) + 4πGa2ρ̄δ (10.56)

oi
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10.5 Einstein equations

G0i = 8πGT0i + Λg0i (10.57)

T0i = g0µgiνT
µν (10.58)

= g00gijT
0j (g0i = 0)

= −a2(1 + 2ψ)a2(1− 2φ)δija
−2qj (10.59)

= −a2qi (10.60)

⇒ ∂iφ̇+H∂iψ = −4πGa2qi with qi = (ρ̄+ P̄ )∂iv (10.61)

φ̇+Hψ = −4πGa2(ρ̄+ P̄ )v (10.62)

using G00

⇒ ∇2φ = 4πGa2[ρ̄δ − 3H(ρ̄+ P̄ )v] (10.63)

[ρ̄δ − 3H(ρ̄+ P̄ )v] poisson with source density

ρ̄∆ ≡ [ρ̄δ − 3H(ρ̄ + P̄ )(B + v)] the gauge-invariant variable (B = 0), since B = 0 in the

conformal newtonian gauge.

• introduce comoving hypersurfaces-orthogonal to the wordlines of a set of observers

comoving with the total matter

In the comoving gauge (qi = 0, Bi = 0), ∆ is the fractional overdensity

ij
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10. LINERISED EVOLUTION EQUATIONS

Gij = 8πGTij + Λgij

= 8πGgikgjlT
kl − a2Λ(1− 2φ)δij

= 8πGa4(1− 2φ)2δikδjla
−2[P̄ δkl + (2P̄ φ− δP )δkl −Πkl]− a2Λ(1− 2φ)δij

= 8πGa2(1− 4φ)[P̄ δij + (2P̄ φ+ δP )δij −Πij ] + a2Λ(1− 2φ)δij

= a2(8πGP̄ − Λ)δij + a2[8πG(δρ− 2P̄ φ) + 2Λφ]δij − 8πGa2Πij (10.64)

using Gij to zero order

2Ḣ+H2 = −a2(8πGP̄ − Λ) (10.65)

the second Friedmann equation.

The first order

[∇2(ψ − φ) + 2φ̈+ 2(2Ḣ+H2)(φ+ ψ) + 2Hψ̇ + 4Hφ̇]δij + ∂i∂j(φ− ψ)

= a2[8πG(δP − 2P̄ φ) + 2Λφ]δij − 8πGa2Πij (10.66)

• consider first the trace-free part

∂<i∂j>(φ− ψ) = −8πGa2Πij (10.67)

in the absence of anisitropic stress φ = ψ so there’s only one gauge-invariant degree of

freedom in the metric (Πij neutrino decoupling - or not a perfect fluid.)

• the trace part δij/3

∇2(ψ − φ) + 2φ̈+ 2(2Ḣ+H2)(φ+ ψ) + 2Hψ̇ + 4Hφ̇+
1

3
∇2(φ− ψ)

= 8πGa2δP − 2a2(8πGP̄ − Λ)φ (10.68)

using zero order

φ̈+
1

3
∇2(ψ − φ) + 2Ḣ+H2)ψ +Hφ̇+ 2Hφ̇ = 4πGa2δP (10.69)
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10.5 Einstein equations

10.5.1 Conserved curvature perturbation

An important quantity conserved on super Hubble scales for adiabatic scalar fluctuation irre-

spective of w(z): the comoving curvature perturbation.

⇒ Perturbation to the intrinsic curvature scalar of comoving hypersurfaces (qi = 0)

allows to match the perturbations from inflation to those in the radiation dominated universe

on large scales without needing to know the details of the reheating phase at the end inflation.

• work out the intrinsic curvature of surfaces fo constant time

- The induced metric γij (just the spatial part)

γij ≡ a2[(1− 2φ)δij + 2Eij ] (10.70)

(3)Γijk =
1

2
γil(∂jγkl + ∂kγjl − ∂lγjk) (10.71)

inverse γij = a−2[(1+2φ)δij−2Eij ] we need Γ to zero order, γij are first order perturbations

(3)Γijk = δil∂j(−φδkl + Ekl) + δil∂k(−φδjl + Ejl)− δil∂l(−φδjk + Ejk)

= −(2δi(j∂k)φ− δilδjk∂lφ) + (2∂(jE
i
k) − δil∂lEjk) (10.72)

The intrinsic curvature is the associated Ricci scalar

(3)R = γik∂
(3)
l Γlik − γik∂(3)

k Γlil + γik(3)Γ
l(3)
ik Γmlm︸ ︷︷ ︸

=0

−γik(3)Γ
m(3)
il Γlkm︸ ︷︷ ︸

=0

(10.73)

to first-order

a2(3)R = δik∂l
(3)Γlik − δik∂k(3)Γlil (10.74)

first term = −δik(2δl(i∂k)φ− δilδik∂jφ) + δik(2∂(iE
l
k) − δjl∂jEik)

= −2δkl∂kφ+ 3δjl∂jφ+ 2∂iE
il − δjl∂j(δikEik︸ ︷︷ ︸

=0

)

= δkl∂kφ+ 2∂kE
kl (10.75)
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10. LINERISED EVOLUTION EQUATIONS

second term = −δll∂iφ− δli∂lφ+ ∂iφ+ ∂lE
l
i + ∂iE

l
l − ∂lEli

= −3∂iφ (10.76)

a2(3)R = ∂l(δ
kl∂kφ+ 2∂kE

kl) + 3δik∂k∂iφ

= ∇2φ+ 2∂i∂jE
ij + 3∇2φ

= 4∇2φ+ 2∂i∂jE
ij (10.77)

vector and tensor perturbations are zero. Scalar perturbations, Eij = ∂<i∂j>E

∂i∂jE
ij = δilδjm∂i∂j(∂l∂mE −

1

3
δlm∇2E)

= ∇2∇2E − 1

3
∇2∇2E =

2

3
∇4E (10.78)

a2(3)R = 4∇2(φ+
1

3
∇2E) (10.79)

−(φ+∇2E/3) ≡ curvature perturbation

and the comoving curvature perturbation R evaluated in the comoving gauge (Bi = 0 = qi),

to form a gauge-invariant combination that equals R in the comoving gauge

Homework: R = −φ− 1
3∇2E +H(B + v) is a gauge-invariant expression

10.5.2 A conservation law

R is conserved on large scales for adiabatic perturbations. In the conformal newtonian gauge

R = −φ+Hv (10.80)

using Einstein 0i
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10.5 Einstein equations

R = −φ− H(φ̇+Hψ)

4πGa2(ρ̄+ P̄ )
(10.81)

−4πGa2(ρ̄+ P̄ )Ṙ = 4πGa2(ρ̄+ P̄ )φ̇+ Ḣ(φ̇+Hψ) +H(φ̈+ Ḣψ +Hψ̇)

−H(φ̇+Hψ)

(ρ̄+ P̄ )
(2H(ρ̄+ P̄ ) + ˙̄ρ+ ˙̄P ) (10.82)

using ˙̄ρ = −3H(ρ̄+ P̄ )

= 4πGa2(ρ̄+ P̄ )φ̇+ Ḣ(φ̇+Hψ) +H(φ̈+ Ḣψ +Hψ̇)

−H(φ̇+Hψ)

[
2H− 3H

(
1 +

˙̄P
˙̄ρ

)]
(10.83)

in ˙̄P use Poisson, and H2 − Ḣ = 4πGa2(ρ̄+ P̄ )

−4πGa2(~ρ+ ~P )Ṙ = (H2 − Ḣ)φ̇+ Ḣ(φ̇+Hψ) +H(φ̈+ Ḣψ +Hψ̇)

−H2(φ̇+Hψ) +
H ˙̄P

˙̄ρ
(∇2φ− 4πGa2ρ̄δ) (10.84)

adding and subtracting 4πGa2HδP

−4πGa2(ρ̄+ P̄ )Ṙ = H[φ̈+Hψ̇ + 2Hφ̇+ (2Ḣ+H2)ψ − 4πGa2δP ]

+4πGa2H
(
δP −

˙̄P
˙̄ρ
ρ̄δ

)

︸ ︷︷ ︸
δPnad

+
H ˙̄P

˙̄ρ
∇2φ (10.85)

with δPnad, the non-adiabatic pressure perturbation. It is gauge invariant since

δP → δP − T ˙̄P , δρ → δρ− T ˙̄ρ

it vanished for a baryonic equation of state P = P (ρ) more generally, it vanished for adiabatic

fluctuations. Using the trace-part fo the ij Einstein equation

−4πGa2(ρ̄+ P̄ )Ṙ =
1

3
H∇2(φ− ψ) + 4πGa2HδPnad +

H ˙̄P
˙̄ρ
∇2φ (10.86)

if δPnad vanishes, the RHS ∼ Hk2φ ∼ Hk2R

⇒ Ṙ
H ∼

(
k

H

)2

R d lnR
d ln a

∼
(
k

H

)2

(10.87)
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10. LINERISED EVOLUTION EQUATIONS

R doesn’t evalue on super-Hubble scales k << H

R at horizon crossing during inflation survives unaltered until later times.

10.6 Summary

Newtonian Gauge, no-anisotropic stress, Ψ = Φ

metric : ds2 = a2(η)
[
(1 + 2φ)dη2 − (1− 2φ)δijdx

idxj
]

Einstein:

∇2φ− 3H(φ̇+Hφ) = 4πGa2δρ (10.88)

φ̇+Hφ = −4πGa2(ρ̄+ P̄ )v (10.89)

φ̈+ 3Hφ̇+ (2Ḣ+H2) = 4πGa2δP (10.90)

using the comoving gauge density contrast

∇2φ = 4πGa2~ρ∆ (10.91)

Conservation:

δ̇ + 3H
(
δP

δρ
− P̄

ρ̄

)
δ = −

(
1 +

P̄

ρ̄

)
(∇ · v̄ − 3φ̇) (10.92)

v̇ + 3H
(

1

3
−

˙̄P
˙̄ρ

)
v = − ∇δP

ρ̄+ P̄
−∇φ (10.93)

R = −φ− H(φ̇+Hφ)

4πGa2(ρ̄+ P̄ )
(10.94)

doesn’t evolve on super-Hubble scales k << H
Adiabatic perturbations
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11
Initial conditions

Inflation sets the initial conditions up [for those superhorizon modes]

Spectrum of inflation for the curvature perturbation R ↔ The gravitational potential

Φ, in the Newtonian gauge φ = ψ

R = −φ− 2

3(1 + w)

(
φ′

H + φ

)
, (11.1)

w is the equation of state for the background.

Adiabatic perturbations and constant equation w ≈ c2s for a single component

φ′′ + 3(1 + w)Hφ′ + wk2φ = 0. (11.2)

Homework: Derive the above relation

11.0.1 Super horizon limit

Consider scales k � H, which means drop the last term in order to get

φ′′ + 3(1 + w)Hφ′ = 0, (11.3)

where the growing-mode solution is φ = constant, independent of w (for w = constant).
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11. INITIAL CONDITIONS

Meaning: The gravitational potential is frozen outside the horizon during both radiation

and matter eras.

From the Poisson equation

δ = −2

3

k2

H2
φ− 2

Hφ
′ − 2φ

[
3

2
H2 = 4πGa2ρ̄

]
, (11.4)

on super horizon scales k � H and φ ≈ constant,

δ ≈ −2φ = constant, (11.5)

primordial gravitational potential ⇒ δ is also frozen on super-horizon scales.

For adiabatic initial conditions

δm =
3

4
δr ≈ −

3

2
φrad, (11.6)

(δr ≈ δ during radiation era). On super horizon scales, the density perturbations are therefore

simply proportional to the curvature perturbations set up by inflation.

Radiation to matter transition

Exploit the conservation or R on super-Hubble scales k � H

R = −5 + 3w

3 + 3w
φ, (11.7)

(super horizon) relating fluctuations the CMB to primordial fluctuation.

Considering w = 1
3 , w = 0

R = −3

2
φrad = −5

3
φmat ⇒ φmat =

9

10
φrad. (11.8)

φ decreases by a factor of 9/10 in the transition from radiation dominated to matter dominated.
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11.1 Evolution fo fluctuations

Figure 11.1: Evolution of perturbations.

11.1 Evolution fo fluctuations

• Gravitational potential (10.90)

- Radiation Era

δP =
δρ

3
, H2 ∝ a−2, a ∝ η, H =

1

η
(11.9)

φ′′ +
3

η
φ′ − 1

η2
φ =

4πGa2ρ̄

3
δr. (11.10)

using Einstein 00

φ′′ +
3

η
φ′ − 1

η2
φ =

1

3
∇2φ− 1

η

(
φ′ +

1

η
φ

)

⇒ φ′′ +
4

η
φ′ − 1

3
∇2φ = 0

φ′′ +
4

η
φ′ +

k2

3
φ = 0 (11.11)

damped wave equation with propagation speed 1√
3
.

Now, using φ = u(x)/x and x = kη/
√

3, we have

u′′ +
2

x
u′ +

(
1− 2

x2

)
u = 0, (11.12)
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11. INITIAL CONDITIONS

with solutions

φ(x) = Ak
J1(x)

x
+Bk

n1(x)

x
. (11.13)

Where the Bessel and Neumann are described by

J1(x) =
sinx

x2
− cosx

x
=
x

3
+O(x3), (11.14)

n1(x) = −cosx

x2
− sinx

x
= − 1

x2
+O(x3), (11.15)

however, the Neumann blows up for small x (early times) : hence reject that solution.

The proportionality constant Ak can be found by matching the solutions to the primordial

value of the potential

φk(0) = −2

3
Rk(0), (11.16)

and therefore

φk(η) = −2Rk(0)

(
sinx− x cosx

x3

)
all scales (11.17)

- Outside the sound horizon x = 1√
3
kη � 1 ⇒ φ = constant.

- On subhorizon scales x� 1 [use that J`(x) ∼ 1
x sin

(
x− `π

3

)
] to get

φk(η) = 6Rk(0)
cos
(

1√
3
kη
)

(kη)2
. (11.18)

During the radiation era, subhorizon modes of φ oscillate with f = 1√
3
k and amplitude that

decays as η−2 ∝ a−2.

11.2 Matter era

w = 0

φ′′ +
6

η
φ = 0, (11.19)

φ =





constant

η−5 ∝ a−5/2
(11.20)

φ = cons is frozen on all scales during matter domination.
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11.3 Radiation

11.3 Radiation

11.3.1 Evolution of perturbations

Radiation era (radiation perturbations)

δr = −2

3
(kη)2φ− 2ηφ′ − 2φ (11.21)

∆r = −2

3
(kη)2φ. (11.22)

(using ∆ = ∇2φ/4πGa2ρ, 3/2H2 = 4πGa2ρ,H ∝ 1/η ∝ 1/a).

Outside the horizon (kη � 1) δr = −2φ and is constant, ∆r grows as η2 ∝ a2.

Inside the horizon (kη � 1)

δr ≈ ∆r = −2

3
(kη)2φ = 4R(0) cos

(
1√
3
kη

)
, (11.23)

oscillates w/constant amplitude and 4R(0) is the solution δ′′r − 1
3∇2δr = 0.

Matter era

Radiation perturbations are subdominant

On sub-horizon

δ′r = − 4
3∇ · ~vr

v′r = − 1
4∇δr −∇φ



 δ′′r −

1

3
∇2δr =

4

3
∇2φ = cons (11.24)

is an harmonic oscillator w/constant driving force, the acoustic oscillator → give rise to the

peaks in the CMB spectrum.

Dark matter

Early times (r +m) (no baryons)

H2 =
H2

0Ω2
m

Ωr

(
1

y
+

1

y2

)
y ≡ a

aeq
. (11.25)

• Subhorizon scales
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11. INITIAL CONDITIONS

δ′m = −∇ · ~vm

~vm
′ = −H~vm −∇φ



 δ′′m +Hδ′m = ∇2φ. (11.26)

(only sourced by matter fluctuations)

δ′′m +Hδ′m − 4πGa2ρ̄mδm ≈ 0. (11.27)

can be written as the Meszaros equation

d2δm
dy2

+
2 + 3y

2y(1 + y)

dδm
dy
− 3

2y(1 + y)
δm = 0 (11.28)

with solutions.

δm ∝





2 + 3y

(2 + 3y) ln
(√

1+y+1√
1+y−1

)
− 6
√

1 + y
(11.29)

• For y � 1 (RD) ⇒ δm ∝ ln y ∝ ln a

• For y � 1 (MD) ⇒ δm ∝ y ∝ a

RD mD

φ δm(∆m) φ δm(∆m)

k >> keq
super constant constant (a2) - -

sub a−2 ln a constant a

k << keq
super constant constant (a2) constant constant (a)

sub - - constant a

Intermediate times

From the gravitational potential

∆m =
∇2φ

4πGa2ρ̄
∝





a

a−
3
2

(11.30)

Late times (m+ Λ)

∇2φ = 4πGa2ρ̄m∆,

pressure fluctuations are neligable
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11.3 Radiation

φ′′ + 3Hφ′ + (2H′ +H2)φ = 0

since a2ρ̄m ∝ a−1, φ ∝ ∆m/a

∂2
η

(
∆m

a

)
+ 3H∂η

(
∆m

a

)
+ (2H′ +H2)

(
∆m

a

)
= 0 (11.31)

∆′′m +H∆′m + (H′ −H2)∆m = 0 w/Friedmann (11.32)

∆′′m +H∆′m − 4πGa2ρ̄m∆m = 0 valid on all scales (11.33)

Figure 11.2: Evolution of perturbations.

Baryons

• Before decoupling.

z > zdec ≈ 1100, photons and baryons are coupled strongly to each other via Compton scattering

vγ = vb, δγ =
4

3
δb.

The pressure of the photons supports oscillations on small scales

• After decoupling
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11. INITIAL CONDITIONS

δ′b +Hδ′b = 4πGa2(ρ̄bδb + ρ̄cδc)

δ′c +Hδ′c = 4πGa2(ρ̄bδb + ρ̄cδc)

ρ̄mδm = ρ̄bδb + ρ̄cδc

Define D ≡ δb − δc, subtracting

D′′ +
2

η
D′ = 0 D ∝




constant

η−1

while δm

δ′′m +
2

η
δ′m −

6

η2
δm = 0 δm ∝




η2

η−3

since
δb
δc

=
ρ̄mδm + ρ̄cD

m̄δm − ρ̄bD
→ δm

δm
= 1 (11.34)

δb approaches δc.
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11.3 Radiation

Figure 11.3: Evolution of perturbations.
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12
Initial conditions from inflation

From quantum to classical

δΦ(t, x̄) ≡ Φ(t, ~x)− Φ̄(t). (12.1)

• Quantum fluctuations induce a non-zero variance in the amplitudes of these oscillations

〈
|δΦk|2

〉
≡
〈
0|δΦk|20

〉
. (12.2)

• Then inflationary expansion stretches these fluctuations to super horizon scales.

• At horizon crossing, k = aH, switch from inflation fluctuations δΦ to fluctuations in the

conserved curvature perturbation R. [In spatially flat gauge φ = E = 0].

R = −φ− 1

3
∇2E +H(B + v) −→ H(B + v) zero curvature gauge

recall δT 0
j = −(ρ̄+ p̄)∂j(B + v)

compare to the stress tensor of a scalar field

δT 0
j = g0µ∂µΦ∂jδΦ = g00∂0Φ̄∂jδΦ =

Φ̄
′

a2
∂jδΦ

B + v = −δΦ
Φ̄′

R = −H
Φ̄′
δΦ. (12.3)
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12. INITIAL CONDITIONS FROM INFLATION

For the Unperturbed FRW metric

S =

∫
dηd3x

[
1

2
a2
(

Φ′
2 − (∇Φ)2

)
− a4V (Φ)

]
, (12.4)

in the background Φ = Φ̄(η) is homogeneous

Fluctuations in Φ: Φ = Φ̄ + u
a where u = aδΦ

expanding the fluctuations in u, the term in square brackets becomes

aΦ̄′u′︸ ︷︷ ︸
δ(1)

− a′Φ̄′u︸ ︷︷ ︸
δ(1)

+
1

2
u′2 − u′uH+

1

2
u2H2 − 1

2
(∇u)2 − a3uV,Φ︸ ︷︷ ︸

δ(1)

−1

2
a2u2V,ΦΦ. (12.5)

Looking only the terms marked with δ(1), the first term can be integrated by parts and

dropping the boundary term, we have

δ(1) = −
∫
dηd3x

[
(Φ̄′a)′ + a′Φ̄′ + a3V,Φ

]
u (12.6)

to then

δ(1) = −
∫
dηd3xa[Φ̄′′ + 2HΦ̄′ + a2V,Φ]u (12.7)

where

Φ̄′′ + 2HΦ̄′ + a2V,Φ = 0 Klein-Gorden for the background field (12.8)

hence, we need to go to the second order in the action

δ(2) =
1

2

∫
dηd3x

[
(u′)2 − (∇u)2 − 2Huu′ +

(
H2 − a2V,ΦΦ

)
u2
]

(12.9)

uu′ =
1

2
(u2)′

δ(2) =
1

2

∫
dηd3x

[
(u′)2 − (∇u)2 +

(
a′′

a
− a2V,ΦΦ

)
u2

]
. (12.10)

During slow-roll inflation we have

V,ΦΦ

H2
≈ 3M2

pV,ΦΦ

V
= 3ηV � 1, (12.11)

since a′ = a2H, H ∼ constant, deriving

a′′

a
≈ 2a′H = 2a2H2 � a2V,ΦΦ (12.12)
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12.1 Canonical quantization

δ(2) =

∫
dηd3x

1

2

[
(u′)2 +

a′′

a
u2 − (∇u)2

]
. (12.13)

Applying E − L

u′′ − a′′

a
u−∇2u = 0 Mukhanov-Sasaki equation. (12.14)

for each Fourier mode

u′′k +

(
k2 − a′′

a

)
uk = 0. (12.15)

12.1 Canonical quantization

Follow the quantization of the harmonic oscillator.

Define the momentum conjugate to u

πu ≡
∂L
∂u̇

= u̇, (12.16)

promote π and u to operator-valued, commutation relations

[û(η, ~x), π̂(η, ~x′)] = iδ(~x− ~x′) Heinsenberg picture (12.17)

∂2û

∂η2
− a′′

a
û−∇2û = 0 (12.18)

Quantum oscillators â†k,âk creation and annihilation operators

The general solution to the equation

û(η, x) =

∫
d3k

(2π)
3
2

[â(k)uk(η)eik̄·x + â†(k̄)u∗k(η)e−ik̄·x̄] (12.19)

Fourier

û(η,~k) = â~kuk(η) + â†~k
u∗k(η). (12.20)
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12. INITIAL CONDITIONS FROM INFLATION

12.2 Power spectrum

Power spectrum Pu(k) by computing the two-point correlator of the flied u in Fourier space

〈
0|û(η, k̄)û†(η, k̄

′
)|0
〉

=
2π2

k3
Pu(k)δ(k̄ − k̄′) (12.21)

after some algebra

〈
0|û(η, k̄)û†(η, k̄

′
)|0
〉

= |uk(η)|2δ(k̄ − k̄′) (12.22)

the power spectrum is thus Pu(k) = k3

2π2 |uk(η)|2 since u = aδΦ

PδΦ(k) =
k3

2π2

∣∣∣∣
uk(η)

a(η)

∣∣∣∣
2

(12.23)

we requiere more detailed solutions.

During slow-roll inflation, H ∼ constant, or Hk for few e-folds, integrating

a′

a
= H = aHk ⇒ a = − 1

Hkη

a′′ = − 2

Hkη3
⇒ a′′

a
=

2

η2
(12.24)

u
′′

k +

(
k2 − 2

η2

)
uk = 0 (12.25)

with solutions

uk(η) =
e−ikη√

2k

(
1− i

kη

)
(12.26)

few e-folds after Hubble exit (super horizon)

uk(η) ≈ − ie
−ikη

η
√

2k3
⇒ uk(η)

a(η)
≈ iHke

−ikη
√

2k3
(12.27)

Form the modes that have excited the Hubble radius

PδΦ(k) =

(
Hk

2π

)2

(12.28)

A light scalar field in quasi the Sitter spacetime acquires an almost-scale-invariant spectrum

of fluctuations

-210-



12.2 Power spectrum

PR(k) =

(H
Φ̄′

)2

PδΦ =

(
H2

2πΦ̄′

)2

(12.29)

Using slow-roll

H2 ≈ 1

3M2
p

V (Φ̄), 3H ˙̄Φ = −V,Φ (12.30)

PR(k) =

(
H2

2π ˙̄Φ

)2

≈
(

3H3

2πV,Φ

)2

=

(
V/M2

p

)3

3(2π)2(V,Φ)2
=

8

3

(
V 1/4

√
8πMp

)
1

εV
(12.31)

CMB obs. constrain PR(k) ∼ 2× 10−9
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12. INITIAL CONDITIONS FROM INFLATION

12.3 Primordial perturbations from inflation

• Slow-roll inflation produces a spectrum of curvature perturbations that is almost scale-

invariant (Harrison-Zeldovich)

• We can quantify small departures from scale-invariance

PR = As

(
k

k0

)ns−1

(12.32)

ns(k) spectral index ns(k)− 1 ≡ d lnPR(k)
d ln k in terms of the potential

d

d ln k
=

dt

d ln k

dΦ

dt

d

dΦ
(12.33)

at Hubble exit

k = aH ⇒ d ln k

dt
= H

(
1 +

∂tH

H2

)
(12.34)

∂tH

H2
= −3

2

(
ρ̄+ P̄

ρ̄

)

≈ −3

2

(∂tΦ)2

V
= −1

2

(3H∂tΦ)2

3H2V

≈ −M
2
p

2

(
V,Φ
V

)2

= −εV ,
d ln k

dt
≈ H(1− εV ) (12.35)

d

d ln k
≈ 1

H

dΦ

dt

d

dΦ

≈ − V,Φ
3H2

d

dΦ︸ ︷︷ ︸
1stFriedmann

≈ −M2
p

V,Φ
V

d

dΦ︸ ︷︷ ︸
2ndFriedmann

≈ −M2
p

√
2εV

d

dΦ
(12.36)

differenciate the spectrum

ns − 1 = −Mp

√
2εV

d

dΦ
(lnV − ln εV ) (12.37)

−Mp
√

2εV

(
V,Φ
V
− εV,Φ

εV

)
(12.38)

second term
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12.3 Primordial perturbations from inflation

d ln εV
dΦ

= 2

(
V,ΦΦ

V ′
− V,Φ

V

)
(12.39)

≈
√

2

Mp

(
ηV√
εV
− 2
√
εV

)
(12.40)

ns − 1 = 2ηV (Φ)− 6εV (Φ) (12.41)

→ dns
d ln k second-order in slow roll (running parameter).

• Gravitational waves from inflation

tensor modes

ds2 = a2[dη2 − (δij + 2ETij)dx
idxj ] (12.42)

ETij trace-free and δik∂kE
T
ij = 0

there are two degrees of freedom associated → behave like massless scalar fields

S(2) =
M2
p

8

∫
dηdx3a2[(ET

′

ij )2 − (∇ETij)2] (12.43)

define

M2
p

2
aETij ≡

1√
2



f+ fx 0
fx −f+ 0
0 0 0


 (12.44)

S(2) =
1

2

∑

I=+,x

∫
dηd3x[(u′I)

2 − (∇uI)2 +
a′′

a
u2
I ] (12.45)

two copies for the action u = aδΦ

Pt(k) =
8

M2
p

(
Hk

2π

)2

(12.46)

using the slow-roll inflation

Pt(k) ≈ 128

3

(
V 1/4

√
8πMp

)4

(12.47)

defines the tensor-to-scalar ratio

r ≡ Pt(k)

PR(k)
≈ 16εV
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12. INITIAL CONDITIONS FROM INFLATION

Pt(k) = At

(
k

k0

)nt
(12.48)

tensor spectral index

nt
d lnPn(k)

d ln k
≈ d lnV

d ln k
= −Mp

√
2εV

V,Φ
V

= −Mp

√
2εV

√
2εV
Mp

= −2εV (12.49)

Note that r ≈ −8nt, the first consistency relation.

12.4 The matter power spectrum

The distribution of matter is a key cosmological observable

MPS P∆m(η;~k) is defined by

< ∆m(η,~k)∆∗m(η,~k′) >≡ 2π

k3
P∆m(η, k)δ(k̄ − k̄′) (12.50)

is dimensionless, but frequently

P∆m
(η, k) ≡ 2π

k3
P∆m

(η, k). (12.51)

• Real-space measures of matter clustering, σR

→ the variance of ∆m averaged in spheres of radius R, equivalent to the variance of ∆m

convolved with

3Θ(R− |x|)
4πR3

(12.52)

normalized spherical top hat, which in Fourier space is W (kR)

W (x) ≡ 3

x3
(sinx− x cosx) (12.53)

σ2
R =

∫
d3k̄

(2π)3
W 2(kR)P∆m

(k). (12.54)
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12.4 The matter power spectrum

Historically R = 8h−1 MPc is chosen

Makes the scale at which perturbation theory breaks down and non-linear effects become im-

portant.

Whre lineal perturbation holds

∆m(η, k̄) = T (η, k)R(0, k̄). (12.55)

T (η, k) transfer function that relates the primordial curvature perturbation to the comoving

matter perturbation. [Sometimes you will find it as δ(k, η) ∼ φpD1(η)T (k), with the growth

function

D1(a) ∝ H(a)

∫ a da

(aH(a))3
. (12.56)

The primordial curvature power spectrum is almost scale-free so it contributes with a factor of

k−3.

• First k < keq.

Relates relate ∆m to φ via the poisson equation

∆m ∼ k2φ

[
φ(η, k̄) = −3

5
R(0, k̄) matter domination

]

⇒ T (η, k) ∝ k2

P∆m(k) ∝ k4

k3
∝ k on large scales.

• For k > keq

The newtonian-gauge δc is constant in time until horizon entry δc(0, k̄) ∝ φ(0, k̄) ∝ R(0, k̄).

Then, the Meszaros effect operates inside the horizon and δc grows logarithmically with proper

time

δc(teq, k)

δc(0, k̄)
∼ 1 + ln

(
teq
tk

)
(12.57)
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12. INITIAL CONDITIONS FROM INFLATION

at time of horizon entry a(tk)H(tk) = k and a ∝ t1/2 in radiation domination ⇒ tk ∝ 1
k2

∼ 1 + 2 ln

(
k

keq

)
k > keq

T (η, k) ∝ ln

(
k

keq

)

P∆m
∝ k−3 ln2

(
k

keq

)
k >> keq (12.58)

Figure 12.1: Evolution of perturbations.
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12.4 The matter power spectrum

Figure 12.2: Evolution of perturbations.
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� �

�

Figure 12.3: Evolution of perturbations.
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13
CMB

1. Cosmic Microwave Background – Observational cosmology, history.

Recombination, Decoupling, Last Scattering – Pettini

Black body radiation

2. Stats

Perturbations

Acoustic peaks

Polarization, Tensor perturbations

3. Observations

Physical Implications, Cosmology

Codes

What else, Non-gaussianity, Primordial Gravitational waves

The cosmic microwave background (CMB) is the thermal radiation left over from the ”Big

Bang”, also known as ”relic radiation”. It is fundamental to observational cosmology because

it is the oldest light in the universe, dating to the epoch of recombination. With a traditional

optical telescope, the space between stars and galaxies (the background) is completely dark.

However, a sufficiently sensitive radio telescope shows a faint background glow, almost exactly

the same in all directions, that is not associated with any star, galaxy, or other object. This

glow is strongest in the microwave region of the radio spectrum.

The CMB is a snapshot of the oldest light in our Universe, imprinted on the sky when the

Universe was just 380,000 years old. It shows tiny temperature fluctuations that correspond to
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13. CMB

regions of slightly different densities, representing the seeds of all future structure: the stars

and galaxies of today.

13.1 Isotropic CMB

The Cosmic Microwave Background radiation was discovered in 1965 by two American radio

astronomers, Arno Penzias and Robert Wilson, while trying to identify sources of noise

in microwave satellite communications at Bell Laboratories in New Jersey. Their discovery

was announced alongside the interpretation of the CMB as relic thermal radiation from the

Big Bang by Robert Dicke and collaborators working at the nearby Princeton University.

Interestingly, the possibility of a cosmic thermal background were first entertained by Gamow,

Alpher and Herman in 1948 as a consequence of Big Bang nucleosynthesis, but the idea was

so beyond the experimental

Figure 13.1: Discovery of the CMB.

The original detection by Penzias and Wilson was at a wavelength of 73.5 mm, this being

the wavelength of the telecommunication signals they were working with; this wavelength is

two orders of magnitude longer than λpeak = 1.1mm of a T = 2.7255K blackbody.

At any angular position (θ, φ) on the sky, the spectrum of the CMB is a near-perfect black-

body (see Figure 13.2). The CMB is in fact the closest approximation we have to an ideal
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13.1 Isotropic CMB

Figure 13.2: Blackbody radiation.

blackbody. With T (θ, φ) denoting the temperature at a given point on the sky, the mean tem-

perature averaged over the whole sky is

〈T 〉 =
1

4π

∫
T (θ, φ) sin θdθdφ = 2.7255± 0.0006K (13.1)

The deviations from this mean temperature from point to point on the sky are tiny. Defining

the dimensionless T fluctuations:

δT

T
(θ, φ) =

T (θ, φ)− 〈T 〉
〈T 〉 (13.2)

is found that

〈(
δT

T

)〉1/2

= 1.1× 10−5 (13.3)

Such deviations were first reported in 1992 by the COBE team. Subsequent CMB missions

(WMAP and Planck) have significantly improved the angular resolution and precision in the

mapping of the CMB sky, as illustrated in Figure 13.3.
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13. CMB

Figure 13.3: CMB seen by Planck.
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14
The Boltzmann equation

Figure 14.1: Interactions between the different forms of matter in the universe.

The Boltzmann equation

df

dη
= C[f ] (14.1)

The expansion of the Universe is slow compared to the microwave frequency of the CMB. It is

hence adiabatic, as far as the photons are concerned. The distribution function of the cosmic

microwave background with temperature T̄ is

f̄ =

[
exp

(
E

T̄

)
− 1

]−1

. (14.2)
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14. THE BOLTZMANN EQUATION

We see that f̄ depends just upon the energy E of a photon. Writing T = T0a
−1, we see that

f̄ is a function of aE only:

f̄(aE) =

[
exp

(
aE

T̄0

)
− 1

]−1

. (14.3)

To make the connection, we note that in General Relativity, the energy of a photon is given by

E = −uµpµ, (14.4)

and for observers in the unperturbed background at rest, i.e. uµ = a(1, 0, 0, 0), we haven

then E = −a p, where p ≡ |p| =
√
pipjδij , in the background p0 = p.

Them f̄ depends solely of P = a2p, and therefore use P as an argument for f .

The full distribution function is naively a function of (xµ, pµ). Yet, the physics governing the

evolution of f respects the mass shell condition pµp
µ = m2. Therefore, f is a function f(xµ, pi)

only. Use p0 as a function of pi right from the start. In order to do this, let us split the spatial

momentum

pi ≡ pni (14.5)

into its magnitude p and the unit vector of photon momentum n, so δijn
inj = 1. Hence, we

arrive at our final set of variables for f

f = f(η,x, P,n) (14.6)

The complete distribution function for each species can be split into background plus a

perturbation part:

f(η,x, P,n) = f̄(P ) + F (η,x, P,n), (14.7)

Useful relations, got them from gµνp
µpν = 0

p0 = p(1−Ψ− Φ) (14.8)

p0 = −a2p(1 + [Ψ− Φ]) (14.9)

pi = a2pni(1− 2Φ) (14.10)

√−g = a4(1 + Ψ− 3Φ) (14.11)

and µ = k·n
k , and a useful formula

∂p

∂pi
=
∂
√
δmnpmpn

∂pi
=

1

2

2pi
p

= ni (14.12)
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14.1 Collisionless Part

14.1 Collisionless Part

The evolution of perturbations in the universe is quantified by the Boltzmann equation:

(
∂f

∂η

)

P

+
∂f

∂xi
∂xi

∂η
+
∂f

∂P

∂P

∂η
+
∂f

∂ni
∂ni

∂η
= C[f,G], (14.13)

which relates the effects of gravity on the photon distribution function f to the rate of

interactions with other species, given by the collision term C[f,G]. The previous distribution

applies to polarization as well by simply replacing F → G (we use G to denote the linear

polarization distribution function) and f̄ = f̄ ′ → 0

On the Boltzmann equation the last term vanishes, because it is of second order in perturba-

tion theory: f̄ does not depend on ni and hence ∂f/∂ni is a perturbation. In addition ∂ni/∂η,

is a change in photon direction that can only come from a spatially inhomogeneous scattering

process. So all in all the last term is of second order and we can safely discard it.

The most difficult term is the third one.

∂P

∂η
=

∂

∂η
a2p (14.14)

= 2
ȧ

a
a2p+ a2 ∂p

∂η
(14.15)

and using the equation

∂p

∂η
=

∂p

∂pi
∂pi

∂η
= ni

∂pi

∂η
(14.16)

The third term can be computed from the geodesic equation

p0 ∂p
i

∂η
+ Γiαβp

αpβ = 0 (14.17)

then

ni
∂pi

∂η
= −(p0)−1niΓ

i
αβp

αpβ (14.18)

Collecting all the terms, we have

niΓ
i
βγp

βpγ = 2
a′

a
p0p+ p2 [iµk(Ψ− Φ)− 2Φ′] (14.19)
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14. THE BOLTZMANN EQUATION

∂f

∂P

∂P

∂η
= −P f̄,P {iµk[Φ + Ψ] + 2Φ′}, (14.20)

and the spatial part

∂f

∂xi
∂xi

∂η
= iµkF (η,x, P,n). (14.21)

Collecting the terms involving the background only

(
∂f

∂η

)

P

= 0 (14.22)

The change in a distribution function of massless particles which depends solely on P is zero:

the preservation of the background black body spectrum.

As far as the perturbed distribution is concerned, it is much more exciting:

(
∂F

∂η

)

P

+ iµkF − P f̄,P {iµk[Φ + Ψ] + 2Φ′} = C[f,G] (14.23)

Finally, making the substitution F → G, f̄ ′ → 0, we get the simple evolution equation for

the linear polarization G (
∂G

∂η

)

P

+ iµkG = CG[f,G] (14.24)

where CG[f,G] is the collision term for G.

14.1.1 Perturbed temperature

Writing the temperature function T in terms of the photon brightness temperature perturbation

∆ ≡ ∆T/T̄ , we have

T (η,x,n) = T̄ (η)[1 + ∆(η,x,n)], (14.25)

f = f̄

(
P

1 + ∆

)
= f̄ +

∂f̄

∂P

[
P

1 + ∆
− P

]
(14.26)

= f̄ +
∂f̄

∂P
P

(
1

1 + ∆
− 1

)

= f̄ +
∂f̄

∂P
P (1−∆− 1)

= f̄ − ∂f̄

∂P
P∆
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and therefore F and ∆ are connected via

F (η,x, P,n) = −P ∂f̄

∂P
∆(η,x,n). (14.27)

So,

G(η,x, P,n) = −P ∂f̄

∂P
Q(η,x,n). (14.28)

Then, the simplify Boltzmann equation becomes

∆′ + ikµ∆ = −iµk[Φ + Ψ]− 2Φ′ + Ĉ[f,G] (14.29)

where Ĉ[f,G] ≡ C[f,G]/(P f̄,P )

14.2 The Collision Term from Compton Scattering

The dominant term for the coupling of photons to the baryons is via inverse Compton scattering

e−(q) + γ(p)
 e−(q′) + γ(p′) (14.30)

where we are interested how the photon distribution as a function of momentum p changes

[Thomson scattering is the low-energy limit of Compton scattering]. The amplitude can be

calculated from the Feynman rules.

C[f,G] = aneσT f̄,PP

{
iµvb + ∆(η,x,n)− 1

4

∫ 1

−1

∆(η,x,n′)[P2(λ)P2(µ) + 2]dλ (14.31)

−1

4

∫ 1

−1

Q(η,x,n′)P2(µ)[−2
√

6π52Y
0
2 (λ)]dλ

}
(14.32)

The expansion of the temperature perturbation (∆) and polarisations (Q and U), in terms

of the spherical harmonics Y ml (n), are

∆(η,x,n) =
∑

l

(−i)l∆l(k, η)Pl(k̂ · n), (14.33)

(Q± iU)(η,x,n) =
∑

l=2

(−i)l(E0
l ± iB0

l )

√
4π

2l + 1
∓2Y

0
l (n), (14.34)

where E and B are the electric and magnetic modes and the Pl’s represent the Legendre

polynomials. So

C[f,G] = aneσT f̄,PP

{
iµvb + ∆(η,k,n) +

1

10
∆2P2(µ)−∆0 −

√
6

10
[E2 −∆2]

}
(14.35)
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The Boltzmann equation thus yields to the evolution equation of temperature perturbations

[36]:

∆′+ikµ∆+κ′∆ = −iµk[Φ+Ψ]−2Φ′+κ′
{

1

4
δγ − Φ− iµvb +

1

10
P2(µ)[

√
6E2 −∆2]

}
. (14.36)

Q′ + ikµQ+ κ′Q =
κ′

10
{P2(µ)− 1}

[√
6E2 −∆2

]
. (14.37)

Note that the temperature perturbation ∆(n) is a function of either ∆(η,x,n) or, in Fourier

space, ∆(η,k,n); κ′ ≡ aneσT is the differential optical depth and µ = k−1k · n the direction

cosine.

We have use the expressions for the first few moments of the distribution function

Tµν =

∫ √−g p
µpν
|p0|

f(p, x)d3p (14.38)

δ = 4Φ +
1

π

∫
∆(n)dΩ (14.39)

We notice that (14.36) is not manifestly gauge-invariant, however by defining the gauge

invariant temperature perturbation M = ∆ + 2Φ, and its multipole decomposition

M(η,x,n) =
∑

l

(−i)lMl(η,k)Pl(n), (14.40)

the evolution equation (14.36), in gauge-invariant components, becomes:

M′ + ikµM+ κ′M = iµk[Φ−Ψ] + κ′
{

1

4
Dγ
g − iµvb +

1

10
P2(µ)

[√
6E2 −M2

]}
. (14.41)

The procedure is as follows: For each Legendre polynomials Pl

• replace M(η, µ) by its multipole expansion

• multiply by Pl(µ)

• integrate both l.h.s. and r.h.s. of the new equation over µ :
∫ 1

−1
dµ

• use the orthogonality relation
∫ 1

−1
dµPl(µ)Pn(µ) = 2δln/(2l + 1)
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After integrating (14.41) for each l and applying orthogonality relations of the Legendre poly-

nomials, the hierarchy for M is hence given by [58]:

M′0 = −k
3
Vγ , (14.42)

M′1 = κ′(Vb − Vγ) + k(Ψ− Φ) + k

(
M0 −

2

5
M2

)
, (14.43)

M′2 = −κ′(M2 − C) + k

(
2

3
Vγ −

3

7
M3

)
, (14.44)

M′l = −κ′Ml + k

(
l

2l − 1
Ml−1 −

l + 1

2l + 3
Ml+1

)
, l > 2, (14.45)

and similarly for the polarisation

E′2 = −k
√

5

7
E3 − κ′(E2 +

√
6C), (14.46)

E′l = k

(
2κl

2l − 1
El−1 − 2κl+1

2l + 3
El+1

)
− κ′El, l > 2. (14.47)

Here C =M2 −
√

6E2/10 and 2κl =
√
l2 − 4 are combinatorial factors.

Massless neutrinos follow the same multipole hierarchy asM, however without polarisation

and Thompson scattering. Hence, the perturbed neutrino distribution N satisfies [36]:

N ′0 = −k
3
Vν , (14.48)

N ′0 = k(Ψ− Φ) + k

(
N0 −

2

5
N2

)
, (14.49)

N ′l = k

(
l

2l − 1
Nl−1 −

l + 1

2l + 3
Nl+1

)
, l > 1. (14.50)

For completeness, we quote the hierarchy for the tensor multipoles, temperature ∆̃T
l , polar-

isation ∆̃P
l and cross-correlation ∆̃T,P

l [36, 136]:

∆̃T
0 = −k∆̃T

1 − κ′[∆̃T
0 − ψ]− h′, (14.51)

∆̃P
0 = −k∆̃T

2 − κ′[∆̃T
1 + ψ], (14.52)

∆̃T,P
l =

k

2l + 1

[
l∆̃T,P

l−1 − (l + 1)∆̃T,P
l+1

]
− κ′∆̃T,P

l ; l ≥ 1, (14.53)

where h is the longitudinal-scalar part of tensor decomposition in (??), and ψ is given by

ψ =
1

10
∆̃T

0 +
1

7
∆̃T

2 +
3

70
∆̃T

4 −
3

5
∆̃P

0 +
6

7
∆̃P

2 −
3

70
∆̃P

4 . (14.54)

The Boltzmann hierarchy is nowadays solved numerically with software packages such as

CMBFAST [119] to produce the CMB spectrum. Also, a widely used implementation is the
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14. THE BOLTZMANN EQUATION

CAMB code [76], often embedded in the analysis package CosmoMC. Different codes have

also been implemented to compute the CMB spectrum, i.e. CMBEASY is fully object oriented

C++ [35], CLASS is written in C [73], and CMBquick is written in Mathematica, but is

unavoidably slow [109].

14.3 The Line of Sight Strategy

So usually, we are interested in M(η0, µ). It turns out that there is a clever way to obtain this

that even highlights the different contributions towards the final anisotropy. Let us develop this

Line of Sight strategy. Inspecting, one notices that the l.h.s can be written as

e−iµkηe−κ(η)L̇ (14.55)

where

L ≡ eiµkηeκ(η)M (14.56)

Hence, the Boltzmann equation translates into

L̇ = eiµkηeκ(η)

[
iµk(Φ−Ψ) + κ′

(
1

4
Dγ
g − iµVb −

1

2
(3µ2 − 1)C

)]
(14.57)

and integrated over conformal time

L(η0) =

∫ η0

0

dηeiµkηeκ(η)

[
iµk(Φ−Ψ) + κ′

(
1

4
Dγ
g − iµVb −

1

2
(3µ2 − 1)C

)]
(14.58)

The photon perturbation today is given by

M(µ, η0) =

∫ η0

0

dηeiµk(η−η0)eκ(η)−κ(η0) ×
[
iµk(Φ−Ψ) + κ′

(
1

4
Dγ
g − iµVb −

1

2
(3µ2 − 1)C

)]

(14.59)

The product g ≡ κ′ exp(κ(η)− κ(η0)) plays an important role and is called the visibility

function. Its peak defines the epoch of recombination.

Each term in the above Equation containing factors of µ, can be integrated by parts, in

order to get rid of µ. Applying this procedure to all terms involving µ yields

M(µ, η0) =

∫ η0

0

eıµk(η−η0)ST (k, η)dη (14.60)

-230-



14.3 The Line of Sight Strategy

Figure 14.2: Visibility function. Its peak at about η ≈ 300Mpc defines the epoch of last scattering.

where the source is

ST = −eκ(η)−κ(η0)[Φ′ −Ψ′] + g′
[
Vb
k

+
3

k2
C′
]

+ g′′
3

2k2
C

+ g

[
1

4
Dγ
g +

V ′b
k
− (Φ−Ψ) +

C
2

+
3

2k2
C′′
]
, (14.61)

Let us examine in more detail the temperature perturbations. The density contrast Dγ
g is

the main contribution, driving the spectrum towards the oscillatory behaviour. It can be seen as

an intrinsic temperature variation over the background last-scattering surface: δT/T ∝ Dγ
g /4.

The Doppler shift, Vb-term, describes the blueshift caused by last scattering electrons moving

towards the observer. The term involving time derivatives of the potentials, (Φ′−Ψ′), is known

as the integrated Sachs-Wolfe effect (ISW) [118]. It describes the change of the CMB photon

energy due to the evolution of the potentials along the line of sight. The terms involving C and

its derivatives describe polarisation effects and are far less important than the Dγ
g term. Finally,

the (Φ−Ψ) term arises from the gravitational redshift when climbing out of the potential well

at last scattering. The combination Dγ
g /4 − (Φ − Ψ) is known as the ordinary Sachs-Wolfe

effect (SW). This gives the main contribution on scales that at decoupling were well outside the

horizon [24, 36].
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Figure 14.3
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15
Statistics of Random Fields

The density contrast δ, introduced in the previous section, can be considered statistically as a

random field with zero mean, 〈δ(x)〉 = 0. The measure of the clustering degree in the spatial

direction r is determined by the correlation function ξ, which is defined as the product of the

density contrast at two separate points, x and x + r:

ξ(r) ≡ 〈δ(x)δ(x + r)〉. (15.1)

Because of statistical homogeneity and isotropy of a random field, the two-point correlator

depends only on the distance r = |r| between the two points. On the other hand, the amplitude

of fluctuations on different lengths are described by the power spectrum P(k), which is simply

the inverse Fourier transform of the correlation function ξ:

〈δ̂(k)δ̂(k′)〉 =
2π2

k3
P(k)δD(k− k′), (15.2)

where δ̂ is the Fourier transform of the density contrast δ. The Dirac’s delta distribution δD

guarantees that modes relative to different wave-numbers are uncorrelated in order to preserve

homogeneity; P(k) has dependency only on the magnitude of the momenta no on k direction

because of isotropy. The normalisation factor 2π2/k3 in the definition of the power spectrum is

conventional and has the virtue of making P(k) dimensionless if δ(x) is.

15.0.1 CMB power spectrum

The primary anisotropies carried out by physical effects before the recombination epoch, en-

coded in the fractional temperature perturbation, are expanded in terms of the spherical har-
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monics on the surface of last scattering by

∆T

T̄
(η0,x0,n) =

∑

l,m

almYlm(n), (15.3)

where the alm’s define the multipoles of the CMB anisotropy; x0 is our position and η0 the

present conformal time. Assuming the al,m’s are Gaussian random fields, the two-point corre-

lator gives

〈alma∗l′m′〉 = Clδll′δmm′ . (15.4)

The angular CMB power spectrum CTTl is computed through the two-point correlation function

(15.1) by

C(θ) ≡
〈

∆T (n)

T̄

∆T (n′)

T̄

〉
=
∑

l

2l + 1

4π
ClPl(n · n′). (15.5)

where n ·n′ = cos θ, and we have used the addition theorem for spherical harmonics to express

the sum of products of Ylm’s in terms of the Legendre polynomials. We consider initial conditions

in terms of the conformal Newtonian gauge potential Φini = R. Because the evolution equations

for ∆ are independent of the direction k, we may write

∆l(η0,k,n) = Φini(k)∆l(η0, k,n). (15.6)

Therefore the Cl’s are found to be

CXYl =
4π

(2l + 1)2

∫
d3k

(2π)3
PR(k) ∆X

l (k)∆Y
l (k), (15.7)

where X and Y represent the temperature (T ) and polarisations (E or B); PR(k) is the power

spectrum of the initial curvature perturbations

PR(k) = As

(
k

k0

)ns−1

(15.8)

and As the initial scalar amplitude, quoted at a reference scale k0 (one chooses k0 = 0.05Mpc)

and the spectrum is a featureless power law with scalar spectral index ns.

The moments obtained from the line of sight integration method [119], in terms of the

spherical Bessel functions jl, are given by

∆T
l = (2l + 1)

∫
dηjl(k[η − η0])ST (k, η), (15.9)

∆E
l = (2l + 1)

√
(l − 2)!

(l + 2)!

∫ η0

0

dηSE(k, η)jl(x), (15.10)
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with the sources

ST = −eκ(η)−κ(η0)[Φ′ −Ψ′] + g′
[
Vb
k

+
3

k2
C′
]

+ g′′
3

2k2
C

+ g

[
1

4
Dγ
g +

V ′b
k
− (Φ−Ψ) +

C
2

+
3

2k2
C′′
]
, (15.11)

SE =
3gC
4x2

, (15.12)

where we have used x ≡ k(η0 − η) and the visibility function g ≡ κ′ exp(κ(η)− κ(η0)).

For completeness, we quote the hierarchy for the tensor multipoles, temperature ∆̃T
l , polar-

isation ∆̃P
l and cross-correlation ∆̃T,P

l [36, 136]:

Ctens
XY ;l =

4π

(2l + 1)2

∫
d3k

(2π)3
PT (k) ∆tens

X;l (k)∆tens
Y ;l (k), (15.13)

where PT (k) is the initial tensor power spectrum, and the moments:

∆tens
T ;l =

√
(l + 2)!

(l − 2)!

∫ η0

0

dηStens
T (k, η)

jl(x)

x2
, (15.14)

∆tens
E,B;l =

∫ η0

0

dηStens
E,B(k, η)jl(x), (15.15)

with the sources (using (15.22)):

Stens
T (k, η) = h′ exp(−κ) + gψ, (15.16)

Stens
E (k, η) = g

{
ψ − ψ′′

k2
+

2ψ

x2
− ψ′

kx

}

−g′
{

2ψ′

k2
+

4ψ

kx

}
− 2g′′

ψ

k2
, (15.17)

Stens
B (k, η) = g

{
4ψ

x
+

2ψ′

k

}
+ 2g′

ψ

k
. (15.18)

∆̃T
0 = −k∆̃T

1 − κ′[∆̃T
0 − ψ]− h′, (15.19)

∆̃P
0 = −k∆̃T

2 − κ′[∆̃T
1 + ψ], (15.20)

∆̃T,P
l =

k

2l + 1

[
l∆̃T,P

l−1 − (l + 1)∆̃T,P
l+1

]
− κ′∆̃T,P

l ; l ≥ 1, (15.21)

where h is the longitudinal-scalar part of tensor decomposition in (??), and ψ is given by

ψ =
1

10
∆̃T

0 +
1

7
∆̃T

2 +
3

70
∆̃T

4 −
3

5
∆̃P

0 +
6

7
∆̃P

2 −
3

70
∆̃P

4 . (15.22)

The slow way would be to get the Cl’s directly from the (vast) multipole hierarchy of the

photon distribution and the multipole hierarchy up to l ≡ 3000. In contrast, the line of sight
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FIGURE 4. Temperature (black), E-mode (green), B-mode (blue) and T -E cross-correlation (red)

CMB power spectra from scalar perturbations (left) and tensor perturbations (gravitational waves; right).

The amplitude of the tensor perturbations is shown at the maximum amplitude allowed by current data

(r= 0.22 [44]). The B-mode spectrum induced by weak gravitational lensing is also shown in the left-hand
panel (blue; see Sec. 6.1.2).

to constrain gravitational waves since the sampling variance of the dominant scalar

perturbations is large at low l. Fortunately, CMB polarization provides an alternative

route to detecting the effect of gravitational waves on the CMB which is not limited by

cosmic variance [45, 46]; see Sec. 3.

2.7.4. Isocurvature modes

Adiabatic fluctuations are a generic prediction of single-field inflation models. How-

ever, multiple scalar fields typically arise in models inspired by high-energy physics,
such as the axion model [47], curvaton [48] and multi-field inflation [49, 50]. In such

models, if the fields decay asymmetrically and the decay products are unable to reach

chemical equilibrium with each other, an isocurvature contribution to the primordial

perturbation will result. The simplest, and best-motivated, possibility is an isocurva-

ture mode where initially the dominant fractional over-density is in the CDM, with a

compensating (very small) fractional fluctuation in the radiation and baryons [51]. The

amplitude of the CDM isocurvature mode is quantified by the gauge-invariant quantity

S ≡ !c−3!"/4, where !c is the CDM fractional over-density. Generally,S can be cor-

related with the curvature perturbation R, for example in the curvaton and multi-field
models.

In the CDM mode, the photons are initially unperturbed, as is the geometry: !"(0) =
0= #(0) and vb = 0. The different equations of state of the CDM and radiation lead to

the generation of a curvature perturbation. On large scales, R grows like a in radiation

Lecture notes on the physics of cosmic microwave background anisotropies March 30, 2009 18

Wednesday, 13 February 2013

Figure 15.1: CMB spectra for all the contributions: Temperature, E-mode, B-mode and T -E

cross-correlation. The left-hand-side displays the scalar perturbations whereas the right-hand-side

tensor perturbations (gravitational waves). Figure reprinted from Challinor [25]

integration gets the ∆l’s by folding the source term S with the spherical Bessel functions jl.

While the Bessel functions oscillate rapidly in this convolution, the source term is most of the

time rather slowly changing. It thus suffices to calculate the sources at few (cleverly chosen)

points and interpolate between.

Figure 15.1 shows the adiabatic CMB spectra for all the contributions: Temperature,

E-mode, B-mode and T -E cross-correlation. The left-hand-side of the panel displays the

CMB spectra for scalar perturbations, whereas the right-hand-side tensor perturbations

(gravitational waves). All of them in units of l(l + 1)/2π[µK]2.

15.1 Codes

The Boltzmann hierarchy is nowadays solved numerically with software packages such as CMB-

FAST [119] to produce the CMB spectrum. Also, a widely used implementation is the CAMB

code [76], often embedded in the analysis package CosmoMC. Different codes have also been

implemented to compute the CMB spectrum, i.e. CMBEASY is fully object oriented C++ [35],

CLASS is written in C [73], and CMBquick is written in Mathematica, but is unavoidably

slow [109].
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Figure 15.2: a
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Part-III Cosmology 50

Figure 6: Contribution of the various terms in Eq. (3.4.22) to the temperature-
anisotropy power spectrum from adiabatic initial conditions: δγ/4+ψ (denoted SW for
Sachs-Wolfe; magenta); Doppler effect from vb (blue); and the integrated Sachs-Wolfe
effect (ISW; green).

behaviour arises since modes with wavenumbers that are not perpendicular to the line
of sight project to angles larger than 2π/(kχ∗).

If we make use of the standard integral

∫ ∞

0

j2
l (x) dx =

1

2l(l + 1)
(3.4.32)

for l > 0, we see that a scale-invariant primordial spectrum, for which PR(k) = As is
a constant, gives a scale-invariant angular power spectrum

l(l + 1)Cl

2π
=

1

25
As . (3.4.33)

More generally, a primordial spectrum that varies as a power-law in k (with some
spectral index ns − 1) gives an angular power spectrum going like

Cl ∼ Γ(l + ns/2 − 1/2)

Γ(l − ns/2 + 5/2)
, (3.4.34)

where Γ(x) is the Gamma function. We see that the CMB power spectrum on large
scales is directly related to the amplitude and slope of the primordial power spectrum11.

11Things are actually a little more complicated because of the integrated Sachs-Wolfe effect.

Tuesday, 19 February 2013

Figure 15.3: Total CMB temperature-spectrum and its different contributions: Sachs-Wolfe (SW)

Dγ
g /4 − (Φ − Ψ); Doppler effect V γb ; and the integrated Sachs-Wolfe effect (ISW) coming from

evolution of the potential along the line of sight. Figure from Challinor [25]

15.2 Description of fluctuations

• The l = 0 term of the correlation function (the monopole) vanishes if the mean tempera-

ture has been defined correctly.

• The l = 1 (the dipole) reflects the motion of the Earth through space. What we are seeing

is the effect of the Earth’s motion relative to the local comoving frame of reference. The

Earth is moving with a velocity v = 369kms−1 towards a point on the boundary of the

constellations of Crater and Leo.

• The Sachs-Wolfe effect (l < 100) - The gravitational effects are the dominant contributions

at large angular scales. Cl ∝
∫
d ln kPR(k)j2

l (k[η−η0]), and if we make use of the integral

∫ ∞

0

j2
l (x)dx =

1

2l(l + 1)
(15.23)

and assume a nearly scale-invariant scalar spectrum ns ≈ 1, then

l(l + 1)Cl
2π

=
1

25
As (15.24)

is approximately constant, shown as a flat plateau at low multipoles. More generally, a

primordial spectrum that varies as a power-law in k gives an angular power spectrum

going like

Cl ∼
Γ(l + ns/2− 1/2)

Γ(l − ns/2 + 5/2)
(15.25)
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15.2 Description of fluctuations

• Intermediate scales (100 < l < 1000) - Perturbations inside the horizon have evolved

causally and produced the anisotropy at the last scattering epoch (lhor ≈ 200). The

balance between the gravitational force and radiation pressure is presented as series of

characteristic peaks called acoustic oscillations.

• Small scales (l > 1000) - The thickness of the last scattering surface leads to a damping

of CTl ∼ l−4 at the highest multipoles, commonly called the Silk effect. The total mean-

squared distance that a photon will have moved by such a random walk by the time η∗ is

therefore ∫ η∗

0

dη′

aneσT
∼ 1

k2
D

(15.26)

which defines a damping scale k−1
D .

At these scales, important contributions are also provided by secondary anisotropies:

gravitational lensing, Rees-Sciama effect (RS), Sunyaev-Zel’dovich effect (SZ), kinetic

Sunyaev-Zel’dovich effect, Ostriker-Vishniac effect (OV), foregrounds from discrete

sources [1].
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Figure 15.4
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16
Bayesian Statistics

Bayesian statistics and MCMC (Markov Chain Monte Carlo) algorithms have found their place

in the field of Cosmology. They have become important mathematical and numerical tools,

especially in parameter estimation and model comparison. In this paper we review some of

the fundamental concepts to understand Bayesian statistics, to then introduce the MCMC al-

gorithms and samplers that allow us to perform the parameter inference procedure. We also

provide a general description of the standard cosmological model, known as the ΛCDM model,

along with several alternatives to it; and current datasets coming from astrophysical and cosmo-

logical observations. Finally, with the tools acquired we use a MCMC algorithm implemented

in python -called SimpleMC- to test the cosmological models and find out the combination of

parameters that best describes the universe.

16.1 Introduction

The beginning of the standard cosmology as it is known today emerged after 1920 when the

Shapley-Curtis debate was carried out [? ]. This debate was held between the astronomers

Harlow Shapley and Heber Curtis, resulting in a revolution for astronomy at that time by

reaching an important conclusion: “The universe had a larger scale than the Milky Way”.

Several observations at that epoch established that the size and dynamics of the cosmos could

be explained by Einstein’s General Theory of Relativity. In its childhood, cosmology was a

speculative science based only on a few data sets, and it was characterized by a dispute between

two cosmological models: the steady state model and the Big Bang (BB) theory. It was not

until 1990 when the amount of data increased enough to discriminate and rule out compelling
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theories, being the BB model awarded as the most accepted theory. During the same decade,

David Schramm heralded the “Golden Age of Cosmology” at a National Academy of Sciences

colloquium [? ].

Once the new age of cosmological observations arrived with a large variety of data, it was

necessary to confront the cosmological models with such data. This was usually done through

statistics. It is important to notice that, since we have only one universe, we cannot rely on a

frequentist interpretation of statistics (we are not able to create multiple universes and make

a frequentist inference of our models). An alternative interpretation to help us in our task is

Bayesian statistics. In Bayesian statistics the probability is interpreted as a “degree of belief”

and it may be useful when repetitive processes are complicated to reproduce.

The main aim of this work is to provide an introduction of Bayesian parameter inference and

its applications to cosmology. We assume the reader is familiarized with the basic concepts of

statistics, but not necessarily with Bayesian statistics. Then, we provide a general introduction

to this subject, enough to work out some examples. This review is written in a generic way

so the reader interested on the parameter inference may apply the theory to any subject, in

particular we put into practice the Bayesian concepts on the cosmology branch of physics.

The paper is organized as follows. We start in Section 17.3 by pointing out the main dif-

ferences between the Bayesian and Frequentist approaches to statistics. Then, in Section 16.3

we explain the basic and necessary mathematical concepts in Bayesian statistics to perform

the parameter estimation procedure for a given model. Once we have the mathematical back-

ground, we continue in Section 16.4 with some of the numerical resources available to simplify

our task, such numerical tools may become important given the fact that, in general, it is not

possible to derive analytical results, specially when a model contains several parameters that

need to be confronted with data. We then provide an example of some of these methods and

tools applied to the simple problem of fitting a straight line in Section 16.5. In Section ?? we

present an introduction to cosmology and applications of the tools given in previous sections

in cosmology, then in Section ?? the focus is in some of the codes available to perform this

work. Then, in Section ??, we apply these techniques to constrain the parameter space that

describes the standard cosmological model, namely the ΛCDM model, and several alternatives

to it. Finally, in Section ?? we present our conclusions.
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16.2 Bayesian vs Frequentist statistics

Fundamentally, the main difference between Bayesian and Frequentist statistics is on the def-

inition of probability. From a Frequentist point of view, probability has meaning in limiting

cases of repeated measurements

P =
n

N
, (16.1)

where n denotes the number of successes and N the total number of trials. Frequentist statistics

defines probability as the limit for the number of independent trials going to infinity. Then,

for Frequentist statistics, probabilities are fundamentally related to frequencies of

events. On the other hand, in Bayesian statistics the concept of probability is extended to

cover degrees of certainty about a statement. For Bayesian statistics, probabilities are

fundamentally related to our knowledge about an event.

Here we introduce some key concepts to understand the consequences this difference entails;

for an extended review see [? ? ? ? ? ]. Let x be a random variable related to a particular

event and P (x) its corresponding probability distribution, for both cases the same rules of

probabilities apply1:

P (x) ≥ 0, (16.2a)

∫ ∞

−∞
dxP (x) = 1. (16.2b)

For mutually exclusive events we have

P (x1 ∪ x2) = P (x1) + P (x2), (16.2c)

but in general

P (x1 ∪ x2) = P (x1) + P (x2)− P (x1 ∩ x2).

These rules are summed up as follow. The first condition (16.2a) is necessary due to the

probability of having an event is always positive. The second rule (16.2b) is a normalized

relation, which tells us that we are certain to obtain one of the possible outcomes. Now, in

the third point (16.2c) we have that the probability of obtaining an observation, from a set of

mutually exclusive events, is given by the individual probabilities of each event. Finally, and in

1These rules are defined for a continuous variable; however, the corresponding discrete definition can be

given immediately by replacing
∫
dx→∑

.
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general, if one event occurs given the occurrence of another then the probability that both x1

and x2 happen is equal to the probability of x1 times the probability of x2 given that x1 has

already happened

P (x1 ∩ x2) = P (x1)P (x2|x1). (16.2d)

If two events x1 and x2 are mutually exclusive then

P (x1 ∩ x2) = 0 = P (x2 ∩ x1). (16.3)

The rules of probability distributions must be fulfilled by both Frequentist and Bayesian

statistics. However, there are some consequences derived by the fact these two scenarios have a

different definition of probability, as we shall see.

16.2.1 Frequentist statistics

Any frequentist inferential procedure relies on three basic ingredients: the data, the model and

an estimation procedure. The main assumption in Frequentist statistics is that the data has a

definite, albeit unknown, underlying distribution to which all inference pertains.

The data is a measurement or observation, denoted by X, that can take any value from a

corresponding sample space. A sample space of an observation X can be defined as a measur-

able space (x, B̂) that contains all values that X can take upon measurement. In Frequentist

statistics it is considered that there is a probability function P0 : B̂ → [0, 1] in the sample space

(x, B̂) representing the “true distribution of the data”

X ∼ P0.

Now there is the model. For Frequentist statistics the model Q is a collection of probability

measurements Pθ : B̂ → [0, 1] in the sample space (x, B̂). The distributions Pθ are called model

distributions, with θ as the model parameters; in this approach θ is unchanged. A model Q is

said to be well-specified if it contains the true distribution of the data P0, i.e.

P0 ∈ Q.

Finally, we need a point-estimator (or estimator) for P0. An estimator for P0 is a map

P̂ : x→ Q, representing our “best guess” P̂ ∈ Q for P0 based on the data X.
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Frequentist Bayesian

Data are a repeatable random Data are observed from the

sample. There is a frequency. realized sample.

Underlying parameters remain Parameters are unknown and

constant during this repeatable described probabilistically.

process.

Parameters are fixed. Data are fixed.

Table 16.1: Main differences between the Bayesian and Frequentist interpretations.

Hence, the Frequentist statistics is based on trying to answer the following questions: “what

the data is trying to tell us about P0?” or “considering the data, what can we say about the

mean value of P0?”.

16.2.2 Bayesian statistics

In Bayesian statistics, data and model are two elements of the same space [? ], i.e. no formal

distinction is made between measured quantities X and parameters θ. One may envisage the

process of generating a measurement’s outcome Y = y as two draws, one draw for Θ (where

Θ is a model with associated probabilities to the parameter θ) to select a value of θ and a

subsequent draw for Pθ to arrive at X = x. This perspective may seem rather absurd in view of

the definitions for a Frequentist way of thinking, but in Bayesian statistics where probabilities

are related to our own knowledge, it results natural to associate probability distributions to our

parameters. In this way an element Pθ of the model is interpreted simply as the distribution of

X given the parameter value θ, i.e. as the conditional distribution X|θ.

16.2.3 Comparing both descriptions

Table 16.1 provides a short summary of the most important differences between the two

statistics. To understand these differences let us review a typical example. Here we present

an experiment and, since we are interested in comparing both descriptions, we show only the

basic results from both points of view: Frequentist and Bayesian.

Example.- Let us assume we have a coin that has a probability p to land as heads and a

probability 1− p to land as tails. In the process of trying to estimate p (which must be p = 0.5
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since we have only two possible states) we flip the coin 14 times, obtaining heads in 10 of

the trials. Now we are interested in the next two possible events. To be precise: “What is the

probability that in the next two tosses we will get two heads in a row?”.

• Frequentist approach. As mentioned previously, in Frequentist statistics probability is

related to the frequency of events, then our best estimate for p is P (head) = p =

# of heads
# of events = 10/14. So, the probability of having 2 heads in a row is P (2heads) =

P (head)P (head) ' 0.51.

• Bayesian approach. In Bayesian statistics p is not a value, it is a random variable with its

own distribution, and it must be defined by the existing evidence. In this example a good

distribution for p is a binomial distribution

P (D|p) =

(
14

10

)
p10(1− p)4, (16.4)

where D is our data set (14 trials and 10 successes). Then, by considering a non-

informative prior (beforehand we do not know anything about p) and averaging over

all possible values of p we have that the probability of having two heads is

P (2heads|D) =
B(13, 5)

B(11, 5)
= 0.485, (16.5)

where B(x, y) is the beta function. This Bayesian example will be expanded in detail dur-

ing the following section, but for now we just want to stress out that both approximations

arrive at different results.

In the Frequentist approach, since we adopt the probability as a frequency of events (the

probability of having a head was fixed by p = 10/14), hence the final result was obtained

by only multiplying each of these probabilities (since we assume the events are independent

of each other). On the other hand, in the Bayesian framework it was necessary to average

over all possible values of p in order to obtain a numerical value. However, in both cases, the

probability differs from the real one (P (2heads) = 0.25) because we don’t have enough data for

our estimations.

Note: If you are unfamiliar with Bayesian statistics, do not be scared of the last example.

In the next section we review the basic concepts and get back to this example to use the new

tools learned.

-246-



16.3 A first look at Bayesian statistics

16.3 A first look at Bayesian statistics

Before we start with the applications of Bayesian statistics in cosmology it is necessary to

understand the most important mathematical tools in the Bayesian procedure. In this section,

we present an informal revision but encourage the reader to look for the formal treatment in

the literature, cited in each section.

16.3.1 Bayes theorem, priors, posteriors and all that stuff

When anyone is interested on the Bayesian framework, there are several concepts to understand

before presenting the results. In this section we quickly review these concepts and then we take

back the example about the coin toss given in the last section.

The Bayes theorem. The Bayes theorem is a direct consequence of the axioms of prob-

ability shown in Eqs. (16.2). From Eqn. (16.2d), without loss of generality, it must be fulfilled

that P (x1 ∩ x2) = P (x2 ∩ x1). In such case the following relation applies

P (x2|x1) =
P (x1|x2)P (x2)

P (x1)
. (16.6)

As already mentioned, in the Bayesian framework data and model are part of the same space.

Given a model (or hypothesis) H, considering x1 → D as a set of data, and x2 → θ as the

parameter vector of said hypothesis, we can rewrite the above equation as

P (θ|D,H) =
P (D|θ,H)P (θ|H)

P (D|H)
. (16.7)

This last relation is the so-called Bayes theorem and the most important tool in a Bayesian

inference procedure. In this result, P (θ|D,H) is called the posterior probability of the model.

P (D|θ,H) ≡ L(D|θ,H) is called the likelihood and it will be our main focus in future sections.

P (θ|H) ≡ π(θ) is called the prior and expresses the knowledge about the model before acquiring

the data. This prior can be fixed depending on either previous experiment results or the theory

behind. P (D|H) ≡ Z is the evidence of the model, usually referred as the Bayesian Evidence.

We notice that this evidence acts only as a normalizing factor, and is nothing more than the

average of the likelihood over the prior

P (D|H) =

∫
dNθP (D|θ,H)P (θ|H), (16.8)

where N is the dimensionality of the parameter space. This quantity is usually ignored, for prac-

tical reasons, when testing the parameter space of a unique model. Nevertheless, the Bayesian
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|B0,1| Odds Probability Strength

< 1.0 < 3 : 1 < 0.750 Inconclusive

1.0-2.5 ∼ 12 : 1 0.923 Significant

2.5-5.0 ∼ 150 : 1 0.993 Strong

> 5.0 > 150 : 1 > 0.993 Decisive

Table 16.2: Jeffreys guideline scale for evaluating the strength of evidence when two models are compared.

evidence plays an important role for selecting the model that best “describes” the data, known

as model selection. For convenience, the ratio of two evidences

K ≡ P (D|H0)

P (D|H1)
=

∫
dN0θ0 P (D|θ0, H0)P (θ0|H0)∫
dN1θ1 P (D|θ1, H1)P (θ1|H1)

=
Z0

Z1
, (16.9)

or equivalently the difference in log evidence lnZ0− lnZ1 if often termed as the Bayes factor

B0,1:

B0,1 = ln
Z0

Z1
, (16.10)

where θi is a parameter vector (with dimensionality Ni) for the hypothesis Hi and i = 0, 1. In

Eqn. (16.10), the quantity B0,1 = lnK provides an idea on how well model 0 may fit the data

when is compared to model 1. Jeffreys provided a suitable guideline scale on which we are able

to make qualitative conclusions (see Table 17.2).

We can see that Bayes theorem has an enormous implication with respect to a statistical

inferential point of view. In a typical scenario we collect some data and hope to interpret it

with a given model, however, we usually do the opposite. That is, first we have a set of data

and then we can confront a model considering the probability that our model fits the data.

Bayes theorem provides a tool to relate both scenarios. Then, thanks to the Bayes theorem, in

principle, we are able to select the model that best fits the data.

Example.- We go back to the example shown in the last section: the coin toss. We are

interested in the probability of obtaining two heads in a row given the data P (2heads|D) (D =

the previous 14 coin tosses acting as data). First of all let us assume that we have a model with

parameter p to define the probability of obtaining the two heads given our model P (2heads|p).
This parameter will have a probability distribution P (p|D) depending on the data we already
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have. Therefore the probability can be obtained by averaging over all the possible parameters

with its corresponding density distribution

P (2heads|D) =

∫ 1

0

P (2heads|p)P (p|D)dp. (16.11)

For simplicity we do not update p between the two tosses and we assume that both are inde-

pendent from each other. With this last assumption we have

P (2heads|p) = [P (head|p)]2, (16.12)

where P (head|p) is the probability of obtaining a head given our model. We assume a simple

description of P (head|p) as

P (head|p) = p ⇒ P (2heads|p) = p2. (16.13)

On the other hand, notice that we do not know a priori the quantity P (p|D) but P (D|p) (i.e.

we know the probability of obtaining a dataset by considering a model as correct). A good

choice for experiments that have two possible results is a binomial distribution

P (x|p, n) =

(
n

x

)
px(1− p)n−x, (16.14)

with n the number of trials (this case = 14) and x the number of successes (here =10). Hence,

we have an expression for P (D|p) [Eqn. (16.4)]. Now we need to compute P (p|D). Using the

Bayes formula we have

P (p|D) =
P (D|p)P (p)

P (D)
. (16.15)

A very convenient prior distribution for this scenario is the beta distribution Beta(p; a, b)2

defined as

Beta(p; a, b) =
Γ(a+ b)

Γ(a)Γ(b)
pa−1(1− p)b−1, (16.16)

where Γ is the gamma function. So

P (p) = Beta(p; a, b). (16.17)

We are interested in the explicit form of P (p|D) and in such case we need to compute P (D).

Plugging Eqn. (16.4) and Eqn. (16.17) into the integral of Eqn. (16.8) we have

P (D) = B(10 + a, 4 + b) ≡ Γ(10 + a)Γ(4 + b)

Γ((10 + a) + (4 + b))
, (16.18)

2It is chosen because it describes several statistical distributions, in particular the normal distribution defined

as the non-informative one.
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Figure 16.1: The coin example: blue figure displays the prior distribution P (p) which is updated, using

the data, to get the posterior distribution P (p|D), (red). The vertical black line corresponds to the real

value, p = 0.5.

and therefore

P (p|D) =
p10+a−1(1− p)4+b−1

B(10 + a, 4 + b)
. (16.19)

Now we need to know the values of a and b. If we assume that we know nothing about p,

then we can assume the prior as an uniform distribution, this means a = b = 1. Notice from

Fig. 16.1 that our posterior result (Red figure) described by Eqn. (16.19) does not exactly agree

with the real value of p (black dashed vertical line). We would expect the posterior distribution

be centered at p = 0.5 with a very narrow distribution. Nevertheless this value is recovered by

increasing the experimental data.

Finally, solving the integral in Eqn. (16.11) using (16.13) and (16.19) we arrive at the result

obtained in the previous section

P (2heads|D) =
B(13, 5)

B(11, 5)
= 0.485. (16.20)

16.3.2 Updating the probability distribution

As seen in the coin example, we weren’t able to get the real value of p because the lack of

enough data. If we want to be closer, we would have to keep flipping the coin until the amount

of data becomes sufficient. Let us continue with the example: suppose that after throwing the

coin 100 times we obtain, let’s say, 56 heads, while after throwing it 500 times we obtain 246

heads. Then, we expect to obtain a thinner distribution with center close to p = 0.5 (see Fig.
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Figure 16.2: Posterior distributions P (p|D), when the data is increased. Notice that while we continue

increasing the experimental results, the posterior distribution starts to be more localized near by the real

value p = 0.5.

16.2). Given this, it is clear that in order to confront a parameter model and be more accurate

about the most probable (or “real”) value, it is necessary to increase the amount of data (and

the precision) in any experiment. That is, if we take into account the 500 tosses – with 246

heads – the previous result is updated to P (2heads|D) = 0.249, much closer to the real value.

Then, we have some model parameters that have to be confronted with different sets of

data. This can be done in two alternative ways: (a) by considering the sum of all datasets we

have; or (b) by taking each data set as the new data, but our prior information updated by the

previous information. The important point in Bayesian statistics is that it is indeed equivalent

to choose any of these two possibilities. In the coin toss example it means that it is identical

to start with the prior given in Fig. 16.2-a and then by considering the 500 datapoints we can

arrive at the posterior in Fig. 16.2-d, or similarly start with the posterior shown in Fig. 16.2-c

as our prior and consider only the last 400 datapoints to obtain the same posterior, displayed

in Fig. 16.2-d.

In fact, if we rewrite Bayes theorem so that all probabilities are explicitly dependent on

-251-



16. BAYESIAN STATISTICS

some prior information I [? ]

P (θ|DI,H) =
P (θ|I,H)P (DI|θ,H)

P (D|I,H)
, (16.21)

and then we consider a new set of data D′, letting the old data become part of the prior

information I ′ = DI, we arrive at

P (θ|D′I ′, H) =
P (θ|I,H)P (DD′I|θ,H)

P (DD′|I,H)
= P (θ|[DD′]I,H), (16.22)

where we can explicitly see the equivalence of the two different options.

16.3.3 About the Likelihood

We mentioned that the Bayesian evidence is usually set apart when doing any inference pro-

cedure in the parameter space of a single model. Then, without loss of generality, we can fix

it to P (D|H) = 1. If we ignore the prior3 we can identify the posterior with the likelihood

P (θ|D,H) ∝ L(D|θ,H) and thus, by maximizing it, we can find the most probable set of pa-

rameters for a model given the data. However, having ignored P (D|H) and the prior, we are

not able to provide an absolute probability for a given model, but only relative probabilities. On

the other hand, it is possible to report results independently of the prior by using the Likelihood

ratio. The likelihood at a particular point in the parameter space can be compared with the

best-fit value, or the maximum likelihood Lmax. Then, we can say that some parameters are

acceptable if the likelihood ratio

Λ = −2 ln

[
L(D|θ,H)

Lmax

]
, (16.23)

is bigger than a given value.

Let us assume we have a Gaussian posterior distribution, which is single-peaked. We consider

that θ̂ is the mean of the distribution

θ̂ =

∫
dθθP (θ|D,H). (16.24)

If our model is well-specified and the expectation value of θ̂ corresponds to the real or most

probable value θ0, we have

〈θ̂〉 = θ0, (16.25)

3It is expected that the real value of any given parameter for a large enough dataset is independent of the

prior.
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then we say that θ̂ is unbiased. Considering a Taylor expansion of the log likelihood around its

maximum

lnL(D|θ) = lnL(D|θ0) +
1

2
(θi − θ0i)

∂2 lnL

∂θi∂θj
(θj − θ0j) + ..., (16.26)

where θ0 corresponds to the parameter vector of the real model. In this manner, we have that

the likelihood can be expressed as a multi-variable likelihood given by

L(D|θ) = L(D|θ0) exp

[
−1

2
(θi − θ0i)Hij(θj − θ0j)

]
, (16.27)

where

Hij = −∂
2 lnL

∂θi∂θj
, (16.28)

is called the Hessian matrix and it controls whether the estimates of θi and θj are correlated.

If it is diagonal, these estimates are uncorrelated.

The above expression for the likelihood is a good approximation as long as our posterior

distribution possesses a single-peak. It is worth mentioning that, if the data errors are normally

distributed, then the likelihood for the data will be a Gaussian function as well. In fact, this

is always true if the model is linearly dependent on the parameters. On the other hand, if the

data is not normally distributed we can resort to the central limit theorem. In this way, the

central limit theorem tell us that the resulting distribution will be best approximated by a

multi-variate Gaussian distribution [? ].

16.3.4 Letting aside the priors

In this section we present an argument for letting aside the prior in the parameter estimation.

For this, we follow the example given in [? ]. In this example there are two people, A and B, that

are interested in the measurement of a given physical quantity θ. A and B have different prior

beliefs regarding the possible value of θ. This discrepancy could be given by the experience,

such as the possibility that A and B have made the same measurement at different times. Let

us denote their priors by P (θ|Ii), (i = A,B), and assume they are described by two Gaussian

distributions with mean µi and variance Σ2
i . Now, A and B make a measurement of θ together

using an apparatus subject to a Gaussian noise with known variance σ. They obtain the value

θ0 = m1. Therefore they can write their likelihoods for θ as

L(D|θ,HI) = L0 exp

[
−1

2

(θ −m1)2

σ2

]
. (16.29)
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By using the Bayes formula, the posterior of the model A (and B) becomes

P (θ|m1) =
L(m1|θIi)P (θ|Ii)

P (m1|Ii)
, (16.30)

where we have skipped writing explicitly the hypothesis H and used the notation given in

Eqn. (16.21). Then, the posterior of A and B are (again) Gaussian with mean

µ̂i =
m1 + (σ/Σi)

2µi
1 + (σ/Σi)2

, (16.31)

and variance

τ2
i =

σ2

1 + (σ/Σi)2
, (i = A,B). (16.32)

Thus, if the likelihood is more informative than the prior i.e. (σ/Σi)� 1 the posterior mean of

A (and B) will converge towards the measured value, m1. As more data are obtained one can

simply replace the value of m1 in the above equation by the mean 〈m〉 and σ2 by σ2/N . Then,

we can see that the initial prior µi of A and B will progressively be overridden by the data. This

process is illustrated in Figure 16.3 where the green (red) curve corresponds to the probability

distribution of θ for person A (B) and the blue curve corresponds to their likelihood.

16.3.5 Chi-square and goodness of fit

We mentioned the main aim of parameter estimation is to maximize the likelihood in order to

obtain the most probable set of model parameters, given the data. If we consider the Gaussian

approximation given in Eqn. (16.27) we can see the likelihood will be maximum if the quantity

χ2 ≡ (θi − θ0i)Hij(θj − θ0j), (16.33)

is minimum. The quantity χ2 is usually called chi-square and is related to the Gaussian

likelihood via L = L0e
−χ2/2. Then, we can say that maximizing the Gaussian likelihood is

equivalent to minimizing the chi-square. However, as we mentioned before, there are some

circumstances where the likelihood cannot be described by a Gaussian distribution, in these

cases the chi-square and the likelihood are no longer equivalent.

The probability distribution for different values of χ2 around its minimum, is given by

the χ2 distribution for v = n −M degrees of freedom, where n is the number of independent

data points and M the number of parameters. Hence, we can calculate the probability that
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Figure 16.3: Converging views in Bayesian inference (taken from [? ]). A and B have different priors

P (θ|Ii) for a value θ (panel (a)). Then, they observe one datum with an apparatus subject to a Gaus-

sian noise and they obtained a likelihood L(θ;HI) (panel (b)), after which their posteriors P (θ|m1) are

obtained (panel (c)). Then, after observing 100 data, it can be seen how both posteriors are practically

indistinguishable (panel (d)).

an observed χ2 exceeds by chance a value χ̂ for the correct model. This probability is given

by Q(v, χ̂) = 1 − Γ(v/2, χ̂/2) [? ], where Γ is the incomplete Gamma function. Then, the

probability that the observed χ2 (even the correct model) is less than a given value χ̂2 is 1−Q.

This statement is strictly true if the errors are Gaussian and the model is a linear function of

the likelihood, i.e., for Gaussian likelihoods.

If we evaluate the quantity Q for the best-fit values (minimum chi-square) we can have a

measure of the goodness of fit. If Q is small (small probability) we can interpret it as:

• The model is wrong and can be rejected.

• The errors are underestimated.

• The error measurements are not normally distributed.

On the other hand, if Q is too large there are some reasons to believe that:

• Errors have been overestimated.
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∆χ2

σ p M = 1 M = 2 M = 3

1 68.3% 1.00 2.30 3.53

2 95.4% 4.00 6.17 8.02

3 99.73% 9.00 11.8 14.20

Table 16.3: ∆χ2 for the conventional 68.3%, 95.4% and 99.73% as a function of the number of parameters

(M) for the joint confidence level.

• Data are correlated or non-independent.

• The distribution is non-Gaussian.

16.3.6 Contour plots and confidence regions

Once the best fit parameters are obtained we would like to know the confidence regions where

values could be considered good candidates for our model. The most logical election is to take

values inside a compact region around the best fit value. Then, a natural choice are regions

with constant χ2 boundaries. When the χ2 possesses more than one minimum, it is said that

we have non-connected confidence regions, and for multi-variate Gaussian distributions (as

the likelihood approximation in Eqn. (16.27)) these are ellipsoidal regions. In this section we

exemplify how to calculate the confidence regions, following [? ].

We consider a little perturbation from the best fit of chi-square ∆χ2 = χ2 − χ2
best. Then

we use the properties of χ2 distribution to define confidence regions for variations on χ2 to

its minimum. In Table 16.3 we see the typical 68.3%, 95.4% and 99.73% confidence levels as a

function of number of parameters M for the joint confidence level. For Gaussian distributions (as

likelihood) these correspond to the conventional 1, 2 and 3 σ confidence levels. As an example

we plot in Figure 16.4 the corresponding confidence regions associated to the coin example.

The general recipe to compute constant χ2 confidence regions is as follows: after finding the

best fit by minimizing χ2 (or maximizing the likelihood) and checking that Q is acceptable for

the best parameters, then:

1. Let M be the number of parameters, n the number of data and p be the confidence limit

desired.
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2. Solve the equation:

Q(n−M,min(χ2) + ∆χ2) = p. (16.34)

3. Find the parameter region where χ2 ≤ min(χ2)+∆χ2. This defines the confidence region.

16.3.7 Marginalization

It is clear that a model may (in general) depend on more than one parameter. However, some

of these parameters θi may be of less interest. For example, they may correspond to nuisance

parameters like calibration factors, or it may be the case that we are interested in only one of

the parameter constraints rather than the joint of two or more of them simultaneously. Then

we marginalize over the uninteresting parameters by

P (θ1, ..., θj , H|D) =

∫
dθj+1...dθmP (θ,H|D), (16.35)

where m is the total number of parameters in our model and θ1,...,θj denote the parameters we

are interested in.

16.3.8 Fisher Matrix

Once we have a dataset it is important to know the accuracy for which we can estimate pa-

rameters. Fisher suggested a way 70 years ago [? ]. In this section we review the main results

of his work.

First of all, consider again a Gaussian likelihood. As we notice, the Hessian matrix Hij has

information on the parameter errors and their covariance. More specifically, when all parameters

are fixed except one (e.g. the i-th parameter), its error is 1/
√
Hii. These errors are called

conditional errors, although they are rarely used.

A quantity to forecast the precision of a model, that arises naturally with Gaussian likeli-

hoods, is the so-called Fisher information matrix

Fij = −
〈

∂2L
∂θi∂θj

〉
, (16.36)

where

L = lnL. (16.37)

It is clear that F = 〈H〉, where the average is made with observational data.

As we can see from Eqn. (16.2c), for independent data sets the complete likelihood is the

product of the likelihoods, and the Fisher matrix is the sum of individual Fisher matrices.
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A pedagogical and easy case is having one-parameter θi with a Gaussian likelihood. In this

scenario

∆L =
1

2
Fii(θi − θ0i)

2, (16.38)

when 2∆L = 1 and identifying the ∆χ2 corresponding to 68% confidence level, we notice that

1/
√
Fii yields the 1− σ displacement for θi. In the general case

σ2
ij ≥ (F−1)ij . (16.39)

Thus, when all parameters are estimated simultaneously from the data, the marginalized error

is

σθi ≥ (F−1)
1/2
ii . (16.40)

The beauty of the Fisher matrix approach is that there is a simple prescription for setting it

up by only knowing the model and measurement uncertainties, and under the assumption of a

Gaussian likelihood the Fisher matrix is the inverse of the covariance matrix. So, all we have

to do is set up the Fisher matrix and then invert it to obtain the covariance matrix (that is,

the uncertainties on the model parameters). In addition, its fast calculations also enables one

to explore different experimental setups and optimize the experiment.

The main point of the Fisher matrix formalism is to predict how well the experiment will be

able to constrain the parameters, of a given model, before doing the experiment and perhaps

even without simulating it in any detail. We can then forecast the results of different exper-

iments and look at trade-offs such as precision versus cost. In other words, we can engage in

experimental design. The inequality in Eqn. (16.39) is called the Kramer-Rao inequality. One

can see that the Fisher information matrix represents a lower bound of the errors. Only when

the likelihood is normally distributed, the inequality is transformed into an equality. However

as we saw in Sec. 16.3.3 a Gaussian likelihood is only applicable to some circumstances, being

generally impossible to be applied, so the key is to have a good understanding of our theoretical

model in such a way that we can construct a Gaussian likelihood.

16.3.8.1 Constructing Fisher Matrices: A simple description

Let us construct Fisher matrices in a simple way. Suppose we have a model that depends of N

parameters θ1, θ2, ..., θN . We consider M observables f1, f2, ..., fM each one related to the model
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parameters by some equation fi = fi(θ1, θ2, ..., θN ). Then the elements of the Fisher matrix can

be computed as

Fij =
∑

k

1

σ2
k

∂fk
∂θi

∂fk
∂θj

, (16.41)

where σk are the errors associated to each observable and we have considered them Gaussianly

distributed.

Here, instead of taking the real data values (which could be unknown) it is possible to

recreate the data with a fiducial model. The errors associated to the mock data can be taken

as the expected experimental errors, and then be possible to calculate the above expression.

To complement the subject, there is also the Figure of Merit used by the Dark Energy

Task Force (DETF) [? ] which is defined as the reciprocal of the area in the plane enclosing the

95% confidence limit of two parameters. The larger the figure of merit the greater accuracy one

has measuring said parameters. As an example let us take a look at Figure ?? and right panel

of Figure ??, the area of the error ellipse with only Hubble Data (HD) is clearly bigger than the

error ellipse using HD plus several data sets. Then, for this case the figure of merit would be

bigger than with only HD data since its area is smaller, making it more accurate for measuring

the parameters Ωm and h. The DETF figure of merit can also be used to see how different

experiments break degeneracies. It can also be used to predict accuracy in future experiments

(experimental design).

16.3.9 Importance Sampling

We call Importance Sampling (IS) to different techniques of determining properties of a

distribution by drawing samples from another one. The main request of this idea, is that the

distribution one samples from should be representative of the distribution of interest (for a

larger number of samples). In such case, we should infer different quantities out of it. In this

section we review the basic concepts necessary to understand the IS, following [? ].

Suppose we are interested in computing the expectation value µf = Ep[f(X)], where f(X)

is a probability density of a random variable X and the sub-index p means average over the

distribution p. Then, if we consider a new probability density q(x) that satisfies q(x) > 0

whenever f(x)p(x) 6= 0, we can rewrite the mean value µf as

µf =

∫
f(x)p(x)dx =

∫
f(x)

p(x)

q(x)
q(x)dx = Eq[f(X)w(x)], (16.42)
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where w(x) = p(x)/q(x), and now we have an average over q. So, if we have a collection of

different draws x(1), ..., x(m) from q(x), we can estimate µf using these draws as

µ̂f =
1

m

m∑

j=1

w(x(j))f(x(j)). (16.43)

If p(x) is known only up to a normalizing constant, the above expression can be calculated as

a ratio estimate

µ̂f =

∑m
j=1 w(x(j))f(x(j))
∑m
j=1 w(x(j))

. (16.44)

For the strong law of large numbers, in the limit when m→∞ we will have that µ̂f → µf .

Another useful quantity to compute in Bayesian analysis is the ratio between evidences for

two different models

P ′(D)

P (D)
= E

[
P ′(θ,D)

P (θ,D)

]

P (θ|D)

' 1

N

N∑

n=1

P ′(D|θn)P ′(θn)

P (D|θn)P (θn)
, (16.45)

where the samples {θn} are drawn from P (θ|D).

An important result for importance sampling is that, if we have a new set of data which is

broadly consistent with the current data (in the sense that the posterior only shrinks), we can

make use of importance sampling in order to quickly calculate a new posterior including the

new data.

16.3.10 Combining datasets: Hyperparameter method

Suppose we are dealing with multiple datasets {D1, ..., DN}, coming from a collection of

different surveys {S1, ..., SN}. Sometimes it is difficult to know, a priori, if all our data are

consistent with each other, or whether there could be one or more that are likely to be

erroneous. If we were sure that all datasets are consistent, then it should be enough to update

the probability as seen in Sec. 16.3.2 in order to calculate the new posterior distribution for the

parameters we are interested in. However, since there is usually an uncertainty about this, a

way to know how useful a data may be is by introducing the hyperparameter method. This

method was initially introduced by [? ? ] in order to perform a joint estimation of cosmological

parameters from combined datasets. This method may be used as long as every survey is

independent from each other. In this section we review the main steps necessary to understand

the hyperparameter method. If the reader is interested in a more extended explanation, we
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encourage to consult [? ? ].

The main feature of this process is the introduction of a new set of “hyperparameters” α

in the Bayesian procedure to allow extra freedom in the parameter estimation. These hyperpa-

rameters are equivalent to nuisance parameters in the sense that we need to marginalize over

them in order to recover the posterior distribution, i.e.

P (θ|D,H) =
1

P (D|H)

∫
P (θ|α,H)P (α|D,H)dα, (16.46)

where we have used the Bayes theorem. Now, for the method it is necessary to assume the hyper-

parameters α and the parameters of interest θ are independent, i.e. P (θ, α,H) = P (α)P (θ,H),

it is also necessary to assume that each hyperparameter αk is independent from each other, i.e.

P (α) = P (α1)P (α2)...P (αN ). In this way we can rewrite the above expression as

P (θ|D,H) =
P (θ,H)

P (D|H)

[
N∏

k=1

∫
P (Dk|θ, αk, H)P (αk)dαk

]
. (16.47)

Here, the quantity inside the square brackets is the marginalized likelihood over the hy-

perparameters. We can identify the quantity inside the integration as the individual likeli-

hood L(Dk|θ, αk, H), for every αk and the data set Dk; P (D|H) is the evidence and, simi-

larly to a parameter inference procedure, it works as a normalizing function, i.e. P (D|H) =
∫
dθP (θ,H)L(D|θ,H). Notice that, by considering P (αk) = δ(αk− 1), we rely on the standard

approach, where no hyperparameters are used.

We add these αk in order to weight every dataset and take away the data that does not seem

to be consistent with other ones. Then, we would like to know whether the data supports the

introduction of hyperparameters or not. A way to address this point is given by the Bayesian

evidence K defined in Eqn. (16.9). If we consider a Gaussian likelihood with maximum entropy

prior, and assuming that in average the hyperparameters’ weight are unity, we can rewrite the

marginalized likelihood function L(D|θ,H1) for model H1 as

P (D|θ,H1) =

N∏

k=1

2Γ(nk2 + 1)

πnk/2|Vk|1/2
(χ2
k + 2)−(nk2 +1), (16.48)

obtaining an explicit functional form for K, given by

K =

N∏

k=1

2nk/2+1Γ(nk/2 + 1)

χ2
k + 2

e−χ
2
k/2. (16.49)
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Here, χ2
k is given by (16.33) for every dataset and nk is the number of points contained in Dk.

In equation (16.48) Vk is the covariance matrix for the k-data. Suppose we have two models,

one with hyperparameters, called H1, and a second one without them, called H0. The Bayesian

evidence P (D|Hi) is the key quantity for making a comparison between two different models. In

fact, by using the Bayes factor K from Eqn. (16.49) we can estimate the necessity to introduce

the hyperparameters to our model using the criteria given in Table 17.2. Notice that, if we

have a set of independent samples for H0, we can compute an estimate for K with the help of

equation (16.45).

16.4 Numerical tools

In typical scenarios it results very difficult to compute the posterior distribution analytically. For

these cases the numerical tools available play an important role during the parameter estimation

task. There exist several options to carry out this work, nevertheless in this section we focus only

on the Markov Chain Monte Carlo (MCMC) with the Metropolis Hastings algorithm (MHA).

Additionally, in this section we present some useful details we take into account to make more

efficient our computation.

16.4.1 MCMC techniques for parameter inference

The purpose of a MCMC algorithm is to build up a sequence of points (called “chain”) in a

parameter space in order to evaluate the posterior of Eqn. (16.7). In this section we review the

basic results for this procedure in a simplistic way, but for curious readers it is recommendable

to check [? ? ? ? ] for the Markov chain theory.

A Monte Carlo simulation is assigned to algorithms that use random number generators to

approximate a specific quantity. On the other hand, a sequence X1, X2, ... of elements of some

set is a Markov Chain if the conditional distribution of Xn+1 given X1, ..., Xn depends only

on Xn. In other words, a Markov Chain is a process where we can compute subsequent steps

based only in the information given at the present. An important property of a Markov Chain

is that it converges to a stationary state where successive elements of the chain are samples

from the target distribution, in our case it converges to the posterior P (θ|D,H). In this way

we can estimate all the usual quantities of interest out of it (mean, variance, etc).

The combination of both procedures is called a MCMC. The number of points required to

get good estimates in MCMCs is said to scale linearly with the number of parameters, so this
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method becomes much faster than grids as the dimensionality increases.

The target density is approximated by a set of delta functions

p(θ|D,H) ' 1

N

N∑

i=1

δ(θ − θi), (16.50)

being N the number of points in the chain. Then, the posterior mean is computed as

〈θ〉 =

∫
dθθP (θ,H|D) ' 1

N

N∑

i=1

θi, (16.51)

where ' follows because the samples θi are generated out of the posterior by construction.

Then, we can estimate any integrals (such as the mean, variance, etc.) as

〈f(θ)〉 ' 1

N

N∑

i=1

f(θi). (16.52)

As mentioned before, in a Markov Chain it is necessary to generate a new point θi+1 from

the present point θi. However, as it is expected, we need a criteria for accepting (or refusing)

this new point depending on whether it turns out to be better for our model or not. If this new

step is worse than the previous one, we may accept it, since it could be the case that, if we

only accept steps with better probability, we could be converging into a local maximum in our

parameter space and, therefore, not completely mapping all of it. The simplest algorithm that

contains all this information in its methodology is known as the Metropolis-Hastings algorithm.

16.4.1.1 Metropolis-Hastings algorithm

In the Metropolis-Hastings algorithm [? ? ] it is necessary to start from a random initial

point θi, with an associated posterior probability pi = p(θi|D,H). We need to propose a candi-

date θc by drawing from a proposal distribution q(θi, θc) used as a generator of new random

steps. Then, the probability of acceptance the new point is given by

p(acceptance) = min

[
1,
pcq(θc, θi)

piq(θi, θc)

]
. (16.53)

If the proposal distribution is symmetric the algorithm is reduced to the Metropolis algorithm

p(acceptance) = min

[
1,
pc
pi

]
. (16.54)

In this way the complete algorithm can be expressed by the following steps:

1. Choose a random initial condition θi in the parameter space and compute the posterior

distribution.
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2. Generate a new candidate from a proposal distribution in the parameter space and com-

pute the corresponding posterior distribution.

3. Accept (or not) the new point with the help of the Metropolis-Hastings algorithm.

4. If the point is not accepted, repeat the previous point in the chain.

5. Repeat steps 2-4 until you have a large enough chain.

16.4.1.2 A first example of parameter inference

In order to exemplify the numerical tools learned in this section, let us go back to the coin toss

example seen in Sec. 16.3.1. Since our main interest is that the reader understands the basic

procedure given in this section, let us try to estimate the value of p (or region of values for p)

that best matches our data (hence, we assume only the 14 times that the coin was thrown). To

calculate the posterior distribution (16.17) we use the MHA.

As mentioned before, we consider a likelihood given by a binomial distribution (16.4) and a

normal distributed prior (16.16) (a = b = 1). As our first “guess” for p we consider pi = 0.1. We

generate a new candidate pc as pc = pcu +G(pcu, σ̂), where G(pcu, σ̂) is our proposed Gaussian

distribution centered at pcu with variance σ̂ = 0.1; pcu is the current value of p, for our first step

is pcu = pi. Then, we introduce the MHA in a Python code, as can be seen in Appendix ??.

Our final result, (shown in Fig. 16.4), is a posterior distribution that matches very well with the

results calculated analytically (shown in Figure 16.1). Numerically we obtained p = 0.695+0.123
−0.107,

where the upper and lower values for p correspond to the 1σ standard deviation. Notice that

we have plotted the width of our 1σ, 2σ and 3σ confidence regions in the same figure.

To complement the example we also show in the right panel of Figure 16.4 the Markov Chain

generated by our code where we have considered 5000 steps in our chain. It is easy to see that

the chain oscillates with a large amplitude around a middle value. This amplitude is expected

because we do not have enough data to constrain more accurately the value of p.

Remark: In appendix ?? we include the MCMC algorithm using an explicit code for the

MCMC process. However, in Python there are some modules that can simplify this task. For

example, PyMC3 [? ] is a Python module that implements statistical models and fitting al-

gorithms, including the MCMC algorithm. We use this module at the end of this section by

applying the tools already learned.
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Figure 16.4: Left panel: 1D posterior distribution for our example. We plot the prior distribution

(red), true posterior (dashed-black) and the posterior calculated by the MHA (blue). We plot 1,2 and 3σ

confidence regions for the estimation of p. Right panel: associated Markov chain. We use pi = 0.1 as our

first “guess” for p.

16.4.1.3 Convergence test

It is clear that we need a test to know when our chains have converged. We need to verify that

the points in the chain are not converging to a “false convergent point” or to a local maximum

point. In this sense, we need that our algorithm takes into account this possible difficulty. The

simplest way (the informal way) to know if our chain is converging to a global maximum is

by running several chains starting with different initial proposals for the parameters we are

interested in. Then, if we see by naked eye, that all the chains seem to converge into a single

region of the possible value for our parameter, we may say that our chains are converging to

that region.

Taking yet again the example of the coins, we can run several chains for the above example

and try to estimate if the value (region) of p that we found is a stationary value. In Figure 16.5

we plot 5 different Markov chains with initial “guess” conditions p = 0.2, 0.3, 0.5, 0.7, 0.9. As we
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expected from the analytical result, after several steps all the chains seem to concentrate near

by the same value.

The convergence method used above is very informal and we would like to have a better way

to ensure that our result is correct. The usual test is the Gelman-Rubin convergence criterion

[? ? ]. That is, by starting with M chains with very different initial points and N points per

chain, if θji is a point in the parameter space of position i and belonging to the chain j, we need

to compute the mean of each chain

〈θj〉 =
1

N

N∑

i=1

θji , (16.55)

and the mean of all the chains

〈θ〉 =
1

NM

N∑

i=1

M∑

j=1

θji . (16.56)

Then, the chain-to-chain variance B is

B =
1

M − 1

M∑

j=1

(〈θj〉 − 〈θ〉)2, (16.57)

and the average variance of each chain is

W =
1

M(N − 1)

N∑

i=1

M∑

j=1

(θji − 〈θj〉)2. (16.58)

If our chains converge, W and B/N must agree. In fact we say that the chains converge when

the quantity

R̂ =
N−1
N W +B(1 + 1

M )

W
, (16.59)

which is the ratio of the two estimates, approaches unity. A typical convergence criteria is when

0.97 < R̂ < 1.03.

16.4.1.4 Some useful details

The proposal distribution. The choice of a proposal distribution q is crucial for the efficient

exploration of the posterior. In our example we used a Gaussian-like distribution with a variance

(step) σ̂ = 0.1. This value was taken because we initially explored, by hand, different values for

σ̂ and we select the quickest that approaches the analytic posterior distribution of p. However, if

the scale of q is too small compared to the scale of the target (in the sense that the typical jump

is small), then the chain may take very long to explore the target distribution which implies

that the algorithm will be very inefficient. As we can see in Figure 16.6 (left panel), considering

-266-



16.4 Numerical tools

Figure 16.5: Multiple MCMC. We use five Markov Chains to estimate the convergence.

an initial step pi = 0.6 and a variance for the proposal distribution σ̂ = 0.002, the number of

points are not enough for the system to move to its “real” posterior distribution. On the other

hand, if the scale of q is too large, the chain gets stuck and it does not jump very frequently

(right panel of the figure with σ̂ = 0.8) so we will have different “peaks” in our posterior.

In order to fix this issue in a more efficient way, it is recommendable to run an exploratory

MCMC, compute the covariance matrix from the samples, and then re-run with this covariance

matrix as the covariance of a multivariate Gaussian proposal distribution. This process can be

computed a couple of times before running the “real” MCMC.

The burn-in. It is important to notice that at the beginning of the chain we will have a

region of points outside the stationary region (points inside the ellipse in the right panel of

Figure 16.4). This early part of the chain (called “burn-in”) must be ignored, this means that

the dependence on the starting point must be lost. Thus, it is important to have a reliable

convergence test.

Thinning. There are several Bayesian statisticians that usually thin their MCMC, this

means that they do not prefer to save every step given by the MCMC; instead, they prefer to

save a new step each time n steps have taken place. An obvious consequence of thinning the

chains is that the amount of autocorrelation is reduced. However, as long as the chains are

thinned, the precision for the estimated parameters is reduced [? ]. Thinning the chains can

be useful in other kind of circumstances, for example, if we have limitations in memory. Notice

that thinning a chain does not yield incorrect results; it yields correct results but less efficient
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Figure 16.6: Two Markov Chains considering different variance for our Gaussian proposal distribution.

Left panel corresponds to σ̂ = 0.002, while right panel corresponds to σ̂ = 0.8.

than using the full chains.

Autocorrelation probes. A complementary way to look for convergence in a MCMC

estimation is by looking for the autocorrelation between the samples. The autocorrelation lag k

is defined as the correlation between every sample and the sample k steps before. It can be

quantified as [? ? ]

ρk =
Cov(Xt, Xt+k)√
V ar(Xt)V ar(Xt+k)

=
E[(Xt −X)(Xt+k −X)]√
E[(Xt −X)2]E[(Xt+k −X)2]

, (16.60)

where Xt is the t-th sample and X is the mean of the samples. This autocorrelation should

become smaller as long as k increases (this means that samples start to become independent).

More samplers

Gibbs sampling. The basic idea of the Gibbs sampling algorithm [? ] is to split the mul-

tidimensional θ into blocks and sample each block separately, conditional on the most recent

values of the other blocks. It basically breaks a high-dimensional problem into low-dimensional

problems.

The algorithm reads as follows:

1. θ consists of k blocks θ1, ..., θk. Then, at step i

2. Draw θi+1
1 from p(θ1|θi2, ..., θik)

3. Draw θi+1
2 from p(θ2|θi+1

1 , θi3, ..., θ
i
k)
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4. ...

5. Draw θi+1
k from p(θk|θi+1

1 , θi+1
2 , ..., θi+1

k−1)

6. Repeat the above steps for the wished iterations with i→ i+ 1.

The distribution p(θ1|θ2, ..., θk) = p(θ1,...,θk)
p(θ2,...,θk) is known as the full conditional distribution of

θ1. This algorithm is a special case of MHA where the proposal is always accepted.

Metropolis Coupled Markov Chain Monte Carlo (MC3). It is easy to see that it

could be a little problematic if our likelihood has local maxima. The MC3 is a modification of

the standard MCMC algorithm that consists of running several Markov Chains in parallel to

explore the target distribution for different “temperatures”. This simplifies the way we sample

our parameter space and help us to avoid this local maxima. Here we exemplify the basic idea of

this algorithm, however if you are interested in a more extensive explanation, or a modification

to make the temperature of the chains dynamical, please consult the reference [? ].

We consider a tempering version of the posterior distribution P (θ, T |D,H)

P (θ, T |D,H) ∝ L(θ,D)1/TP (θ,H), (16.61)

where L is the likelihood and P (θ,H) the prior. Notice that, for higher T , individual peaks

of L become flatter, making the distribution easier to sample with a MCMC algorithm. Now,

we have to run N chains with different temperatures assigned in a ladder T1 < T2 < ... < TN ,

usually taken with a geometrically distributed division, with T1 = 1. The coldest chain T1

samples the posterior distribution more accurately and behaves as a typical MCMC. Then, we

define this chain as the main chain. The rest of the chains are running such that they can cross

local maximum likelihoods easier and transport this information to our main chain.

The chains explore independently the landscape for a certain number of generations. Then, in

a pre-determined interval, the chains are allowed to “swap” its actual position with a probability

Ai,j = min

{(
L(θi)

L(θj)

)1/Tj−1/Ti

, 1

}
. (16.62)

In this way, if a swap is accepted, chains i and j must exchange their current position in the

parameter space, then chain i has to be in position θj and chain j has to move to position θi.

We can see that, since the hottest chain Tmax can access easier to all the modes of

P (θ,H, Tmax|D), then it can propagate its position to colder chains, to be precise, it can
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propagate its position to the coldest chain T = 1. At the same time, the position of colder

chains can be propagated to hotter chains, allowing them to explore the entire prior volume.

Affine Invariant MCMC Ensemble Sampler. The main property of this algorithm

relies on its invariance under affine transformations. Let’s consider a highly anisotropic density

p(x1, x2) ∝ exp

(−(x1 − x2)2

2ε
− (x1 + x2)2

2

)
, (16.63)

which is difficult to calculate for small ε. But by making the affine transformation

y1 =
x1 − x2√

ε
, y2 = x1 + x2, (16.64)

we can rewrite the anisotropic density into the easier problem

p(y1, y2) ∝ exp

(−(y2
1 + y2

2)

2

)
. (16.65)

A MCMC sampler has the form X(t+ 1) = R(X(t), ψ(t), p), where X(t) is the sample after

t iterations, R is the sampler algorithm, ψ is the sequence of independent identically distributed

random variables and p is the density. A sampler is said to be affine invariant if, for any affine

transformation Ax+ b,

R(AX(t) + b, ψ(t), pA,b) = AR(X(t), ψ(t), p) + b. (16.66)

There are already several algorithms that are affine invariant, one of the easiest is known

as the stretch move [? ]. An algorithm fully implemented in Python under the name EMCEE

[? ] is also affine invariant, and there are also some other algorithms that can be found in [? ].

Even more samplers. The generation of the elements in a Markov chain is probabilistic

by construction and it depends on the algorithm we are working with. The MHA is the easiest

algorithm used in Bayesian inference. However, there are several algorithms that can help

us to fulfill our mission. For instance, some of the most popular and effective ones, are the

Hamiltoninan Monte Carlo (see e.g. [? ? ]) or the Adaptative Metropolis-Hastings (AMH) (see

e.g. [? ]).
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Figure 16.7: Datasets D1 and D2 measured by our straight-line theory. Case 1 (left) and case 2 (right).

16.5 Fitting a straight-line

In this section we apply the tools learned so far to the simplest example: fitting a straight-line.

That is, we assume that we have a certain theory where our measurements should follow a

straight line. Then, in order to apply our techniques, we simulate several datasets along this

line. One of the principal topics we want to analyse is the hyperparameter method and how it

works, so we will apply our analysis to two different cases (Figure 16.7):

1. Consider two datasets taken from the same straight-line but with different errors.

2. Consider two datasets but now we simulate both of them from different straight-lines and

different errors.

In our analysis we used the PyMC3 module implemented in Python. Our complete code can

be downloaded from the git repository [? ]. This code is simple to use and can be modified easily

for any model to be tested. We recommend to use the file called “new model” where the reader

can find a blank project. Here the data and model can be added up and, by running all the
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Figure 16.8: Left panel: 1D marginalized posterior distributions for our samples and the Markov chains

for model H0. Right panel: 2D marginalized posterior distributions along with 1-4 confidence regions for

our parameters for model H0. The red point corresponds to the true value.

notebook, obtain all the analysis we present in this section. One can find as well several notes

that will help in programming the model with PyMC3, even if the model contains functions

that are not defined in PyMC3.

16.5.1 Case 1

In this example we start by considering that our measurements for a given theory (a

straight-line y = a + bx) are given by the data shown in left panel of Figure 16.7. These two

datasets, D1 and D2, were generated from the line y = 3 + 2x, adding a gaussian error to

each point. For D1 we add an error with a standard deviation σ1 = 0.3, while for D2 we use

σ2 = 0.2. Then, we would like to estimate the parameters of the model, i.e. a and b. We will

analyse this data with and without the hyperparameter method and discuss in detail our results.
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Without hyperparameters. Model H0.

Before we make a Bayesian estimation, it is necessary to specify our priors. As we have seen,

a good prior is a non informative one. Suppose we only know some limits for a and b (we can

see them by eye in our data). Then we consider the flat priors

a ∝ U [0, 5] and b ∝ U [0, 3], (16.67)

where U [α, β] are uniform distributions with lower limit α and upper limit β.

From equation (16.27) we can write our likelihood as

L(D; line) ∝ exp

[
−
∑

d

(yd − y)2

2σ2
d

]
, (16.68)

where yd is our data taken from the dataset D = D1 +D2 and σd its errors.

We use the MHA to generate our MCMC. In our analysis we ran 5 chains with 10,000 steps

for each one. We ran each chain with a temperature T = 2 and we thinned them every 50

steps. The results we obtained correspond to a = 2.982±0.047 and b = 1.994±0.013, and their

posterior distributions are plotted in Figure 16.8. Notice that there are some regions where the

frequency of events in our sample is increased. So we can say that such parameter regions seem

to more likely match the data. Additionally we compute the Gelman-Rubin criterion for each

variable in order to verify that our results converged, i.e. for a is 1.000017 and for b is 1.000291.

We see that this number is very close to 1, so our convergence criterion is fulfilled. Right panel

of Figure 16.8 displays the 1− 4 σ confidence regions. We also add a point in red to show the

real value for our parameters. The real value for a and b are inside of the curve corresponding

to one standard deviation of our estimations in the inferential method.

We continue with the autocorrelation plots. As we mentioned, we need these plots to be

small as k increases in order to consider that our analysis is converging. We see in Figure 16.9

such plots and notice that our convergence criteria is fulfilled. Then, in Case 1 we can see that

the model H0 looks to be a very good estimation procedure.

With hyperparameters. Model H1.

Now let us consider the Hyperparameter method. In this case our likelihood can be written

as Eq. (16.48). Similarly to the last procedure, we compute the posterior with flat priors and

using 5 chains with 10,000 steps for each one, and check for autocorrelations. Our results are as
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Figure 16.9: Autocorrelation plots for model H0.

followed: a = 2.97± 0.038 with Gelman-Rubin of 1.000113 and b = 1.995± 0.010 with Gelman-

Rubin 1.000155. Comparing both procedures we observe they provide similar results. In fact, the

confidence regions for both approximations, Fig. 16.8 and left panel of Figure 16.10, are similar

as well. So, which method is better? We could say that the method with hyperparameters is

as good as the one without them, but in order to be sure we compute the evidence ratio K

between both models. We obtained from Eqn. (16.49)

K = 3. (16.69)

Then, comparing with Table 17.2 we can say that the evidence for H1 to be better than H0 is

weak. In such case it should be equally better to work with H0 as to H1, as we explained before.

Finally, in order to exemplify our results, let us plot in the right panel of Figure 16.10 our

data with the straight-line inferred by the mean parameters of both models. As we expected

our estimation fits well the data for both cases.

16.5.2 Case 2

Here we consider that we have the same theory for the straight-line but different measurements.

The data points are given in the right panel of Figure 16.7. These correspond to our dataset

D1 and D2, but now changing D2 by 16 new points generated around the line y = 3.5 + 1.5x

with a Gaussian noise and standard deviation σ = 0.5. So, our datasets are not auto-consistent

with each other. Let us make again a parameter estimation for the parameters a and b and
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Figure 16.10: Left panel: confidence regions for the parameters in model H1. Right panel: the best-fit

for the straight-lines inferred by the data.

look for the differences in both procedures.

Without hyperparameters. Model H0.

We follow the same procedure as in Case 1. We computed our posterior and verified that

our results converged with the help of the Gelman-Rubin criterion and the autocorrelation

plots. Our results are the following: a = 3.528± 0.056 and b = 1.795± 0.014. Then we plotted

our 1− 4σ confidence regions in left panel of Figure 16.11. It is easy to see that our estimation

differs so much from the real parameters in our datasets (red points). Of course this is because

we are trying to fit a model with non auto-consistent datasets and therefore we arrive at

incorrect results. Now, let us see what happens in the hyperparameters procedure.
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With hyperparameters. Model H1.

In the top right panel of Figure 16.11 we plotted our posterior distribution. We see imme-

diately that both approximations are very different. While for model H0 we obtained a single

region far away of the real values of our data, for model H1 we obtained two local maximum

regions near the real values for our datasets (red dots). For this example we do not calculate

the typical mean and standard deviation for our results.

As the last example we compare both methods. Given the fact that we know a priori the

real values of our parameters for this example, we could immediately say that the method with

hyperparameters is a better approximation than the case without them. However, we confirm

this assumption by calculating the ratio K between both models. We obtain

K = 37, (16.70)

which means that we have a very strong evidence that H1 is better that H0.

Finally, we can plot the straight-line inferred by model H0 and the two inferred by model H1.

Considering parameters inside the two regions in the top right panel of Figure (16.11) we obtain

the bottom panel of Figure 16.11.
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Figure 16.11: Top left panel: confidence regions for the parameters in model H0. Top right panel:

confidence regions for the parameters in model H1. Bottom panel: Best-fit values for the straight-lines for

Case 2 inferred by our with data.
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17
Statistics in Cosmology

In the previous chapter we have developed the main equations to describe the evolution of

the background and perturbed universe. We noticed, however, that the whole structure of the

CMB, matter power spectrum and luminosity distance depend strongly on the initial conditions

emerging from the inflationary era (PR,T ), on the matter-energy content (Ωi,0), and on the

expansion rate history (H0). This chapter seeks to give a brief introduction of such quantities

used to describe the properties of the universe. We show current and future experimental results

used throughout the analysis: CMB, SNe and LSS amongst many others. It also includes a short

description of the Bayesian analysis to perform the parameter estimation and model selection.

Finally, at the end of the chapter, by making use of the theoretical, observational and statistical

tools included in this work, we examine the standard ΛCDM model (spatially flat and non-flat),

and present the current constraints on the cosmological parameters.

17.1 The Cosmological Parameters

17.1.1 Base parameters

These parameters, commonly called standard parameters, are considered as the principal quan-

tities used describe the universe. They are not, however, predicted by any fundamental theory,

rather we have to fit them by hand in order to determine which combination best describes the

current astrophysical observations [71, 78]. Variations of these parameters affect the amplitude

and shape of the spectra as well as the background evolution in many different ways, yield-

ing to very different universes. They are classified depending on whether they characterise the

background or the perturbed universe:

279



17. STATISTICS IN COSMOLOGY

 0

 1000

 2000

 3000

 4000

 5000

 6000

100 101 102 103 104

l(l
+1

)C
lTT

/2!
 (µ

k2 )

l

Curvature
"k

-0.3 0.2

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

100 101 102 103 104

l(l
+1

)C
lTT

/2!
 (µ

k2 )

l

Baryons
"bh2

0.01 0.04

 0

 1000

 2000

 3000

 4000

 5000

 6000

100 101 102 103 104

l(l
+1

)C
lTT

/2!
 (µ

k2 )

l

Dark Energy
"#

0 1.0

Figure 17.1: Dependence of the temperature power spectrum for three fundamental quantities:

Curvature (Ωk), Baryons (Ωb) and Dark energy in the form of a cosmological constant (ΩΛ).

Background parameters

The present description of the homogeneous universe can be given in terms of the density

parameters Ωi,0 and the Hubble parameter H0, through the Friedmann equation (2.155):

H2 = H2
0

[
(Ωγ,0 + Ων,0) a−4 + (Ωb,0 + Ωdm,0) a−3 + Ωk,0a

−2 + ΩX,0a
−1 + ΩΛ,0

]
, (17.1)

From these parameters the radiation contribution is accurately measured, for instance by the

WMAP satellite, corresponding to Ωγ,0 = 2.469 × 10−5h−2 for Tcmb = 2.725K. Similarly

for neutrinos, while taken as relativistic, they can be related to the photon density through

(2.144). However, variations of the rest of the parameters imprint different signatures on the

background history and evolution of perturbations, observed through the CMB spectrum

as it is illustrated in Figure 17.1. We observe that the first peak (and the most prominent,

at l ≈ 200) is particularly related to the spatial geometry Ωk,0; the relative heights of the

intermediate peaks probe the baryon density; the largest scales are mainly affected by the dark

energy component.
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Figure 17.2: Theoretical values of the distance modulus µ for three different models; with various

combinations of matter Ωm,0 and dark energy in the form of a cosmological constant ΩΛ,0.

Figure 17.3: Cosmic Degeneracy

These base parameters also play a key role on measurements of the distance modulus

µ, through the luminosity distance (2.204). Figure 17.2 shows the theoretical values of the

distance modulus for three different models with various combinations of Ωm,0 and ΩΛ,0. Note

that objects appear to be further away (dimmer) in a universe with cosmological constant than

one dominated by only matter today.

The existence of strong degeneracies amongst different combinations of parameters is also

noticeable. In particular the well-known geometrical degeneracy involving Ωm, ΩΛ and the cur-

vature parameter Ωk = 1− Ωm − ΩΛ.

To reduce degeneracies it is common to introduce a combination of the cosmological pa-
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rameters such that they have orthogonal effects on the power spectrum [68]. For instance, a

standard parameterisation is based on the physical energy-densities of cold dark matter Ωdmh
2,

and baryons Ωbh
2, and the ratio of the sound horizon to the angular diameter distance at

decoupling time:

θ =
rs(adec)

DA(adec)
. (17.2)

There is an extra parameter that accounts for the reionisation history of the universe, the

optical depth to scattering τ (i.e. the probability that a given photon scatters once), given by

τ = σT

∫ t0

tr

ne(t)dt, (17.3)

where σT is the Thompson cross-section and ne(t) is the electron number density as a function

of time.

Inflationary parameters

After the horizon exit, H and φ̇ have small variations during few e-folds. Thus, the scalar (??)

and tensor (??) spectra are nearly scale independent. The standard assumption is therefore to

parameterise each of the spectra in terms of a power-law

PR(k) = As

(
k

k0

)ns−1

, (17.4)

PT (k) = At

(
k

k0

)nt

. (17.5)

where As, At are the spectral amplitudes, and ns, nt the spectral indices or tilt parameters, for

both scalar and tensor perturbations respectively; k0 denotes an arbitrary scale at which the

tilted spectrum pivots, usually fixed to k0 = 0.002 Mpc−1. A scale-invariant spectrum, called

Harrison-Zel’dovich (HZ), has constant variance on all length scales and it is characterised by

ns = 1, nt = 0. Small deviations from scale-invariance are also considered as typical signatures

of inflationary models [80]. The spectrum of perturbations is said to be blue if ns > 0 (more

power in ultraviolet), and red if ns < 0 (more power in infrared). The spectral indices, ns and

nt, and the tensor-to-scalar ratio r can be expressed in terms of the slow-roll parameters εv and

ηv (3.32), as:

ns − 1 ' −6 εv(φ) + 2 ηv(φ), (17.6)

nt ' −2 εv(φ), (17.7)

r ' 16 εv(φ). (17.8)
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ns (left), and variations of the CBB tensor spectrum with respect to the tensor-to-scalar ratio r

(right).

These parameters are not completely independent each other, but the tensor spectral index

is proportional to the tensor-to-scalar ratio r = −8nt [30]. This expression is considered as

the consistency relation for slow-roll inflation. Any single-field inflationary model can hence

be described, to the lowest order in slow-roll, in terms of three independent parameters: the

amplitude of density perturbations As, the scalar spectral index ns, and the tensor-to-scalar

ratio r. Variations of the CMB T -spectrum over different values of ns are shown in the left

panel of Figure 17.4.

In addition to the temperature T and polarisation E spectra, produced by scalar perturba-

tions, there is also the B-mode polarisation only produced by tensor perturbations. Therefore,

measurements of B-modes are important tests for the existence of primordial gravitational

waves. Unfortunately, there is no observational evidence of tensor perturbations yet, and r is

commonly set to zero. The next generation of CMB polarisation experiments will substantially

improve these limits (see Section 17.2.2). Variations of the CBB tensor spectrum with respect

to the tensor-to-scalar ratio r are displayed in the right panel of Figure 17.4.

17.1.2 Nuisance parameters

We do not have particular interest on these type of parameters, however they may influence

the rest of the parameter-space constraints. These type of parameters may be related to insuffi-

ciently constrained aspects of physics, or uncertainties in the measuring process [? ]. Therefore,
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considering their uncertainty is important in order to obtain accurate error-estimates on the

physical parameters we are seeking to determine. Examples of nuisance parameters are, for

instance, the bias factor in galaxy surveys b, calibrations and beams uncertainties, galactic

foregrounds. The new ACT measurements (three seasons of data [121]) incorporate nine pa-

rameters describing secondary emissions. Nuisance parameters also control the stretch α and

colour β corrections on measurements of distance modulus of SNe Type Ia [93].

17.1.3 Derived parameters

The standard set of parameters, introduced previously, provide an adequate description of the

cosmological models in agreement with observational data. However, it is not unique and other

parameterisations may be as good as this one. Some parameterisations make use of knowledge

about physics or sensitivity of observations and are hence more naturally interpreted. In general

we could have used different parameters to describe the universe, those include: the age of the

universe, the present neutrino background temperature, the epoch of matter-radiation equality,

the reionisation epoch, the baryon to dark matter density ratio, or some other combinations of

parameters, i.e. the overall amplitude of the CMB anisotropy exp(−2τ)As [? ]. In the ΛCDM

model, to ameliorate degeneracies, we use as base parameters the physical energy densities

Ωdm,0h
2 and Ωb,0h

2, and the ratio of the sound horizon to the angular diameter distance θ; we

consider as derived quantities the density parameters Ωi,0 and Hubble parameter H0.

17.1.4 Beyond the concordance ΛCDM

The best model in agreement with data, at present time, is given by the concordance ΛCDM

model. However, this model might not be the final one and several extensions have already been

implemented. A non-exhaustive list of candidates beyond the standard cosmological model

is shown in Table 17.1. The definite answer on how many parameters we must include or

which set of parameters represents the most plausible will be given by high-quality cosmological

observations in the coming years. In the same table, we have highlighted the models studied in

detail throughout this work.

17.2 Observations

Rapid advance in the development of powerful observational-instruments has led to the es-

tablishment of precision cosmology. In particular, experiments employed to measure CMB
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Table 17.1: Candidate parameters used to describe models beyond the concordance ΛCDM. The

highlighted models are studied in detail throughout this work.

αRn Modifications to gravity

[or more complex theories]

ds̃2 Anisotropic universe

dα/dz, dG/dz Variations of fundamental constants

fNL Non-gaussianity

nrun Running of the scalar spectral index

kcut Large-scale cut-off in the spectrum

[or a more complex parameterisation of PR(k)]

r + 8nt Violation of the inflationary consistency relation

nt,run Running of the tensor spectral index

[or a more complex parameterisation of PT (k)]

Piso CDM isocurvature perturbations

Ωk,0 Spatial curvature

ΩX,0 Additional components

mdm Warm dark matter mass

[or scalar field dark matter]

mνi Neutrino mass for species ‘i’

wDE Dark energy equation-of-state

[or a more complex parameterisation of w(z)]

ρα Polytropic equation of state

Γ Interacting fluids

anisotropies, luminosity distances and large-scale structure. In this section, we highlight these

type of experiments used to impose constraints on the cosmological parameters.

17.2.1 Current observations

CMB experiments

A number of experiments over the past decade or so have been very successful in measuring

the anisotropies of the CMB. They include the Cosmic Background Explorer satellite [COBE;

95] as the pioneer of detecting the anisotropy. Nowadays with highly-improved experiments it

is possible to find accurate measurements of the temperature and polarisation CMB spectrum

from:
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Satellite experiments:

• The Wilkinson Microwave Anisotropy Probe [WMAP; 67, 72], with CMB T -spectrum

measurements over the multipoles (2 < l < 1200). Recently the WMAP collaboration has

released the 9-year of observations [52].

Ground-based telescopes:

• The Background Imaging of Cosmic Extragalactic Polarization [BICEP; 27], probes in-

termediate scales (21 ≤ l ≤ 335).

• The Quest (Q and U Extra-Galactic Sub-mm Telescope) at DASI (Degree Angular Scale

Interferometer) [QUAD; 19], improve polarisation constraints, whose primary aim is high

resolution measurements (154 ≤ l ≤ 2026) of the polarisation signals.

• The Cosmic Background Imager [CBI; 122], constrains the CMB spectrum in the range

(300 ≤ l ≤ 1700).

• The Atacama Cosmology Telescope [ACT; 37], observes the small angle CMB T -spectrum

from l= 300 to l=10000, and recently released the three seasons of data [121].

• The South Pole Telescope [SPT; 63], with CMB T -measurements between (650 < l <

9500), and recent improved data from the 2500-square-degree SPT-SZ survey [126].

Ballon-borne experiments:

• Balloon Observations Of Millimetric Extragalactic Radiation AND Geophysics

[BOOMERanG; 62], measures CMB temperature fluctuations over the multipole range

50 ≤ l ≤ 1500.

Figure 17.5 summarises the current status of some experiments constraining the tempera-

ture (TT ), polarisation (EE) and cross-correlation (T -E) CMB power spectra. In particular

the CMB T -power spectrum is now well-constrained over a wide range of scales. For example,

WMAP and BICEP observations provide good constraints on the late-time ISW effect arising

at the largest scales on the first three acoustic peaks, whilst ACT and SPT data accurately

measure the power of higher acoustic peaks and damping tail. Intermediate scales are well

constrained by QUAD and CBI experiments, and the overlapping of all of them. In addition

to T,E and T -E CMB spectra, Figure 17.6 shows the theoretical B-mode spectrum predicted

from a power-law parameterisation, with r = 0.1, along with 1σ constraints obtained from
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Figure 17.5: Current status of temperature (TT ), polarisation (EE) and cross-correlation (T -E)

measurements of the CMB power spectra, by various observational probes.

current observations: WMAP, BICEP and QUAD.

At this point it is worthwhile mentioning the existence of an intrinsic uncertainty in the

cosmological measurements. This limitation comes from the fact that we have to do statistics

with only one universe. For a given multipole l, we expect to have a variance, called the cosmic

variance, of the Cl’s given by

(∆Cl)
2 =

2

2l + 1
C2
l . (17.9)

In real experiments, the error is increased due to the limited sky coverage by f−1
sky.

CMB measurements by themselves cannot, however, place strong constraints on all the pa-

rameters because the existence of parameter degeneracies, such as the τ −As and the geomet-

rical degeneracy. Nevertheless, when CMB observations are combined with other cosmological

probes, they together increase the constraining power and considerably weaken degeneracies.
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Figure 17.6: WMAP, BICEP and QUaD constraints for the B-mode power spectrum. The solid

line represents the theoretical prediction of a r = 0.1.

Figure 17.7: Current status of measurements of the Hubble diagram of Type Ia supernovae.

Reprinted from the Union 2.1 compilation [128].

Supernovae observations

Throughout the past two decades supernovae observations have provided decisive evidence that

the present expansion of the universe is accelerating. In particular studies of Type Ia supernovae

as standard candles: they have the same intrinsic magnitude with high accuracy, up to a rescaling

factor, e.g. Perlmutter et al. [106], Riess et al. [115]. Hence, the current acceleration suggests the

existence of an exotic component or alternative theories which would produce such an effect, as

we will see in Chapters ?? and ??. Branch and Tammann [17] provides a brief introduction to

Type Ia supernovae (SNe Ia) as standard candles, and ? ] shows their use in cosmology. Some

samples of supernovae Type Ia worth mentioning include:

• The Sloan Digital Sky Survey-II [SDSS-II; 45], discovered and measured multi-band
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Fig. 5.— The reconstructed matter power spectrum: the stars show the power spectrum from combining ACT and WMAP data (top
panel). The solid and dashed lines show the nonlinear and linear power spectra respectively from the best-fit ACT ΛCDM model with
spectral index of ns = 0.96 computed using CAMB and HALOFIT (Smith et al. 2003). The data points between 0.02 < k < 0.19 Mpc−1

show the SDSS DR7 LRG sample, and have been deconvolved from their window functions, with a bias factor of 1.18 applied to the data.
This has been rescaled from the Reid et al. (2010) value of 1.3, as we are explicitly using the Hubble constant measurement from Riess et al.
(2011) to make a change of units from h−1Mpc to Mpc. The constraints from CMB lensing (Das et al. 2011), from cluster measurements
from ACT (Sehgal et al. 2011), CCCP (Vikhlinin et al. 2009) and BCG halos (Tinker et al. 2011), and the power spectrum constraints
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(measured in Mpc−1) corresponds to range in mass scale of over 10 orders of magnitude. Note that large masses correspond to large scales
and hence small values of k. This highlights the consistency of power spectrum measurements by an array of cosmological probes over a
large range of scales.

Friday, 15 February 2013

Figure 17.8: Current status of the perturbation power spectrum as measured by different exper-

iments. Figure reproduced from [53].

lightcurves for 327 spectroscopically confirmed Type Ia supernovae in the redshift range

0.05 < z < 0.35.

• The Equation of State: SupErNovae trace Cosmic Expansion program [ESSENCE; 97],

discovered and analysed 60 Type Ia supernovae over the redshift interval 0.15 < z < 0.70,

• The Supernova Legacy Survey 3-year sample [SNLS; 127], presented 252 high redshift

Type Ia supernovae (0.15 < z < 1.1).

• The Hubble Space Telescope [HST; 113], discovered 21 Type Ia supernovae at z ≥ 1.

• Recently the compilation of data from all the above, namely the ‘Union’ [69], ‘Union 2’

[4] and ‘Union 2.1’ [128].

Supernovae measurements can be plotted on a Hubble diagram with distance modulus vs.

redshift (as seen in Figure 17.7), and then be used to fit the best cosmological parameters, for

instance those shown in Figure 17.2.

LSS measurements

The matter power spectrum is nowadays one of the most important measures of large-scale

structure. Many observations have been made to infer the spectrum:

• The sample of Luminous Red Galaxies (LRGs) from the Sloan Digital Sky Survey Seventh

Data Release (DR7) [112], provides measurements on the matter spectrum between 0.02 <
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k < 0.19Mpc−1. Nowadays with improved measurements, one has the ninth data released

(DR9) of the SDSS-III [2].

• Measurements of the transmitted flux in the Lyα forest probe the smallest scales in the

matter power spectrum [96].

An illustration of the matter power spectrum of density fluctuations is shown in Figure 17.8

(see [53] and references therein).

17.2.2 Future surveys

An impressive array of ambitious projects have been implemented, or are underway, to provide

high resolution measurements of the physical properties of the universe, and hence the search for

possible signatures of new cosmology. The Planck satellite [110] will improve measurements on

the E and B polarisation modes. Along with Planck satellite there will be several experiments

aiming to provide measurements of small-scale fluctuations and polarisations, such as the E

and B EXperiment [EBEX; 102], Q-U-I JOint TEnerife CMB experiment [QUIJOTE; 117]

and Spider [32]. Besides CMB experiments, the Euclid satellite [41] will explore the expansion

history of the universe and the evolution of cosmic structures over a very large fraction of the

sky. The Dark Energy Survey [DES; 130] is designed to probe the origin of the accelerating

universe and help uncover the nature of dark energy.

Previously we have shown current constraints of the temperature and polarisation CMB

spectra. Here, we aim to explore future constraints coming from Planck satellite and CMB-Pol

experiments. Performance assumptions for Planck and CMB-Pol are taken from [110] and [9]. In

order to do this we need to simulate these experiments by generating mock data of the Ĉl
XY

’s

from a χ2
2l+1 distribution with variances [111]:

(∆ĈXXl )2 =
2

(2l + 1)fsky

(
CXXl +NXX

l

)2
, (17.10)

(∆ĈTEl )2 =
2

(2l + 1)fsky

[(
CTEl

)2
+
(
CTTl +NTT

l

) (
CEEl +NEE

l

)]
, (17.11)

where X = T,E and B label the temperature and polarisations; fsky is the fraction of the

observed sky. The CXYl ’s represent the theoretical spectra and NXY
l the instrumental noise

spectra for each experiment. In experiments with multiple frequency channels c, the noise

spectrum is approximated [16] by
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Figure 17.9: Polarisation noise power spectra of forthcoming experiments. Note that these curves

include uncertainties associated with the instrumental beam. The red line shows the B-mode power

spectrum for the standard inflationary model with r = 0.1.

NX
l =

(∑

c

1

NX
l,c

)−1

, (17.12)

where the noise spectrum of an individual frequency channel, assuming a Gaussian beam, is

NX
l,c = (σpix θfwhm)2 exp

[
l(l + 1)

θ2
fwhm

8 ln 2

]
δXY . (17.13)

The pixel noise from temperature and polarisation maps are considered as uncorrelated. The

noise per pixel σXpix (and σPpix =
√

2σTpix) depends on the instrumental parameters; θfwhm is the

full width at half maximum (FHWM) of the Gaussian beam.

For the Planck experiment, we include three channels with frequencies (100 GHz, 143 GHz,

217 GHz) and noise levels per beam (σTpix)2= (46.25 µK2, 36 µK2, 171 µK2). The FHWM of

the three channels are θfwhm =(9.5, 7.1, 5.0) arc-minute. These figures are taken from the values

given in [110]. We combine three channels for the CMBPol experiment [9] with frequencies (100

GHz, 150 GHz, 220 GHz), noise levels (σTpix)2 = (729 nK2, 676 nK2, 1600 nK2) and θfwhm =

(8, 5, 3.5) arc-minute. Sky coverages of fsky = 0.65, 0.8 are respectively assumed and integration

time of 14 months. In Figure 17.9, we show the noise levels for these experiments as a function

of multipole number l. The blue line corresponds to the B-mode power spectrum using the

standard power-law parameterisation with r = 0.1. The lensed CBl is also shown in the same

figure, which can be treated as a part of the total noise power spectrum NB
l as well as the

instrumental noise power spectra [107]. For more information of the noise and beam profile of

each frequency channel, refer to [90].
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17.3 Bayesian Analysis

Over the last decade or so, the vast amount of information coming from a wide range of

sources, including CMB, SNe and LSS, has increased amazingly. We would like to translate this

experimental/observational information into constraints of our model(s), summarised by the

estimation of the cosmological parameters involved. The concordance ΛCDM model, previously

described, depends on a set of cosmological parameters shown in Section 17.1. A primary goal

concerning observational cosmology is to determine best-fit parameter values for a given model,

as well as to decide which model is in best-agreement with observational data. To do this we

focus on Bayesian inference. Some excellent reviews of Bayesian statistics applied to cosmology

are given by Heavens [51], Liddle [79], Liddle et al. [83], Verde [132, 133], von Toussaint [135?

], and the textbook for data analysis Sivia and Skilling [123].

17.3.1 Parameter estimation

A Bayesian analysis provides a consistent approach to estimating the values of the param-

eters Θ within a model M , which best describe the data D. The method is based on the

assignment of probabilities to the quantities of interest, and then the manipulation of these

probabilities given a series of rules, in which Bayes’ theorem plays the main role [79]. Bayes’

theorem states that

P (Θ|D,M) =
P (D|Θ,M) P (Θ|M)

P (D|M)
. (17.14)

In this expression, the prior probability P(Θ|M) ≡ π represents what we thought the

probability of Θ was before considering the data. This probability is modified through

the likelihood P(D|Θ,M) ≡ L. The posterior probability P(Θ|D,M) represents the state of

knowledge once we have taken the experimental data D into account. The normalisation

constant in the denominator is the marginal likelihood or Bayesian evidence P(D|M) ≡ Z,

as is normally called in cosmology. Since this quantity is independent of the parameters Θ, it

is commonly ignored in parameter estimation but it takes the central role for model comparison.

The central step for parameter estimation is to construct the likelihood function L for the

measurements, and then the exploration of the region around its maximum value Lmax. A

simple chi-squared function is often used χ2 = −2 lnL. when the distributions are Gaussian.

However, some current problems in cosmology present obstacles for carrying out this procedure
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straightforwardly (some of them discussed by Liddle [79]). Fortunately, models of our interest

can be easily tackled by numerical techniques developed on statistical fields, in particular the

methods known as Markov Chain Monte Carlo (MCMC). There have been developed different

codes employing MCMC techniques to carry out the exploration of the cosmological parameter-

space, for instance CosmoMC [75], CosmoHammer [3], CMBEASY [35]. Although some of

them use a simple Metropolis-Hasting algorithm by default, nowadays improved algorithms

have been adapted to explore complex posterior probability distributions.

Discriminating among models and determining which of them is the most plausible given

some data is a task for model comparison techniques, whose application is discussed in the next

section.

17.3.2 Model selection

There is nowadays a rich diversity of models trying to describe the vast amount of cosmological

information. Some of them might involve complex interactions or introduce a high number

of parameters, but provide just as good fit as the standard ΛCDM model (see Table 17.1).

So, how can we perform an objective comparison between them and choose the appropri-

ate model?. The solution was proposed by William of Occam: the simplest model which

covers all the facts ought to be preferred. That is, a complex model that explains the data

slightly better than a simple one should be penalised by the inclusion of extra parameters,

because this additional information reflects a lack of predictability in the model. Moreover,

if a model is too simple, it might not fit certain data equally well, then it can be discarded [83? ].

Many attempts have been performed to translate Occam’s razor into a mathematical

language for model selection. Two major types have been used so far: Bayesian evidence and

Information criteria; where the latter one can be used as an useful approximation when the

Bayesian evidence cannot be computed.

Information criteria is based on some simplifying approximations to the full Bayesian

evidence. The method considers the best-fit values and attaches a penalty term for more complex

models:

• The Akaike Information criterion (AIC), introduced by Hirotugu Akaike has the form

AIC ≡ −2 lnLmax + 2k, (17.15)
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where the penalty term is induced by the number of free parameters k to be estimated.

• The Bayesian Information Criterion (BIC), was derived by Gideon E. Schwarz and it is

given by

BIC ≡ −2 lnLmax + k lnN, (17.16)

where N is the number of datapoints. It follows from a Gaussian approximation of the

Bayesian evidence for a large number of samples.

• The Deviance Information Criterion (DIC), was proposed by David J Spiegelhalter. It is

a generalization of the AIC and BIC written as

DIC ≡ −2D̂KL + 2Cb, (17.17)

where the former term is the estimated KL divergence and the latter one is the effective

number of parameters.

An extended discussion of the different information criteria can be found in [78, 83? ].

Bayesian evidence. This is the primordial tool for the model selection we focus on. It

applies the same type of analysis as in parameter estimation, but now at the level of models

rather than parameters. The Bayesian evidence is the key quantity to bear in mid as it

balances the complexity of cosmological models and then, naturally, incorporates Occam’s

razor. It has been applied to a wide diversity of cosmological contexts, see for example [54, 61? ].

Let us consider several models M , each of them with prior probability P (M). Bayes’ theorem

for model selection is

P (M |D) =
P (D|M)P (M)

P (D)
. (17.18)

The left-hand side denotes the probability of the model given the data, which is exactly what

we are looking for in model selection. We need, therefore, to obtain an expression that allows

us to compute the Bayesian evidence in terms of the information we already have. As we pre-

viously mentioned, the Bayesian evidence is simply the normalisation constant of the posterior

distribution expressed by

Z =

∫
L(D|Θ)π(Θ)dNΘ. (17.19)
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Table 17.2: Jeffreys guideline scale for evaluating the strength of evidence when two models are

compared.

|Bi,j | Odds Probability Strength

< 1.0 < 3 : 1 < 0.750 Inconclusive

1.0-2.5 ∼ 12 : 1 0.923 Significant

2.5-5.0 ∼ 150 : 1 0.993 Strong

> 5.0 > 150 : 1 > 0.993 Decisive

whereN is the dimensionality of the parameter space. More explicitly, it is the average likelihood

weighted by the prior for a specific model choice:

Evidence =

∫
(Likelihood× Prior)dNΘ. (17.20)

A model containing wider regions of prior parameter-space along with higher likelihoods will

have a high evidence and vice versa. Therefore, the Bayesian evidence does provide a natural

mechanism to balance the complexity of cosmological models and then, elegantly incorporates

Occam’s razor.

When comparing two models, Mi and Mj , the important quantity to bear in mind is the

ratio of the posterior probabilities, or posterior odds, given by

P (Mi|D)

P (Mj |D)
=
Zi
Zj

P (Mi)

P (Mj)
, (17.21)

where P (Mi)/P (Mj) is the prior probability ratio for the two models, usually set to unity. The

ratio of two evidences Zi/Zj (or equivalently the difference in log evidences lnZi − lnZj) is

often termed the Bayes factor Bi,j :
Bi,j = ln

Zi
Zj
. (17.22)

Then, the quantity Bi,j measures the relative probability of how well model i may fit the

data when is compared to model j. Jeffreys [60] provided a suitable guideline scale on

which we are able to make qualitative conclusions (see Table 17.2). In this work, we refer

to positive (negative) values of Bi,j when the i model being favoured (disfavoured) over model j.

-295-



17. STATISTICS IN COSMOLOGY

The calculation of the integral in Equation (17.19) is a very computationally demanding

process, since it requires a multidimensional integration over the likelihood and prior. For many

years much progress has been made in the construction of efficient algorithms to allow faster

and more accurate computation of the Bayesian evidence. Until recently, algorithms such as

simulating annealing or thermodynamic integration [18], required around 107 likelihood eval-

uations making the procedure hardly treatable. A powerful algorithm was recently invented

by Skilling [124], known as nested sampling algorithm, which has been proven to be ten times

more efficient than previous methods. The first computationally-efficient code to compute the

Bayesian evidence in cosmology, named CosmoNest, was implemented by Mukherjee et al.

[100]. In this work we incorporate into the CosmoMC software [75] a substantially improved

and fully-parallelized version of the nested sampling algorithm, called the Multinest algo-

rithm, initially proposed by Feroz & Hobson [43, 44]. The MultiNest algorithm increases the

sampling efficiency for calculating the evidence and allows one to obtain posterior samples even

from distributions with multiple modes and/or pronounced degeneracies between parameters.

There is also CosmoPMC which is based on an adaptative importance sampling method called

Population Monte Carlo [64]. For more complex models with high number of parameters, there

also exist improved codes to increase the speed of the whole process by employing, for instance,

neuronal networks: CosmoNet [7]. BAMBI is an algorithm that combines the benefits of both

the nested sampling and artificial neural networks [46].

17.3.3 Dataset consistency

Combining multiple datasets to obtain tight constraints on the cosmological parameters has

been a very common practice. Marshall et al. [94] established a test to quantify the consistency

of different cosmological datasets analysed under the same model (see also Hobson et al. [55]).

The Bayesian consistency analysis relies on partitioning the full combined dataset D into its

constituent parts Di (i = 1, . . . , n), namely CMB, SNe, LSS data, so on, and analyses the model

with each dataset independently. The evidence ratio is defined as

R =
Pr(D|H)∏n
i=1 Pr(Di|H)

, (17.23)

where the hypothesis H denotes the model under study. This ratio compares the probability

that all the datasets were generated from a cosmological model characterised by the same

parameter values, with the probability that each dataset was generated from an independent

-296-



17.4 The concordance ΛCDM model

Parameters Description Prior range

Background

Ωb,0h
2 Physical baryon density [0.01, 0.03]

Ωdm,0h
2 Physical cold dark matter density [0.01, 0.3]

θ Ratio of the sound horizon to

the angular diameter distance [1, 1.1]

τ Reionization optical depth [0.01, 0.3]

Inflationary

log[1010As] Curvature perturbation amplitude [2.5, 4]

ns Spectral scalar index [0.5, 1.2]

Secondary

ASZ Sunyaev-Zel’dovich amplitude [0, 3]

Ac Total Poisson power [0, 20]

Ap Amplitude of the clustered power [0, 30]

Table 17.3: Parameter description along with the flat-uniform priors assumed on the standard

ΛCDM.

set of cosmological parameters. Thus, one expects R > 1 if the datasets are all consistent, and

R < 1 otherwise. The Bayes factor for data sets is given by BR = lnR.

17.4 The concordance ΛCDM model

In this section, we make use of the theoretical (Section 17.1), Observational (Section 17.2.1)

and Statistical (Section 17.3) tools to examine the standard cosmological model. The minimal

form of the standard cosmological model, in agreement with several independent observations,

considers a FRW background, purely Gaussian adiabatic scalar perturbations and neglect

tensor contributions. It also assumes a flat universe fill up with baryons, cold dark matter

and a dark energy component in the form of a cosmological constant Λ. The key aspects that

describe the standard model here, and throughout the work, are specified by:

- Theory/Parameters

Base parameters: the physical baryon and dark matter densities Ωb,0h
2 and Ωdm,0h

2, 100×
the ratio of the sound horizon to angular diameter distance at last scattering surface θ, the

optical depth at reionisation τ , the amplitude of the primordial spectrum As and the spectral

index ns defined at a pivot scale k0 = 0.002 Mpc−1. Aside from the base parameters, recent

observations include additional secondary parameters: the Sunyaev-Zel’dovich (SZ) amplitude
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ASZ , the total Poisson power Ap at l = 3000 and the amplitude of the clustered power Ac.

The parameters, along with the flat priors, are shown in Table 17.3.

-Observations/Experiments:

To compute posterior probabilities for each model in the light of temperature and polarisation

measurements, we use WMAP 7-year data release [67] and the ACT observations [37]. In

addition to CMB data, we include distance measurements of 557 Supernovae Type Ia from the

Union 2 compilation [69]. We also incorporate large-scale structure data from the SDSS-DR7

[112] power spectrum. We consider baryon density information from BBN [20] and impose

a Gaussian prior on H0 using measurements from the HST [114]. This compromises our

dataset I. In addition to dataset I, we include recent results from QUaD [19] and BICEP [27]

experiments. Together these observations make up our dataset II.

-Analysis/Codes:

The computation of the CMB spectrum is perform by a modified version of the CAMB code

[76] to include any additional components and calculate the predicted power spectra of CMB

anisotropies and matter perturbations. The exploration of the parameter-space is carried out

by using the CosmoMC software [75] with the addition of the Multinest algorithm [43]. The

latter is included to the perform the calculation of the Bayesian evidence.

We have analysed a standard flat ΛCDM model and, for pedagogical purposes, also the

same model but with the addition of curvature, with priors Ωk,0 = [−0.1, 0.1]. The top panel

of Figure 17.10 shows 1D marginalised posterior distributions of the base and some relevant

derived parameters, for both models: flat and non-flat ΛCDM. At the top of the same figure, we

have included the Bayes factor comparing both of them. For the non-flat model, we notice that

the marginalised posteriors of Ωdm,0h
2, H0 and the Age of the universe have broadened due

to correlations created by the inclusion of Ωk,0. These correlations can be observed in the 2D

marginalised posterior distribution shown in the bottom panel of Figure 17.10. The constraints

on the cosmological parameters are displayed in Table 17.4 along with 1σ confidence levels. In

this Table, both models assume the presence of ΛCDM with a scalar power spectrum described

by a power-law and no tensor contributions. The first set of rows show the base parameters

whereas the second set some derived parameters. Current cosmological observations provide,

in general terms, a strong support for a nearly-flat accelerating universe dominated by 72% of
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Figure 17.10: Top: 1D marginalised posterior distributions on the standard ΛCDM parameters

using current cosmological observations. Bottom: 2D marginalised posterior distributions of non-

flat ΛCDM parameters; constraints are plotted with 1σ and 2σ confidence contours.

dark energy in the form of a cosmological constant, 24% of non-baryonic dark matter and 4%

of baryon contributions; the primordial spectrum is red (ns < 1) with the Harrison-Zel’dovich

excluded with high confidence level. On the other hand, the Bayes factor between these two

models, BΛ,Λ+Ωk = +1.90±0.35, indicates a significant preference for a flat universe, according

to the Jeffreys guideline. The last row of Table 17.4 shows that both models are consistent

with the full combined dataset I.

Throughout the rest of the chapters we incorporate features beyond the standard ΛCDM

model in the search of a better description of cosmological observations. In Chapter ??, with

the use of present data, we determine the structure of the primordial scalar spectrum by im-

plementing an optimal model-free reconstruction. Our aim is to consider models that slightly
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Table 17.4: The constraints on the cosmological parameters using our dataset II. We report the

mean of the marginalised posterior distribution and 1σ confidence levels. The Bayes factor for

models BΛ,Λ+Ωk , and for datasets BR are also included.

Description Flat ΛCDM Non-flat ΛCDM

Ωb,0h
2 0.02206± 0.00042 0.0221± 0.00043

Ωdm,0h
2 0.1130± 0.0028 0.112± 0.0041

Base θ 1.039± 0.0019 1.039± 0.0020

parameters τ 0.082± 0.013 0.083± 0.014

ns 0.956± 0.010 0.957± 0.011

log[1010As] 3.21± 0.035 3.21± 0.039

Ωk,0 - −0.0022± 0.0058

Ωm,0 0.282± 0.015 0.285± 0.018

Derived ΩΛ,0 0.717± 0.015 0.717± 0.016

parameters H0 69.2± 1.27 68.7± 2.13

Age(Gyrs) 13.84± 0.086 13.93± 0.27

−2 lnLmax 8240.46 8240.80

Bayes factor BΛ,Λ+Ωk +1.6± 0.4 -

Dataset consistency BR +5.06± 0.4 +5.07± 0.4

deviate from the simple power-law form. Then, in Chapter ??, we incorporate tensor contri-

butions to the analysis and present current and future constraints on the scalar spectrum.

Chapter ?? explores the possibility of a dynamical behaviour of dark energy. Here, the dark

energy equation-of-state wde(z) is modelled as a linear interpolation between a set of ‘nodes’

with varying amplitudes and redshifts, similarly to the approach used in Chapter ??. In the

search of mechanisms or candidates to explain the mild time-dependence of wde(z), in Chapter

?? we remain focussed on the ΛCDM model but now include a second dark energy compo-

nent ΩX with equation-of-state wX . Finally, in Chapter ?? the Einstein-Hilbert Lagrangian is

considered as a limit case of a more general form of it, namely Modified Gravity. We explore

these models as an alternative to the dark energy component. The summary of the work done

throughout this dissertation is sketched in Figure 17.11.
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Figure 17.11: Summary of the work performed throughout this dissertation. The top panel of

the Figure displays the features beyond the concordance ΛCDM model considered through the

following chapters.
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logical models: exact solutions and their applications. Classical and Quantum Gravity,

28(16):164002, aug 2011. doi: 10.1088/0264-9381/28/16/164002. URL https://dx.doi.

org/10.1088/0264-9381/28/16/164002. 18, 48

[16] M. Bowden and et. al. Scientific optimization of a ground-based CMB polarization exper-

iment. Monthly Notices of the Royal Astronomical Society, 349(1):321–335, 2004. ISSN

-304-

http://mnras.oxfordjournals.org/content/387/4/1575.abstract
http://link.aps.org/doi/10.1103/PhysRevD.22.1882
http://link.aps.org/doi/10.1103/PhysRevD.22.1882
https://books.google.com.mx/books?id=uSykSbXklWEC
https://books.google.com.mx/books?id=uSykSbXklWEC
http://arxiv.org/abs/astro-ph/9908047v2
http://www.ingentaconnect.com/content/asp/asl/2009/00000002/00000002/art00002
http://www.ingentaconnect.com/content/asp/asl/2009/00000002/00000002/art00002
http://www.sciencedirect.com/science/article/pii/S0370157304003515
http://www.sciencedirect.com/science/article/pii/S0370157304003515
https://dx.doi.org/10.1088/0264-9381/28/16/164002
https://dx.doi.org/10.1088/0264-9381/28/16/164002


BIBLIOGRAPHY

1365-2966. doi: 10.1111/j.1365-2966.2004.07506.x. URL http://dx.doi.org/10.1111/

j.1365-2966.2004.07506.x. 272

[17] D Branch and G A Tammann. Type Ia Supernovae as Standard Candles. Annual

Review of Astronomy and Astrophysics, 30(1):359–389, 1992. doi: 10.1146/annurev.aa.

30.090192.002043. URL http://www.annualreviews.org/doi/abs/10.1146/annurev.

aa.30.090192.002043. 270

[18] M. Bridges, A. N. Lasenby, and M. P. Hobson. A Bayesian analysis of the primordial

power spectrum. Monthly Notices of the Royal Astronomical Society, 369(3):1123–1130,

2006. ISSN 1365-2966. doi: 10.1111/j.1365-2966.2006.10351.x. URL http://dx.doi.

org/10.1111/j.1365-2966.2006.10351.x. 278

[19] M. L. Brown and et. al. Improved Measurements of the Temperature and Polarization of

the Cosmic Microwave Background from QUaD. The Astrophysical Journal, 705(1):978,

2009. URL http://stacks.iop.org/0004-637X/705/i=1/a=978. 268, 280

[20] Scott Burles, Kenneth M. Nollett, and Michael S. Turner. Big Bang Nucleosynthesis

Predictions for Precision Cosmology. The Astrophysical Journal Letters, 552(1):L1, 2001.

URL http://stacks.iop.org/1538-4357/552/i=1/a=L1. 280

[21] Sean M. Carroll. The Cosmological Constant. Living Reviews in Relativity, 4(1), 2001.

URL http://www.livingreviews.org/lrr-2001-1. 69, 75

[22] Brandon Carter. Large Number Coincidences and the Anthropic Principle in Cosmology,

pages 291–298. Springer Netherlands, Dordrecht, 1974. ISBN 978-94-010-2220-0. doi: 10.

1007/978-94-010-2220-0 25. URL https://doi.org/10.1007/978-94-010-2220-0_25.

19

[23] Marius Cautun, Alis J Deason, Carlos S Frenk, and Stuart McAlpine. The aftermath

of the Great Collision between our Galaxy and the Large Magellanic Cloud. Monthly

Notices of the Royal Astronomical Society, 483(2):2185–2196, 11 2018. ISSN 0035-8711.

doi: 10.1093/mnras/sty3084. URL https://doi.org/10.1093/mnras/sty3084. 11

[24] Anthony Challinor. Part III- Large Scale Strucutre Formation.

http://nefertiti.hpc.phys.ucl.ac.uk/cosmology/cosmology.html, 2008. 15, 141, 213

-305-

http://dx.doi.org/10.1111/j.1365-2966.2004.07506.x
http://dx.doi.org/10.1111/j.1365-2966.2004.07506.x
http://www.annualreviews.org/doi/abs/10.1146/annurev.aa.30.090192.002043
http://www.annualreviews.org/doi/abs/10.1146/annurev.aa.30.090192.002043
http://dx.doi.org/10.1111/j.1365-2966.2006.10351.x
http://dx.doi.org/10.1111/j.1365-2966.2006.10351.x
http://stacks.iop.org/0004-637X/705/i=1/a=978
http://stacks.iop.org/1538-4357/552/i=1/a=L1
http://www.livingreviews.org/lrr-2001-1
https://doi.org/10.1007/978-94-010-2220-0_25
https://doi.org/10.1093/mnras/sty3084


BIBLIOGRAPHY

[25] Anthony Challinor and Hiranya Peiris. Lecture notes on the physics of cosmic microwave

background anisotropies. AIP Conference Proceedings, 1132(1):86–140, 2009. doi: 10.

1063/1.3151849. URL http://link.aip.org/link/?APC/1132/86/1. 218, 220

[26] M. Chevallier and D. Polarski. Accelerating Universes with Scaling Dark Matter.

International Journal of Modern Physics D, 10(2):213–223, 2001. URL http://arxiv.

org/abs/gr-qc/0009008v2. 91

[27] H. C. Chiang and et. al. Measurement of Cosmic Microwave Background Polarization

Power Spectra from Two Years of BICEP Data. The Astrophysical Journal, 711(2):1123,

2010. URL http://stacks.iop.org/0004-637X/711/i=2/a=1123. 268, 280

[28] Shaun Cole and et. al. The 2dF Galaxy Redshift Survey: power-spectrum analysis of the

final data set and cosmological implications. Monthly Notices of the Royal Astronomical

Society, 362(2):505–534, 2005. ISSN 1365-2966. doi: 10.1111/j.1365-2966.2005.09318.x.

URL http://dx.doi.org/10.1111/j.1365-2966.2005.09318.x. 16

[29] P. Coles and F. Lucchin. Cosmology. WILEY, 1995. 96

[30] Marina Cortês, Andrew R. Liddle, and David Parkinson. On the prior dependence of

constraints on the tensor-to-scalar ratio. Journal of Cosmology and Astroparticle Physics,

2011(09):027, 2011. URL http://stacks.iop.org/1475-7516/2011/i=09/a=027. 265

[31] Ron Cowen. Andromeda on collision course with the milky way. Nature, 2012. doi:

10.1038/nature.2012.10765. URL https://doi.org/10.1038/nature.2012.10765. 11

[32] B. P. Crill and et. al. SPIDER: a balloon-borne large-scale CMB polarimeter. Proc. SPIE

7010, Space Telescopes and Instrumentation 2008, pages 70102P–70102P–12, 2008. doi:

10.1117/12.787446. URL +http://dx.doi.org/10.1117/12.787446. 272

[33] Scott Dodelson. Modern Cosmology. Academic Press, 2003. 15, 85, 141

[34] A.D. Dolgov. Neutrinos in cosmology. Physics Reports, 370:333 – 535, 2002. ISSN

0370-1573. doi: 10.1016/S0370-1573(02)00139-4. URL http://www.sciencedirect.com/

science/article/pii/S0370157302001394. 74

[35] Michael Doran. CMBEASY: an object oriented code for the cosmic microwave back-

ground. Journal of Cosmology and Astroparticle Physics, 2005(10):011, 2005. URL

http://stacks.iop.org/1475-7516/2005/i=10/a=011. 212, 218, 275

-306-

http://link.aip.org/link/?APC/1132/86/1
http://arxiv.org/abs/gr-qc/0009008v2
http://arxiv.org/abs/gr-qc/0009008v2
http://stacks.iop.org/0004-637X/711/i=2/a=1123
http://dx.doi.org/10.1111/j.1365-2966.2005.09318.x
http://stacks.iop.org/1475-7516/2011/i=09/a=027
https://doi.org/10.1038/nature.2012.10765
+ http://dx.doi.org/10.1117/12.787446
http://www.sciencedirect.com/science/article/pii/S0370157302001394
http://www.sciencedirect.com/science/article/pii/S0370157302001394
http://stacks.iop.org/1475-7516/2005/i=10/a=011


BIBLIOGRAPHY

[36] Michael Doran. The Theory of the Cosmic Microwave Background.

http://www.thphys.uni-heidelberg.de/ cosmo/view/main/cmbdoran, 2010. 141, 210,

211, 213, 217

[37] J. Dunkley and et. al. The Atacama Cosmology Telescope: Cosmological Parameters from

the 2008 Power Spectra. [arXiv:1009.0866], 2010. URL http://arxiv.org/abs/1009.

0866v1. 268, 280

[38] Ruth Durrer. The theory of CMB anisotropies. [arXiv:0109522], 2001. 141

[39] Øystein Elgarøy and Ofer Lahav. Neutrino masses from cosmological probes. New Journal

of Physics, 7(1):61, 2005. URL http://stacks.iop.org/1367-2630/7/i=1/a=061. 74

[40] Kari Enqvist. Lemaitre–tolman–bondi model and accelerating expansion. General

Relativity and Gravitation, 40(2):451–466, 2008. doi: 10.1007/s10714-007-0553-9. URL

https://doi.org/10.1007/s10714-007-0553-9. 18

[41] Euclid Missin Consortium.http://www.euclid-ec.org/, 2012. 272

[42] Antonio De Felice and Shinji Tsujikawa. f(R) Theories. Living Reviews in Relativity, 13

(3), 2010. URL http://www.livingreviews.org/lrr-2010-3. 56, 91

[43] F. Feroz and M. P. Hobson. Multimodal nested sampling: an efficient and robust alter-

native to Markov Chain Monte Carlo methods for astronomical data analyses. Monthly

Notices of the Royal Astronomical Society, 384(2):449–463, 2008. ISSN 1365-2966. doi:

10.1111/j.1365-2966.2007.12353.x. URL http://dx.doi.org/10.1111/j.1365-2966.

2007.12353.x. 278, 280

[44] F. Feroz, M. P. Hobson, and M. Bridges. MultiNest: an efficient and robust Bayesian infer-

ence tool for cosmology and particle physics. Monthly Notices of the Royal Astronomical

Society, 398(4):1601–1614, 2009. ISSN 1365-2966. doi: 10.1111/j.1365-2966.2009.14548.x.

URL http://dx.doi.org/10.1111/j.1365-2966.2009.14548.x. 278

[45] Joshua A. Frieman and et. al. The Sloan Digital Sky Survey-II Supernova Survey: Tech-

nical Summary. The Astronomical Journal, 135(1):338, 2008. URL http://stacks.iop.

org/1538-3881/135/i=1/a=338. 270

-307-

http://arxiv.org/abs/1009.0866v1
http://arxiv.org/abs/1009.0866v1
http://stacks.iop.org/1367-2630/7/i=1/a=061
https://doi.org/10.1007/s10714-007-0553-9
http://www.livingreviews.org/lrr-2010-3
http://dx.doi.org/10.1111/j.1365-2966.2007.12353.x
http://dx.doi.org/10.1111/j.1365-2966.2007.12353.x
http://dx.doi.org/10.1111/j.1365-2966.2009.14548.x
http://stacks.iop.org/1538-3881/135/i=1/a=338
http://stacks.iop.org/1538-3881/135/i=1/a=338


BIBLIOGRAPHY

[46] Philip Graff, Farhan Feroz, Michael P. Hobson, and Anthony Lasenby. BAMBI: blind ac-

celerated multimodal Bayesian inference. Monthly Notices of the Royal Astronomical

Society, 421(1):169–180, 2012. doi: 10.1111/j.1365-2966.2011.20288.x. URL http:

//mnras.oxfordjournals.org/content/421/1/169.abstract. 278

[47] A.H. Guth. The Inflationary Universe. Ed. Vintage, 1997. 96

[48] Alan H. Guth. Inflationary universe: A possible solution to the horizon and flatness

problems. Phys. Rev. D, 23:347–356, Jan 1981. doi: 10.1103/PhysRevD.23.347. URL

http://link.aps.org/doi/10.1103/PhysRevD.23.347. 93

[49] Steen Hannestad. Primordial Neutrinos. Annual Review of Nuclear and Particle Science,

56(1):137–161, 2006. doi: 10.1146/annurev.nucl.56.080805.140548. URL http://www.

annualreviews.org/doi/abs/10.1146/annurev.nucl.56.080805.140548. 74

[50] Alex Harvey, Engelbert L. Schucking, and Eugene J. Surowitz. Redshifts and killing

vectors. Am. J. Phys., 74:1017–1024, 2006. doi: 10.1119/1.2338544. 58

[51] Alan Heavens. Statistical techniques in cosmology. [arXiv:0906.0664], 2010. 274

[52] G. Hinshaw and et. al. Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP)

Observations: Cosmological Parameter Results. [ arXiv:1212.5226], 2013. 268

[53] R. Hlozek and et. al. The Atacama Cosmology Telescope: a measurement of the primordial

power spectrum. [arXiv:1105.4887], 2011. URL http://arxiv.org/abs/1105.4887v1.

271, 272

[54] M. P. Hobson and C. McLachlan. A Bayesian approach to discrete object detection

in astronomical data sets. Monthly Notices of the Royal Astronomical Society, 338(3):

765–784, 2003. ISSN 1365-2966. doi: 10.1046/j.1365-8711.2003.06094.x. URL http:

//dx.doi.org/10.1046/j.1365-8711.2003.06094.x. 276

[55] M. P. Hobson, S. L. Bridle, and O Lahav. Combining cosmological data sets: hyperpa-

rameters and bayesian evidence. Monthly Notices of the Royal Astronomical Society,

335(2):377–388, 2002. ISSN 1365-2966. doi: 10.1046/j.1365-8711.2002.05614.x. URL

http://dx.doi.org/10.1046/j.1365-8711.2002.05614.x. 278

-308-

http://mnras.oxfordjournals.org/content/421/1/169.abstract
http://mnras.oxfordjournals.org/content/421/1/169.abstract
http://link.aps.org/doi/10.1103/PhysRevD.23.347
http://www.annualreviews.org/doi/abs/10.1146/annurev.nucl.56.080805.140548
http://www.annualreviews.org/doi/abs/10.1146/annurev.nucl.56.080805.140548
http://arxiv.org/abs/1105.4887v1
http://dx.doi.org/10.1046/j.1365-8711.2003.06094.x
http://dx.doi.org/10.1046/j.1365-8711.2003.06094.x
http://dx.doi.org/10.1046/j.1365-8711.2002.05614.x


BIBLIOGRAPHY

[56] M.P. Hobson, G. P. Efstathiou, and A. N. Lasenby.

General Relativity: An Introduction for Physicists. Cambridge University Press,

2006. 15, 86

[57] Wayne Hu and Scott Dodelson. COSMIC MICROWAVE BACKGROUND

ANISOTROPIES. Annual Review of Astronomy and Astrophysics, 40(1):171–216, 2002.

doi: 10.1146/annurev.astro.40.060401.093926. URL http://www.annualreviews.org/

doi/abs/10.1146/annurev.astro.40.060401.093926. 141
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