Appendiz A

The symplectic groups,
their parametrization and cover

ABSTRACT: In this appendix we summarize the parametrization and some of the pro-
perties of connectivity and covering of the symplectic groups. This material was developed
by Valentin Bargmann in his early work on the three-dimensional Lorents group and on
Hilbert spaces of analytic functions, and has been shown to be particularly relevant for
Lie oplics. Wave optics —at least in its paraxial approximation— seems to work with
the double cover of the symplectic group of geometric first-order oplics. This is strongly
reminiscent of the double cover which the spin group affords over the classical rotation
group, and makes necessary a closer acquainiance with the metaplectic groups.

A.l Rank one: SL(8®), Sp(4R), 5U(1,1), 50(2,1), and Sp(&R)

Lie groups of rank one present several accidental homomorphisms. Among the compact groups,
the three-dimensional rotation group S0(8) and the two-dimensional special unitary group SU{2] are
probably the most famous pair of homomor phic groups, the latter covering the former twice and allowing
the description of phenomena such as spin, Non-compact groups of rank one present a fourfold such
homomorphism: the group of 2 X 2 real matrices SL{2R}, is isomorphie to the two-dimensional symplectic
group Sp{2,R) and to the {wo-dimensional pseude-unitary group SU(1,1}, and covers twice the three-
dimensional pseudo-orthogonal group §0(2,1). These groups are themselves infinitely connected, and
possess a common universal cover ?p{&ff). A particularly relevant group for Lie optics is the metaploctic
group, Mp(2,R ). it covers Sp{2,R) twice. We start with SL{2R) and relate to it all other homomorphic
groups.

A.l.1 SL(gR) 3

We denote by SL{8R) the set of 2 X 2 real, unimodular matrices

g:=(: g) Aot vl — ge =1, (1)

with the group product defined as ordinary matrix multiplication. It is a three-parameter noncompact
semisimple group, connected and infinitely-connected. The latfer facts are not obvious, and will be
further claborated in Section A.2, below.
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A.1.2 Sp(aR)

The set of 2 X 2 matrices (1) is, at the same time, a set of symplectic! matrices, i.e., they
satisly

0 +1
BMspfngT = Msp(s;: MSp,'?} = ( ) )

-1 0 @

where g7 is the transpose of g and Mg, s; is the symplectic metric matrix. The unimedularity condition
in (1) implies the validity of (2), as may be verified through elementary algebra. The set of matrices
satisfying (2) constitute the group, denoted Sp{2,R), of two-dimensional real symplectic matrices.

A.1.3 SU(1,1)

The above two groups are isomorphic to a third one, the group of complex “I+1” unimodular
pseudo-unitary matrices, denoted SU[1,1), whose elements u satisfy

3 +1 0
qu-:(.t..r}u' = ME;‘:,U: ME{],I,I = (B _1) T (3}

where u' ;= uT* is the adjoint (transpose, complex conjugate) of u , and Mg, ;; the pseudo-euclidean
metric matrix.

It is casy to show that the most general matrix u € §Uf1,1) has the form

a=(g 2)  lel-lpr =1 0)

[0

The elements of the SL{E&R) = Sp(2R) and SU{1,1) groups realized as 2 X 2 matrices, are related
through a simifarity transformation, an outer isomorphism by the complex unitary matrix

i fh - 1
W= — Wy Wy = fiel s ,"r/‘i = —(1+1).
\/2(—(.04 Wy ) Wptes; 3 \/2( ) 2
We display this isomorphism explicitly in terms of the group parameters as
R —I -
(“ ‘5) = glu) = Wuw~! = ( ik o ﬁ)) , (8a)
¢ d m(a+p) Re(a—p)
3 d) —1i{b — —d (b
(“ [):u(g):W_Ingl((a—i_ Pt ool L H)). (85)
g o 2\(a—d)—i(b+e) (a+d)+ilb—c)

Since WMy, )W = —iMg,1), (2) for g is equivalent to (3) for u.

Of course, any other matrix W/ = gqgW or Wuy, for fixed go € Sp(8R) or ug € SU(1,1),
may be used to define equivalent isomorphisms between the two groups. What makes (5) particularly
convenient for us is that it establishes the appropriate link between the standard realizations of the
groups.

ISYMPLECTIC {simplektik), adfeciive and substantive, first appearance: 1839. |Adaptation from Greek svprherricds,
formed on ot SYM- +witeear, TO TWINE, PLAIT, WEAY E}] A. adjective Epithet of a bone of the suspensorium
in the skull of fishes, between the hyomandibular and the quadrate bones. B. substantive The symplectic bone. —The
Oxford Universal Dictionary on Historical Principles, third ed., 1865. The use of this name for the Cartan C—family of
semisimple groups is due to Hermann Weyl, in The theory of groups and guantum mechanics, 2nd oq, {Dover, New York,
1630).
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A4 S0(81)

For every real 2 X 2 matrix g in (1), we construct the real 3 X 3 matrix

3a® +b% + e 4+ d?) $(a® =2+ e —d?) —od—ab
Tlg) = f(a® + 82— > —d?) I(a®—82 %+ a2 cd—ab), ()
—bd — ac bd — ae ad + be
It has the properties
+1 0 0
rME(:.e)rT =Mqci,e, Mgy = 0 -1 0 ' (8‘1)
0 60 -1
detI'=1, (85)
I‘(El ) ]‘(32) — I'(g1 g-z), I‘{l} = 1r P(g_l} = I‘(g)_l. (88)

The matrices I' satisfying (8a) are called “1+2” pseudo-orthogonal matrices, and the statement
of unimodularity in {85) reduces the matrices under consideration to a sel connected to the identity,
They form a group denoted S0(2,1 }. The rows and columns numbering the elements Iy, range here
over u, v =0, 1, 2; the value 0 corresponds to the first row, f.e., the time-like eoordinate.

Since I'(g) is quadratic in the parameters of g, and I'(g) = I'(—g), (7) defines a 2:1 homomor-
phism between Sp(8,R)} and 50(8,1), with kernel {—1,1} = 32 CSp(8R). The S0(8 1) matrix eor-
responding to any pair of given SUf1,1 ) matrices may be obtained through (6) and (7). It is

|eef® + (82 2Reap” 2Im ag*
Pw=| 2Reaf  Re(a®+4?) Im(a®-g"|, (90)
—2Imef —Im(a® + %) Re(a? - g?)

and conversely,

. 1 ;
a=ﬂ:\[%(ru +Tig)+ 3é(Ti2 =Tyy), f= 25 T10 —1lg). (9¢)

A.2 Connectivity

The connectivity of a three-dimensional manifold is, when multiple, a challenge to the mind,
If we are to picture this intuitively, we must build up a proper representation of the manifold and follow
one-parameter lines. If these lines turn out to be circles, then the covering of these by the real line
becomes plausible within the group. As is so often the case, the complex plane is useful and SUf1,1) is,
among the groups of last section, the easiest to analyze.
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Figurs. The SU{1,1) = Sp{2R)
group manifold is three-dimensional,
connected and infinitely connected.
1t is ®° pierced by a one-shested equi-
lateral hyperboloid. Three represen-
tatives of one-parameter subgroups
are drawn: ugr) (circle), us(r) (one
branch of a hyperbola), and upp(7)
{siraight lines), lying on the fr = 0
hyperboloid.

A.2.1 The conneetivity of SU[1,1)

The conneclivity properties of Sp{gR) and its isomorphic groups is seen best in terms of the
5U(1,1) parameters (4). We write the real and imaginary parts of o and # as @ = ap + fer and
8 = Bp + iB;, so the unimodularity condition reads a} + e? — 8% = 1+ 87 > 1. For fixed f;, the
remaining three parameters are constrained to a one-sheeted revolution hyperboloid with its circular
waist in the a-plane. As we let Ar range over R, we fill twice a region of ®*.space which is bounded by
the 8r = 0 equilateral revolution hyperboloid. See the figure above. Topologically, the group manifold
of SpfeR)is S, X R?, the circle times the cartesian plane.

The points (ag, ar, fr) in R®?® which do not belong fo the group manifold as described above,
form a simply connected tubular region. Auny plane for which this region has an elliptic section is an
infinitely connected space (the plane minus the unit disk), and hence so is a foliation of ®° by such planes,
One-parameter subgroups of SUf1,1) are lines in ®® which must pass through the group identity: the
point (ep = 1, @y =0, A = 0) on the circular waist.

The class representatives of the three nonequivalent subgroup are:
R = Cos %T,

Elliptic: ug(r), 7 € R (mod 4x) given by ar =sinir,
Br =0
oep = cosh i,
Hyperbolic: u,(7), r € R given by ay =0,
Br = -—sinh'ér,
ap =1,
Parabolic: up. (1), T € R given by a; =1ir,
Br = j:%r.

The elliptic subgroup is the circular waist in the figure, the hyperbolic subgroup is one of the
two branches of the equilateral hyperbola on the oy = 0 plane, while the parabolic ones are the straight
lines contained in the hyperboloid which pass through the identity parallel to the ay-fg plane. The
only subgroup class with a nontrivial covering is thus the elliptic one.
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A.2.2 The covering group of SU{1,1)

Following Bargmann’s pivotal work in reference (1], we now present the simply-connected
universal covering group of SU(1,1), making use of the (maximal) compact subgroup U1} = S0(2). This
corresponds to the Iwasawa decomposition which f: actorizes globally a noncompaet semisimple group into
its maximal compact subgroup, times a solvable subgroup.

We write u € SU(1,1) in (4), in the form

T by
(; f.)z(so eP‘”)(ﬂ’ f), weG, A>0 ac¢ (10a)

t.e., w and X are the argument and absolute value of o

w:i=arg e = Ln(a"a™"),

Nit== |(x| > 0, (ll]b)

i II‘_
Hi=e ﬁ ot _:8;
23

with all multivalued functions evaluated on the principal sheet. Conversely, of course, o = e\ and
B = €“u. We note that |a|? — |92 = \? — [4]? =1, 0 |uf < A

This parametrization will be generalized to Sp{8N,R ] following Bargmann [2] in Section A.4.
Actually, in the first treatment of §U(1,1), Bargmann [1] used in 1947 an equivalent set of parameters

@9),  wed, ve¢ |y <1

U rg ¥ 1 ¥ (].(]c}
=y ety I | e iy, W

2 VI—hE Vi

In some respects this parametrization is more convenient, but it does not generalize easily to N dimen-

sions. We shall here prefer the former and call {w, %, p} the Bargmann parameters of 8Uf1,1), writing
u{w,}, i} when they are used?

The Spf2,R} = SL{2R) parameters (1) are expressed in terms of the Bargmann parameters
through

6 b\ _ feosw —sinw) [ M+ Rep Irn p
(c d)_(sinw coaw)( Im g A—Repu/" (1la}

This displays the global decomposition of any nonsingular matrix into the product of an ort hogonal and
a positive definite symmetric matrix. Conversely,

w = arg[(a + d} — i{b — ¢)], p=e""(a—d)+ b+ c)]. (118)

gAlthough A is a redundant parameter (since A — \/I + u|2), it will be kept for the sake of eagy comparison with the
N-dimengional case.
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A.2.3 The covering group Sp{?,!i_)

Through matrix multiplication u{w, ), u} = u{wy, Ay, g1 }u{ws, he, g2} of either (10) or (11}
we obtain :

Ww=uw) +ws +arg v, {12a)
A =1 [v] Az, (128)
=T B Ny + 67200, (12¢)
where
vi=1+e 20T g w3yt jp—-1] <1 (12d)

The last inequality stems from |p;/»;| < 1, and implies that v is within a circle of radius less than one,
centered at » = 1; hence v 7% 0.

The group unit is 1 = uf{w = 0,x = I, » = 0} and the inverse is given by u{w, ), u}~! =
uf{—w, h,—e** u}. Note that the subset of u’s given by u{w = 0, X, u} are naturally coset representatives
of Uf1}\8U{(1,1), but do not constitute a group,

From {10) and (11} it is clear that SU{1,1) and Sp(8R) = SL{ZR) are described when w is
counted modulo 2x, that is w € &;, f.e. w = w(mod 2x). If we drop this identification and consider
w € ® with no modular condition, defining the composition law through (12), we describe a covering
of §U(1,1) whose clements we denote by w{w, A\ u} (w € R, p € €). The manifold of this group is
® X €= ®?, and this is simply connected. The composition rule (12) for T{w, A, u} thus describes the
universal covering group Sp(&,R) = SL{2,R) = SU[1,1) of Sp(8,®) = SL(&R} = SU{1,1).

A.2.4 The metaplectic group Mp{2,R)

The center of Sp(2,R) is the set of elements 3. = {@{n=, 1,0}, n € 3}, so that the pseudo-
orthogonal group is 50(8,1) = Sp(8,R)/{u{nr,1,0}, n € 3}, and the sympleciic group is Sp(&R)} =
Sp(8,R)/{u{2nx, 1,0}, n € 3}. Various M-fold coverings of Sp{€,R) may be oblained from the universal
cover Sp(8,R), modulo {#{2Mnn, 1,0}, n € 3}. In particular, we are interested in the two-fold cover of
Sp(8,R), the metaplectic group

Mp(2,R) = Sp(2.%)/{w{nx,1,0}, n € 3}. (13)

Its elements will be written §{w, X, p), with g € €, w = w(mod 4x). The 2:1 mapping from Mp{2R} to
Spfe,R) is given by (11) [(10) on SU(1,1)], and assigns the same image to §(w, X, p) and Flw + 27, ), ).

Neither the metaplectic group nor its covers have a matrix representation (by finite-dimensional
matrices, that is). They do have representations which are infinite-dimensional, as by integral kernels,
This fact accounts for some of the difficulty we encounter when working with covers of Sp{&,R).

Single-valued functions on covering groups may give rise to multivalued functions on the original
group. The phase of the canonical transform® kernel fg is a prime example of a single-valued function
0; on Mp(2,R), yielding a two-valued function on Sp(2,R).

3Gee, for example, K.B. Wolf, Integral Transforms in Science and Engineering, (Plenum Publ. Corp., New York, 1978),
part 4.
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A.3 Subgroups

We list below some useful one-parameter subgroups g(r) of SpfE,R) = SL(2,R), together with
their counterparts u € SU{£,1), I'¢ §0(2,1), and one T € Sp(2,R}:

A.3.1 Elliptic subgroup

coslr —sinl ir/2
— 2 2 _— 0
8o(7) (sin it coslr J° uo(7) 0 /2!

1 0 0 (14a)
To(r) = (D cos7  sin T) ; {7, 1,0}.

0 —sinr cosr

A.3.2 Hyperbolic subgroups

) = coshir —sinhlr i cosh}7 —isinhir
1 ~sinh§7  coshir /’ L tsinh}r  coshlr J~

coshr 0 ginhr (145)
(= o 1 ¢ ) . 1 {0, cosh 7, —isinh 17};
ginhr 0 coshr
—r/z g coshlr —sinh}r
B2(7) ( 0 erm) ! ug(r) (— sinhlr cosh ir ) !
coshr —sginhs 0 (14¢)
Fo(r) = —sinh7 coshr 0) ; 42{0, cosh {7, —sinh L r}.
0 0 1
A.3.83 Parabolic subgroups
{1 —r _(1+idkr ——t%r
gty =(1 ), we=("3k 7)),
14 %21.2 1 ‘ (144)
Le(m=| §7 1-42 ), wforgll+idr), [14+ikr| emilotn/D 1y,
T L=t 1
_q1 0 _ (1+dr  diir
B[] = (r 1)’ u(r) “‘( —ijr  1—iir)?
(14¢)

1+ %Tz %1"2 o £ 22 1 . L /2]
()= -1z 1= 12 o), u-{arg[l +ile], |1+ ilr|, e flemr i}
—r —T 1

In all but the first (the elliptic subgroup), the correspondence between Spf2,R ) and §0(%,1}is one-to-one.
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A.3.4 Conjugation and trace

All one-parameter subgroups can be obtained through similarity conjugation out of gol7), g2(r),
and g4+(r). In the above list,

go(Im) ga(r) go(m) ™ = g1(r) and go(r)g+(7)golr)™" = g-(7).

The two parabolic subgroups listed at the end of A.2.1 and displayed in the figure, are relaled to those
of A.2.3 through

go(£37) g (r)go(24n) ™ = gr2(7)-

Under similzrity conjugation, the 2 X 2 trace of the matrices, T := tru = 2Rea = a + d,
is left invariant. Tor Lhe three subgroup cases, we have Ty(r) = 2cos 7 € [~2,2], Tofr) = 2coshir €
[2,00), and Tpfr) = 2. [Note T(r = 0) = 2 in ull cases.] If these subgroups are drawn as lines in the
group manifold of the figure, the elliptic subgroups will be represented by plane ellipses —in any plane
containing the ay axis— passing through the identity 1 {er =1, af =0, B = 0) and -1 {ap =
—1, a; =0, fg = 0), with foci on the oy fg plane. The hyperbolic subgroups will be represented by
one branch of plane hyperbolz with foci on the ap axis. The parabalic subgroups appear as straight
lines in the @g = 2 plane bounded by the (P4)-intercepts with the equilateral hyperboloid.

Conversely, any SU(1,1) = Spf&,R) group element (different from 1 or —1) whose trace T =
truis in (—2,2), {2}, or (2,00), may be placed on a one-parameter elliptic, parabolic, or hyperbolic
subgroup, respectively. If T < —2, no such subgroup can be found, but ene may write u = (—1ju'
and place u’ on a one-parameter subgroup as before. In $0(2,1), all elements I' may be placed on
one-parameter subgroups connected to the identity.

We also have the subset (not a subgroup) given by

__[X+ Rep Tm z el B
Br =\ Imp x— Rep)’ Tt x
Ao+ g 2xRep —2xImp (147)
Ty= ]ﬁz 92xReu 224 Rep? I~—Im e R {0, n}.
T\ —2xImp —Im p? 22— Rep?

A.4 The general case of rank N
For rank N = |, we saw, Sp{2N,®) is homomorphic to the lowest-dimensional counterparts
of two other Clartan-classified families, to a total of four groups. For N > 2, the only accidental

homomorphism occurs for Spf4,R) ~ §0(8,2), and is 2:1. We will now give Bargmann’s treatment [2]
of the covering of the general symplectic group SpfeN,®). :

A.4.1 Sp(2N,R)

The group Sp(8N,R) is defined as the set of real 9N X 2N matrices g obeying the 2N-
dimensional version of {2):

gMSPfA’-'\'JST = M, en), M;rpfsm = Moy detMgypen; 7 0. (15a)
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When we write the matrices involved in terms of N X N submatrices, we may choose

g = (é' E) ’ M, o) 1= ('-gN +;N) ) (150}

where 1y is the N-dimensional unit matrix. This leads to the following relations between the N x N
submatrices;

ABT =BA', AC'=CAT, BD =DB7, CDT = DCT, (15¢)
ADT —BC" = 1y. (15}
The inverse of a symplectic matrix may thus be written as
sy . DT BT
B e Ms;;re.-\-; g M..ﬁ‘y{su'\-',l = (—C T AT ) (J-G}

The number of independent parameters of Spf2N,R) is 28N + N.

A.4.2 The Bargmaun form for Sp/2N,R)

In order to explore the conmectivity properties of the Sp(2N,R) manifold and parametrize its
covering group, we shall present a generalization of the Sp(4,®) = 8U{1,1) isomorphism. Although
clearly Sp(2N,R) is not isomorphic Lo any pseudo-unitary group, its inclusion in U(N,N) will display the
connectivity properties through its unitary UfN) maximal compact subgroup, generalizing the role of
Uf1) = 80{2}in Sp(2,R).

We construct first bhe 2V X 2N matrix Wy = W ® Ly, where W = W is the 2 % 2 matrix
(5) which gives the N X N block coefficients. Taking now g from {15), we write
u(g) : = Wy'gWy
_1([A+D]-£[B—C] [A-D]+£[B+C])__(; ﬁ) (17)
- 2\[A-D]-iB+0C] [A+D]+iB-c]) \g o/
The symplecticity praperty of g becomes thus

uM,;, :\-‘.N)'—lT = My s

o, +iny O 184)

ME(}\',N} 5= 'BWNI M.s»ry.n.','wN = ( ) . (
B . el

This condition alone would define u as a pseudo-unitary U{N, Nj matrix, but the restriction (17) stemming

from the reality of g, makes a* the complex conjugate of @, and §* that of 8, restricting u to Sp{2N,R)

C U{N,N).
The N X N submatrices of the Bargmann-form Sp/8N,R} matrices obey
ae’ — gt =1, aa—-gTR =1, (180)
af’ —fa’ =0, a g —Fa=0. {18¢)
Since 1 + BA' is a positive definite matrix, & has an inverse. From the last equations, =18 and f'a!

are shown Lo be symmetric. The inverse follows:

. Y 1. f 3/ T
ut= ME(N.N)T-I'MMIN.N) = (__aﬂf aﬂ—. ) . {19)

Finally, corresponding to (Ba), the mapping inverse to (17) is

(2 B)=gw=wayuwy' = (Eﬁ E: . g% _Ii‘;"(ff_‘ ;)')) , (20)
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A.4.3 The subgroup U{N) C Sp(2N,R)

The maximal compact subgroup of Spf2N,R) iz U{N). This fact may be seen knowing that
the maximal compact subgroup of GL(2N,C] —the group of complex 2N X 2N matrices— is Uf2N);

this is the weakest restriction which puts an upper bound to the norm of this row and column vectors?
The intersection of U{2N) with the Bargmann form of Sp{2N,R) is the set of matrices satisfying both

uguE = 1 and (18), which have therefore vanishing off-diagonal blocks and conjugate diagonal ones, f.e.,

ug = (g :3) { aa’ =1, (21a)

The set of ug's thus constitutes a UfN] group. In the real form (15) of Sp{gN,R), this N*-parameter
subgroup is the set of matrices

— (Rem —Ima) =g, aal =1 (218)

Ima Rea

All these matrices are orthogonal 2N X 2N matrices, but not the most general ones, since the group
Of{2N) has 2N?% — N parameters, ;

A.4.4 The Sp(2N,R) manifold

A well known theorem in matrix theory states that any real matrix R may be decomposed
into the product of an orthogonal Q and a symmetric positive definite matrix §, uniquely, as R = Q8.
Additionally, Bargmann [2, §2.3] shows that if R € Sp{2N,R), then also Q and S belong to this group.
Through Wy [Eq. (17)] the matrices @ and 8 map onto unitary and hermitian positive definite ones
Restriction to the Bargmann form of Sp(2N,R) in (17) details that u(Q) is given by a € UfN)and =0
[f.e., as in (21a), rather than simply a phase as in (14a)], and u(S) with a = af and g = A7, obeying
(18). The former set of matrices is an N2-dimensional real manifold with the topology of U{N), while
the real dimension of the latter is N2+ N with the euclidean topology of ®V"+N_ This last fact may be
seen either through counting N parameters for hermitian and N2+ N for symmetric complex matrices,
minus N2 conditions from the two independent equations in (18); or, succintly (2],

u(Q) = (: :) , aa’ =1, (22

u{S)zexpG’. 5) E=¢

Since @ € UfN) = |det | = 1, the group UfN) is the direct product of the compaet group of unimodular
unitary matrices SU{NJ}, times the U{1) group of determinant phases ¢, # € &, (the circle), Topologi-
cally, thus,

Sp(EN,R) ~ U(1) X SU[N) x RN"+N, | (23

Since both SU(N) and RV"+N are simply connected, the connectivity of Sp[8N,R® ] is that of Uf1} ~ G,
i.e., connected and infinitely connected. This is the generalization of the Sp{2,R) case presented
A.1.2; there, the SU{1} = {1} factor was absent.

4The fact that UfN}is the maximal compact subgroup of Sp(gN,R ) is quite clear, otherwise, if we recall that we realize (
latter as generated by quadratic monomials in the IN-dimensional oscillator raising and lowering operators; the symumef
group of the system is generated by the N? mixed products &
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A.4,5 The Bargmann parameters for Sp{2N,R®)

We shall now generalize the Bargmann parametrization (10} of SU{1,1) to Sp(2N,R) in its
pseudo-unitary form (17); then, through covering &; by ®, we shall parametrize the universal covering

group Sp(2N,R) of Sp{eN,R}. We write u in (17) as

_fe=1 o0 )
u{w,x,,,}_(eﬂ e_"“’l) (p {‘) wE B, deth >0, (24a)

where X and g satisfy Eqgs. (185) and (18¢) with @ X, A — p. These are the Bargmann parameters for
Sp(2N,R). The crux of the matter is to separate the Uf1) factor in (23) into a single phase parameter
& € Gy, so that (10b) is generalized to

1 , det
w = — argdet a, g'e =

N = deta]’ (249)
A=¢ g det A = |[deta] > 0, (24¢)
p=re¢ “f (24d)

Here, unlike the (VN = 1)-dimensional case, X is not a redundant parameter.

The product for the Sp(8N,®) Bargmann parameters, u{w, A, p} = u{wy, Ay, g } u{we, M2, 5},
is obtained straightforwardly and yields

1 : .
W=~ arg det[elertesiy, hy + ¢ ws) g, s

= ;r argle'Nl@1+ez) dot X, det v det ) (25a)
= u +uky +w,,
A= Mex phy, (25b)
B=e Yy — P ), (25¢)

where the role of # in (12d) is taken by the nonsingular matrix v:

vi=1+4e 2wy At (28a)
Wy 1= % argdet . (260)

The nonsingularity of the matrix », necessary for a proper definition of the argument w,, can be proven
through noting that the operator norms [v!A*Av < |A|*vtv for an arbitrary vector v] of the symmetric
matrices A p; and pih;! are bounded by 0 < 1— [\]? < 1,i=1,2. Consequently, v —1| < 1.

The SpfeN,R} matrices (15), written through (20) in terms of the Bargmann parameters, read

__feoswl —sinwl){ Re(A+p) —Im{k-—p)
glw, ), u} = (sin wl coswl (Im (A+n) Re(A—pg) /" (27)

This generalizes (11).

A.4.8 Sp(N®) and Mp(2N,R)

For the matrix realizations of Sp{2N,R) in (24} and (27), only w = w(mod 2x) makes sense. As
in the (N = 1)-dimensional case, however, the composition law (25), taken form w € R, suffices to define
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the universal covering group Sp(2N,R) of Sp{2N,R). We shall denote its elements by u{w, X, u}. The

group unit is given by {0, 1,0}, and w{w, X, g} ' = u{—w, A —ewnTY, The center of Sp{EN, R} is the

set #{nm, 1,0}, n € 3, and the symplectic group is given by SpfEN,R ) = Sp/eN,R}/{u{2nx, 1,0}, n € 3}.
The N-dimensional metaplectic group, defined by

Mp(2N,R) = Sp(EN;®)/{{47n,1,0}, n € 3}, (28)

is the two-fold cover of Sp(8N,R), and its elements may be denoted F(w, ), p), with w = w(mod 4x).
Again, we have no representation through finite matrices.
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