
Chapter 1
Development of Linear Canonical Transforms:
A Historical Sketch

Kurt Bernardo Wolf

Abstract Linear canonical transformations (LCTs) were introduced almost
simultaneously during the early 1970s by Stuart A. Collins Jr. in paraxial optics, and
independently by Marcos Moshinsky and Christiane Quesne in quantum mechanics,
to understand the conservation of information and of uncertainty under linear maps
of phase space. Only in the 1990s did both sources begin to be referred jointly in
the growing literature, which has expanded into a field common to applied optics,
mathematical physics, and analogic and digital signal analysis. In this introductory
chapter we recapitulate the construction of the LCT integral transforms, detailing
their Lie-algebraic relation with second-order differential operators, which is the
origin of the metaplectic phase. Radial and hyperbolic LCTs are reviewed as unitary
integral representations of the two-dimensional symplectic group, with complex
extension to a semigroup for systems with loss or gain. Some of the more recent
developments on discrete and finite analogues of LCTs are commented with their
concomitant problems, whose solutions and alternatives are contained the body of
this book.

1.1 Introduction

The discovery and development of the theory of linear canonical transforms (LCTs)
during the early seventies was motivated by the work on two rather different
physical models: paraxial optics and nuclear physics. The integral LCT kernel was
written as a descriptor for light propagation in the paraxial régime by Stuart A.
Collins Jr., working in the ElectroScience Laboratory of Electrical Engineering at
Ohio State University. On the other hand, Marcos Moshinsky and his postdoctoral
associate Christiane Quesne, theoretical physicists at the Institute of Physics of
the Universidad Nacional Autónoma de México, while working among other
problems on the alpha clustering and decay of radioactive nuclei, saw LCTs as
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the key to understand the conservation of uncertainty as a matter of intrinsic
mathematical interest. Some two decades elapsed before the two currents of research
acknowledged each other. For this reason alone, the 45-year history of LCTs could
provide an interesting case study on the intertwining of basic and applied endeavors.
The more recent trend towards the analysis of discrete and finite data sets such as
computers can handle also evinces a bifurcation between the search for efficient
algorithms and the quest for subtler constructions based on symmetry. Usually
mathematics yields more results than can be useful for applications. Applications
have generated admirable technology, while symmetry catches the eye and pleases
the mind.

The two seminal papers on LCTs, of Collins [1], and of Moshinsky and Quesne
[2–4], are highly referenced (>657 and>390 joint citations, respectively, 11/10/15).
Yet closer analysis shows that the authors who cited each of them have been mostly
disjoint up to recent years: there was an optics community and a theoretical physics
community, each with its own preferred journals, interests, and working styles [5].
The author’s [6] grievously omits Collins’ work—and any reference to optics as
well. Fortunately, during the early eighties a mathematician colleague brought to
my attention a series of papers by Nazarathy, Shamir, and Hardy on linear systems
with loss or gain [7–11], and the work of Alex J. Dragt (University of Maryland)
and several of his collaborators [12, 13] who had been developing techniques to
control charged particle beams for the Superconducting Supercollider project [14,
15], which started a learning process on optical systems seen as a group-theoretical
construct.

It should not be a matter of apology to focus this introductory chapter toward a
review of LCTs seen from a more mathematical perspective. Section 1.2 contains the
Collins and Moshinsky–Quesne approaches to LCTs, and the context in which our
local research continued to develop. Thus, Sect. 1.3 reviews the salient properties of
LCTs as integral transform realizations of the double cover of the group Sp(2;R)
of 2�2 real matrices of unit determinant, and as generated by an algebra of second-
order differential operators in Sect. 1.4. Section 1.5 recapitulates the radial and the
(lesser-known) hyperbolic LCTs, geared to answer the question “what are LCTs?”
In that section we propose what seems to be the proper context to accommodate
all realizations (“faces”) of integral and (infinite) matrix LCTs. Section 1.6 recalls
complex extensions of LCTs that can be made unitary, such as heat diffusion,
and a hint of applications to special function theory. Realizations of LCTs as
finite matrices are addressed in Sect. 1.7 because there is a growing interest in
fast algorithms to digitally treat LCTs for finite signals or pixelated images, where
several tactics have been proposed to handle them, and on which I add a few words
in the concluding Sect. 1.8. Here too it seems that at least two schools of thought
contend, one strives for æsthetics and the other for efficacy.
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1.2 Diffraction Integrals, Uncertainty Relations

Geometric and wave optics, as well as classical and quantum mechanics, agree
with each other in the linear approximation—except for complex phases. It should
be evident therefore that the paraxial régime of optics and quadratic systems
in mechanics are closely related in their mathematical structure. They are both
Hamiltonian systems whose waveforms, or states in any number of dimensions,
can be displayed on a flat phase space. There, evolution is canonical (keeping the
symplectic structure invariant) and linear (consisting only of translations, rotations,
and shears). In paraxial wave optics, shears of phase space result from thin lenses
and empty spaces, which, respectively, multiply the input functions by quadratic
phases, and subject them to an isotropic Fresnel integral transform. In quantum
mechanics on the other hand, beside the shear of free propagation, the harmonic
oscillator is the most privileged actor; it generates a fractional Fourier transform on
the initial state—times a phase.

1.2.1 Matrix Representation of Paraxial Optical Systems

The evolution in linear systems can be represented mathematically in three ways: by
linear operators, by integral kernels, and by finite or infinite matrices. These will act
on the states of the system, which in turn are realized, respectively, as differentiable
and/or integrable functions of position (or momentum, or other observables), and
as finite- or infinite-dimensional vectors. Since LCTs form a group, there will be
locally a 1:1 correspondence between the three realizations, so one can use the
algebraically simpler finite matrix realization to compute products and actions.
Many authors point to the books by Willem Brouwer [16] and by Gerrard and
Burch [17] for introducing the use of matrix algebra to paraxial optical design for
resonators and the evolution of Gaussian beams therein. In two-dimensional (2D)

optics, free propagation by z is represented by the 2 � 2 matrix
�
1
0

z
1

�
, and a thin

lens of focal distance f by
�

1
�1=f

0
1

�
; these act on rays represented by a two-vector�

x
p

�
, where x is the position of the ray on the z D 0 screen, and p D n sin � � n�

is the momentum of the ray that crosses the screen with the “small” angle � to its
normal, in a transparent optical medium of refractive index n. In the paraxial régime
one lets the phase space coordinates .x; p/ roam over the full plane R2. Products
of these matrices correspond with the concatenation of the optical elements, and

every paraxial 2D optical system is thus represented by a 2 � 2 matrix
�

a
c

b
d

�
, with

ad � bc D 1 because the two generator matrices have unit determinant.
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The paper by Stuart A. Collins, Jr. [1] considered the generic 3D paraxial,
generally nonsymmetric but centered and aligned system.1 These systems are

represented by a 4 � 4 matrix M D
�

a
c

b
d

�
,

�
x0
p0

�
D

�
a b
c d

� �
x
p

�
; i.e., w0 D Mw; (1.1)

where w WD
�

x
p

�
, with x; x0; p;p0 being 2-vectors, and a; b; c; d are the 2 � 2

submatrices of M. Since free propagation of an input function f .x/ is described by
the Fresnel transform, whose integral kernel has a quadratic phase, and thin lenses
multiply the function by a quadratic phase also, one should guess that the output

fM.x/ of an M D
�

a
c

b
d

�
-transform should be an integral transform which, for the

generic N-dimensional case is

fM.x/ � .CM f /.x/ WD
Z

RN
dNx0 CM.x; x0/ f .x0/; (1.2)

with a quadratic phase kernel CM.x; x0/ in the components of x and x0, and the
matrix parameters of M. The Collins paper considers transverse scalar fields Ei D
Ai exp.ikLi/ in each element of the optical setup, using the Fermat principle to show
how the eikonal (optical distance) can be expressed in terms of the initial and final
ray positions and slopes.2 The resulting linear relations between these two 4-vectors
with the parameters of the optical system turn out to be equivalent to the definition
of symplectic matrices, whose generic form is

M � M> D �; �> D ��; �2 D �1; (1.3)

where the skew-symmetric metric matrix � is usually written as � D
�

0
�1

1
0

�
. In

the 2 � 2 submatrix form (1.1), this is

�
a b
c d

� �
0 1

�1 0

� �
a> c>

b> d>

�
D

�
0 1

�1 0

�
; (1.4)

which implies that the following submatrix products are symmetric,

a b> D .a b>/>; c d> D .c d>/>; a d> � b c> D 1: (1.5)

1All lens centers are assumed to be on a common straight optical axis with their planes orthogonal
to it; the “center” of cylindrical lenses is a line that should also intersect this axis. The consideration
of displacement and (paraxial) tilt can be made using 2 C 2 more parameters for inhomogeneous
LCTs, which are not explicitly considered here. See [18].
2The paper by Collins uses momenta in the form nipi with jpij D sin �i, and orders the 4-vector
components as .x1; p1; x2; p2/>.



1 Development of Linear Canonical Transforms: A Historical Sketch 7

These conditions (for N D 2) were found [1, Appendix B] and thereby the optical
distance between initial and final ray positions L WD L0 C LM, consisting of the
distance L0 along the axis plus that gained for rays between positions off this axis,
LM.x; x0/, which is a quadratic function of its arguments and contains the parameters
of the transfer matrix M. The integral kernel (1.2) is thus determined to be of the
form AM exp.ikLM/. The normalization factor AM is computed by demanding the
conservation of energy, and its phase is taken from the Fresnel diffraction kernel
[1, Eq. (28)]. The paper by Collins applies this result for the analysis of Hermite–
Gaussian beams in resonators and for the reconstruction of holographic images.

1.2.2 Evolution in Quadratic Quantum Systems

Marcos Moshinsky had been studying the harmonic motion of Gaussian wavepack-
ets that represent alpha bondings in various oscillator models of the nucleus. This
is the context in which he seems to have been motivated to touch upon canonical
transformations in quantum mechanics. His paper was presented at the XV Solvay
Conference in Physics of 1970 [2], whose Proceedings were delayed 4 years. Upon
returning to Mexico with the Belgian postdoctoral associate Dr. Christiane Quesne,
they stated the problem in the following terms [3, 4]: What are the transformations of
phase space that leave the structure of quantum mechanics invariant? This included
the important uncertainty relation �f �Qf � 1

4
(„ � 1) that is a mathematical

property of the Fourier integral transform. The question remitted them to the basic
Heisenberg commutators

ŒOxi; Opj� WD Oxi Opj � Opj Oxi D i ıi;j; (1.6)

between the Schrödinger position operators Oxi D xi � and the momentum operators
Opj D �i@j (where @j � @=@xj), for i; j D 1; 2; : : : ;N in N-dimensional systems.
Such transformations can be linear or nonlinear; some of the latter were examined a
few years later, but the more immediate ones were the linear, for N-vector operators

Ox and Op forming a 2N-vector Ow �
� Ox

Op
�

as before, acted upon by a transformation CM

depending on the elements of a 2N � 2N matrix M. For operators, these are written
somewhat differently from (1.1),

CM Ow C�1
M D M�1 Ow: (1.7)

The reason for having the inverse matrix on the right-hand side is that this
alone ensures that the composition of transforms follows that of the matrices:
CM1CM2 D ' CM1M2 , with ' a constant undetectable in (1.7). Next, direct replacement
into (1.6) yields the symplectic conditions (1.3)–(1.5) for M. Symplectic matrices
are invertible,
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�
a b
c d

��1
D �M>�> D

�
d> �b>

�c> a>

�
; (1.8)

the unit 1 is symplectic and associativity holds. Hence symplectic matrices that
are real form the real symplectic group Sp(2N;R) with N.2NC1/ independent
parameters. When N D 1, Sp(2;R) is identical with the group of all 2 � 2 real
matrices of unit determinant. (The complex case will be considered in Sect. 1.6.)

The action of the linear operators CM on the usual Hilbert space L2.RN/ of
quantum mechanical Lebesgue square-integrable functions, f 7! fM � CM f , is
expected to be integral in RN as (1.2), and unitary, because such is quantum
evolution. The integral kernel can be found applying CM to Oxif and to Opjf using (1.7)
and (1.8),

CM .Oxi f / D .CM OxiC�1
M / fM D P

j.dj;i Oxj � bj;i Opj/fM; (1.9)

CM .Opi f / D .CM OpiC�1
M / fM D P

j.�cj;i Oxj C aj;i Opj/fM: (1.10)

On the right, Oxi and Opi act outside of the integral, on the x argument of the kernel
CM.x; x0/, while those on the left act inside, on f .x0/; the derivatives of the latter can
be integrated by parts to act on the x0 argument of the kernel. Since f is arbitrary,
one obtains the 2N simultaneous linear differential equations satisfied by the LCT
kernel,

x0
iCM.x; x0/ D P

j

�
dj;ixi C ibj;i@j

�
CM.x; x0/; (1.11)

@ 0
i CM.x; x0/ D P

j

�
icj;ixi � aj;i@j

�
CM.x; x0/: (1.12)

The solution, up to a multiplicative constant KM, is

CM.x; x0/ WD KM exp i
�
1
2
x>b�1dx � x>b�1x0 C 1

2
x0>ab�1x0�: (1.13)

The constant KM is found from the limit to the 2N � 2N unit matrix, M ! 1 (with
det b in the lower-half complex plane), so that CM.x; x0/ ! ıN.x � x0/, regaining
the unit transform C1 D 1. The result is

KM D 1p
.2� i/N det b

� e�i�N=4 exp i.� 1
2

arg det b/p
.2�/N j det bj : (1.14)

Finally, when only b ! 0 from the lower complex half-plane, the matrix is

M 0 WD
�

a
c

0
a>�1

�
, the Gaussian kernel converges weakly to a Dirac ı, and the

integral operator action becomes a change of scale of the function multiplied by
a quadratic phase,
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.CM0 f /.x/ D exp i. 1
2
x>ca�1x/p
det a

f .a�1x/: (1.15)

In the case of N D 1-dimensions, Eqs. (1.2) and (1.13)–(1.14) simplify to the
best-known form of LCTs,

fM.x/ � .CM f /.x/ D
Z

R
dx0 CM.x; x

0/ f .x0/; (1.16)

CM.x; x
0/ WD 1p

2� i b
exp

� i

2b
.dx2 � 2xx0 C ax02/

�
; (1.17)

where it should be understood that 1=
p

ib D exp.�i 1
2
�.sign bC 1

2
//=

pjbj. The
generalization of the Fourier–Heisenberg uncertainty relation to LCTs is of the
form �f�fM � 1

4
jbj. The last two chapters of [6] were written based on the works

of Marcos Moshinsky and his associates on LCTs, complemented with results by
the author on translations of phase space, complex extensions, and applications to
the evolution of Gaussians and other wavefunctions of quantum quadratic systems
(oscillator wavefunctions, parabolic cylinder and Airy functions) under diffusion.

1.2.3 LCTs in a Broader Context

Optical models are richer than mechanical ones because they provide a wider view
of canonical transformations beyond the linear regime. Mechanical Hamiltonians
are mostly of the form 1

2
p2CV.x/, where the potential V.x/with a smooth minimum

may be expanded using perturbation series in powers of x around the harmonic
oscillator; in geometric and magnetic metaxial optics on the other hand, the presence
of aberrations generally requires evolution Hamiltonians expressible in series of
terms pnxm. As Alex J. Dragt applied for accelerators [12–15, 19], Hamiltonian
and Lie-theoretic tools served to calculate carefully one turn in the accelerator,
and then one raises that transformation to the power of any number of turns, while
canonicity ensures the conservation of the beam area in phase space. The usefulness
of these techniques for optical design was facilitated by a neat theorem on the
canonical transformations produced by refraction between two media separated by
a surface of smooth but arbitrary shape [20]: they can be factored into the product of
two canonical transformations, each depending on the surface and only one of the
media. This allowed the computation of the aberration coefficients for polynomial
surfaces of revolution, and the group structure translated the concatenation of optical
elements along the optical axis into matrix multiplication. Interest in these lines
led us to convene two gatherings on Lie optics (a convenient neologism), in 1985
and 1988 [21, 22]. In fact, LCTs were taken for granted and served as basis for
chapters on Fourier optics, coherent states, holography, computational aspects for
aberrations, and optical models that take into account that the optical momentum
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vector ranges over a sphere, and not over a plane as the paraxial theory assumes.
Yet, it is the linear regime (paraxial optics or quadratic mechanics) that displays
naturally the cleanest symmetries.

Closely related with LCTs, a line of research on the Wigner distribution function
applied to optical waveforms and their transformation in first-order optical systems
was opened by Martin J. Bastiaans by the end of the 1970s [23, 24]. Both papers are
highly cited (>330 and >400 citations), indicating that many authors have followed
the analysis of non-imaging linear systems in phase space [25–27]. More recent
work with Tatiana Alieva, María Luisa Calvo, and several coworkers addressed
LCTs to obtain phase information out of intensity measurements [28–30], and
the processing of two-dimensional images [31, 32] by means of optical setups
of cylindrical lenses that can be rotated in fixed positions to synthesize any LCT
transformation [33], in particular fractional Fourier transforms [34, 35] and gyrators
[36, 37]. Both the Wigner function and the two-dimensional LCTs that form the
group Sp(4;R) cannot be surveyed in this chapter for reasons of space even though
they are now widely used for many applications in quantum optics. See, for example,
[38] (>1120 citations).

Linear canonical transformations include fractional Fourier transforms in the
subgroup F� � F� 2 SO.2/ � Sp.2;R/ of matrices

�
cos �

� sin �
sin �
cos �

�
, of power

� 2 R or angle � D 1
2
��, times the metaplectic phase (to be seen below).

This development also has a story behind: in 1937, Edward Condon thanks Profs.
Bochner, von Neumann, and Bohnenblust for conversations leading to the article
[39], where he clearly defines the fractional Fourier transform and finds its kernel
following the reasoning in (1.11)–(1.12), recognizing the metaplectic problem.
Condon’s result seems to have been in suspended animation for decades, unnoticed
by Victor Namias [40] who in 1980 rediscovered F� proposing that it self-
reproduces the harmonic oscillator wavefunctions with a phase .�i/� (to be taken
as e�i��=2), and the kernel found from the bilinear generating function of Hermite
polynomials (inexplicably, [6] disregarded this specialization of LCTs). Interest of
the optical community in fractional Fourier transforms grew in the early nineties
around their optical implementation through the slicing of graded-index media and
non-imaging lens systems, by Mendlovic and Ozaktas [41–44] (>780, >437, >250
and >254 citations). Their work was formalized in the 2001 book [45] by Ozaktas,
Zalevsky, and Kutay, which spread the use of the fractional Fourier transform and
LCTs in general. This book contains a bibliography of >500 references which
hardly any of us can read entirely, and which I certainly cannot reproduce.

1.3 LCTs, Matrices, Signs and Covers

An important property of the LCTs (1.13)–(1.15) is that they conserve the norms
[1] and overlaps [3], i.e., the transformations are unitary under the L2.RN/ inner
product,
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.f ; g/L2.RN / WD
Z

RN
dx f .x/� g.x/ D .fM; gM/L2.RN /; (1.18)

because

CM.x; x0/ D CM�1 .x0; x/�: (1.19)

However, the group composition property of LCTs is satisfied by the integral kernels
only as

Z

RN
dx0 CM1 .x; x

0/CM2 .x
0; x00/ D � CM1M2 .x; x

00/; (1.20)

where � is a phase—the metaplectic phase (actually a sign). This problem is
announced by the square root in the denominator of (1.14) and (1.15); it can
be seen most clearly in the Fourier integral transform F for N D 1, which for
dimensionless matrix elements corresponds to F D �3; the integral kernel is then
CF.x; x0/ D e�i�=4e�ixx0

=
p
2� , so

CF D e�i�=4F ; F D
�
0 1

�1 0
�
: (1.21)

Thus, while F4 D 1 we have C4F D �1; this is reminiscent of the behavior of spin
under 2� rotations.

The metaplectic sign has bedeviled many papers, and it can be said that it was
not really understood until the group theory behind brought to the fore the fact that
the correspondence between integral LCTs and matrices is not 1:1, but 2:1. The
problem is not crucial in optical setups because overall phases are commonly not
registered, but in mathematics signs cannot be just ignored. Indeed, the structure
of the symplectic groups (even that of 2 � 2 matrices) is unexpectedly imbricate
[46]. The problem for N D 1 was clarified early by Valentin Bargmann in 1947 [47,
Sects. 3, 4] using the polar decomposition of matrices. This is a generalization of
the factorization of complex numbers z D ei� jzj into a phase ei� times a positive
number jzj; multiple Riemann sheets of a function around its branch points need the
phase � to range beyond its basic interval modulo 2� . A real 2 � 2 matrix can be
similarly decomposed into the product of a unitary and a symmetric positive definite
matrix,

3I thank Dr. George Nemeş for the remark that when dimensions are respected, F ¤ � because
the parameters b and 1=c have units of momentum/position, while a and d have no units. In our
presentation of the kernel (1.17) we assume that momentum p bears no units (as in optics), and that
a unit of distance has been agreed for position so that x is its numerical multiple.
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�
a b
c d

�
D

�
cos� � sin�
sin� cos�

� �
	C Re
 Im


Im
 	 � Re


�
; (1.22)

where 
 is complex, and 	 WD Cp
j
j2 C 1 � 1. Under multiplication of two

matrices, their Bargmann parameters (with subindices 1 and 2) compose through

� D �1 C �2 C arg �; 
 D e�i arg �.	1
2 C e�2i�2
1	2/; (1.23)

where � WD 1C e�2i�2
1
2=	1	2 is an auxiliary complex quantity whose phase is
determined to range in arg � 2 .� 1

2
�; 1

2
�/, and 	 D 	1j�j	2 � 1. The composite

� can thus take values on the full real line R and hence parametrize all elements
of Sp.2;R/, the infinite cover of the group Sp(2;R). Thus, while the unitary
spin group SU(2) covers twice the orthogonal rotation group SO(3), the symplectic
group is infinitely covered; the realization by LCTs is then a twofold cover of the
group of 2 � 2 real matrices of unit determinant. Below we shall comment on this
feature of the group of integral transforms, called the metaplectic group Mp(2;R).
(See also [48, Sect. 9.4].)

The generic case of Sp(2N;R) follows suit, as proved by Bargmann some years
later [49]. The polar decomposition is then into a real 2N � 2N orthosymplectic
matrix that represents the group U(N) of N � N unitary matrices, and again a
symmetric positive definite matrix [48, p. 173]. This U(N) group is the maximal
compact (i.e., of finite volume) subgroup of Sp(2N;R), and has been called the
Fourier group [50]. In the N D 2-dimensional case, U(2) contains the isotropic
and anisotropic fractional Fourier and gyration integral transforms [34, 36], as well
as joint rotations of position and momentum around the optical center and axis. In
turn, this U(2) is the direct product of a U(1) subgroup of isotropic fractional Fourier
transforms (a circle), times the group SU(2) of 2 � 2 matrices of unit determinant;
the latter is simply connected, so the onus of multivaluation falls on the former. For

N D 2 and the 4�4 Fourier matrix F D � D
�

0
�1

1
0

�
the relation between the LCT

and the 2D Fourier integral transform is thus CF D e�i�=2F .

1.4 LCTs Are Generated by Second-Order Differential
Operators

In retrospect it is obvious that unitary LCTs CM and self-adjoint second-order
differential operators OJ D ˛ Opi Opj C ˇ 1

2
.Oxi OpjCOpj Oxi/C � Oxi Oxj should be closely related,

the latter generating the former through CM.� / D exp.i� OJ/. The LCT integral kernels
CM.� /.x; x0/ are Green functions of quadratic Hamiltonians that can be found through

OJ f .x/ D �i
@

@�

Z

RN
dx0 CM.� /.x; x0/ f .x0/

ˇ̌
ˇ
�D0; (1.24)
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and CM.0/.x; x0/ D ıN.x � x0/, as was done in [51]. Probably the reason for not
having recognized this relation earlier was that since the time of Sophus Lie only
first-order differential operators, f .x/@x C g.x/, were used to generate Lie groups.

Writing CM � C.M/, we have the following N D 1 paraxial optical elements
generated by operators and their LCTs,

thin lens: exp
�

i 1
2
� Ox2

�
D C

�
1
�
0
1

�
; (1.25)

free flight: exp
�

i 1
2
� Op2

�
D C

�
1
0

��
1

�
; (1.26)

magnifier: exp
�

i 1
2
�.OpOx C OxOp/

�
D C

�
e��

0
0
e�

�
; (1.27)

repulsive guide: exp
�

i 1
2
�.Op2 � Ox2/

�
D C

�
cosh �

� sinh �
� sinh �

cosh �

�
; (1.28)

ei��=4 � Fourier�� : exp
�

i 1
2
�.Op2 C Ox2/

�
D C

�
cos �
sin �

� sin �
cos �

�
: (1.29)

For vanishing � , M.� / � 1 C �m, we can associate the generator operators

with traceless 2 � 2 matrices m: thin lens,
�
0
1
0
0

�
; free flight,

�
0
0

�1
0

�
; magnifier,� �1

0
0
1

�
; repulsive guide,

�
0

�1
�1
0

�
; and harmonic guide,

�
0
1

�1
0

�
. This infinitesimal

“portion” of Sp(2;R) constitutes a linear space called its Lie algebra, denoted by
the lowercase name sp(2;R), and whose structure is determined by the commutators
of its elements. Under CM the “infinitesimal” matrices m 2 sp.2;R/ will transform
by similarity as m 7! m0 D M m M�1, and with all M 2 Sp.2;R/ we build the
orbit of m. Thus the generators of lenses and of free flights are in the same orbit

related by the Fourier matrix F D
�
0

�1
1
0

�
, and the generators of magnifiers are the

same with those of repulsive guides, related by the square root F1=2 D 1p
2

�
1

�1
1
1

�
.

Analysis shows that sp(2;R) has three orbits (excluding the orbit of 0): elliptic
containing (1.29); hyperbolic (1.27)–(1.28); and parabolic (1.25)–(1.26). The last
forms a cone in R3, the first and second fill the inside and outside of that cone.
This division into disjoint orbits in the R3 linear space of the algebra extends to

the group, but the group Sp(2;R) of matrices
�

a
c

b
d

�
has an extra non-exponential

region identified by the range of the trace, a C d 2 .�1;�2/, where the matrices
have no real logarithm. For N D 2 dimensions, the identification of generating
Hamiltonians in sp(4;R) with optical elements can be found in [48, Chap. 12]; there
are 4 continua of orbits and 12 isolated points, few of which have been exploited.

The relations (1.25)–(1.29) also determine that the eigenfunctions of an operator
OJ  � D E�  � (whose eigenvalues E� are common to all elements in its orbit), will
self-reproduce under the generated LCT as CM.� / � D ei�E� � . In particular, the
harmonic oscillator Hermite–Gauss eigenfunctions ‰n.x/ correspond to energies
En D n C 1

2
, n 2 f0; 1; 2; : : :g. Thus, the CF LCT of the eigenfunctions  M

n D CM n

of all operators in the elliptic orbit is
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CF 
M
n D exp

��i 1
2
�.n C 1

2
/
�
 M

n D e�i�=4.�i/n M
n ; (1.30)

having set � D � 1
2
� in (1.29) and in agreement with (1.21). Here again the phase

evinces the double cover of CF˛ 2 Mp.2;R/ over the circle of fractional Fourier
matrices F˛ 2 Sp.2;R/. We may also see the metaplectic phase as the energy of
the vacuum, E0 D 1

2
.

We have thus associated three classes of mathematical actors in the Sp(2;R)
troupe: LCT integral transforms, hyperdifferential (exponentials of second order)
operators, and matrices (modulo a sign). Product operations in one class correspond
with products in the other two. Hence, we can easily write Baker–Campbell–
Hausdorff relations between quadratic operators [6, Sect. 9.3.2], and the LCTs of the
eigenfunction set of one under LCTs generated by another, including phase space
translations [6, Chap. 10]. Certainly, other authors have considered various aspects
of the above constructions (see, e.g., [52]), so it is as grievous not to mention one as
it is to mention all.

1.5 Radial, Hyperbolic, and Other LCTs

Isotropic LCTs in N D 2 or more dimensions that are represented by matrices M D�
a1
c1

b1
d1

�
with diagonal submatrices can be reduced to

�
a
c

b
d

�
radial LCTs acting

on eigenspaces of functions of the radius and with definite angular momentum.
One may also ask for separation of variables in other sets of coordinates and select
eigenspaces under other operators, to find, e.g., hyperbolic LCTs. Not surprisingly, it
turns out that for N D 1 the theory of Sp(2;R) representations studied by Bargmann
[47], and Gel’fand and Naı̆mark [53]—also in the same year 1947, provides an
appropriate framework to phrase these and other derivate LCTs.

1.5.1 Radial Canonical Transforms

Shortly after completing the initial two papers on LCTs based on the 2�2 Sp(2;R)
matrices [3, 4], and Dr. Quesne having returned to Belgium, Marcos Moshinsky
extended his inquiry to canonical transformations which he deemed to be nonlinear,
but were closely related to the two-dimensional oscillator through the subgroup
chain Sp.4;R/ 	 SO.2/ ˝ Sp.2;R/, where SO(2) is the group of rotations
in the plane [54]. The representations of the two subgroups are conjugate, i.e.,
the representation m 2 Z of SO(2) fixes the discrete-series representation k D
1
2
.jmj C 1/ of Sp(2;R) (see below). This approach considered isotropic LCTs (1.2)

in the polar coordinates of R2,

x1 D r cos �; x2 D r sin �; r 2 RC
0 D Œ0;1/; � 2 R mod 2�: (1.31)
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Since angular momentum OL D �i.x1@2�x2@1/ D �i@� commutes with these LCTs,
we can isolate an eigenspace of functions f .x/ 
 f .r/ eim�=

p
2� with integer m 2 Z,

to find the corresponding “radial” LCTs (RLCTs). There, r2 D @2r C r�1@r C r�2@2�
where with @2� 7! �m2 is self-adjoint under the measure r dr. In order to have
“m-radial” spaces where @2r be self-adjoint, we need the inner product

.f ; g/L2.RC/ WD
Z 1

0

dr f .r/� g.r/ (1.32)

with measure dr, so previous operators should be transformed through OJ 7!p
r OJ=pr to keep self-adjointness.
To find the RLCT integral kernel under (1.32), we project out the Fourier series

coefficient of the eim� component of the N D 2 isotropic LCT kernel (1.13),

C.m/
M .r; r0/ D 1

2�

Z �

��
d� CM.x; x0/e�im� : (1.33)

Noting that only the factor e�ix�x0=b contains the mutual angle through x � x0 D
rr0 cos.� � � 0/, we fix the reference axes by x to perform the integration. This is
the angular momentum decomposition of the LCT, and defines the m-RLCT by

f .m/M .r/ � .C.m/M f /.r/ D
Z

RC

dr0 C.m/
M .r; r0/ f .r0/; (1.34)

C.m/
M .r; r0/ D ei�.mC1/=2

b
exp

� i

2b
.dr2 C ar02/

�
Jm

� rr0

b

�
; (1.35)

where Jm.z/ is the Bessel function of the first kind. An alternative derivation of this
kernel can be found in [55].

1.5.2 Hyperbolic Canonical Transforms

Hyperbolic canonical transforms are obtained when instead of the polar coordi-
nates (1.31), one introduces the two-chart hyperbolic coordinates [56],

� D C W x1 D  cosh �; x2 D  sinh �;
� D � W x1 D  sinh �; x2 D  cosh �;

�
; � 2 R;
� WD sign .x21 � x22/:

(1.36)

Here the subgroup chain to be used is Sp.4;R/ 	 O.1;1/ ˝ Sp.2;R/, where
now O(1; 1) consists of pseudo-orthogonal (“1+1 Lorentz”) matrices, and inversions
… W x D �x that also commute with Sp(2;R), reducing the range of the “hyperbolic
radius”  to Œ0;1/. Instead of the isotropic LCTs used for RLCTs above, we now
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consider LCTs of the form M D
�

a1
c1

b1
d1

�
with 1 WD

�
1
0

0
e�i�

�
, where the phase e�i�

is important. Then in (1.13) the first exponential term is x>b�1dx D �d2=b, and
only the term x>b�1x0 D �0 cosh.� � �0/ contains the boost “angle” � 2 R that
will be subject to integration.

Fourier integral decomposition of the LCT kernel (1.13) into plane waves and
parity yield the “hyperbolic” LCTs (HLCTs), characterized now by the Fourier
conjugate variable s 2 R and the parity eigenvalue $ 2 fC1;�1g. But note that
now there are also two charts � 2 fC;�g, so that functions should be represented

by two � -component functions with definite parity $ , as f$./ D
�

f C;$ ./
f �;$ ./

�
, with

f �;$./ D $ f �;$.�/, and the inner product

.f; g/L2.$;RC/ WD
X

�2fC;�g

Z 1

0

d f �;$./� g�;$./: (1.37)

The HLCT of a function f ./ is then

f$;sM ./ � .C$;sM f/./ D
Z

RC

d0 C.$;s/
M .; 0/ f.0/; (1.38)

where the matrix integral kernel is

C.$;s/
M .; 0/ D

�
GM;C;C.;

0/H
.$;s/
C;C

.0=b/ GM;C;�.;
0/H

.$;s/
C;�

.0=b/

GM;�;C.;
0/H

.$;s/
�;C

.0=b/ GM;�;�.;
0/H.$;s/

�;� .0=b/

�
; (1.39)

GM; �;� 0.; 0/ D
p
0

2� jbj exp
�

i
�d2 C � 0a02

2b

�
; (1.40)

H.$;s/
C;C .�/ D i�Œ$e��sH.1/

2is .�Ci0C/ �$e�sH.2/
2is .��i0C/� (1.41)

D $H.$;s/�;� .�/;

H.$;s/
C;� .�/ D 4c$;s� K2is.j�j/ D $H.$;s/

�;C .�/; (1.42)

and where H.1/
� and H.2/


 are Hankel functions of the first and second kind valued
above and below the branch cut, K� is the MacDonald function, cC1;s

� WD cosh�s

and c�1;s
� WD �sign � sinh�s.

1.5.3 LCTs as Representations of Sp(2; R)

In Sect. 1.3 I warned that the theory of 2 � 2 real matrices is more imbricate than
expected.4 Yet I believe that the natural context to understand the foundations and

4Once I said in front of a large student audience that I had devoted much work to understand 2� 2
matrices, the giggles in the hall were sobering.
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see the possible incarnations of linear canonical transformations is in the theory of
unitary irreducible representations of the Lorentz group SO(2; 1) of “2C1” special
relativity [46]. Let me now place LCTs in this context.

After relating paraxial optical elements to LCTs and second-order differential
operators in (1.25)–(1.29), we note further that the following operators

OJ1 WD 1

4

�
� d2

dr2
C �

r2
� r2

�
; (1.43)

OJ2 WD �i

4

�
r

d

dr
C d

dr
r
�
; (1.44)

OJ3 WD 1

4

�
� d2

dr2
C �

r2
C r2

�
; (1.45)

are essentially self-adjoint under the inner product (1.32) of L2.RC/, and that they
close into an algebra with the commutation relations

ŒOJ1; OJ2� D �iOJ3; ŒOJ2; OJ3� D iOJ1; ŒOJ3; OJ1� D iOJ2; (1.46)

that characterize the isomorphic algebras sp.2;R/ D so.2;1/. Instead of starting
with the preservation of the Heisenberg canonical commutation relations (1.6)
between the Schrödinger quantum position and momentum operators, here we
start from the preservation of the commutators (1.46) and their realization by
the three operators (1.43)–(1.45). Their commutators are preserved under linear

transformations with parameters taken from M D
�

a
c

b
d

�
2 Sp(2;R),

0
@

OJ1
OJ2
OJ3

1
A

�
a
c

b
d

�

�!

0
@
1
2
.a2�b2�c2Cd2/ bd�ac 1

2
.a2�b2Cc2�d2/

cd � ab adCbc �cd � ab
1
2
.a2Cb2�c2�d2/ �bd�ac 1

2
.a2Cb2Cc2Cd2/

1
A

0
@

OJ1
OJ2
OJ3

1
A : (1.47)

These 3 � 3 matrices form the “2+1” Lorentz group SO(2; 1) with metric .� � C/.
Since both M and �M yield the same 3�3matrix, this Lorentz group is covered 2:1
by Sp(2;R); however, their Lie algebras, defined by their commutation relations,
are the same.

In Sect. 1.4 we came upon the three orbits of sp.2;R/ D so.2;1/, which can be
also be characterized by the distinctive spectrum of the generator that we choose to
be the operator of position, fg, which can be discrete or continuous. We can use the
realization (1.43)–(1.45) in L2.RC/ for � > 0 to evince those spectra.5 The are:

5For � < 0 there is a doubling of the Hilbert space that requires some extra analytical finesse
[57], which stems from a separation in hyperbolic coordinates such as that seen in the previous
subsection.
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• In the ! D elliptic orbit of the compact “harmonic oscillator C�=r2” operator,
OJ3 in (1.45) has a discrete spectrum fg3 bounded from below, and equally spaced
by 1.

• In the ! D parabolic orbit of the “thin lens” generator in (1.25), here OJ� WD
OJ3�OJ1 D 1

2
r2 � 0, the spectrum fg� is continuous and non-negative. Its Fourier-

Bessel transform is OJC WD OJ3 C OJ1, which is the Hamiltonian of “free flight in a
�=r2 potential,” and has the same spectrum.

• In the ! D hyperbolic orbit of the “repulsive oscillator C�=r2” operator, OJ1
in (1.43), the spectrum fg1 is the real line.

Thus, while su.2/ D so.3/ contains a single orbit and the spectrum f
g
of any generator Jz can provide the row and column labels—positions—for the
spin j representation matrices and vectors, bound by integer-spaced j
j � j, in
sp.2;R/ D so.2;1/ we have three orbits and three choices for the position fg:
discrete, continuous positive, or real. Moreover, while the representations of so(3)
are simply labelled by the non-negative integers j 2 ZC

0 in the eigenvalues j.j C 1/

of the square angular momentum, the representation structure of so(2; 1) and the
bounds it imposes on fg are more complicated. The parameter � in (1.43)–(1.45)
is the strength of the centrifugal (� > 0) or centripetal potential (� < 0); the special
case � D 0 will remit us back to the original and best-known LCT face in (1.16)–
(1.17). This parameter � determines almost (see below) the representation of the
algebra through the eigenvalues of the so(2; 1) invariant Casimir operator,

OC WD OJ21 C OJ22 � OJ23 D .� 1
4
� C 3

16
/ 1 DW k.1 � k/ 1; (1.48)

� D .2k�1/2 � 1
4
; k D 1

2
.1˙

q
1
4
C�/: (1.49)

Here, k is the all-important Bargmann index; it distinguishes the two main series of
representations:

• Bargmann discrete Dk̇ representations [47] (called complementary by Gel’fand
and Naı̆mark [53]). When the coefficient � is of centrifugal origin in two
dimensions, angular momentum 
 2 Z determines � D 
2 � 1

4
� � 1

4
, which

implies the range k D 1
2
.j
j C 1/ 2 f 1

2
; 1; 3

2
; : : :g. This series can be extended

to continuous k 2 RC, representing multiple covers of so(2; 1). In particular
for k quarter-integers, they are faithful representations of Mp(2I R). The D�

k
representations are related to the DC

k ones by an outer automorphism of the group
that in geometric optics is reflection [48, Sect. 10.4].

• Bargmann continuous C"s representations (called principal by Gel’fand and
Naı̆mark). When � < 0, the potential is centripetal and we must further
distinguish the exceptional range � 1

4
� � < 0 where 1

2
� k < 1 is real, from

the principal range � < � 1
4

where k D 1
2

C is, with s D ˙ 1
2

p
.j� j� 1

4
/ 2 R,

and " 2 f0; 1
2
g is a multivaluation index. We shall exclude the exceptional range
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0 < k < 1 from further detailed considerations.6 We treat this interval as an
extension of the Dk̇ discrete series.

The best-known one-dimensional LCT in (1.16)–(1.17) occurs for � D 0, namely
the quarter-integers k D 1

4
and k D 3

4
, for the subspaces of even and odd functions

of , respectively—recall that here we are on the “radial” half-line for the inner
product (1.32) of L2.RC/.

Using Dirac’s shorthand notation, let jk; i! be a basis vector for the unitary
irreducible representation k (in DC

k or C"s ), with row  (discrete or continuous)
determined by the orbit ! of the chosen position operator. We may then understand
LCTs as the unitary irreducible representations of M 2 Sp.2;R/ acting on those
Hilbert space bases and functions,

f k;!
M ./ D S

0.k;!/
Dk;!
;0.M/ f .0/; (1.50)

Dk;!
;0.M/ WD !hk; jCMjk; 0i!; i.e., (1.51)

!hk; jfMi D !hk; jCMjf i D !hk; jCMjk; 0i! !hk; 0jf i; (1.52)

where S is a sum or integral over the range of eigenvalues of position .k; !/
allowed in the representation k, where the chosen position operator is in the orbit !.
The ranges of its “position coordinate” are:

DC
k C"s

! elliptic:  D kCn; n 2 ZC
0  � " 2 Z

! parabolic:  2 RC  2 RC ˚ RC
! hyperbolic:  2 R  2 R ˚ R

(1.53)

The orthogonality and completeness of the bases jk; 0i! guarantees that the
group composition property holds and that the transformation is unitary and hence
invertible,

S
0.k;!/

Dk;!
;0.M1/Dk;!

0;00.M2/ D Dk;!
;00.M1M2/; (1.54)

Dk;!
;0.M�1/ D Dk;!

0;
.M/�: (1.55)

The matrices and integral kernels Dk;!
;0.M/ are known in the literature. They

were written out for ! D elliptic by Bargmann [47]; for ! D hyperbolic by
Mukunda and Radhakrishnan [60]; and for ! D parabolic they are the radial
and hyperbolic LCT kernels of this section. In [57] all !hk; jCMjk; 0i!0

are listed,
including the mixed cases ! ¤ !0; these were later used to find the so(2; 1)

6The generators present a one-parameter family of self-adjoint extensions with non-equally spaced
spectra [58] and also harbor the Ek exceptional (or supplementary) representation series [59].
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Clebsch–Gordan coefficients between all representation series [61]. Finally, while
writing this chapter, I completed the work in [62], giving explicitly (in the present
notation) the six distinct faces of LCTs, Dk;!

;0.M/ for the three orbits in the two
nonexceptional representation series. I close this section reminding the readers that
there is a theorem stating that noncompact groups (i.e., of infinite volume) do not
have faithful finite-dimensional unitary representations; thus, Sp(2;R) only has

finite representations that are not unitary—such as the 2 � 2 matrix M D
�

a
c

b
d

�
,

the 3�3matrix in (1.47), or others of “spin” k given in [48, Eq. (13.6)] that are used
for Lie aberration optics.

1.6 Complex Extensions of LCTs

While LCTs allow a transparent formulation of the properties of resonators, where
a paraxial wavefield is bounced repeatedly between two end-mirrors, it is natural to
inquire about systems with loss or gain [10, 11]. On the other hand, applications to
clustering in nuclei [63] required the description of Gaussian packets in terms of the
raising and lowering operators of the harmonic oscillator [64], i.e.,

� Oz"
�iOz#

�
D 1p

2

�
1 �i
�i 1

� �Ox
Op
�

D 1p
2

� Ox � iOp
�i.Ox C iOp/

�
; �i � e�i�=2: (1.56)

Issues related to the meshing between Bargmann and LCT transforms were
discussed in a think-tank at the Centre de Recherches Mathématiques (Université
de Montréal) during the closing months of 1973. It was also noted that the real

heat diffusion kernel to time t > 0 is the
�
1
0

�2it
1

�
complex LCTs with kernel


 exp.�.x � x0/2=4t/=
p

t; for t > 0 these transforms form a semi-group (i.e.,

without inverses). Indeed, one can extend the
�

a
c

b
d

�
parameters as long as the LCT

kernel (1.17) is a decreasing Gaussian in the argument x0 subject to integration,
namely Re .ia=b/ < 0. If a is real, this means that the complex value of b must be
in the lower complex half-plane, �� < arg b < 0.

But unitarity is a cherished property among group theorists, so the question was
posed to find appropriate Hilbert spaces to comply with this requirement. There was
the precedent of Bargmann’s space for analytic functions f .z/� D f .z�/ [49], so
it was not difficult [51] to follow his construction in proposing a measure for the
sesquilinear inner product that integrates over the whole complex plane z 2 C, of

L2.R/ functions that have been transformed by a complex M D
�

a
c

b
d

�
,

.fM; gM/BM WD
Z

C
d2
M.z; z

�/ fM.z/
� gM.z/ D .f; g/L2.R/; (1.57)

d2
M.z; z
�/ D �M.z; z

�/ d Re z d Im z; where (1.58)
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�M.z; z
�/ D

r
2

�v
exp

�uz2 � 2zz� C u�z� 2

2v

�
; (1.59)

u WD a�d � b�c; v WD 2 Im .a b�/ > 0: (1.60)

This defines Bargmann-type Hilbert spaces BM such that the complex LCT between
L2.R/ D B1 and BM is unitary, and can be inverted back to L2.R/ through

f .x/ D
Z

C
d2
M.z

0; z0 �/CM�1 .x; z0/ fM.z
0/: (1.61)

In the limit when M becomes real, the measure weight function �M.z; z�/ in (1.59)
is a Gaussian that collapses to a Dirac ı on the Re z0 axis [6, Sect. 9.2.2]. Of interest
to mathematicians is the use of the hyperdifferential operator realization of complex
LCTs to find an expression for Hermite polynomials, such as [51, App. A]

Hn.x/ D exp
�
�1
4

d2

dx2

�
.2x/n; x D exp

�1
4

d2

dx2

�
Hn.x/: (1.62)

Similar relations could be found for parabolic cylinder and other special functions,
but have not been investigated.

Radial LCTs can also be extended to the complex domain [55] when the radial
kernel (1.35) is a decreasing Gaussian, Re .ia=b/ < 0 as before. But now, noting
in (1.32) that the argument of the functions is r 2 Œ0;1/, it turns out that the
complex-transformed functions will be analytic only in the right half-plane % 2 CC
where Re % > 0. The Bargmann-type inner products that preserve the unitarity of
the complex RLCTs that map f .r/ 2 L2.RC/ to f .m/M .r/ 2 B.m/

M are

.f.m/M ; g.m/M /B.m/M
WD

Z

CC

d2
.m/
M .%; %�/ f .m/M .%/� g.m/M .%/ D .f; g/L2.RC/; (1.63)

d2
.m/
M .%; %�/ D �.m/M .%; %�/ d Re % d Im %; where (1.64)

�.m/M .%; %�/ D 2

�v
exp

�u%2 C u�%� 2

2v

�
Km

�%%�

v

�
; (1.65)

where Km.z/ is the MacDonald function, while u and v are given by (1.60). The
inversion and real limit properties are similar to those of the complex LCTs seen
above.

A specific case of interest is the treatment of the Barut–Girardello transform and
coherent state [65]. Similar to (1.62), one obtains a hyperdifferential form for the
Laguerre polynomials [55],

L.m/
n . 1

2
r2/ D .�1/n

nŠ 2n
r�m exp

h�1
2

� d2

dr2
C 1

r

d

dr
� m2

r2

�i
r2nCm: (1.66)

Finally, hyperbolic LCTs do not allow for any complex extension [56].
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1.7 Finite Data Sets and LCTs

Most data sets in the real world are finite and can be represented as N-component
vectors, f � ffmgN

mD1. If the numbers come from sensing a continuous wavefield f .x/
at N discrete points, how can we compute their propagation through an optical LCT
setup? The most direct answer is sampling the assumed smooth wavefield fm WD
f .xm/ and the LCT kernel (1.17) at the same points fxmgN

mD1, and simply performing

the product of the N � N matrix CM, function of M D
�

a
c

b
d

�
, and the vector f.

Following the discretization adopted in [66] for xm D m
p
.2�=N/, this is

.CM f/m WD
NX

m0D1

1p
N

exp
� i�

bN
.dm2 � 2mm0 C am02/

�
fm0 ; (1.67)

.CM f/m WD exp.i� cm2=aN/ fm when b D 0; (1.68)

where we leave out phases. Yet this transformation is only an approximation to the
LCT, and it is generally not unitary.

Regarding the spacing of the sampling points, Ding [67] has given a sampling
theorem that generalizes that of Shannon in terms of the desired extent of the
LCT transform signal. The requirement of unitarity on the kernels (1.67) is that
C�

MCM D 1; this occurs only for values of the parameter b such that 1=b is an integer
relatively prime to N [68]. Combining both results, in [69], the authors present
sufficient conditions on the sampling rate of fxmgN

mD1 for any one LCT to ensure
its unitarity. However, two such matrices will not concatenate as integral LCTs do
because, as we mentioned at the end of Sect. 1.5, Sp(2;R) has no finite-dimensional
unitary irreducible representations. Alternatively, if one discretizes the LCT kernel
by using the LCT sampling theorem [67, 70], a unitary discrete LCT which provides
a provably good approximation to the continuous LCT can be obtained [71, 72]. In
principle, one would like to have a relation between the discrete and continuous
LCTs that mirrors and generalizes the corresponding relation for ordinary Fourier
transforms. Such a relation has been provided in [71], showing that the discrete LCT,
as defined in [73], approximates the LCT in the same sense that the discrete Fourier
transform approximates the continuous Fourier transform, provided that the number
of samples and the sampling intervals are chosen according to the LCT sampling
theorem [67, 70–72].

There are some other problems to define subsets of finite LCTs that form a group,
which we can point out for finite analogues of fractional Fourier transforms. If we
search for a one-parameter subgroup of unitary N �N matrices F� 2 U.N/ such that
F�F
 D F�C
, with F1 D F being the well-known finite Fourier transform matrix,

Fm;m0 D 1p
N

exp
�

� i
2� m m0

N

�
; (1.69)
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which is unitary and idempotent, F4 D 1, what we find is a deluge of possibilities:
we can draw the N2 real parameters of unitary N �N matrices inside a sphere in RN2

space; the four matrix powers of F are but four points—with 1 on the origin. Unitary
matrices of unit determinant form the simply connected subgroup SU(N), whose
SO(2) subgroups of possible fractional F�’s are closed lines (picture them as circles)
that can be freely rotated keeping the origin fixed, and are only required to pass
through F for � D 1, since automatically the circles will pass also through its integer
powers. Clearly, for dimensions N > 2 there is a continuum of such circles that can
be drawn through two points. From that perspective, we analyzed this freedom in
[74] in terms of choosing “good” bases for the RN manifold. Alternative approaches
to define good bases to build finite fractional Fourier transform matrices have used
sampled harmonic oscillator wavefunctions, as done by Pei et al. [73, 75, 76], or
other candidates such as the Harper functions [77] by Ozaktas et al.

Additionally, there is a problem with the phase space interpretation of these
finite fractional Fourier transforms, which we can see through the commonly used
finite Wigner function [25]. The finite Fourier transform matrix F brings N-vectors
of position to N-vectors of momentum. And, being cyclic, Fm;m0 D FmCN;m0 D
Fm;m0CN leads to consider a phase space that is discrete and connected as a torus.
The “front face” of this torus is the origin of phase space m D 0 D m0. So, while the
integral fractional Fourier transform rotates the phase space plane around the origin,
we cannot rotate the front face of a torus without tearing it. Yet to be applicable,
finite LCTs must be computed efficiently for one- or two-dimensional signals and
images in real time. This line of research has been developed by Sheridan et al. in
[66, 78–81] with the strategy of separating the finite LCT in (1.67) into a Fourier
transform factor, for which the FFT algorithm exists, and factors of (1.68). Another
strategy for fast and accurate computation of LCTs has been developed by Ozaktas
et al. using the Iwasawa decomposition [82, 83]. Alternatively, a chirp-Fourier-chirp
factorization with a fast-convergent quadrature formula was proposed in [84].

Finally, we should mention another fast computation method that also involves
chirp multiplication, fast Fourier transform, and a second chirp multiplication [71]:
this method has the advantage of involving the least number of samples possible
as determined from the LCT sampling theorem [67, 70]. This discrete LCT has a
well-defined relation to the continuous LCT and can be made unitary by adding a
factor in front [71, 72]. This approach is attractive because it combines a desirable
analytic discrete LCT definition with a computational method that is nearly as fast
and accurate as the fast Fourier transform algorithm to compute continuous Fourier
transforms.

1.8 Conclusion

I was deeply honored by the invitation of the Editors to write some pages about
the development of linear canonical transforms, in company with distinguished res-
earchers who are applying them in encryption, metrology, holography, and optical
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implementations. Emeritus Professor Stuart Collins is still active and has registered
six patents to his name between 1982 and 2008; his work in optoelectronics has been
applied for space science. I was an apprentice of Marcos Moshinsky and developed
his work on quantum mechanics as a fruitful model for LCTs and related transforms.
Only later did I learn that LCTs were excellent tools for paraxial optics as used by
a community with whom I could then establish dialogue.

Perhaps a similar bifurcation of viewpoints may occur concerning finite LCTs.
The previous section contains problems which I regard as indicative that a different
approach can be useful to understand finite signals on phase space and their
canonical transformations. Based on the rotation algebra so(3), instead of the
Heisenberg–Weyl algebra of quantum mechanics, we have proposed a model
for discrete Hamiltonian systems where phase space is a sphere [85]. When the
number of position points and their density increase, the model contracts to that of
quantum mechanics, the sphere blowing up into the quantum phase space plane.
Canonical transformations in so(3) are those that preserve the surface elements of
the sphere. Linear transformations of N-point signals are the rigid rotations of that
sphere. Among these, the fractional Fourier-Kravchuk transform [86] describes the
time evolution of this finite harmonic oscillator. Moreover, nonlinear canonical
transformations can be defined in correspondence with optical aberrations as
matrices in the full U(N) group of linear transformations of N-vectors [87]. Based
on the Euclidean and Lorentz algebras, other discrete models are available in one
and two dimensions [88].

On the other hand, it is not clear that expansions in group-theoretic bases have
any advantage over other bases for expansion [89], since they do not seem amenable
to fast algorithms. Still, based on previous experiences, I harbor the hope that the
mathematical landscape succinctly described here can be of use to broaden the per-
spective we have of canonical transformations of phase space. The founders of this
field must have been quite unaware of the full panorama they opened for us to see.
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