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The map between
Heisenberg- Weyl and
Euclidean optics is comatic

Vladimir I. Man’ko and Kurt Bernardo Wolf

ABSTRACT The mathematics of coherent states is essentially a trans-
lation of oscillator quantum mechanics to the paraxial model of optics,
and is based on the Heisenberg-Weyl algebra and group. On the other
hand, “4x” optics is based on the three-dimensional Euclidean algebra and
corresponding group. We show here that a global map between the two
may be established. It is, in fact, third-order Seidel-Lie coma. Spherical
and circular-comatic aberrations are a proper subgroup of the group of all
canonical transformations of phase space, that can be subject to unique
quantization and wavization.

7.1 Introduction

Our previous joint work [1] addressed the question of the behaviour of
Gaussian beams, including Glauber coherent beams [2] and correlated co-
herent [4], [5] states, under spherical aberration. This is the only aberration
present in free flight, and is increasingly important at large angles from the
chosen optical axis [6].

The mathematical foundation of coherent state theory is the Heisenberg-
Weyl Lie algebra of the quantum mechanical operators of position and mo-
mentum [7], [8], with the harmonic oscillator physical model of optical fibers
of parabolic index profile [9]. This is a structure rich in results that has been
profitably applied to laser optics, among many other fields. Recent work on
Euclidean optics, i.e., “4n” geometric and wave optics [10] motivated our
enquiry into their exact relation. Physical three-dimensional optics requires
N = 2 dimensional screens. We shall work in generic dimension N because,
once we go beyond the simple N = 1 case, the mathematical formulation
allows easily such generalization. :

It is generally taken for granted that Heisenberg-Weyl optics is the paraz-
ial limit, meaning small angles and distances from the optical axis, of 4=
optics. We believe that Heisenberg-Weyl and Euclidean optics should be
described as separate mathematical structures. We show that there exists a
semi-global 1:1 map between the two, that assigns to each point in a RV
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Heisenberg-Weyl phase space one point in the Euclidean phase space of
2N dimensions where the optical momentum values are bounded and rays
are in the forward hemisphere, i.e., advance in the direction of the optical
axis. Another 2V space maps on the backward hemisphere, and continuity
conditions are asked to hold between the former two ‘flat’ spaces.

The map between the Heisenberg-Weyl and Euclidean optics is a point
Escher-like transformation between the N-dimensional momentum space
of the former and the interior of the N-dimensional momentum sphere of
the latter. In the N = 2 case of ordinary optics, the latter sphere interior
is a disk of radius n, the refractive index of the medium. The canonically
conjugate observables of ray position are then related by a map that is in
general circular comatic, and in fact precisely third-order Lie-Seidel coma.
This intertwining of Heisenberg-Weyl and Euclidean optics allows the lin-
ear (and nonlinear) symplectic transformations of the former to be applied
to the latter. And conversely, rotations [11] and relativistic boosts [12], that
act naturally on the sphere [10], are thereby applied on the ®V space of
Heisenberg-Weyl optics. The map is near to unity in the paraxial region,
t.e., small angles and distances from the optical axis, but extends analyt-
ically to all angles and distances. This we can do for both geometric and
wave optics.

Section 2 succintly derives the Hamilton equations of motion for optics
directly from Snell’s law in local form. The proof of this was presented
in Ref. [13] by a didactical route that is considerably shorter than that
of Fermat’s principle through the Lagrangian formalism [6]. The present
approach is adapted from Ref. [14]. The paraxial approximation is treated
- in Section 3, and is extended to the full Heisenberg-Weyl phase space.
We compare the (straight) trajectories of rays freely propagating in this
and in Euclidean optics and introduce, in Section 4, the opening coma
transformation between them. Section 5 then shows that in this way, indeed,
we intertwine the two different régimes of propagation in homogeneous
optical media. :

Heisenberg-Weyl optics has a distinguished transformation group, that is
larger than the Heisenberg-Weyl group itself [7]: linear symplectic transfor-
mations. Euclidean optics, on the other hand, accomodates naturally Eu-
“clidean and Lorentz transformations. In Sections 6 and 7 we apply the for-
mer group to the latter phase space, and viceversa. Such cross-applications
constitute apparently novel nonlinear realizations of these groups. Section
8 is set towards structuring the results for general spherical plus comatic
aberration maps of phase space.

The opening coma map in wave optics is seen from Section 9 on. From
the L£o(RV) inner product, through the map, we arrive at the Hilbert space
HY of oscillatory solutions of the Helmholtz equation with an inner product
that is nonlocal. In Sections 10 and 11 we follow through the coma map
the plane waves, 6’s, Gaussians (including coherent and correlated coherent
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states), and Bessel-function nondiffracting beams. They are analogous but
distinct in the paraxial (Heisenberg-Weyl) and in the global (Euclidean)
tegimes. Section 11 ends with the necessary context to present some open
directions into fields where the formalism of Heisenberg and Weyl has been
successful and where it could be extended to all ray directions.

7.2 From Snell’s law to the Hamilton equations

We consider a homogeneous optical medium (generally, of N 4 1 dimen-
sions), characterized by a refractive index n, separated by a surface ¢ from
a second such medium of different index n’. We assume o has a tangent
plane T,(S) at each point S € o, characterized by its normal (N + 1)-
dimensional vector f)(S ). Similarly, we denote by 7 and 7’ the ray direction
vectors that range over spheres of radii given by |7i| = n and |7’ | =n' the
two refractive indices. These are the Descartes spheres of rays in the two
media. The ‘rays’ may be one-dimensional straight lines in space, or may
be N dimensional planes with normals @@ and 7’ [10].

Snell’s law is the statement that the change in the direction vector n—mn'
be along the refractlng surface normal & at the incidence point of the ray.
When n = n' , then also # =7’

In ordlnary optlcs (N +1= 3) the law may be cast in the cross-product
form £ x i = £ x 7i’. The equallty of the norm of this relation implies the
familiar sine law nsin@ = n’sin @', with @ being the angle between » and
7, and similarly for the primed. This relation also tells us that the three
vectors are in a plane. Equally important, but generally left unsaid, is that
the incidence point S of the ray in medium n is the same as its departure
point S in medium n’.

Snell’s law in N + 1 dimensions implies that the projection of 7 on
the tangent plane T,(S) is conserved. This is the N-dimensional vector of
optical momentum referred to the tangent plane of the refracting surface.
The N coordinates of the incidence point S on the screen are also conserved.

Let us choose a standard Cartesian coordinate system in space where
points are (N + 1)-vectors ¢, where rays are geometrical lines §(z) =
(01(2),92(2), - .., an(2), 2) = (a(2), 2), z € R being the (N +1)™ coordinate
taken as the optz'cal azis, indicating by boldface the first N components
a(z), the position of the ray at the standard screen: the z = 0 plane . This
parametrization fails only for rays paralell to the screen; it is not a sin-
gularity of the space of rays but only indicates the limit of this particular
coordinate chart.

The ray direction 7 is the (N +1)-dimensional vector tangent to ¢(z), and
will depend on z when the medium is inhomogeneous through n(¢’). The
Cartesian components of 7 are not all independent since this vector lies on
the surface of the Descartes sphere of radius n. It is convenient to single out
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again the (N + 1)** component and write # = (p;,p2,-..,pNn,h) = (P, ),
where

h = 1v/n2? — p?, p’=pp, T€{+,0,-}(r =0 when h=0). (2.1)

The vector @ = (p,h), tangent to ¢'(z), is thus paralell to d¢(z) =
(dq,dz). Hence, the following proportion holds between each of their first

N components,

dq ol otk
dz kK - Op (A

The second equality is a consequence of the specific function form of h on
P given in equation (2.1).! The equality between the first and last mem-
bers in (2.2) is the first Hamilton equation. The origin of this equation
is thus purely geometrical. If the medium is inhomogeneous through n(q’),

infinitesimal changes in ray direction contribute only to second differentials

in q, so they do not appear in the first-order Hamilton equation.?

The second Hamilton equations are dynamical and speak of the inhomo-
geneity of the medium n(q, z) through the obeyance of 7(z) to Snell’s law.
Let the gradient of the refractive index Vn = (9n/dq, 8n/8z) take the role
of the surface normal & above. This vector will be parallel to the change
of the direction vector, dit/dz = (dp/dz,dh/dz). Let the ratio be a certain
a(p, q, z) that we shall find through the constraint that the direction vector
remain on its Descartes sphere, i - it = n? = p? + h2.

Thus, on the one hand,

d 42 d 2 dn

LR 27 - i 2ai - Vn, (2.3a)

and on the other, using (2.2) and the chain rule,

d 3 ong 2n(dq 0n+6n)_2n(g'_6_n.+6_n)
h

dz" dz 0 0z q 0z
n Bn on wills

From the equality of the last members we conclude that @ = n/h. Conse-
quently,

di n o
— = —Vhn. 24
dz. .4 i ki
Using again the function form of h, we write in components
dp non Oh
Sl R e B 2.5
dz hdq 0Oq’ i2-5a)

!We use the vector derivative notation 8/9p = (8/9p1,8/9p2,...,3/3pnN).
2Second differentials help to build the ray differential equation [15], that is of
second order.
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dh ndn Oh

dz = hoz 0z
The first and last members of these equalities constitute de second Hamil-
ton equations of motion.

(2.5b)

In the case of homogeneous media, n = constant, the equations of motion
(2.5) and (2.2) become, respectively,

dp _ & p Y p i
=0 = — (2.6a, b)

The solution to these equations in terms of initial (2 = 0) screen values po
and qo, is the ray path

Po ‘
p(2) =po, A(2) = Qo+ z:—F—- (2.7a,b)
This is a z-dependent canonical transformation [16] that conserves the
Poisson brackets

{6:(2),pe(2)} = bix, N S SRR (2.8a)
{6:(2), a(2)} = {pi(2),pr(2)} =0. (2.80)

The validity of the Hamilton equations (2.2) and (2.5) establishes q and
p as canonically conjugate quantities of optical position and momentum.
Position q € RV is the manifold of the standard screen plane; optical
momentum p ranges over the interior of the N-sphere |p| < n (a disk in
N = 2, 3-dimensional ordinary optics) once for forward rays (h>0, 7=
+), and once for backward rays (h < 0, 7 = —). The two charts are
separated by rays in the equator of the Descartes sphere (h =0, 7 = 0),
where we expect continuity conditions to hold. We shall speak for the most
part of forward rays T = +.

Evolution along the z-axis of Euclidean geometrical optics is thus ruled
by the Hamiltonian function

HE = —h=-—yn?2-p?
2 212
g ')
2n+ 8n3 E 16n5

2)3

ke s (2.9)

that is (minus) the (N + 1)*P-component of the ray direction vector. The
series expansion will be now subject to scrutiny.
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7.3 The paraxial régime
and Heisenberg—Weyl optics

We consider now the parazial optical régime, i.e., the approximation that
is valid when the angle 6 between rays 7 in a light beam and the chosen
optical z-axis is small. In (hyper) spherical coordinates, this angle is given
by the rays’ momentum p through

|p| = n siné. (3.1a)

The paraxial approximation thus entails selecting a region of optical phase
space restricted by

0l € 7w, i.e., |p|<Kn. (3.1b)

For such beams the Hamiltonian (2.9), expanded in power series with re-
spect to p?/n?, is approximated by the parazial form
2
p
HE =~ =—— —n. 3.2
m @3:8)
If the refractive index n is a constant, this is the Hamiltonian for mechan-
ical free motion in N-dimensional space. The corresponding phase space is
9N-dimensional, and its basic group of motions is the Heisenberg-Weyl
group. Let us consider now this Hamiltonian and its free motion dynamics.
We may omit the constant term —n in (3.2) since its Lie operator is zero,
and describe the free motion system by the Heisenberg-Weyl Hamiltonian

e 2 »
H ™ P°=P-P. ' (3.3)
Throughout this paper, we shall use capital letters P and Q to indicate that
the observables belong to the Heisenberg-Weyl phase space while lower-case
p and q will remain for Euclidean optical variables.

The Hamilton equations of motion in phase space (2.2)-(2.5) for the free
point particle are
¢ BHE" P

dP. . GE"" o

dz ~— 8Q

The solution to these equations is

P(z)=Po, Q(z) = Qo+ zPo/n, (3.5a, b)

where Py and Qg are the initial momenta and positions in phase space.
Compare this with equations (2.6) and solutions (2.7) in Euclidean optics,
which are also straight lines in space. These relations are here linear, and
may be written in matrix form through 2N x 2N symplectic matrices with

e+ et e = TAW =M O

e e+~ O el

e gt LR 6N e
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FIGURE 1. The map from Euclidean to Heisenberg-Weyl propagation: The ray
coordinates are regressed back to the screen z = 0; next, the opening of Euclidean
to Heisenberg-Weyl ranges; lastly, we evolve the ray from the screen to general z
in the Heisenberg-Weyl regime, i.e., paraxial optics.

N x N blocks that are proportional to the identity matrix. Such transforma-
tions are also canonical since they preserve the Poisson bracket as in (2.8).

What are the phase space bounds of this paraxial construction? In prin-
ciple none that may be naturally incorporated in the Heisenberg-Weyl al-
gebra with basic Poisson brackets (2.8) or the corresponding Lie groups.3
Moreover, quantum mechanics (in the standard theory) demands that ob-
servables have self-adjoint operators to their name, and the familiar
Schrodinger or coherent-state generators of the Heisenberg-Weyl algebra
need the full real line, both for Q and P. Finally, the possibility of using
the linear symplectic group for paraxial optics also hinges on the assump-
tion that the range of momentum P be the full plane ®V. In fact, we know
that nonrelativistic mechanics is a consistent mathematical theory of much
practical use in paraxial optics, and the basis for aberration expansions into
the metaxial regime. But we stress that it is a theory globally different from
the 47 Euclidean optics presented in last Section. We shall now proceed to
find the map between the systems obeying HZ and HH#W .

®In reference [17] we examined a 1-dimensional Heisenberg-Weyl group where
the momentum parameter is cyclic —direction lies on a circle in two-dimensional
optics. This entailed that the conjugate position parameter be discrete (cf. the
sampling theorem) denying thus the possiblity of having an infinitesimal trans-
lation generator. The central subgroup is also forced to be cyclic —as it should,
being a phase. The N-dimensional version of that construction yields the direc-
tion vector as ranging over an N-torus, however, instead of an N-sphere.
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7.4 The opening coma map

As we stated in the introductory Section, the aim of this work is to construct
the map of the free optical trajectories given by the formulae (2.7a, b) onto
the free motion trajectories in formulae (3.5a,b).

In fact, comparing each two formulae, we see that we must find the
point transformation in p-space from ray directions, that maps the factor
p/+/n? — p? in Eq. (2.7b) onto P in Eq. (3.5b). The canonically conjugate
position coordinates must be chosen to satisfy the demand of canonicity of
the desired transformation. This can be seen in Figure 1, and consists of
three factors: first, we regress the optical ray back to the standard screen
z = 0; second, we perform the opening transformation from the Euclidean
to the Heisenberg-Weyl variables, and in such a way that the two different
momentum ranges are properly related; and third, we evolve the ray from
the screen to general z in the Heisenberg-Weyl regime.

The first factor in the map will be thus the transformation inverse to
(2.7), i.e., backward free propagation of Euclidean rays; this we may write
in terms of a Lie transformation [16]: 4

po = p(0)= exp(+szE)p(z) = p(2), (4.1a)

@ = q(0)=exp(+zHE)q(2) = q(2) - z\/nTp—(zl))—(z)?. (4.1b)

The last transformation, Egs. (3.5), is the forward evolution in Heisen-
berg-Weyl mechanical space. It may be similarly expressed as a Lie expo-
nential

P(z) = exp(—zHHY)P = P(0), (4.2a)
Q(z) = exp(—zHH%)Q =Q(0) + zP(0)/n. (4.20)

“We recall that, associated to every differentiable function f, we define its Lie

operator
3 § 8f @i 9f @8
f={fo}= Z (3% dp;  Opi BQ.)

t=1

These operators have the important property of intertwining with commutators,

{f,9} =1[f,4),

so that we may speak of the Lie algebra generated by a set of functions under the
Poisson bracket. The Lie transformation generated by f is the exponential of its
Lie operator,

expf=§:,—} "= S S o))

These transformations are well known to be canonical.

m

t¢
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FIGURE 2. The geometric map from Euclidean to Heisenberg-Weyl momenta, p
in the former and P in the latter, 7 is the ray direction vector.

The basic opening transformation at the screen is the following:

p—P = Cp————-——-p—-——— (4.3¢)

e
q—Q = Cq=\/1—p2/n2( —-Egp-qp)- (4.3d)

This transformation opens the compact Euclidean momentum range |p| < n
to the full Heisenberg-Weyl momentum plane R . We have called this map
comatic because it is in fact a particular case of a Lie transformation [18],
generated by the coma monomial 2¥Z = p?p-q [14], [19]

P, = exp(yp’p-q)’p =p/V1-27p? (4.4a)

p+ 7P + 22(p*)’p + 3°(0?)°p + - - -. (4.4b)

Qo = 'exp(-)/p:!p-q)“q =+/1-2yp%(q — 27p-qP) (4.4c)
q-7(r’a—2p-qp)
- 7’p*(3p’a - 2p-qp)
—y3(*)?*(p’a —p-ap) - -, (4.4d)

for the value ¥ = 1/2n? of the parameter. To third degree in the phase
space variables we have the usual third-order Seidel coma of optics; the full
Lie series defines the Seidel-Lie global coma aberration.

In Figure 2 we show the geometric map between the Heisenberg-Weyl
momentum plane and the ‘forward’ half-circle of ray directions and its
projection on the Euclidean momentum segment (—n,n). Correspondingly,
in Figure 3 we show the position variables q/(p,q) (in N = 2 dimensions)



172 Vladimir I. Man’ko and Kurt Bernardo Wolf

FIGURE 3. The spot diagram for the ‘system’ C. A 90° pencil of rays in
5°-intervals in paralells and 16 meridians, issuing from a point at the upper
right corner, upon passage through this ‘C-system’, maps on the indicated points
on the screen.® ‘

for q fixed and letting p range over a polar coordinate grid around the
optical axis, i.e., the spot diagram of the ‘system’ C.

The vector function A(p?)p?q + B(p?)p-qp maps a cone of rays (p® =
constant) twice onto a circle on the screen, of radius %Bp"’q, q = |q|, and
center at (A+ -;—B)pzq. These circles are tangent to a sector with apex at q
and half-angle of 30° at the apex. Figure 3 shows that as |p| increases from
0 to n, the radii grow from zero to a maximum and then decrease back
to zero. The segment of circle centers starts at q and ends at the optical
center q = 0. This is the global spot diagram of the coma transformation:

The inverse comatic map C~! may be obtained from (4.4)—(4.5) for the
negative value of the parameter v = —1/2n%. This yields the inverse of
(4.3) to be :

s TR e (4.6a)

1+ P?2/n?’
a=C"'Q = 1+ P*/n? (Q+;15P-Q P). (4.6b)

This map closes the noncompact range of Heisenberg-Weyl ‘directions’
into the compact region of Euclidean ray directions. Figure 4 shows the
spot diagram of the ‘system’ C~!; the comet-like sectors in the spot dia-
gram are now unbounded. We note the following useful identities under the

®Figures 3 and 4 have been prepared using the program SPOT.D developed
by Guillermo Correa at IIMAS-UNAM. See: G.J. Correa-Gémez and K.B. Wolf,
SPOT.D, Programa para graficacion de Diagramas de Manchas en Optica. Comu-
nicaciones Técnicas IIMAS, Serie Desarrollo, No. 97 (1989).
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FIGURE 4. The spots diagram for the ‘system’ C~!. Rays with Heisenberg-Weyl
|P| < n/2 (corresponding to P = nsin ©, |©| < 30°), in six intervals of 5°, issuing
from a rectangular grid of points at the apeces of the comet (coma) spot.

transformation:
1 1
{ s allat 1 B e :
2 1+ P2/n?’ i /n 1—p?/n?’ Ly
pa = P-Q(1+P?/n?), P-Q=p-q(l-p°/n?). (4.7b)

7.5 The map between Heisenberg-Weyl
and Euclidean free rays

We have the backward transformation to the reference screen z = 0 for
Euclidean rays in (4.1), the basic comatic map at that reference screen in
(4.3), and the forward evolution from the screen to general z in (4.2). We
now compose the three Lie transformations in that order:®

(82) = op-sn®) ¢ emer™) (B3). 1)

To compose the Lie transformations we consider the three operators acting
on dummy variables that are called simply p and q. We do this explicitly:

(28) I eXp(‘ZHE)C(q+I:p/n) (5.2a)

6We recall that we use capital P, Q for Heisenberg-Weyl phase space variables ‘
of N-dimensional mechanical systems, and lower-case p, q for the N-dimensional
screen in (N + 1)-dimensional space.
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= exp(—-—zHE)( £p ) | (5.2b)

Cq+ z2Cp/n

np/h ‘
= exp(—zHE) B[q - 2ge] 4.2 (5.2¢)
np/h ;

= 5.2
%[(,Q—ZE)—,;—% -(q-z}%)p]“% 2

y np/h

= . 2 : 2

bla-2ge)+2(3-5)2 ) e

where as before we have abbreviated h = 74/n2 — p2, and consider the
T = + hemisphere of rays.

The z-dependent map that relates the (lower case) Euclidean and (upper-
case) Heisenberg-Weyl trajectories is thus

P PSR independent of z, (5.3a)

Qe = VImp(a() - 2R
+(_T\/Tl—p2—'ﬁ3 ¥ [1 E '5;]) : (5.35)

At z = 0 we have the simple comatic map C in (4.3). In the process of 2-
evolution, the maps start to differ from the pure comatic one by a term of
spherical aberration that increases linearly with z. Finally, the map mverse
to (5.3) is

P Smuics Th independent of z, (5.4a)

a(z) = \/W(Q(MP-%(;)P)

{2 (—-1—;\/__1-}-)_;__/—7{5 ¥ {1 + ’—;D = (5.4b)

We could be tempted to think that the map between trajectories may be
obtained dispensing with the middle transformation C, simply regressing
the Euclidean trajectory to the screen and taking this as the initial ray
parameters to advance under the Heisenberg-Weyl free-flight Hamiltonian.
We must remember, however, that the two phase spaces are essentially
different and the C and C~! maps are therefore needed to intertwine the
two ranges for the momentum variables, |p| < n and P € il
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7.6 The symplectic group
on Euclidean phase space

The map between Heisenberg-Weyl and Euclidean phase spaces allows us
to find explicitly the action of the inhomogeneous linear symplectic group
ISp(2N, R), well known in its Heisenberg-Weyl realization, on the N-sphere
interior |p| < n, the true phase space of optics. For the case of ordinary
optics (N = 2 screen dimensions) the group is the four-dimensional inho-
mogeneous symplectic group ISp(4, R).

The 2N + 1 functions whose Lie operators generate the N-dimensional
Heisenberg-Weyl group of phase space translations and its center are

P; = —\/-I_-_:I—)—%_—%-z-, Q; = V1 —p?/n? (Qj - p_:;]z_p,_) e -1p  (Gslapb,c)

for'i, j = 12,0 [, NOThe —%N (N + 1) generators of the linear transforma-
tions are
PP; = pp;/(1-p*fn?), (6.2a)
B0 pigj +p-apipj/n®, (6.2b)
QiQ; = (1-p*/n?)
X (‘1:"]1' - p-a(@p; + 4ipi)/n’ + (P-9)°Pip; /n4)~ (6.2¢)

These functions close into the algebra of ISp(2N,R) under the Poisson
bracket. The maximal compact subgroup of Sp(2N,R) is the rotation sub-
group SO(NV) within the N-dimensional screen generated by the linear com-
binations R; ; = P;Q; — P;Q; = piqj — P; - These generators also belong
to the Euclidean algebra and will be seen below. The part of ISp(2N, R)
that has zero Lie brackets with the R; ; is the subalgebra Sp(2,R) of azis-
symmetric systems. Explicitly, the generators of this ‘radial’ Sp(2, R) are

P 0t/ (s plind)s (6.3a)
P.Q = (1-p’/n*)p-q, (6.30b)
Q* = (1-p/n)(e* - 2p-@)*/n® + P(p-0)*/nt).  (6:30)

By exponentiation, (6.1) generate the finite translations

expE - P (g) = (QEE)’ expF-Q (g) = (P(—SF) (6.4a,b)

The quadratic functions (6.2) generate linear transformations that we may
put in matrix form as

(5)=s(5). s=(c5) (6.:50)
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where S is a symplectic matrix, i.e., that satisfies

SMS™ =M, M= (_?1 -(1)> : (6.5b)
where T indicates transposition, and M is the symplectic metric matrix.
The 2 x 2 block realization for S leads to well-known relations between the
N x N block matrices [6]. The axis-symmetric linear combinations (6.3)
generate the subset of matrices (6.3b) where the submatrices are multiples
of the N x N unit matrix.

The action of the Heisenberg-Weyl group on Euclidean phase space co-
ordinates, for “position”-translations (6.4a), is

E

E
a 2 a-e(E), epE)=VI-p/n(E+2575p), (660)
P , 'E’ P, and note e(p: El) + e(pa E?) = e(p’El + E2) (66b)

For momentum translations (6.4b),

q & /1+2pf/n2+ f2/n?
x[a+ &{f-(a- &p-ap)(p+£)+p-all ~ p?*/n))t}|, (6.70)

F p+f
V1+2p£/n? + f2[n?

The translation (6.6) affects only the screen coordinate; for vanishingly
small p, e(p,E) =~ E is the translation (6.6a) of q; as |p| becomes larger,
E starts to differ from e(p, E); as |p| — n, the translation diverges in the
direction of p. The: momentum translation (6.7) is more complex since it
affects both q and p. Again, for vanishingly small |p|, f(p?,F) ~ F; the
size of the vector f decreases with increasing p? < n?; as |p| approaches
n, the Euclidean limit of large-angle rays, we have f(p, F) = 0. This effect
may be seen in Figure 2 as we translate the Heisenberg-Weyl momentum
plane P: the p-sphere moves as the image in Escher’s reflecting balls. It is
important to note that both (6.6) and (6.7) have the functional dependence
of p and q given by a point transformation in p, i.e., p’(p) but qd(p,q).
This is a distortion in momentum space that entails a comatic aberration
in the image on the screen.

p f(p?,F) = /1 - p?/n?F. (6.7b)

We can now write the linear transformation S in (6.5), generated by the
quadratic functions (6.2) on the true Euclidean optical phase space vari-
ables p, q. For the rotation subalgebra and subgroup, the results will be
given in the next Section. Here we can write the results for the Sp(2, R) ac-
tion of Heisenberg-Weyl axis-symmetric optical systems generated by (6.3).
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Thus:

(g) = O 80 (fl) (6.8a)
L\ feig ( p/\/1—p?/n? )
v/1-p?/n%(q—p-qp)
L g ( (Ap + Bq)/Rs(p, q) )
Rs(p,q)[(Cp + Dq) — Ts(p, a)(4p + Bq)]
Ap® + Bq°)/R¢
g (Rcac —(A.fz)*sc]pc +q[z))/ ¥ BTg]qC)) (S

where p¢ = C~!p and q° = C~1q are given by (4.6), while R°(p,q) =
R(p®, q°) and T§(p,q) = Ts(p®, q°) are to be replaced from
Rs(p,q) = V/1-(A%p?+24Bp-q+ B%¢*)/n?, (6.9a)
Ts(p,a) = (2ACp®+[AD+ BClp-q+2BDq*)/n*.  (6.9b)

This is a case of a point-linear-point transformation (in N dimensions) of
the kind studied by Leyvraz and Seligman [20], exchanging p and q.

We can explicitly find the linear transformation subgroup generated by
Heisenberg-Weyl free flight,

o (5) = (3)= (o o)~ (e D(R):

on the Euclidean phase space coordinates. It is

AoapP = b, (6.10a)

Acd = a- 20'(1——_—791;—/55-55. (6.10b)
For small |p|, the relation of A, q with q and p appears linear. For |p|
approaching n, the screen transformation (6.10c) of q diverges in the di-
rection of —p when a > 0. This is the inverse of spherical aberration, i.e.,
the error we incurr when we propagate Euclidean rays by Heisenberg-Weyl
free flight. :

Pure magnification,

Bg (g) = exp fP-Q (g) = (66_55122) = (eoﬁ e(_)ﬁ) (g), (6.11a)

on Euclidean phase space is

10a)

A b ’p (6.11a)
Fipsr e ST '

. jio
Bsq = \/1+(ezﬁ—l)pz/nz[e”pq-i-2-7—1—2-smhﬂp-qp].(6.11b)
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Again we check that for |p| <« n the map resembles a linear one, while

for |p| — n the action becomes the identity, keeping the boundary of the

Ip| = n sphere in its place. Again, a glance at Figure 2 confirms intuition.
Finally, a “Gaussian thin lens” transformation,

C, (g) =exp7€/2\2 (g) = (P+Q27Q> = ((1) 217) (g), (6.12a)

on the full direction hemisphere appears as

C,p= L2 . (6.12b)
V1 - P?/n? + p2 [
where
p,(P,q,7) =P +27(1 — p?/n*)(a - 1—115p~qp), (6.12c)
and

. 1
C,q= \/1 — p?/n? +p$/n2(1 + I;*f’ ) (q # ﬁp-qp)- (6.12d)

n2 — p?

The function p,(p,q,7) in (6.12c) becomes linear for small |p| and ap-
proaches the identity at n. The phase space transformations in (6.12b) and
(6.12d) have the same behaviour; the boundary |p| = n stays put.

Much, if not the whole Lie theory of aberrations, has thus far been based
on transformations generated by polynomial functions of the Heisenberg-
Weyl phase space variables [1], [6]. We may now let these act on the phase
space of Euclidean optics. Thus far we have involved only the forward
hemisphere of ray directions, h > 0. If we take the negative sign of the
square roots in (4.3) we open the Euclidean momentum sphere onto a
second Heisenberg-Weyl momentum plane that describes backward-moving
rays.

7.7 The Euclidean and Lorentz groups
on Heisenberg-Weyl phase space

The natural group of motions of Euclidean optical phase space is precisely
the Euclidean group. For the general case of (N + 1)-dimensional optics
with N-dimensonal screens this is the group ISO(N + 1). We shall now
discuss how this group acts on the R2N phase space of Heisenberg-Weyl
optics, why two copies of the momentum space RN space are required, and
a certain similarity group that seems to be operating.
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-

N\

FIGURE 5. The map of the sphere of ray directions between two Euclidean disks
and two Heisenberg-Weyl planes.

The N functions that generate translations in the Euclidean screen and
the (N + 1)*® generator of evolution normal to the screen are

Py % RERE. . R i=12...N, (7.1a)

1+ P?/n?’

™ .
BE: it o Ympe gl Bl LR 007 quoyaseayd] P o (D
~ f V1+ P?/n? e

The last generator is (minus) the Hamiltonian; its two signs give the two
forms of the generator on each of the two Euclidean momentum spheres
(disks in ordinary N = 2 optics), corresponding to forward- and backward-
directed rays.” The latter are the mirror images of the first reflected on
the reference plane, exhibiting the same value of the momentum p, but
differing in behaviour under z-translations due to the sign 7 of h, the label
of the chart. See Figure 5. '

The generators of rotations within the Euclidean screen submanifold are
Rij =pigj —pjei = PiQ; — PjQi, i#j=12,...N. (7.2a)

The forms are the same in both spaces because they depend only on the
angular transformation properties of {p,q} and {P,Q}, and not of their
sizes, nor 7; they close into the Lie algebra of SO(N).

Rotations out of the plane of the screen are generated by
Rf yy1 = Gh" = 7(nQi + £P-QR), i=1,2,...N. (7.2b)

]

7Strictly, we should speak of forward and backward hemispheres, joined by
an equatorial circle, corresponding to 7 = +1, —1 and 0. The equatorial rays are
disregarded here; they should serve as limit points for sequences of rays in either
hemisphere [10].
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These are two-chart functions R(p,q;7) = R"(p,q) = TR*'(p,q). They
formally close under Poisson brackets, regardless of the fact that the two
charts are mixed under finite out-of-screen rotations: the corresponding Lie
exponentials must be dealt with care, but the Lie algebraic properties are
less sensitive to global domain problems.

The Poisson brackets between (7.1) and (7.2) are:

) o= 0 and similarly for P’s, (7.3a)
{Ri;,pr} = 6;jrpi—bixpj, and also P’, (7.3b)
{Rij,Rii} = 6 xRig+6i1Rjk+ bR+ 651 e i- (7.3¢)

The Lie brackets hold for ¢,...,1=1,2,..., N + 1. The first two also hold
when we replace p; by ¢; for ¢ = 1,2,..., N. The functions ¢;, however, are
not among the generators of the Euclidean group of motions; the handling
of ¢;’s by themselves follows from the canonical formalism. In Ref. [10] we
presented arguments to distrust the Euclidean wavization of the ¢; into a
self-adjoint operator. In the Heisenberg-Weyl setting, on the other hand,
the natural and consistent quantization of Q; is into the familiar self-adjoint
Schrodinger operator.

The N-sphere of ray directions of Euclidean optics lends itself for the
action of the Lorentz group SO(N +1,1). This group of relativity is a defor-
mation of the basic Euclidean group ISO(N +1) [12]. The boost generators
in N dimensions are given by the (N + 1)-vector

B; = ng-— ilp.qp; = Vn? + P2Q;, (74a)
BG4 = —ip.qh” = —7/14 PZ/n?2P-Q. (7.4b)
The brackets between (7.4) and (7.2) close into the Lorentz algebra:

{Rij,Br} = 6;xBi—bixB;j, (7.5a)
{Bi,Bj} = —Ri;. (7.5b)

The last function (7.4b) generates boosts along the optical axis; it is also
a two-chart function due to the factor h” containing r; we shall omit the
index 7 on h since it is given by the latter’s sign. The Lie transformation
exp aBy 41 distorts the angle 6 (between a ray and the optical axis) through
[12] tan 16 + tan 16’ = e~ tan 36, mapping thus the backward direction
region 37 < 6 < 2arctane® into the forward hemisphere.

We should point out the striking similarity between the expressions for
out-of-screen rotations (7.2b) in terms of p and q, and that of boosts (7.4a)
in P and Q. Indeed, R; n+1(gi,/1— p?/n?) = Bi(Qi, /1 + P2 /n?). The
R’s close under Poisson bracket to a rotation algebra and the B’s to a
Lorentz algebra because of the sign of p? in the square root is negative
while that of P? is positive.
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The Euclidean translations are generated by (7.1). The Lie transfor-
mation + of translation by e = (e1,€2,...,en) in the screen plane is
exp ) e;p;. Its action on Heisenberg-Weyl phase space is the converse of
(6.6), namely
P-e

| 1
V1+ P2/n? (e+ n2 4 P2

P S P, and note E(P,e;) + E(P,e;) = E(P,e; +e3).  (7.6b)

Q l—g} Q = E(P,e), E(P,e) =

P) (7.6a)

Euclidean rotations in the N-screen, generated by R;; in (7.2a), com-
mute with the opening coma map, and provide the Petzval invariant as
i i ; Rij Rij, the SO(N) second-order Casimir operator. These rotations
coincide with the maximal compact subgroup SO(N) C Sp(2N,R). On the
other hand, SO(N + 1) rotations (7.2b) out of the screen plane, are gener-
ated by > o R{ n 41 For any single i, the effect of the Lie transformation

Ri(a) = exp a}?{, N41 = €Xp ag:h on Euclidean ray direction is

| picosa+ hsina, i=j,

R; ' Pi = iy 7.7
(o) : s {pj, i # 4, i

Ri(a) :h = —p;sina+ hcosa. (7.7b)

In writing h explicitly in the transformation we can distinguish between
the forward and backward hemispheres through its sign.

To obtain the action on Euclidean ray position ¢;, we note that the
transformation properties (7.7) of the p; are the same as those of R} ., =
gih, hence

Ra(a B i i {R"”“’ i=b9: (1

RiNy1cosa+ R;jsina, ©#j.
Thus, writing R; n41 = ¢ih — R; y,1 = qih’, we find the effect of the Lie
transformation on Euclidean position as

9
) cosa—p/hsina,
Ri(a) :q; = gj cosa — (piq; — pjqi)/h sina

(7.9)

cosa — p;/h sina 4:
The denominator may vanish for tan @ = h/p;: rays that become paralell to
the screen. The singularity only indicates that a change of chart is required
to go beyond, because then the ray will come from the opposite side of the
screen.

Let us write explicitly the Euclidean action on the Heisenberg-Weyl vari-
ables {P, Q} € ®2", obtained through the opening coma map. Translations
generated by p;(P) in (7.1) were shown to have the action (7.6). The SO(N)
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rotations generated by (7.2a) have the same action on {P,Q} € R2V as on
{p,q} € R],, ® RY. Out-of-screen rotations in are SO(N + 1) generated
by (7.2b) and their action on p-space was seen in (7.7a) and on g-space in
(7.9). Aiding ourselves with the transformation (7.7b) of h as component
N + 1 in Euclidean optics, we find for the Heisenberg-Weyl momentum
space
P; cosa + nsina ;
® ) L= ]’
Reba) 15 = 4 Lyname (7.10a)
: i# 7,

cosa — P;/n sina

Rid) + o/ TTPIPRs L b lldah b it (7.10b)

cosa — P;/nsina’

To obtain the action on position @; through the opening coma map
(4.3b), the rotation on g; from (7.9) and the inverse coma map (4.6b), it is
useful to know the transformation properties of p-q under such rotations.
From (7.7) and (7.9), and in view of (4.8) and (7.10b),

p-q cosa+n?/h (¢; - n%pqp,-)sina
cosa — p;/h sina :

Ri(a) :p-q= (7.11)

The expression in parentheses above is ¢; — >p-qpi = Qiy/1+ P%/n2.
Through this we obtain

(.. — J(cosa—Pi/nsina)(Qicosa—iP-Qsina), i=j,
Rl - Q= {Qj (cosa — P;/n sina), : fskis
(7.12a)

Ri(a) :P-Q = (cosa— P;/nsina)(—nQ;sina+P-Qcosca). (7.12b)

We write the last expression because the out-of-plane rotations R;(a) will
transform the components of B;, ¢ = 1,2,...,N, N + 1 amongst them-
selves;® modulo the factor v/n? + P2, P-Q/n suggests itself as the (N +1)h
component of the N-vector Q. The (N + 1)*" component of the Euclidean
N-vector q is zero, as can be seen in the same equations (7.3) because we
are in the standard Euclidean screen. In a similar way, the factor H =
vn? 4+ P? transforms as the (N + 1)*" component of the N-vector P, as
was given in Eq. (7.10b); this fittingly corresponds with h, cf. Egs. (4.7),
as the (N + 1)** component of the (N 4 1)-vector of ray direction on the
Descartes sphere p? + h% = n2. We are now on a hyperboloid H? — P? = n?
however.

®Indeed, the B; may be written as R; n42 and appended to the list (7.2) with
commutation relations (7.3c), except that the Kronecker §’s that appear should
be replaced by g;; thatis 1 when ¢ = § < N and —1 when ¢ = 5 > N + 1, and
zero otherwise.
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To obtain the action of the Lorentz boost operators (7.4) on Euclidean
and Heisenberg-Weyl rays, we use the curious similarity noted above. In-
deed, transformations generated by B; = ng; — %p -qp; on {p, q} are ‘sim-
ilar’ to those generated by R; n+1 = nQ; + %P-Q P; on {P,Q}, the latter
given by (7.10) and (7.12). Also, transformations generated by B; = HQ);
on {P,Q} will be similar to R; y+1 = h¢; acting on {p,q}, in (7.7) and
(7.9). Replacing {¢i,h} = —p;/h by {Q:, H} = +P;/H seems to have the
effect of changing the series sina — —sinha and cosa +— cosha. As a
check, we may compare R;(«) : @; in (7.12) through the upper-by-lower-
case and series replacements with equations (13.6) in reference [10], found

in [12].
We are left with the computation of the transformation generated by
the boost normal to the screen, By4+1 = —-;i—p-qh = —P-QH. This is

self-similar in the same sense as the R;; in (7.2a). The boost formulas
appear in the companion article [10], Egs. (13.1) and (13.3), and were also
presented in [12]. For completeness, we reproduce the formulas here for the
Euclidean phase space variables:

P
B, : - - : .
4 cosha + h/n sinha (7.13a)

sinh a P'q
nsinha 4+ hcosha n p

B,:q = (cosha+ h/n sinha) (q—— ) (7.13b)

The same transformation holds for the Heisenberg-Weyl variables upon
replacement of q, p,and h by Q, P, and H = v/n2 + P2.

7.8 Spherical aberration, coma, and point
transformations in phase space

Let us remark a general feature of the maps seen here and, indeed, of
the generator functions themselves. They have the structure P — f(P),

- @ — g(P)Q+h(P) and similarly for the lower-case Euclidean variables, and

in many dimensions. Such are point transformations in P-space, a proper
subset of the group of all canonical transformations in phase space. The gen-
erators of (2m — 1)t"-order spherical aberration [6] are (P?)™, m =1,2,.. .,

~ while those of (2m — 1)*'-order circular coma® are (P?)™~'P - Q.

The Lie transformations generated by (7.1b), or by any functions f (P?*) =
F(P?), will map {P, Q} € 2 in the following way:

xp AF(P?) (g) - (Q B QAI;,(PQ)P) . (8.1a)

®For m = 1 we have first-order ‘aberrations’. The linear symplectic ‘free flight’
P? is first-order spherical aberration; magnification P-Q is first-order coma and,
as its own Fourier transform, first-order distortion.
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In Optics this is termed spherical aberration because a pencil of rays P € R2
issuing from an object at Qq, produces an image Q(P, Q) = Qo + a®(P)
containing a spread & paralell to P, unbounded, and independent of the
location of the source Qg in the object screen.

The generators (7.l1a) of translations in the screen are of the form
F(P?%)P. The Lie transformation generated by a coefficient vector B is

exp[F(P?) B-P] (g) e (Q 48 :;F,PP.]B) . (8.1b)

Rotations generated by (7.2a) will transform transformations (8.15) among
themselves.

In-screen rotations (7.2a) are standard, but (7.2b) and (7.4) are of the
generic form g(p,q) = ¢ (1*)¢; + ¢/ (p*)P-api = G(P, Q) = GI(P*)Q: +
GI1(P?)P-Q P;, while the SO(N) scalar (7.4b) has the form h(p?)p-q =
H(P?)P-Q. They are linear in the components of position: g(p,zq) =
zg(p,q) and G(P,XQ) = XG(P, Q). The Lie transformations they gen-
erate are of the form

wos(3)-(ohBo) o

where Q'(P,Q;C) is a function of the same kind as G described above
with vector indices ‘balanced’ to one. Similarly for the lower-cased letters.
These are point transformations of momentum space (i.e., distortions of
it). As far as (7.4b) is concerned, and as detailed in Refs. [10] and [12],
the Fourier transform of distortion is circular comatic aberration of the
image position space. The spot diagrams of Lorentz boosts (7.4a) in the
screen plane (Ref.[10], Fig. 5b), are SO(N + 1)-rotated versions of the basic
comatic aberration (in Ref.[10], Figs. 5a and 5c¢).

For N = 1 dimension, it is well known that functions ®(P, Q) = &/ (P)Q+
®I(P) close under Poisson brackets and thus generate an infinite-dimen-
sional subalgebra in the enveloping algebra of Heisenberg and Weyl. They
thus serve also as function space for the Lie transformations. In addition,
such functions are uniquely quantized [7]. 1° For N = 1 dimension, we have
explicit formulas (with an indefinite integral) for Q'( P, @; C); singularities
may occur, having to do with the ®’s range. General formulas for the N-
dimensional case are not available, but discussions with F. Leyvraz [20],
IF-UNAM, suggest that they can be found explicitly.

1%For such functions, Poisson brackets and commutators of their Schrédinger
operators follow each other. All quantization rules leading to self-adjoint oper-
ators give the same result on functions that are linear in one of the conjugate
observables.
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Spherical aberration and circular coma (of all orders), together with
their rotated aberrations and the opening coma introduced here, consti-
tute a subring of Heisenberg-Weyl whose study should be interesting. The
Euclidean and Lorentz algebra presented above are only (the only?) finite-
dimensional subalgebras.

7.9 The Hilbert spaces for Heisenberg-Weyl
and Euclidean optics

Quantization in the Heisenberg-Weyl model of optical phase space is essen-
tially £2(§RN ) quantization & la Schrodinger. The Fourier transform plays a
prominent role intertwining the configuration and momentum representa-
tions [8], so the subject is also called Fourier optics. Wavization of Euclidean
optics, on the other hand, involves solutions of the wave equation; Fourier
frequency analysis of a signal decomposes the space of waves into subsets
that are solutions of the Helmholtz equation for each wavenumber [10].
There is a ‘Helmholtz-Hilbert space’ that uses for function range and inner
product integration the two momentum spheres (disks in N = 2 dimensions
[10]), joined at their surfaces (perimeter in the N = 2 case). Here we shall
show how the opening coma transformation intertwines between functions
in Heisenberg-Weyl and Euclidean-Helmholtz wave optics.

The opening coma map (4.3a)—(4.6a) in radial and angular variables, is

o el
V1 =p?/n?’
and we also need the radial differential
dP = (1 — p?/n?)~3/2dp. (9.1b)

We express the inner product of the L£2(RV) Hilbert space of square-
integrable Heisenberg-Weyl wavefunctions in the momentum representa-
tion P € RV, in terms of an integral of the Euclidean momentum p over
its proper range |p| < n. Thus,

Pe Qp = wp € Sn-1, (9.1a)

@ Ve = [ PP UP) ' (9:20)
= / PN-4p
0
X dN-1Qp ®(P,Qp)* ¥ (P,Qp) (9.2b)
SN-1

PRt pN-ldp
— Jo (1-p?/n2)N/2tL

x [Vl P IR ) (020
S

N=1
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de

= /ese” — p2/n2)N/2+1
R SR T

o(P(p))"¥(P(p)) (9-2d)

N
Lo ”'_'_idf%ﬁ“p)*"’(p) _ (9.2

Ipl<n

% /sg) aVS(F7) $(8)" $(F) = (6, V)0 (0:2f)

The L3(RY) inner product (9.2a) is expressed in the radial and angular
variables of P in (9.2b) and of p in (9.2¢). The integral (9.2d) shows that
the inner product in Euclidean momentum variables has a weight factor
(1 — p?/n?)~(N/2+1)_ The integrand in (9.2¢) defines ¢ and ¢ such that
the last integral, (9.2f), be over the forward hemisphere 51(v+) of the N-
dimensional surface of the Descartes sphere of ray directions. The sphere
Sy is inmersed in an (N + 1)-dimensional space whose ray vectors are
7= {p = nsinfwp, h = ncosf > 0}, whose radii are p-p = gk A2 =md,
and we may write p = |p| = nsinf. The surface element of the Descartes
sphere is then

; N—ld dN--lw de
dNS—': N~N—10d0dN—1 =p 14 D i ¢
e RV e e

(9.3)
In SI(\}*) the lower-case Greek wavefunctions of p are related to their upper-
case counterparts through a measure normalization factor,

(@) = v4(p) = |1 —p*/n? "N AU(P(p))

= |14 P/ (N+D/Ag(P(p)), h=+/1-p2/n2>0. (9.40)
Y(P) = |14 P?/n?|" N+, (p(P))

= 1= p*/n? [NtV 4y, (p(P)). (9.4b)

In reference [10] we built the Hilbert space L2(Sn) on the whole Descartes
sphere, natural subject to Euclidean transformations, and then projected
it flat on two |p| < n disks sewn at the boundary. Equation (9.4a) de-
fines the function %(7) only on the forward (h > 0) hemisphere. A second
Heisenberg-Weyl RV space of fuctions ¥,(P) is needed to map onto the
backward (h < 0) hemisphere by

¥(F) = -(p)=1-p/n’| VAT (P(p))
= |14 P2/n2|NHD/4g,(P(p)), h=+/1-p?/n? <0.(9.5a)
U(P) = |1+ P?/n?|"(N+D/%y_(p(P))
= |1 = p?*/n?|NHD/4y_(p(P)). ' (9.5b)

i
i
o
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7.10 Plane waves and the coma kernel

In Fourier-Heisenberg-Weyl optics, the image wave function on the screen
is given by the Fourier transform of ¥(P),

£ N/2 '

¥(Q) = (57%) /R - dVP ¥(P) exp(ikP-Q/n), (10.1a)
N/2 B

¥(P) = (%) /R 5 dVQ ¥(Q) exp(~ikP-Q/n). (10.13)

The scale is given by the quantity k/n, of units of [PQ]~!. The reduced
wavelength A/27 = n/k is equivalent to k = h/27 in quantum mechanics.
The inner product on the Fourier screen is, through the Parseval identity,

@B = [ "QEQ"FQ

\/RN dNP Q(P)* ‘I’(P) = ((I>, ‘I,)CQ(RN)‘ (102)

In Euclidean optics [10] we combine plane waves coming from all direc-
tions in the Descartes sphere. The basic linear combination function is % (5)
in (9.4a) and (9.5a), covering both backward and forward ray hemispheres.
The wavefunction at the screen is then

~ N/2
Dlweo = (50) [ d"5@) @) exo(ibs-i/m)|  (1030)
N . gn=0
& ] b dVp
=¢(q) = (57;) mi: \/——i——j——m[¢+(?)+¢—(P)]
x exp(ikp-q/n), (10.3b)

and the normal derivative at the screen is

9%(d) @(_k__)”’?
dan n \2mn
gn=0
< [ d¥S(@) pw o(7) ex(iks i) (10.3¢)
N gn=0
N K \ N/
=F@ = i (5=)

X [ocqn €D 18+@) - 6-(0)] exp(ikp-a/n). (1030
lpl<n v
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The wavefunction $(q" ) is a solution of the Helmholtz equation
S nt192/8¢? ¢(§) = —k?¢(7) [10]. The inverse spectrum analysis of
Helmholtz solutions (10.3b) requires both its value and its normal derivative
at the screen, given by

$1(p) = %(L)m [ #a[ Vs £ 57 )

2mn

x exp(—ikp-q/n). (10.4)

The Parseval relation between the £2(Sn) inner product (9.2f) over the
full sphere defines a non-local inner product over the screen involving again
both the wavefunction and its normal derivative thus [10]:

@iy, = /5 ¥ S(7) $(F) W) ' (10.5a)

_ (Y d'p
~ X\2rn PERY 1 _p2/n?

Ipl<n

e / iNq / dNq' exp(—ikp-(q— q')/n)
RN RN

« [ = p ¥ T + @ T

() oot &
x [w(la - a'Né(a)* (@)
+a(la- 4§ () ¥ ()] (10.56)
= @Dy (@) (105¢)

The integral over the sphere Sy has been performed to yield two nonlocal
weight functions, w and w, that are functions of the norm of the coordinate
vector difference |q — q’|

wla-a) = 3 [ d¥S@)(1-p*/n") exp(-ikp-(a—a)/m)

n ;
= %/ p"~tdp /1~ p?[n?

0

X ,[s dwp exp(—ikp|q — q'|cos[4(p,q — ql)/"])
N-=1

T (klg—d|
2 2rn

/0 pN%dp /1 - p?/n2 Jy/2-1(kpla — q'|/n)




7. The map between Heisenberg-Weyl and Euclidean optics is comatic 189

J (kla—4q'|)
2 otk (N+1)/2, N Y(N+1)/2
= “'z(2m) n (k lq - a2 * (10.6)

The integral ([21], Eq. 6.567.1) leads to a Bessel function of the first kind
Jm(2). Similarly, we find

wla-4) = 35 [ 4"S0) exp(-itp-(a-a)/n)

1J, (kla—q'l)
it B (N+1)/2,,N (N-1)/2
2(27) 72 (klq— q)-D2 ° (10.7)

These equations may be checked with the results for N = 1 in Ref.
[22], and for the case of ordinary optics N = 2 with Egs. (10.10)—(10.13)
in Ref. [10]. They involve the pleasant function Jm(z)/c™ whose value
~at £ = 0 is a maximum, [2’"I‘(m + 1)]7%; it decreases to its first zero'!
at 2.405, 7, 3.832,4.493 for m = 0, ;, l,g’ (for N =1 d1mens1on we need
m= 0 and 1, for the case of ordinary optics N = 2, m = — and 3)

thereafter it oscillates and decreases as v/2/mz~™"! asymptotlcally This
is the picture of the nonlocality of the Helmholtz-Hilbert space 'HkN on the
N-dimensional screen. The HJ space of functions does not support Dirac
8’s as valid objects: images cannot be perfectly pointlike since such need
p € RV, and momentum ranges only on the subset p < n. The position
coordinate is not a well defined concept in Euclidean optics as it is in
Heisenberg-Weyl quantum mechanics.

The face of contact of Euclidean and Heisenberg-Weyl phase spaces is
in the momentum subspace. Plane waves are well defined objects in both.
With “forward Heisenberg-Weyl direction’ Py € R¥, the wave will appear
in the P-representation as

®p,(P) = &V (P - Py), (10.8a)

and on the Q-screen as the complex amplitude (10.1a),

(v

4 N/2
(I)po(Q) = (2_7}—7-1-) exp(i P()Q) (108b)

This is a periodic function with wavelength A = 27n/kP; between crests.
The wavelength may range from infinity (Po = 0, a ray paralell to the
optical axis, its wavefronts paralell to the screen), through decreasing real
values for increasing ray angles, down to zero for Py — oo (this limit is
nonrelativistic-mechanical, not optical).

11 Except for 7, the numbers are truncated to three decimals.
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The (inverse) opening coma transformation asigns to ®p, through (9.4a)
a Euclidean plane wave in momentum representation

$po(P) = [1=p*/n? [Nt/ 48p ( 5(P(P))
- P Po
= |L= g2V agN ( §
V1-p*/n2 /1-—pj/n?
= |1- pz/n2|(N+3)/46N(p - Po)- (10.9a)

This yields through (10.3b) that the Helmholtz solution on the screen is a
plane wave in the Euclidean direction pg = Po//1 + P¢/n?,

3 k N/2 ;
$po(a) = (%) (1 = p/n?)V+D/4 exp(ikpo-q/n). (10.10a)

With the assumption that our Heisenberg-Weyl plane wave is in the
forward hemisphere of ray directions, the normal derivative is given to us

by (10.3d), and is

h L\ N2 :
po(d) = (_) (1 — p3/n?)V+3)/% exp(ikpo-q/n)

2mn

= iky/1 = p&/n? ¢p,(q). (10.10b)

A backward-directed wave in Helmholtz optics has the opposite sign of
the normal derivative. Linear combinations of forward and backward rays
allows for real (or purely imaginary) standing waves throughout space, and
permits the decoupling of the function from its normal derivative. This
freedom can not be obtained in Heisenberg-Weyl optics for a single RN
screen; there, we can at most linearly combine waves Py and —Po with
real results on the screen, but complex oscillation elsewhere.

In the last formula there is a decrease factor of (1 — p3/n?)(V+1/4 in the
amplitude of the wave, which drops to zero for pp = n. A grid of Heisenberg-
Weyl plane wave vectors in ®" will map on a ‘noncartesian’ grid in the
Descartes sphere in Escher-like distortion; as we draw near the equator the
intensities will drop to zero.

Euclidean plane waves that are Dirac-normalized on Sy may be con-
structed from (10.3). These are [10]:

i k N/2 : ’
Bpor(a) = (g—) exp(ikpo-q), (10.11a)

o 35} foreke NF RS : *
Wpor(@) = kT (-2-;;;) v 1—p§/n? exp(?kpo-q)- (10.11b)

Their normalization is evident on momentum space

Wpo,r(P) = 1/1 = P3/n? 8" (P — Po) 67 signy = 85 (F'— Po)- (10.11c)
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In the corresponding Heisenberg-Weyl direction Py = po/+/1 — pZ/n2, for
the corresponding value of 7, the waves are

Wp,(P) = (14 P}/n2)V+D/4sN(P _ py), (10.12q)
. g \ NIz
Wp,(Q) = (m) (14 P2/n?)N+D/1 exp(ikPy-Q). (10.12b)

Let us now consider Heisenberg-Weyl Dirac é’s on the screen, at points
Qo, in their position and momentum representations,

Dq,(Q) = & (Q-Qu), (10.13a)
g\ N2
Dqgs(P): = (5—;—;) exp(—tkP-Qo/n). (10.13d)

The coma map (10.9) leads to the Euclidean wavefunction on the right
momentum range:

dq,( )—(L)N/2 s _-l"_( P Qo
Q P} =\ 27n (1 — p?/n2)(N+1)/4 R A —p?/n2)’
(10.14)
Finally, the image on the Euclidean screen is found through the integral in
(10.3) to be

~ 7 d"p k P- Qo
on(q) = (%) /RN (1 g pz/nz)(N+3)/4 €xp l'ﬁ (p-q = —J—l_?—-pz—/n—z) :

AN (10.15)
This integral, when and if evaluated, will be the kernel of the unitary
operator of symplectic coma transformation between Lo(RN) and HY . If
f‘(Q) is a wavefunction calculated to carry an image in Heisenberg-Weyl
optics, its actual image on a Euclidean screen will be

f= [ ¢ Qda(a) (@) (10.16)

This integral is not quite a convolution because the kernel gq(q) is not
quite a function of q — Q.

When only rays at small angles to the optical axis are involved, then both
momentum representation wavefunctions F(P) and f(p) are significantly
different from zero only at a small neighborhood of p = 0. The integral in
(10.15) is then approximated with the integrand exp ik p-(q — Qo), both
in company with this f(p). In the small wavelength limit (k — oo), the
exponential oscillates everywhere except at q = Qo where it diverges as
a Dirac 6 in ®V. For small ray angles thus, Euclidean images are sharp,
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with no magnification or distortion. For realistic ranges of P, the integral
in (10.15) should be interesting to study as it approximates also the Airy
function when the next higher term in the exponent is computed.

7.11 Gaussians, non-diffracting beams,
and concluding remarks

Coherent states, correlated (squeezed) and discrete [4], and generally Gaus-
sian beams [1], are prime fruit of the Heisenberg-Weyl model of optics.
This is so because we may complezify the inhomogeneous linear symplectic
transformations. Imaginary-z free propagation, generated by P2, produces
Gaussians out of the Dirac 6 in &V, just as heat diffusion does. The RV-
Fourier transform of a Gaussian is generically a Gaussian. As operators,
neither Q nor P have sharp eigenvalues in this set of functions, but their
dispersions satisfy the minimum of the Heisenberg uncertainty relation.
Through the coma map (9.4), the Heisenberg-Weyl Gaussians with expo-
nents —AP? (A > 0) and/or B-P, will become exponentials of —-Ap?/(1—
p?/n?) and B-p/+/1 — p?/n?, times the measure factor (1 — p?/n?)(V+1)/4,
These functions, although not gquite Gaussians (because their exponent is
not simply —ap? and B - p), do adequately go to zero at |p| — n; i.e.,
approaching the surface of the solid N-sphere of Euclidean momenta. In
the ordinary case N = 2, this is the 1-dimensional rim of the forward
momentum disk, the equatorial circle. Since only forward (or backward)
rays are involved, the Helmholtz solution and its normal derivative at the
screen are related by a factor of +iky/1 — p?/n?, as was the case with
plane waves in (10.10b). The HY and L(Sn) inner product properties of
these projected Heisenberg-Weyl coherent states will be the same as their
well-known counterparts in Lo(R") because of the Parseval relation (9.2).
What is the natural counterpart of a Gaussian distribution on the surface
of the Descartes sphere of ray directions Sy ? Take a Dirac é in the context
of £L2(Sn) and let it diffuse, as if it were heat, with exp —wAgs,, where Asy
is the Laplace-Beltrami operator on Sy . For small width w the Descartes
Sy-Gaussian looks like a Heisenberg-Weyl RV -Gaussian centered on the
original 6, but as w increases it asymptotically tends to a nonzero constant
over the finite volume of Sy and both momentum charts are necessarily
involved. For the case of N = 1 dimensional screens, we can point to Ref.
[17] to show that this Gaussian is the heat kernel on a conducting ring
S; —one of the Jacobi Y-functions. The Fourier series decomposition of
L2(81) yields naturally a description of the images on the screen in terms
of equally-spaced sampling points; that is unitarily equivalent to the Hilbert
space Hi. The Euclidean Gaussian in this discrete image space is a modified
Bessel function I; (kw) that, on the integers j, is symmetric about a smooth
peak and falls off asymptotically (|j] — oo) as an ordinary Gaussian of

R R R

A S
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width w does. This takes us to the theory of coherent states on group
manifolds and their sampling theorem, that we hope to develop elsewhere,

Among the subgroup-adapted wavefunction bases we should draw also
special attention to the diffraction-free beams [23]. We may define these to
be the Euclidean wavefunction, p—wp separated solutions of the Helmholtz
equation on the screen, that are eigenfunctions of the generator of transla-
tions along the (N 4 1)*! axis (the optical z-axis), namely h” in (7.1b). We
can treat the two charts separately and work only with forward beams; this
fixes the normal derivative of the solution as for plane waves in (10.10b).
The solution of h¢a = A(@)da in p-space is a Dirac § with support on a
single value of the radius |p| = p = @, times a function T(wp) of the Sy
angular variables in p = pwp, times a normalization constant vg(a). In
the ordinary N = 2 case the Dirac § has support on a circle inside the mo-
mentum disk. In Refs. [23] a mask with an annular slit provided the source
for a ray distribution that, after a Fourier transformer lens, provided a
diffraction-free or Jo beam, with a Bessel function amplitude on successive
z-translated screens.!?

In the N-dimensional case, a momentum wavefunction ¢,(p,wp, 7 = +)
that contains §(p — a) will cast an image $,,(q) given by (10.3a,b). The
steps needed to decompose the integration into radius p and Sy-1-angles
wp follow closely the integration in (10.6), except that the integrand factor
(1 — p?/n?), is replaced by 6(p — a), and we have plain q here instead of
(q—q’). The angular integral over Sy_; now contains the angular function
T (wp). If this is taken to be a constant, the diffraction-free beam ¢4 (q) will
have the form of a Bessel function Jy/2-1(kalq|/n). In N = 2 dimensions
this is the Jo beam of reference [23]. '

If the angular function Y(wp) is not a constant, the diffraction-free beam
¢(q) will also exhibit angular dependence. In the ordinary case N = 2 this
leads to nondiffracting solutions e™* Jim|(kag/n), where m = 0, %1, +2,...
is the in-screen rotations’ SO(2) irreducible representation label, and w the -
single polar angle. For general N we may use SO(NV) spherical harmonics as
a basis where the vectors are classified by a complete set of labels following
SO(N) D SO(N—=1) D --- D SO(2). This set of labels will replace the single
m. The SO(IN) Casimir is found as 1 Zi,j(R,-,j)2 from (7.2a), corresponding
to the well-known Petzval invariant (p x q)% in the N = 2 case. While
p x q by itself yields m, it is the Casimir eigenvalue kSOWN) = f(¢+ N -2),
£=0,1,2,..., that will appear in the radial part as £ in JN/2+£_1(ka|q|/n)
for the general-N case.

12The very interesting experimental property of such beams is that, due to the
finiteness of the wavefront, the beam mantains its peaked Jo shape up toa certain
distance only; thereafter, the peak vanishes rather abruptly. Very much as Luke
Skywalker’s 3-foot-long red laser sword, and Darth Vader’s blue one. (This would
still not explain why such light swords would clash among themselves, unless a
nonlinear régime is encountered.)
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The Euclidean gy4; = z-evolution is produced by exp(zkzh/ n). On its

eigenfunction ¢a(q) this yields a phase of exp(ikz/1 — a2/n2) where a is,
as before, the direction p = nsinf,, 0, = arcsin(a/n) < im, of the consti-

tutent forward plane waves that form the nondiffracting beam Finally, the

normal derivative ¢’ (aq, 2) is tky/1 — a?/n? times an(q, £}

Bessel functions of the first kind also appear in Heisenberg-Weyl optics,
as was pointed out in Ref. [24] for the N = 2 case of ‘physical’ optics.
Indeed, the subgroup reduction Sp(2N,R) D Sp(2,R) ® SO(N) in the os-
cillator realization has the same SO(N ) generators R;; of the Euclidean
group (7 2a), the Sp(2,R) generators in (6.3), and the subgroups are con-
]ugate i.e., their Casimir operators are related by x5P(?) = — 4 xBAN) 4

£ N(4— N). The value of the Bargmann label of Sp(2, ®) is 2(Z—i— N). We
look at the eigenbasis of £ P2, the generator of a parabolic orbit in Sp(2 R)
[25] in the Q-reahzatlon The eigenfunction corresponding to eigenvalue
-%—Az € Rt contains a Bessel factor of Jn/24+¢-1(kA|Q|/n), an L2(RN) nor-
malization factor vgr(A), and an SO(N) C SO(N — 1) C ... C SO(2)
set of labels for the angular part, just like their Euclidean counterparts,
but for A = a/+/1 — a?/n? now unbounded. The forward z-evolution is in
this context the parazrial one, i.c., generated by H = P?/2n. This will
produce on the wavefunction a phase of exp(—ikzA2?/2n?). Comparing
this with the phase exp(ikz\/1 — a2/n?) = expikz exp(—ikza?/2n?) x
exp(—ikza*/8n?) ... obtained for Euclidean propagation, we see that the
Heisenberg-Weyl wavefunction still needs the well-known (central) phase
expikz, and approximates well the phase anomaly —ika?/2n? for A =~
a € n. It was the point of Ref. [25] to show that the Heisenberg-Weyl
nondiffracting beams, subject to arbitrary paraxial transformations, gener-
ically mantain their dependence on a Bessel function (scaled by z and/or
multiplied by an oscillating Gaussian), i.e., the beams self-reproduce under
the group of paraxial transformations.

The above two classes of beams have been given as illustrations of the
opening coma map between Euclidean and Heisenberg-Weyl wave optics.
The latter has served for many developments that still await to be de-
fined on the former. Signal theory, in particular its formulation through
the Wigner phase space distribution function and the Gabor expansion
[26], do not seem applicable as such to wide-angle wave optics. For exam-
ple, we may inquire about the optimal sampling-point set for Helmholtz
solutions for 47 or stopped beams, with or without axial symmetry, or
about the natural spread of coherent states and the behaviour of their cor-
relation (squeezing). The purpose of illustration is served by leaving these
subjects for further development elsewhere.
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