8

Integral Transforms Related
to the Fourier Transform

Fourier analysis can take different forms as we adapt it to various problems
at hand. The main results of the Fourier integral theorem are used to justify
continuous partial-wave analyses in terms of functions other than the
oscillating exponential ones. Section 8.1 presents the bilateral and the more
common unilateral Laplace transform where the expanding functions are the
decreasing exponential functions exp(pq). In Section 8.2 we expand functions
in terms of powers xi?~12 (bilateral Mellin) or of powers x? (common
Mellin) as a continuous analogue of the ordinary Taylor series expansion.
Section 8.3 deals with Fourier transforms of functions of N variables and
applies them to the general solution of the N-dimensional elastic—diffusive
equation. In particular, the three-dimensional wave and general heat equations
are treated. Hankel transforms (Section 8.4) use the Bessel functions as the
expanding set and arise out of N-dimensional Fourier transforms of functions
of the radius. The elastic—diffusive equation solutions are completed, and the
difference between odd and even dimensions is pointed out. We list, finally,
several transform pairs which use cylindrical functions as their expanding set.
Under the title of ““other” integral transforms, in Section 8.5 we give a rough
outline of the Sturm-Liouville approach. This is applied in particular to
transforms using Airy functions. Other approaches lead to Hilbert and
Stieltjes transforms. All sections are basically independent of one another
except for Hankel transforms, which are built out of N-dimensional Fourier
transforms. Those transforms which are only briefly mentioned in the text
are accompanied by a bibliographical survey.
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8.1. Laplace Transforms

The Laplace transform is essentially the Fourier transform on the
imaginary axis of the transform argument. The direct implementation of this
idea leads to the bilateral Laplace transform. The more commonly known
version of this transform, the unilateral Laplace transform, is obtained for
causal functions, i.e., those which are zero on the negative half-line. The
Laplace transform, formulated in this way, allows in a rather natural way
for the introduction of the initial conditions in the solution of certain
differential equations.

8.1.1. Bilateral Laplace Transforms

Consider the Fourier transform pair, Egs. (7.1). By setting p = —is, the
pair now reads

i

(Ls'f%5)(q) =f(q) = —i(27r)“1’2f dsf®(s) exp(qs), ~ (8.1a)

—{

L) =/76) = @2 [ dafiq) expl—gs),  ®1b)

where we have also put f2X(s) = f(—is), thus defining f35(s) as the bilateral
Laplace transform of f(q). In terms of the new transform functions, the
Parseval identity appears as

o {0
[ daare@ =—i]  areremo). (819
- —i®
We note that not every function which has a Fourier transform is bound
to have a Laplace transform as the integral (8.1b) may well diverge. This
happens when f(g) behaves asymptotically like any finite negative power of ¢
since the exponential kernel dominates the growth of the integrand.

8.1.2. Exponential Growth

To describe the regions in the s-plane where (8.1b) converges, it is con-
venient to introduce definitions concerning asymptotic exponential growth.
If there exist constants k', n’, and ¢’ such that for |g| —

|/(@)] < k" exp(c’|q|™) (8.2)

and if » and ¢ are the minima of the »’ and ¢’ for which (8.2) holds, f(g) is
said to be of order n, type c, and growth (n, ¢). When we consider ¢ real, we
may examine separately the cases ¢ — +o0 and g — — 0.

The growth of a Gaussian G,(g) ~ exp(—g?/2w)is thus (2, —Re(1/2w)).
A simple exponential function exp(aq), a € €, will be of growth (1, Re a) for
g > 0 and (1, —Re a) for g < 0. Constants are of growth (0, ¢). If two func-
tions f1(g) and f;(q) are of the same order n, the type of their product is the
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sum of their types: ¢; + c,. If their order is different, say n; > n,, the growth
of their product is (n,, c;).

For the bilateral Laplace transform of a (locally integrable) function
f(q) to exist, it is sufficient that the integrand in (8.1b) be of growth
(n > 0, ¢ < 0). Due to the factor exp(—gs) of growth (1, Fs) for ¢ = 0,
s € %, we can contemplate three cases for the growth (n,%, ¢;*) of f(q) at
q—> 00

(a) Ifn; < 1, the growth of the integrand will be determined by that of
the exponential factor, which is (1, —s).

(b) Ifn, = 1, the integrand growth will be (1, ¢;* — s).

(¢) If n; > 1, the growth will be (n;", ¢;™).

At g — —oo, let the growth of f(q) be (n;~, ¢;7). In the three cases the inte-
grand growth will be as follows:

@) (1,s)forn,~ < 1;
®) A,¢;~ +s)forn,~ =1;
(c) (n;=,c;7) form;~ > 1.

The g > 0 part allows integration for (a) Res > 0, (b) Res > ¢;*, and
(c)all sas long as ¢;* < 0. Theg < 0 part, independently, allows integration
for (a") Res > 0, (b’) Res < —¢,7, and (c’) all s as long as ¢;,~ < 0. The
bilateral Laplace transform f2I(s) will thus exist for some region in the
complex s-plane only if both parts permit integration. Conditions (a) and (b)
restrict the allowed region to a right half-plane, while (a’) and (b") restrict it
to a left half-plane (Fig. 8.1). Only if the two half-planes have a nonempty

a Ls.
., T
: ¢f b
b - . L
ni
Fig. 8.1. Restrictions on the values of the : :
complex variable s where the
bilateral Laplace transform (8.1b) c
exists. (a) For g > 0; (b) for Is
g < 0. Shaded areas indicate : :
that the integral diverges. For : ctt —cF:

allowed regions (c), the trans-

the overlap between the two —
form exists. |
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overlap band will BX(s) exist, and then only within this band. Cases (c) and
(c"), when allowed, impose no restrictions on the s region.

8.1.3. Examples

As an example, consider E(q) = exp(c|q|), ¢ € €. The growth of this
function in both directions is (1, Re ¢); hence the bilateral Laplace integral
(8.1b) exists, according to cases (b") and (b), for —Re ¢ < Res < Reg, i.e.,
a vertical band in the complex s-plane centered about the imaginary axis.
Itis

EFYs) = (27r>-1f2{ [ dgei-gq6— o1+ [ dgespi-qts + c)]}

= Q2m)2[1)(s + ¢) — 1/(s — ©)], —Rec < Res < Reec.
(8.3)
The transform function EPX(s) is thus seen to have poles at s = ¢ and
s = —c which lie on the boundary of the existence band and determine its

width. Perhaps surprisingly, the function (8.3) appears to be a well-defined
function throughout the complex s-plane. Beyond the band boundaries, this
analytic continuation of EFX(s) is not the bilaterial Laplace transform of any
function. Yet it can be used for contour integration purposes. Consider the
task of finding the inverse transform (8.1a) of (8.3): Fig. 8.2. The integral

i

—l'(27f)‘1j ds[1/(s + ¢) — 1/(s — c)] exp(gs) (8.4)

—jw

can be found for g > 0 by closing the integration contour counterclockwise in
the Re s < 0 half-plane and using the familiar Cauchy and Jordan results.

ls. £

Fig. 8.2. Regions of existence of the bilateral Laplace transform (8.3) (unshaded).
Asterisks indicate the locations of the poles of the function. On calculating the
inverse Laplace transform (8.4), the integration can be performed for (a) g > 0
and (b) ¢ < 0 using the analytic continuation of the function and complex
contour integration techniques.
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£ s o ls.
a b
* DA P=N %N *
0 - ) b
¢>4k NA

Fig. 8.3. Complex integration contours used in calculating the inverse bilateral Laplace
transform in Eq. (8.6) for (a) Re ¢ < 0 and (b) Rec > 0.

As the contour will enclose the s = — ¢ pole of residue exp[g(— ¢)], the result
is exp(—gc). When g < 0, the contour may be closed in the Re s > 0 half-
plane, the result being, as expected, exp(gc). The reconstitution of the
original function for ¢ € Z is thus exp(c|q|).

The convergence band in the s-plane must, however, be specified. It is
part of the definition of the transform function. To illustrate this, consider
the two functions
q =0,

O’
Pl {exp(cq), q<0. )

exp(cq), q > 0,

E(q) = {0 !

Performing the integration in (8.1b), we see that
ES(s) = @Ra) Yels — o), Res > Rec;

(8.6)
EBL(s) = —2m)~Y3(s — )7, Res < Reec.

If we are asked to perform the inverse bilateral Laplace transform (8.1a) of
(2m)~12(s — ¢)~l—without specifying the existence region—following the
usual complex contour integration techniques (Fig. 8.3), we would come up
with E£,.(q) if Re ¢ < 0 or with E_(gq) if Rec > 0.

Exercise 8.1. Show that the preceding paradox is resolved when we note that
in taking the bilateral Laplace transform of E.(g) for Re ¢ > 0 or that of E_(q)
for Rec < 0 we are actually violating the conditions of the Fourier integral
theorem. The inverse transform integrates them over the nonexistence region of
the functions.

8.1.4. Unilateral Laplace Transforms

It might appear that the change of variables p = —is involved in defining
the bilateral Laplace transform out of the Fourier transform has little new to
offer us in the way of techniques for solving problems which do not yield to
the Fourier methods. The “paradox” involved in (8.5)—(8.6), however,
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suggests a fruitful restatement of the transform which makes it applicable to
time evolution of systems by causal functions, i.e., functions which are zero
for negative values of the argument. The study of these functions and the
behavior of their Fourier transforms in the complex plane occupied Section
7.4. Some significant computational and conceptual simplifications are
obtained by the Laplace transform method. It will allow us to find solutions
f(g) to differential equations which can exhibit exponential growth (1, ¢) for
any finite c—that is, oscillating, damped, or exponentially growing solutions—
in terms of the initial conditions at ¢ = 0: f(0), df(g9)/dq|,-0, and/or higher
derivatives according to the order of the differential equation.

Let f(g) be a function of growth (1 ¢) in the positive g direction and let
y > Re c. Build the function

exp(—y9)f(q), g >0,
1Aq) =< f(0)/2, q=0, (8.7
0, q<0,

which is absolutely integrable. Assuming the other conditions of the Fourier
integral theorem hold, the Fourier transform of (8.7) is

fAp) = @m)~172 fow dqf(q) exp[—q(y + ip)]. (8.8)

We now perform the change of variable s:=y + ip and set fX(s):=
(2m)'2f,(p)—the constant (27)'/2 is introduced so as to conform to custom.
The Fourier transform pair (7.1) thus becomes

L0 = fg) = Cai)* [ dfyexplas), q> 0, (599

(LH)(s) = fHs) = f: dqf(q) exp(—gs),  Res > Re(type f). (8.9b)

The function fZ(s) is said to be the wunilateral Laplace transform—or simply
the Laplace transform—of f(g) and the latter the inverse Laplace transform
of fL(s). The Parseval identity is

y+io

Jo dq exp(—2y9)f(¢)*g(q) = 2=i)~* dsf*(s)*g*(s), (8.9¢)

y—ic®

where v is larger than the types of f(g) and g(g).

8.1.5. On Bromwich Contours

A few remarks are in order as the following feature of (8.9) might appear
puzzling: Having introduced an upper bound y for the growth of f(q) into
the definition (8.7), we end up with an integration contour f e . Which
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s
Fig. 8.4. Existence region (unshaded) for the T l,
unilateral Laplace transform and inte- 7 D
gration contour for the inverse trans- ! l : ‘%
form.

depends on y but of which we seem to have no clue before the integral is
performed. Actually we do, as recalling one of the main results of Section 7.4
will show. Following Eq. (7.126) we proved that the Fourier transform of
(8.7) is (a) an entire analytic function in the lower complex half-plane
Imp < 0 and (b) bounded by a constant C; (as a = 0). As here s =
y — Im p + i Re p, the function f*(s) will be entire analytic in the right half-
plane Re s > y. The value of y is thus a left bound for the region of analyticity
of the function f*(s). See Fig. 8.4. When we perform the inverse Laplace
transform (8.9a), the integration path is such that f%(s) is analytic and
bounded to its right and all singularities are confined to its left. Such integra-
tion paths are referred to as Bromwich contours. Clearly, for g < 0, the
exponential factor exp(gs) in (8.9a) allows us to invoke Cauchy and Jordan
and close the integration contour with a semicircle at infinity, obtaining
f(g) = 0 for this region [Fig. 8.5(a)]. For g > 0 the integration requires
more effort but can usually be dealt with by applying Cauchy and Jordan
for poles and other techniques for branch cuts [Fig. 8.5(b)].

8.1.6. Example

Consider an example,

q" exp(cq), q >0,
n,c = 8.10
Sy = {7 oy (5.10)
which is of growth (1, Re ¢). The construction of its Laplace transform pro-
ZF ; ls ¢ s
pole x i @ ‘
branch cut ;3 5 }}' Y

* 4 & £

a ; Y b

Fig. 8.5. Bromwich integration contours for the inverse unilateral transform for (a)
g < 0 and (b) ¢ > 0. A pair of conjugate poles and a branch cut have been
assumed for the analytic continuation of the transform function.
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ceeds by (8.7) with a choice of y > Re ¢, which makes the function integrable.
Its Laplace transform can be found by successive integration by parts as

fids) = f " dag® expl—q(s ~ O]
— —(s — O g™ expl—q(s — O)]|o

(s — &t j " dgg*-* expl—q(s — O]

=...=nl(s — c)‘"Jw dgexp[—q(s — )] =nl(s — ¢)~ "1,

Re(s —¢) =y — Rec >0, (8.11)

i.e., it is a function with an (n + 1)-fold pole at s = ¢. The integration (8.11)
is properly valid only for Re s > Re ¢, so the inverse Laplace transform along
a vertical path at y is inside this region, with f“(s) free of singularities to the
right of it. The function f*(s), however, possesses an analytic continuation
to the whole complex s-plane which allows its inverse transformation by
means of the Cauchy and Jordan results. The former states that

(2mi)~? é ds(s — ©)™"7'g(s) = (W) "1 d"g(s)/ds™|s-c,  (8.12)

while the latter tells us that for ¢ > 0 we can set up a Bromwich contour with
vanishing contribution at the infinite semicircle, so that f(q) is regained as

(2mi)-1 J tiw dsn! (s — ¢)-"~1] exp(sq)
= (2mi)~ n! ff)ds(s — ¢) " Lexp(sq)

- % [exp (sq)]‘s=c = q" exp(cq). (8.13)

In Table 8.1 we have listed some useful Laplace transform pairs. Much more
extensive tables can be found in the Bateman manuscript project (Erdelyi ef al.
(1954, Vol. I, Chapters IV and V) and in a recent table by Oberhettinger and
Badii (1973).

In most applications it is the inverse Laplace transform of a function
which yields the final solution to the problem. Thus it is the second part of
the above example which should be of primary interest. It tells us that the
inverse transform of a simple pole (n = 0) at s = ¢ is an exponential function
exp(cq) times (n!)~ 1. Pairs of poles at ¢ = a + ib will thus inverse-transform
to oscillating functions sin or cos, depending on the relative residue signs.

Exercise 8.2. Verify the pairs of Laplace transforms of Table 8.1 where
fX(s) is a function of the kind discussed above.
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8.1.7. Derivatives and Boundary Conditions

The second main ingredient in the solution of differential equations by
Laplace transformation is the way in which derivatives of functions transform
and initial conditions appear. Assume f(q) is differentiable as many times as
required and that all its derivatives grow, for g > 0, not faster than (1, y) for
some common y. Then if fZ(s) is the Laplace transform of f(g), the transform
of f'(q) = df(q)/dq can be found from (8.9b) by integration by parts [in doing
so we assume f’(g) is continuous on (0, c0); see Exercise 8.4]:

(LE)(s) = f dqf'(q) exp(—sq)

(@) exp(—sq)|2o + 5 f " d4f(g) exp(—sq)
—7(0) + s(LE)s). (8.14)

The important thing about (8.14) is that (Lf")(s) is s(Lf)(s)—a result obtain-
able by Fourier transformation alone—pl/us the boundary value f(0) of the
transforming function. The second derivative is as easy to calculate and
yields

(LE)(s) = —f'(0) — sf(0) + s2(LE)(s). (8.15)
The case for higher derivatives is included in Table 8.2: The boundary values
and derivatives up to the order of differentiation minus one appear. For many
differential equations this is all that is needed to determine the solution
uniquely.

8.1.8. The Driven, Damped Oscillator

As an example where the boundary conditions appear, let us draw
upon our old driven, damped harmonic oscillator system whose equation of
motion is

Md—2+ci+kf()—F() (8.16)
dq® dq q) = r\q .

[see Egs. (2.1) and (7.111), except that here we do not need to restrict ¢ to
positive values]. Using (8.14) and (8.15), we find the Laplace transform of
(8.16) to be

M[=f"(0) — sf(0) + s (s)] + c[—f(0) + sf*(5)] + kf*(s) = FX(s).

(8.17)
From here we can easily solve for fZ(s):
fis) = (Ms? + ¢cs + k) YFi(s) + [Mf'(0) + (Ms + ¢o)f(0)]}
= frH(s) + f5"(s). (8.18)



342 Part IIT - Fourier and Related Integral Transforms [Sec. 8.1

The structure of (8.18) is rather transparent: it contains a ““stationary” term
f#H(s) due to the driving force transform FZ(s) plus a transient response to
the boundary conditions f3z*(s). The latter is immediately invertible: the two
poles of the denominator are located by factoring the expression

Ms? +cs +k=M(s —s,)(s— s_). (8.19a)
sy =—-T%1ip, T=c2M, p.=(p®—TH",  po= (kM)
(8.19b)

where we have used the same variables as in (7.113). The inverse Laplace
transform of f§(s) is zero for g < 0 since the integration path follows any
abscissay > I'. Forg > 0 the integral can be found by closing the Bromwich
contour around the denominator roots:

fs(q) = @mi)~* fy_i ds[(s — s:)(s — s)17f'O0) + (s + ¢/M)f(0)]
=+(s- — s)7USO) + (s- + ¢/M)f(0)] exp(s_q)
= (s+ —s)7USO) + (5+ + ¢/M)f(0)] exp(s. q)
= exp(—I'#){/(0)[cos(p.q) + T sin(p.q)/p] + f'(0) sin(p.q)/p.}
= f0)[cG(q) + MG(q)] + Mf'(0)G(g), (8.20)
where
_ [exp(—Tq) sin(p.q)/Mp., q > 0,
G(q) = {0, 4 <0, (8.21)

is the Green’s function of the system and G(q) its derivative. In obtaining
this result we have used (8.13) with » = 0 and s, for ¢ and collected terms.
The transient response is identical to the corresponding results we have
previously obtained from (2.10)—(2.13) and (7.115)—(7.122).

As to the stationary solution term f3%(s) we see that it is FX(s) multiplied
by the reciprocal of (8.19). Our intuition should tell us that the inverse
Laplace transform of this product is a convolution—Laplace version—of the
inverse transforms of the factors. In fact, it is exactly (7.117), namely,

fi(g) = f " dg'F(¢")G(q — g7, (8.22)

with the understanding that the driving force F(q) is, as are all functions,
subject to unilateral Laplace transformation, zero up to g = 0. '

Exercise 8.3. Starting from the relation between product and convolution
under Fourier transformation, show that the unilateral Laplace version of this
correspondence is as given in Table 8.2. Note that the abscissa of the integration
path must be larger than the type of the factors.




A e

Sec. 8.1] Chap. 8 - Related Integral Transforms 343

Exercise 8.4. Show that if the function f’(g) in (8.14) is discontinuous at
some point d, its Laplace transform has an extra term involving the discontinuity
of the function at that point, as shown in Table 8.2. Examine the case where there
is more than one such point.

Exercise 8.5. Prove the rest of the entries in Table 8.2.

The Laplace transform has been used to solve Eq. (8.16) once more.
In terms of directness and ease, the Laplace methods seems to be preferable
to the Fourier transform, as the latter does not allow for growing functions
without requiring Dirac 8’s. The ““cutting” process of Section 7.4 for negative
q’s also involves some effort. For these reasons, the unilateral Laplace
transform has found wide acceptance as a tool in engineering and electronic
computation. Texts centering on this method include (among many others)
those of Gardner and Barnes (1942), Doetsch (1950, 1955, and 1961), and
Craig (1964). Most books dealing with Fourier transforms will also have a
chapter on Laplace transforms. The considerable mathematical interest of the
latter has merited a few volumes by itself, such as the treatise by Widder
(1941), Smith (1966), and Kuhfittig (1978). It is with some misgivings that
we close this section having presented only the barest essentials of the subject.
Function vector space concepts such as orthogonality and completeness of a
basis, however, seem to be easier to develop in terms of Fourier—and
similar unitary—transforms.

Table 8.1 Some Useful Laplace Transform Pairs

) : fEH(Gs) Domain
exp(cq) (s—c¢)? Res > ¢
sin ¢q c/(s? + ¢?) Res >0
cos ¢q s/(s2 + ¢?) Res >0
O(g — a),a>0 s~ exp(—as) Res >0
[ ] l 4‘ 5a {s[1 + exp(—2Ts)]}~* Res >0

—
1 -l

pa  2(scosh Ts)~? Res >0

g T 3T

,f‘ (s sinh Ts)-1 Res >0
0 T 3T A '

2T
/\/\1>Cl s~2tanh Ts Res >0
0 2T
g™ exp(cq) nl(s—c¢-n"1 Res > ¢
exp(—q?2/2a?) a(m[2)Y2 exp(aZs2(2) erfc(2~2as) Allse¥
Ju(cq), p > —1 2+ )2t + a2 —5]* Res>0
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Table 8.2 Laplace Transform under Various Operators and Operations
Relation f(a) fH(s)
Linear af(q) + bg(q) af“(s) + bg(s)
combination
0
Translation flg — a) exp(—as)[f’-(s) + J. dq’f(q’) exp(—sq')]
exp(aq)f(q) fHs — a)
Dilatation f(qle),c >0 cf (cs)
r {oo
Multiplication f(@)e(q) Qmi)~* J T ds’fX(s")gt(s — s7),
y=i®
. y > type f, g
Convolution j dg’f(q")g(q — q°) fH(s)g™(s)
0

Diff ia- dr <
Itigi'lentla Wf(q), S"fL(S) _ mzl sm= lf(n -lm)(O)
continuous
@, SFHs) — £(0) + exp(—dg)f(d-) — f(d*)]
discon-
tinuous atg = d
(~9)(@) 2 frs)
Integration fq dq'f(q’") 5 ~1f%(s)
0 s
—4-f(q) [asren

8.2. Mellin Transforms

Mellin transforms are closely related to Fourier transforms and consti-
tute a “‘continuous analogue” of Taylor series. As was the case with Laplace
transforms, there are at least two versions of this transform, a bilateral and a
unilateral one. The first will help us to establish Dirac orthonormality and
completeness relations for the repulsive oscillator wave functions. The second
is useful for several of its properties involving convolution transformation of
differential equations into difference relations and the appearance of gamma
functions.

8.2.1. Positive, Negative, and Bilateral Mellin Transforms

Consider the direct and inverse Fourier transform equations (7.1) for
functions g(¢g) and g(p) and make the change of variables ¢ = In x, so that
exp(+ipg) = x*», mapping the real line g onto the positive half-line x. As
dq = dx/x, it is convenient to attach a factor x~*2 to the kernel x'? and a

- °"e 5.-_4-:..-,
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factor x~ %2 to g(In x), denoting the new function by f(x). After this has been
done, the Fourier transform pair is

() = @m)~112 J_ T D12 xe(0,00),  (8.23)

£LM) = Qm) 12 f : dxf(x)x =112, Ae R, (8.23b)

where, in addition, we have changed the dummy variable p by A and g(p) by
f+M(X). The function £, M(X) will be called the positive Mellin transform of
f(x). Effecting the same changes of variable and notation, the Parseval
identity (7.1c) becomes

fo " df()*e(x) = [ RV PR (8.23¢)

The transform pair (8.23a)-(8.23b) is somewhat lopsided, since the
function f(x) is allowed to have only a positive argument. Negative values of
x can be admitted only if, to begin with, we had introduced a change of
variables ¢ = In(—x), x < 0. By following through with the same substitu-
tions, this leads to

f(X)=(27T)‘”2fo dMf_MA(=x)"72 xe(—,0), (8.24a)

0
TEEO = (271')_”2f dxf(x)(—x) =12 AEZR, (8.24b)
and the Parseval identity

f_ dxf(x)*g(x) = f_m dAf_M(A)*g -M(A). (8.24¢)

Correspondingly, f_*(X) will be called the negative Mellin transform of f(x).
As, clearly, the positive and negative halves of f(x) are in general unrelated,
the two transforms f, () and f_%()) are independent. If we introduce the
positive—and negative—x-function (7.202b),

x, x>0 0 x = 0
- > L . 8.25
e {0, x <0, * {—x, x <0, ( )

we can join (8.23) and (8.24) for x € Z as

Mz = f) = @m e 3 [ e, (8268)

(M3),(}) = f24(R) = (2m)=212 f Y a1, (8.26b)
[ ageree = 3 [ avevoygo. (8.260)
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The pair of functions {fZM(N)}s-., A€ X, are called the bilateral Mellin
transform of f(x), x € Z. We must stress that the two component functions
fEM(}) are needed to reconstitute f(x) for x € Z. The latter is the inverse
bilateral Mellin transform of the pair fZ¥().

8.2.2. Orthogonality and Completeness of x'/~1/2

The bilateral Mellin synthesis (8.26a) can be seen as the continuous
analogue of the Taylor expansion. Whereas the latter sums over the positive
integer powers of x, the former involves integration of powers along a line in
the complex plane. This is represented schematically in Fig. 8.6. Actually,
pairs of series and transforms occur in several other instances, as will be
mentioned in Section 8.5. Last, as we have only performed a change of
variable and function in passing from the Fourier transform to the bilateral
Mellin transform (8.26), the powerful results of the former can be translated
to the latter verbatim.

One of the results of Section 7.3 was to justify that if one of the functions
of an integral transform pair was introduced in the other and the integrals
exchanged, a representation of the Dirac & by a divergent integral was
obtained. Following this procedure for the bilateral Mellin transform,
substituting (8.26a) into (8.26b), we obtain the orthogonality relation for the
set of functions {(27)~1/2x, " ~112} _ | . as

(277_)-1J‘ dxxiN =12y =12 = §(X — X3, ., (8.27)

where §, ,- is the ordinary Kronecker 8 in the indices ¢ and o’ and 8(A — X)
the Dirac § in the index A. Similarly, by substituting (8.26b) into (8.26a) and
exchanging integrals, the completeness relation

em~t > Do~ Uy ~-112 - §(x — ') (8.28)
0=+ V- © X

is obtained. The set of functions {(27) "2 = xi*~1/2} _, ,_q thus constitutes

a generalized (Dirac) orthonormal basis for #%%). Equations (8.27)—(8.28)

are valid for the positive or negative Mellin transforms separately if we

disregard the index o and restrict integration and 8’s to positive or negative

values of x.

Fig. 8.6. The Dbilateral Mellin

transform (double inte-

gration contour at —% +

3J1> i) as a continuous ana-

-1/ 24,45 Y 1 logue of the Taylor

series (circles on the
integer points).

N o
w
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Exercise 8.6. Derive the orthogonality relation (8.27) from (7.93) for n = 0,
g = A — X, and p = In(£x) for the supports of x.. Similarly, derive the com-
pleteness relation (8.28) from (7.93) forn = 0, p = A, ¢ = In(£x), ¢’ = In(£x")
in the appropriate ranges. You will be faced with a 8 in In x — In x” for which
(7.96) can be used.

8.2.3. Completeness of the Repulsive Oscillator Wave Functions

The results (8.27) and (8.28) lead us neatly to the orthogonality and
completeness relation for the repulsive oscillator wave functions presented in
Section 7.5. The o, *(p) functions in Egs. (7.202), which were instrumental in
the solution of the problem, are (for ¢ = 1) pz**~ /2 times the phase exp(ip?/4),
which is independent of A. Now multiplication of the set in (8.27)-(8.28) by a
purely x-dependent phase leaves the inner product (8.27) invariant: the phase
of the first function cancels the phase of the second. Similarly, when multi-
plied by exp(ix?/4) exp(—ix'?/4) on both sides the A-integral (8.28) yields
completeness for the 7, *(p), as the left-hand side is nonzero only for x = x'.
Since the Fourier transform is unitary—and for the full explanation of this
fact we have to rely on more general results—it will map a Dirac basis of
L) onto another such basis. Thus the set of functions v, *(g) constitutes
a Dirac basis of #%(#) as well. Finally, multiplication by the A-independent
phase factor exp(ig?/2) and the g-independent one 22 validates the set
{x2°(@)}s= +,2e In (7.203) as a Dirac generalized basis, orthogonal and
complete in L*(Z).

8.2.4. Unilateral Mellin Transforms

As with Laplace transforms, there are at least two versions of the Mellin
transform, the bilateral one sketched above and the more usual Mellin—
Laplace, or simply the Mellin, transform. We shall now detail the construction
of the latter and mention some of its properties and areas of application. We
start again from the Fourier transform pair (7.1) for g(¢) and g(p), assuming
that for some nonempty range of y, exp(yq)g(q) is integrable (this may be
true only for y = 0). We set r =y + ip and u = exp(—gq) > 0, following
through with the changes in differentials and integration ranges. Finally, we
introduce the functions f(u):= (2m) '2exp(yq)g(q) and fY(r) = g(p),
obtaining for them the relation

Ay i

(M~ M) = f(u) = 2mi)~? J drfM(ryuT, (8.292)

y—i©

M) = 740) = [t (8.290)

and the Parseval formula

~

Ay Hioo

J ) dufW)*g(wu? -t = (27ri)‘1J drf*(r)y*g™(r). (8.29¢)

y—iw
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8.2.5. Example
Working out an example will clarify some points. Consider
F, _.(u) = u" exp(— cu), ce€,Rec>0,u>0, (8.30a)

which represents an exponentially damped oscillating function. As the
integral (8.29b) over (0, o0) is convergent for Re(r + n) > 0, the Mellin
transform over this region is

FY_(r) = f du exp(— cu)u’tm1
0

= c'r_nf du' exp(—u )"t = ¢ "I(r + n),
0
Re(r + n) > 0. (8.30b)

In changing variables for Im ¢ # 0 the integration contour is made along a
ray in the complex u'-plane and shifted back as in Fig. 7.13 by the use of the
Cauchy and Jordan results. The remaining integral is the gamma function
(see Appendix A) for Re(r + n) > 0, and this by analytic continuation defines
FY.(r) for all complex r + n # 0, —1, —2, .. .. One of the useful characteris-
tics of the Mellin transform is that, as we saw, exponential functions are
transformed into gamma functions, whose difference relations [i.e., those
relating I'(z) with I'(z + n)] are well known. Compare this with the Laplace
transform of the same example, Eq. (8.11), which is a function with an
(n + 1)th-order pole at ¢. The original function in the Fourier transform pair
giving rise to (8.30a) is ~exp[—(y + n)q — cexp(—¢q)] for any y > —n
which is integrable on g € Z. The Bromwich contour yielding the inverse
Mellin transform of (8.30b) is thus along a vertical path in the complex
r-plane crossing the real axis at y, to the right of all the poles of the function,
as in Fig. 8.7. The inverse transform of (8.30b) can thus be found, for # > 0,
as

y+io
Q2mi)-1 f &T(r + m)uc)-"e-"
y—iw®

— 0

= 2mi)~tc* > arT(r + n)(uc)~"

m=-—n JCm

= =" _Zw [RCS F(r =+ n)lr=m](uc)_m

ol i (= D*(ue)yr**/k! = u™ exp(—cu) = F,, _(u). (8.30c)

In the process, we have used the Cauchy-Jordan results to reduce the Brom-
wich contour to a series of contours C,, enclosing the integrand poles a
—n, —n — 1, ... and the residue formula for the gamma function at these

S s | e ——
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Fig. 8.7. Integration contour for Eq. (8.30c).

points [see Eq. (A.7)]. The exponential series is thus regained, and the correct
original function follows. Several functions and their Mellin transforms are
listed in Table 8.3. Extensive tables of Mellin transforms can be found in the
Bateman manuscript project [see Erdelyi et al. (1954, Chapters VI and VII)].

Exercise 8.7. Check that for # > 0 the Bromwich contour cannot be closed
through a right semicircle. Explore the situation for complex u.

The convergence requirements of the Mellin integral (8.29b) may fail
to be met by many functions of interest. The inconvenient growth of a func-
tion g(q) for g — —oo (u— o) was cured by the introduction of a factor
exp(yg). A similar procedure could solve growth problems for g — 4+
(u — 0) with a factor exp(y'q). The simultaneous correction of divergences
at both ends, however, may be impossible. The Mellin transform (8.29b) can
then be broken up into two Mellin transforms of functions with support on
(0, 1) and [1, o) and appropriate half-planes y and 9’. Such a procedure is
followed in Morse and Feshbach (1953, p. 976). For the following results,
we shall simply assume that a nonvanishing common band of convergence in
the complex r-plane exists for all functions involved.

8.2.6. Further Properties

As with Fourier transforms, the properties of differentiation, multiplica-
tion by a power of the argument, and translation under Mellin transformation
point toward the possible applications of this transform. Consider the Mellin
transform of the derivative of a function f'(x) := df(u)/du and its subsequent
integration by parts:

(ME)(r) = Jow duldf ()] dulu~*

=flwu g —(r—1 J: duf (u)u™~2. (8.31)

If, now, within a band in the r-plane the integrand vanishes at the interval
ends, the constant term in (8.31) will be zero, and Eq. (8.31) will equal
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—(r — D(Mf)(r — 1). This can easily be generalized for the nth derivative
using the operator V" = d"/du™:

MVHC) == 3, (<17 = 10 = D)+ = DI

+ (=Dr — D(r—=2)--(r — n)(ME)(r — n).
(8.32a)
If all boundary values are zero, this reduces to

(MVY™)(r) = (= D*I(#)/Tr — n))(ME)(r — n). (8.32b)

We see that differentiation of the original function becomes essentially
a translation of the transform’s argument. Using integration by parts, Egs.
(8.32) can be validated for antiderivatives as well, for negative values of .
The integration constants must be set to zero. Pure translation of the trans-
form’s argument [i.e., without multiplication by (r — p)-factors] can be
achieved by multiplying f(¥) by u". Using the multiplication by argument
operator @ introduced in (7.55), we can write

MQ™M)(r) = (ME)(* + n). (8.33)

Equations (8.32) and (8.33) are of course valid for real or complex » within
the convergence band of the Mellin integral for the function in question. They
can be combined as in, say,

MQ™V™)(r) = MY ™) + m)

= (=D + m)/T(r + m — n)](Mf)(r + m — n), (8.34a)
MVQ™)(r) = (= D'"[L)/T(r — mI(MQ™)(r — n)

= (= DML@)/T(r — n)J(ME)(F + m — n). (8.34b)

Further properties of operator and operations under Mellin transformation
can be found in Table 8.3.

Exercise 8.8. Note that as (8.34), for m = 1 = n, is valid for an arbitrary
function with appropriate growth conditions, one can deduce from here that
[V,Q@] = VQ — QV =1 on any function in this space. Similarly, verify by
algebraic manipulations on multinomials that (7.67) holds.

The peculiar relationship under Mellin transformation among differen-
iation, multiplication by powers of the argument, and translations should
not be surprising as that is precisely the behavior of x™ as a function of r
under these operations.

8.2.7. Applications and References

One of the areas of application of the Mellin transform concerns the
solution of the Laplace equation V2f(u) = 0 in two or more dimensions with

%
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certain boundary conditions. When V is written in polar coordinates (u, ¢)
[see Eq. (6.16)] and is multiplied by #2, it is

(2 3Jeu® + u djou + &2/243)f(u, $) = 0. (8.35)

Mellin transformation of (8.35) with respect to the radial variable u leads,
by (8.34a), to

(r? + 2*/o¢*)fM(r, ¢) = O, (8.36)
whose solutions are of the form
fM(r, ¢) = a(r) cos r¢ + b(r) sin ré. (8.37)

The boundary conditions one can impose on f(u, ¢) in order to fix a(r) and
b(r) are, for instance, f(u, ¢) as a function of u for two given values of ¢, say
#, and ¢,. These can represent, for instance, the electrostatic potential
between two fixed, charged, nonconducting plates forming a wedge between
¢, and ¢,, the stress or the stationary temperature distribution between two
such walls with fixed temperature. This problem, with a variety of boundary
conditions, has been solved by Tranter (1948) and Lemon (1962). Essentially,
the Mellin transforms of the boundary conditions are equated to (8.37) for
¢ = ¢, and ¢,, respectively. The ensuing solutions are examined, for instance,
in the books by Colombo (1959) and Sneddon (1972, Chapter 4).

Exercise 8.9. Examine more closely the conditions under which the Mellin
transformation from (8.35) to (8.36) holds. Assume f(u, $) behaves like u*1 for
u— 0 and "2 for u — co. Show that (8.36) holds for —y; < u < —vs,.

Exercise 8.10. Note that once the functions a(r) and b(r) in (8.37) have been
found, the function (8.37) still has to be subject to an inverse Mellin transform.
As the two functions in (8.37) contain the boundary data, one needs to know the
inverse transform of a product of two functions. Prove the convolution formulas
in Table 8.3.

Table 8.3 Mellin Transform under Various Operators and Operations

Relation fw) M)

Linear combination af(u) + bg(u) af™(r) + bg™(r)
Translation u"f () ¥+ n)

arf(u)/dum (=D"IEITE — mlfre — m)
Differentiation (In w)*f () d f™(r)/dr*
Dilatation flau),a > 0 a'f™(r)

b= (u'?) fM(br)
Multiplication F)g W) @mi)-1 f " g — )

y=iw
Convolution fw wtdu'f(ulu)g@w')  fM(r)gM(r)
(4]
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Table 8.4 Some Useful Mellin Transform Pairs

f@ () Domain
u" exp(—cu), Rec > 0 ¢ "I'(r + n) Re(r +n) >0
a+w-nm L(r/m)I'(m — r[n)/nl'(m) 0 < Rer < mn
exp(—u?2w) Qw)"25T(r[2) 0< Rer
cos au a~T'(r) cos(wr/(2) O0<Rer<l1
sin au a~"T'(r) sin(zr[2) 0<Rer<l1
%, 7 COS ré/sin rm 0<Rer<l1
4] <=
%,  sin r/sin rr 0<Rer<1
[¢] <=
u=J (au) (a2 ~T(r/2) 0<Rer<l1

TG —r2+1)

8.3. N-Dimensional Fourier Transforms

A straightforward generalization of the results for the Fourier trans-
formation of functions of one variable is the consideration of functions of N
variables and their corresponding N-fold Fourier transformation. Most
results from the one-dimensional case can be ““vectorized”” by inspection.

8.3.1. Extension from One to N Dimensions

Consider a function f(q) of the vector variable q = (¢4, gs, . - ., Q). As
a function of g; we can apply the Fourier transformation (7.1b)—assuming
all necessary conditions are satisfied—and obtain a function f™(p,,qs, . . ., qy).
This function in turn can be subject to the same transformation with respect
to the variable g, and so on, obtaining finally

(Faab)@ = f(q) = 2m)~""2 f

R

) d"pf(p) exp(ip-q), (8.38a)

Fh)®) = /@) = @m) |

R

N - _— -

and similarly for integration over p-space. We have also used the familiar
inner (or scalar) product notation p-q = piq; + pogs + -+ pygy In

|, d'af@exp(—ip-q),  (8.38b)

where

[
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order to avoid confusion with the earlier sesquilinear product (p, q) in Part I.
If p and q are represented as column vectors, p-q = p’q, where x7 is the
transpose of vector (or matrix) x. The Parseval identity is

@0 = |

R

d"qf(@*z(@ =f d"pf()*¢(®) = (£ &y. (8.38d)
N ‘QN

8.3.2. Linear Transformations of the Underlying Space

The properties of the N-dimensional Fourier transform under linear
combination, convolution, translation, and differentiation are perfectly
parallel to those of the one-dimensional transform in Chapter 7, except for
some factors or exponents involving the value of N which are easy to ascertairi.
In Table 8.5 we have collected these results. Most can be found by inspection,
“vectorizing” the corresponding one-dimensional expressions: replacing g, p,
and gp by q, p, and q-p; ffw dq by f@N d¥q; factors of (27)~ 12 by (27) V2,
etc. For dilatations, however, we have a nontrivial generalization: general
linear transformations in g-space and corresponding ones in p-space. To
obtain them, assume f(q) and its Fourier transform f(p) are known. We wish
to find, in terms of these, the transform of

(Daf)(@ = [det A|~*2f(A™*q), ( 8.39)

where D, is an operator which carries the action of the N x N matrix A,
which we assume to be real and nonsingular (det A # 0). Equation (8.39) is
the natural generalization of Eq. (7.34). A change of variable q' = A~q
yields

(FooDaT)(P) = |det A| ~22(2m) N2 f d"qf(A~q) exp(—ip-q)
@N

]det A|1/2(27T)—N/2 [ i ,dN(I'f(Q') exp(—iP'Aq')
YR

= |det A[V2(Ff)(A"p) = (Dar-2Faf)(p) (8.40)

since pTAq’ = (ATp)’q’ and d¥q = det A d¥q’ is the transformation Jaco-
bian. When det A < 0, i.e., asin a reflection through the origin of an odd
number of coordinate axes, an odd number of integrations will have the usual
bound order inverted. A reversal of these integration limits will cancel the
sign of det A and yield an absolute valued factor |det A|.

Exercise 8.11. Show that the dilatation operator D, is unitary, i.e.,
(DAf, Dag)y = (f, g)y for all f and g for which the inner product is finite. This
parallels Exercise 7.9-10.
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Exercise 8.12. Verify that DoDgp = Dap applied to any function f(q). This
generalizes Exercise 7.9.

Exercise 8.13. Find the N-dimensional convolution forms of Table 8.5.

Exercise 8.14. Define the multiplication-by-g; operator as Q; and the
differentiation operator Py = —i9/dq; as generalizations of (7.55) and (7.56).
Show that

FonPiFay = Qy, FanQiFas = — Pu. (8.41)

Clearly, also
[Qj, Py] = Q;P, — PQ; = {1, (8.42)

as in (7.59).

Exercise 8.15. Define the N-dimensional dispersion of a function f(q) as
s =[[ | aar@pa-a]/[[ | ear@r] e
JaN RN

where q is the vector average (or first moment) of £(q), the analogue of (7.216)
for r = 1 and vector q. From (8.41) and (8.42), show that the uncertainty rela-
tion (7.218) becomes

APOAD > N4, (8.44)

What happens with the equivalent width relation (7.223)?

The relation between linear transformations in g- and p-spaces embodied
in Eq. (8.40) has a very important particular case: if the transformation
matrix A is an orthogonal matrix [i.e., an angle-preserving transformation so
that

(Aq))-Aq; = q;"ATAq; = q,"q> = q;°Q;

for every q,, q, € #7], then AT = A~1, det A = +1, and the transformations
in g- and p-space are the same. In terms of operators this means that, for A
orthogonal, D, and Fy, commute. In the N = 1 case, the analogue of an
orthogonal matrix is multiplication by + 1, and in Section 7.2 we saw that
parity was preserved under Fourier transformations. For N > 1 the state-
ment follows that the properties of a function under rotation and inversion
are preserved under Fy,. In its full generality, the specification of *properties
under rotation” requires group theory. (In three dimensions, knowledge
of spherical harmonics is required, while for N = 2, Fourier series is all one
needs. This case will be developed in Section 8.4.) One property, invariance,
is nevertheless easy to state: a function f(q), q € #", is invariant under
orthogonal transformations if f(q) = f(A~!q) for all orthogonal A. This
means that the function can depend only on the norm g := (q-q)*/?>. Under
Fourier transformation this property becomes f(p) = f(A~p), so f in turn
can also only depend on p = (p-p)*'2
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8.3.3. The Diffusive-Elastic Medium with Sources

We shall illustrate the use of the N-dimensional Fourier transform in
finding the general form for the solution of the elastic, diffusive medium with
sources in N dimensions, governed by

V@ 1) + F@ 1) = ¢t oSl 1)+ atof@n,  (849)

with initial conditions f(q, ,) and £(q, #,) = &f(q, 1)/0¢|;~., at some ““initial”’
time #,. Expression (8.45) resembles in part the diffusion equation, Eq. (5.1),
with diffusion constant @, and in part the wave equation (5.15) with propaga-
tion velocity ¢. The sum of the two terms on the right-hand side states that
the acceleration of the observable f due to its curvature at q is diminished by
the velocity-dependent term, which has the effect of a viscous braking force.
Further, the source term F(q, ¢) acts as a driving force in the regions of
(q, t)-space where it applies. The limits ¢ — oo and @ — o lead, respectively,
to the simple heat and wave equations in N dimensions.

Assuming f(q, t) and its derivatives are square-integrable in %%, we can
apply the N-dimensional Fourier transform to (8.45), obtaining

@)+ Fo 1) = e o fo ) + a2 S0, (846)

with initial conditions 7(p, #,) == [Fxf(-, £0)1(p) and f(p, #,). In this equation
the most difficult part, the N-dimensional Laplacian operator, has been
converted into a factor of —p? as with one-dimensional problems. Equation
(8.46) is thus a second-order ordinary differential equation in time, which has
been solved in Section 7.3 [Eq. (7.111)] using Fourier transforms and again
in Section 8.1 [Eq. (8.16)] using Laplace techniques. By treating p? as a
parameter and establishing the correspondence between {¢~2, a~2, p?, ¢} and
{M, ¢, k, q}, the solution to (8.46) is

S, ) = frp, 1) + 750, 1) (8.47)
The transient term solution to the homogeneous equation (8.46) (with
the F term absent) is given in terms of the boundary conditions at time 7, as

Jo®, 1) = f, t0)la~2G(p, t — to) + ¢7?G(p, t — 15)]
+ /@, 10)G(@, 1 — o). (8.48)
The function G(p, ¢ — t,) can be copied from the simple oscillator Green’s

function [Eq. (2.11a), (2.11b), (2.12), (2.13a), (2.13b), (7.116), or (8.21),
exchanging symbols as before and w, for p,] as

- c? exp(—TI't) sin w,t/w,, t > 0,
¢ 1) = {0 <0
' = ¢2/2a°, w, = (c?p? — T?)1/2, (8.49b)

(8.49a)
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The time derivative of (8.49) is é@, t). The tilde has been kept for (8.49) as
its F) transform will be the Green’s function for the equation (8.45) we are
solving.

The stationary solution to (8.46) due to the source F(p, t) is given by the
convolution—with respect to —of the source function with (8.49) [see (7.117)
or (8.22) with the proper symbol exchange], i.e.,

. 0) = Fhop, 1) = £ dt'F, )G, t — 1), (8.50)

We assume the source to start operating not earlier than the initial time ¢,.

Equation (8.45), whose solution we are seeking, now requires that we
apply Fat to (8.47)-(8.50). The transient term (8.48) is the product of
functions of p; hence its inverse transform will be a convolution over q of the
factors. As the initial conditions are assumed to be given, the key lies in
finding

Gy(g, 1) = [FG(-, D@

= (2m)~V2c2 exp(—I't) f
%

x sin[(e?p? — I'?)12¢] exp(ip-q). (8.51)

Once this Green’s function—and its time derivative—is found, the transient
term will be given by

f3@, 1) = @m) ™V f(-, 1)) § [a7°Gu(-, t — 1)) + ¢2Gu(-, t — 1)@
+ Q@m) V22 f(0, t0) § Ga(-5 t — 10)](@) (8.52a)

The stationary solution will be a double convolution—with respect to q and
t—of the source with the Green’s function:

(g, 1) = 2m)"V2(F #x Gy)(q, 1)
_ (2m)-r2 f " f PGFW, 1)@ — @, f — t').  (8.52b)
to a2V

The most general solution will be, finally, (8.52a) plus (8.52b).

de(c2p2 . I‘2) -1/2
N

8.3.4. Wave Equation in Three Dimensions

As before, it will simplify matters to look for the fundamental solutions
to the equation of motion, that is, those solutions or their time derivatives
which at ¢ = ¢, are Dirac &’s in g, as these are found in terms of the Green’s
function Gy(q, ¢ — 7,) and its time derivative. In this section we shall examine
two limiting cases of interest: the wave equation in three dimensions,
obtained in the limit @ — oo, and the diffusion equation in N dimensions,
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which is the limit ¢ — co. The wave equation for two and N dimensions and
the general solution of (8.45) will be found in Section 8.4. We shall attach
the indices w for wave and & for heat to the Green’s functions in order to
avoid confusion.

The wave equation in three dimensions simplifies the problem of finding
the Green’s function (8.51) since for a — oo, I' — 0. We are left with the
calculation of the three-dimensional inverse Fourier transform of G¥(p, t) =
¢ sin(cpt)/p. By introducing the well-known spherical coordinates

p1=psinfsing,  pel0, ),
P2 = p sin 0 cos o, 0 € [0, =], (8.53)
= pcos 0, QE [0, 217),

and setting the § = 0 direction along the vector q so that p-q = pq cos 0, the
volume integrals (8.38) become

f i j sin 0.d0 | - (8.54)

We thus calculate

© n 2n
G3¥(q, t) = (271)‘3/2cf p dp sin(cpt) f sin 6 d6 exp(—ipq cos 6) [ do
0 0 <0

@

= @m)2 f

0

al
p dp sin(cpt) j du exp(—ipqu) (u = cos )
-1
= (27)~Y2Q2c/q) f dp sin (cpt) sin pq
0

= @nyela) | " dptcoslp(g — et)] — coslp(g + et)]

= (2m)""*(c/2q)[8(q — ct) — 8(q + ct)]  [Eq. (7.93)]
= (2m)2cé(q? — c?t?) [Eq. (7.94b)].
(8.55)
Similarly, we find
Ga*(q, 1) = —(2m)'(2c*/q)[8'(q — ct) + 8'(q + e1)]. (8.56)

The general solution to initial conditions is thus found from (8.48) (for
a — o), (8.55), and (8.56) for ¢ > 1,, and by remembering that g > 0,

f6(Q, 1) = —(4ﬂ)‘1f g, tla — q178(lq — ¢'| — et - 10))

'R3

+ Gno [ dqf wla = a173(1a - ¢ = ol = 19).
’ 8.57)
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Fig. 8.8. The fundamental solutions G3*(q, ) of the three-dimensional wave equation
are expanding spherical singularity shells modulated by a radial geometric
factor of g~ (continuous line).

It should be observed that wave propagation in three-dimensional elastic
media has the following properties:

(a) The causality principle is obeyed due to the appearance of the 8’s and
the restriction ¢ > ¢,: if a disturbance is localized at a point q, at time ¢,, no
information is available at a point q; as long as |q, — q| > ¢(¢ — #,). [Just
for the record, it should be noted that (8.55) and (8.56) possess advanced
solutions for ¢ < #, besides the retarded ones for t > t, which were kept in
(8.57); the former are usually considered nonexistent based on the present
lack of solid experimental evidence. Yet see Puthoff and Targ (1976, Sections
IV and V and the references within).]

(b) Reciprocity holds. The effect of a disturbance at q, on q, is the same
as that of a disturbance at q, on qq if their proper time ordering is respected.
This is a consequence of our assumption that space is homogeneous and
isotropic—Eq. (8.45) involves only V2—and is reflected in the fact that the
Green’s function (8.57) is a function of |q — q'| only.

(c) A point (singular) disturbance at #, propagates as an expanding
spherical singularity shell of radius ¢(z — #,) modulated by a geometric factor
|q|~*. See Fig. 8.8. This factor gives rise to the familiar ““inverse-square”
law for isotropic illumination, the latter being proportional to the square of
the disturbance amplitude.

(d) There is no backwave; once the expanding singularity shell described
above passes over a point, the medium again remains at rest.

Exercise 8.16. Consider the case of N = 1 dimension. This only simplifies
the necessary inverse Fourier transformation. The Green’s functions obtained
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will be identical to (5.27) found for the case of elastic media with fixed ends.
Except for the lifting of this restriction, all conclusions of Section 5.2 continue to
hold. Note carefully that the three-dimensional Green’s functions (8.55)—(8.56) are
—q ~*0/0g times the one-dimensional Green’s functions (5.27a)—(5.27b). This fact
will be generalized in Section 8.4.

Exercise 8.17. Consider the energy in a three-dimensional elastic vibrating
medium. This can be found along lines parallel to (5.40)—(5.42), except that
integration proceeds over #°. Show that the partial energy of each constituent
wave E, = p?|f(p, 1)|2 + ¢~ 2|f(p, 1)|? is separately conserved. As the medium is
governed by a linear equation, there will be no energy exchange between different
partial waves. The wave equation thus has a continuous infinity of conservation
laws, one for each value of p.

Exercise 8.18. Propose solutions to the three-dimensional wave equation of
the form (27) =2 exp[i(p-q + pct)]. Expand a general solution in terms of these
and the partial-wave coefficients in terms of the initial conditions. Thus reconsti-
tute Eq. (8.57). [See the article by Halevi (1973).]

Exercise 8.19. Show the transitivity of time evolution. Compare with
Exercises 5.10 and 5.17.

8.3.5. The Diffusion Equation in N Dimensions

A second family of cases where Eq. (8.45) yields to an easy solution is
the limit ¢-—> oo, when the medium becomes purely diffusive. Although
' >0 and w, ~ i(I' — a?p?), the limit of (8.49a) is well defined. It is
Gy, t) = a® exp(—a®p®t). The inverse Fy transform of Gy"(p, t) is easy
to find in Cartesian coordinates, the function being the product of Gaussians
of width (24%)~?! in each of the coordinates. By Eq. (7.22) we find, in N
dimensions,

N
Gy (@, 1) = @ | | (#/a®t)"[F 'Gae2y-11(gx)
k=1

= a%(2a%t) V2 exp(— q?/4a®t). (8.58)

The general transient solution thus becomes, from (8.52a),
£i@ 1) = (a2 [ d'qf(@, 1) expl— (@ — @)/4a’(e = )], (8:59)
_@N

leaving out the initial velocity as a boundary condition for f3(q, #). The differ-
ential equation is now of first order in time. The fundamental solutions are
spreading Gaussians of width 2a%(t — f,) with a decreasing maximum of
(4mat)~V'2, See Fig. 8.9. One can see that the temperature maximum drops
faster for higher dimensions: heat simply has more directions in which to
escape.
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Fig. 8.9. The fundamental solution G;*(q, #) of the one-dimensional diffusion equation
(for a = %). The initial condition given by a Dirac § at ¢ = 0 develops in time
as a spreading Gaussian.

It is interesting to compare the Green’s function for a one-dimensional
heat flow in an unbounded medium (Fig. 8.9) with the heat flow in a ring
discussed in Section 5.1 (the Green’s function is shown in Fig. 4.13, reading
time development upward). Exercise 8.20 indicates some further developments.

Exercise 8.20. Solve the N-dimensional homogeneous diffusion equation
(8.45) (¢ — ) by proposing separable solutions in all coordinates. Choosing the
boundary conditions, you should arrive at (8.59).

Exercise 8.21. Prove that total heat is conserved. Compare with Exercise 5.1.
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Table 8.5 A Function and Its N-Dimensional Fourier Trans-
form under Various Operators and Operations*

Operation f@ f®
Translation fl@+y) exp(ip-y)/(p)
exp(—ig-x)f(@ o +x)
Linear transformation f(Aq) |det A]-1f(AT-1p)
Multiplication flg(@ @2m)~M2(f% g)(p)
Convolution (f*2)o @m)"2f ()2 (p)
Differentiation Vf(q) ipf(p)
—iqf(q) Vi)

@ Compare with Table 7.1 for the N = 1 case.

Exercise 8.22. Prove the transitivity of the time evolution given by (8.59).
This is the analogue of Eq. (5.11) or (5.14). Equation (7.50) should come in very
handy.

The description of the wave and diffusion phenomena as well as some
generalizations such as the felegraph equation can be found in several
theoretical physics texts. Notably, Courant and Hilbert (1962) dedicate
several sections of Vol. 2 to these problems, using several solution methods
in Chapters III and VI.

8.4. Hankel Transforms

If a system ‘““looks the same” from any direction in space, we say that
it is invariant under rotations or isotropic. This is the case, for instance, of
gravitational attraction between point masses. It is also true of many poten-
tials in spinless quantum mechanics. The isotropy of the system implies that
the governing equations of motion depend only on rotationally invariant
quantities such as functions of ¢ = |q| = (q-q)'/? or derivatives as V2. This
was the case of the N-dimensional elastic—diffusive medium described by
Eq. (8.45), which was not only isotropic but homogeneous: invariant under
translations (only V2 appears). The Fourier transform of an isotropic
differential equation is itself isotropic, and thus the Green’s function is a
function of ¢ only. Of course, initial conditions need not be isotropic. Only
the laws of motion are. This brings us to examine more closely the N-
dimensional Fourier transform of functions of the radial variable g only and,
later, that of eigenfunctions of the rotation operators. Parametrizing N-
dimensional space conveniently in spherical coordinates, we shall reduce the
N-fold F, integration to a single integral defining the Hankel transform.
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8.4.1. Spherical Coordinates in N Dimensions

The problem of introducing spherical coordinates into N-dimensional
space can be tackled by guiding ourselves with the two- and three-dimensional
cases [Egs. (6.14) and (8.53)]. Consider a vector of length g along the Nth
coordinate vy = {0, ..., 0, ¢}. (To save space we write column vectors as row
vectors between braces.) We transform this vector by a rotation by an angle
0y _, in the N—=(N — 1) coordinate plane. The vector is then transformed into
Va1 =10,...,0,gsin Oy_,,qcos 0y_,}. If N = 2, this is all we need to do.
If N > 2, we now rotate vy_; into the next higher subspace, through an
angle 6y _, in the (N — 1)-(N — 2)-plane, obtaining

Vy_2:=10,...,0,gsin Oy _; sin Oy_,, gsin Oy_; cos Oy_,, g cos Oy_1}.
If N = 3, this is all. [See Eqgs. (8.53).] If N > 3, we rotate through an angle
0y _5 in the (N — 2)-(N — 3)-plane and continue in this way, piling sines and
cosines of the new angles on the components of the vector vy_,. Once a

cosine is added to a component, it receives no new factors. The last rotation
through 6, is in the 2-1 plane. The components of v, are then, finally,

g, = gsin By _, sin Oy _, - - - sin 0, sin 6,

gs = qsin Oy _, sin @y _, - - - sin 6, cos 0,

qs = gsin Oy _;sin Oy _, - - - cos 0,

qr = q sm Oy_1---sin 6, cos 6, _1, (8.60a)
gy-1 = gsin Oy_; cos Oy _s,

gy = qcos Oy_;.

If we let 6y _, € [0, 7], then gy € [—¢, q], while the component g, _, will take
values in [—q, g] when 8 _, is also allowed to range over [0, 7]—and similarly
for 8y _s, etc., up to 6,. Last, 6; must range in [0, 27) if g, is to take positive
as well as negative values. Hence, the angle ranges in (8.60a) are appropriately
described by

0, € [0, 2m), 0, € [0, 7], k=23,...,N—1,g€]0,00). (8.60b)

For any N-dimensional vector q of components {q, ¢s, . . ., gy} We can find
values of g and 0, k = 1,2,..., N — 1, to parametrize its components. To
find 6, we construct

re=(q>+q>+-- -+ gD =gsin Oy_, - --sin 0 = ry,, sin b,
(8.61a)
Gk+1 = Fe+1 COS by, (8.61b)

thus finding 6, as arctan(r/q...) for k=1,2,...,N—1, r; = ¢, and
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ry = q. Equations (8.60) thus serve to define spherical coordinates for N-
space. We can find the volume element d¥q from Egs. (8.61), since for fixed &
they tell us that the two-dimensional vector {ry, gx .} is represented in polar
coordinates as having radius r,,; and angle 6, as in (6.14b). Thus

dry dgi+1 = rp+q dreq dby, k=1,2,...;N— 1. (8.62a)
Hence, recursively,
dVq = dqy dqy_, - - - dgs dqs dg,
= dqy - - - dqgrs dry df,
= dgy - dqarers drg dby d; = - - -
= rorg---Fydrydfy_,---db,do,
= gV~ dgsin® = Oy_y diy_y -~ sin¥F 0y _y dby - dby. (8.62D)

This allows us to calculate the (N — 1)-dimensional surface of the sphere
Sy_1 in N dimensions as

n n 2z
ISw_1] =f sin¥-2 eN_ldeN_l-.-f sin 0, dezf d6,
0 0 0

= {m2T((N — 1)/2)/T(N/2)}|Sx -2l, (8.63a)
where we have used the Wallis integral for sin™ 6. Since |S;| = 2,
|Sy-1| = 2aV2/T(N/2). (8.63b)

We verify that |S,| = 4= is the 2-surface of the usual sphere in three dimen-
sions.

8.4.2. Reduction of the Fourier to the Hankel Transform

We can now tackle the problem of finding the N-dimensional Fourier
transform of a function f(g) of the radial variable g. Choosing the 8y_; = 0
axis along the direction of p so that p-q = pg cos 8y _;, we must perform

7(p) = @m)~r7 f d¥qf(g) exp(—ipq cos By_y)
N

= @m) M2 Sy_y| f "1 dgf(q) f Sin®=2 6y_, dby_,
0 0

x exp(—ipq cos Oy _1). (8.64)

The integrations over the angles Oy _, ..., 6, have yielded |Sy_,| as given
by (8.63), and we are left with a single integral over 6y _, of the type

fﬂ sin? 0 df exp(+iz cos 0) = #*20(u + 1/2)(z/2)"“J,(2). (8.65)

0
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The Bessel function (Appendix B) thus enters into the picture. Substituting
(8.65) into (8.64) and canceling the I'-functions, we find

F(p) = p~N+t j 4" dgf(q)Twa-1(pq) = (HE_f)p), (8.66a)

which is defined as the Hankel-Bochner transform of order N/2 — 1 of f(q).
The inverse transform follows with only a change of sign in the exp(—ip-q)
factor, rendered innocuous by the double sign in (8.65), so that

@) =4 _N'L’HL P2 dpf(p)wia-1(pq) = (HER-:E)(q). (8.66b)

Notice that the transform kernels of H,2 and H2™* are the same, and hence
H2* = 1. [Compare with the property of the Fourier transform, where
F2 = ly; see Eq. (7.25).] This is to be expected, as from the [y, point of view
we are dealing with rotationally invariant functions. These functions are even
in each of the Cartesian coordinates, and thus [, is equivalent to 1 in their
subspace.

A Parseval formula holds for the Hankel-Bochner transforms (8.66a)-
(8.66b):

gy = f N dvqf(q)*g(q) = |Sy-1l f: gVt dqf(q)*g(q)

R
= & 8y = |Sy_i| f Pt dpf(p)*E (). (8.67)

Exercise 8.23. Examine the Hankel-Bochner transform (8.66) for N = 1
dimension. Show that we are dealing with even functions and the cosine Fourier
transform, as J_1,2(z) = (2/mz)*'? cos z.

Exércise 8.24. Examine the Hankel-Bochner transform for N = 3 dimen-
sions. This has already been used in Section 8.3. In fact, it reduces to the sine
Fourier transform as Jy,5(z) = (2/mz)*? sin z.

Exercise 8.25. Find the Hankel-Bochner transform of degree u of f(cr) in
terms of that of f(r).
8.4.3. Recursion Relations

There is a relation between Hankel-Bochner transforms of orders p
and p + m, m an integer. This comes from a recursion relation for Bessel
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functions, which can be found directly from (8.66a) and (8.65) for p =
N2 = 1:
1d [

~ 25 @) = Cm) IS | g™+t daf()

X ( sin® 0 db(ip~1q cos ) exp(—ipq cos 6)
Jo

= @m) 1S, j g™+ dgf(q)ip~1q)2p + 1)~

X [sinz”1 6 exp(—ipq cos 0)|3-,

— ipq f sin?*2 0 df exp(—ipq cos 6)]
0 =

= (HZ+.0)(p), . (8.68)

where we have used integration by parts and the recursion (8.63a). It follows
that

(—p~* dldp)"(H,")(p) = (Hi+n)(p), (8.69)

which relates the Hankel-Bochner transforms of orders differing by an
integer.

8.4.4. Odd- and Even-Dimensional Wave Equations

As the Hankel-Bochner transform of degree p = N/2 — 1 of a function
f(q) is the N-dimensional Fourier transform of the function f(g) of radius g,
we can immediately put Eq. (8.69) to work on the problem—stated in Section
8.3—of finding the Green’s function for the N-dimensional wave equation.
This will show some of the characteristics of the solutions for general N.
From (8.51) with I' = 0 and G¥(p, t) = c sin cpt/p, we have

Gy, 1) = [FonG*(-, DI(@) = [H2-1G*(-, DI(q)
= (—q~* 9/0g)"[HE - 2my2-1G*(-, 1)1(q)
= (—q 1 0/0q)"G¥ -2m(q, t) = [—20/0(g)]"G¥ -2n(q, 1). (8.70)

In (8.55) and (8.56) we have calculated G3*(q, t), and so we have the expres-
sions for odd dimension 2n + 3. Keeping only the retarded solution, we have

ng+3(q9 t) = (_q -1 a/aQ)nGaw(q, t)
= o(n[2)"*(—q~* 8/oq)"[q ~*d(q — c1)], (8.71a)
G¥nis(g, 1) = —([2)"*(—q = 8/0g)"[q *8'(q — ct)], (8.71b)

which represents an expanding singularity shell. It exhibits (a) causality,
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(b) reciprocity, (c) a leading modulation factor g =, and (d) no backwave or
wake.

Exercise 8.26. Verify that (8.71) correctly relates the results for one- and
three-dimensional spaces. See again Exercise 8.16.

To find the wave equation Green’s function in an even number of dimen-
sions we can produce a two-dimensional world out of a three-dimensional
one by assuming that all relevant objects are cylinders along the gs-axis, that
is, the initial conditions are independent of ¢s. In doing this, the integral over
gs in the convolution (8.57) can be performed on the Green’s function alone,
ie.,

Hy (g, 4}, 1) = f d4sGs™(a{qs, da» s}, 1). (8.722)

We can perform this in Cartesian coordinates for the retarded part of (8.55):

H3"(q{q., g2}, t)

- c(7r/2)1’2f dga(q:? + g2% + 9597 128((q:2 + g2 + gad)2 — cf)

c(ﬂ/z)uzf dqs(q:® + q.° + g2~ Y2%ct(c?t? — q,2 — q.2)" 12
x {8(ga — (c®? — q:2 — ¢:.2)"?) + 8(gs + (% — q,® — ¢;.2)*?)},
(8.72b)

where in the last equality we have used the expression (7.96) for a 6[F(q)]
in terms of 8(q — @;), a; being the roots of F(q); namely,

a2 = +(?? — q,.® — g.2)'?

when ¢,2 + g,% < ¢%2. No roots exist for ¢;2 + g,> > ¢%¢2. Thus in a two-
dimensional space,

G2¥(q, 1) = c(c*® — g*)7120(ct — q) = G5*(q, 1), (8.73)

where we have introduced the Heaviside step function ®, Eq. (7.89), and
divided by (27)!2, since the two-dimensional Green’s function will be present
in convolutions (8.52) with factors (27)~* instead of (27)~%2 as for three
dimensions. As ©'(¢) = 8(q) and O(0) := 1/2, from (8.73) we find

G2“(g, 1) = —c®t(c*t* — ¢*)~*0(ct — q) + (*t* — ¢?)7'8(q — ct)
= [2¢8(qg — ct) — c%t(c*t® — q?)~11G,*(q, 1). (8.74)

Equations (8.73) and (8.74), as well as the Green’s functions for a higher,
even number of dimensions obtained by (8.71), fulfill the properties (a), (b),
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and (c), as do the solutions of the wave equation in other dimensions. As to
property (d), the behavior is different. The disturbance, if originally localized,
will develop a trailing wake, because of the non-8 form of G,*(g, t), which
smears any initial condition out of its original sharpness. This trailing wake,
backwave or reverberation is a characteristic of all even-dimensional spaces.
A stone thrown in a pond does not quite reproduce, thus, the behavior of
waves in three-dimensional space.

8.4.5. General Solution of the Diffusive-Elastic Equation

For the Green’s function of the N-dimensional general elastic-diffusive
medium, we have to calculate, as in (8.70), the inverse Hankel transform of
(8.49), namely,

Gy(g, t) = (IF(N)G(', H)q = (HI%IZ—IG'('a t))(q)
= ¢%g~V2+1 exp(—T't) Jm dpp™1%(c2p? — T2)L2

x sin[t(c?p? — T2 Jyz-1(pg). (8.75)

This is a rather difficult integral to do ““by hand.” It appears in the literature,
however, as a particular case of the discontinuous Sonine integrals. [See
Watson (1922, Section 13.47). In the tables of Hankel transforms by
Oberhettinger (1973), it can be found by Eq. 6.43-11.] The result is

Gx(g, ) = c(m/2)2[Te~Y(c?t? — g?)~ 2™ -i2
2 exp(—Ft)I_(N_l,,z(Fc"l(cztz — g)Y2)0(ct — q),
q # ct, (8.76)

where I,(z) is the modified Bessel function (see Appendix B) and © the usual
Heaviside step. This function has been plotted for various values of para-
meters and variables in Fig. 8.10. The Green’s function (8.76) includes &
terms at ¢ = ct for N > 2. These can be obtained for odd N using (8.68) and
the fact that G,(q, t) is simply discontinuous at the advancing edge of the
wave. For N even, one starts from Gy(q, t).

Exercise 8.27. Consider the diffusion equation limit ¢ — oo of the Green’s
function (8.76), recalling that I,(z) ~ (2mz)~ 2 exp(z) as z — oo. Verify that Eq.
(8.58) is correctly reproduced.

Exercise 8.28. Consider the wave equation limit a — o of (8.76) using
I,(2) ~ (z/2)’/T(v + 1) forv # —1, —2,... as z— 0. This verifies only the even-
dimensional cases. Show that for N = 2, (8.73) is correctly given. For N odd and
larger than 1, the result is zero since (8.76) holds for g # ct.
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<

Fig. 8.10. Green’s functions for elastic—diffusive media in one, two, and three dimensions
(top, middle, and bottom rows). With advancing time (¢ = 0.5, 1, and 2 in the
first, second, and third columns), the disturbance spreads up to ¢ = ct and is
zero from there on. In each graph we have plotted the function for values of
I' = 0.1, 0.5, 1, 2, and 10 with different dottings. The first value corresponds
nearly to the ““wave” limit and the last value to the ‘“ diffusive” one. [Note that
a change of scale is still needed: Egs. (8.52).] The two- and three-dimensional
cases have a singular edge: a (c2¢2 — g?)~'/2 factor for two dimensions and a
q~'8(q — ct) summand for three.

Exercise 8.29. Show that the Laplacian operator in N dimensions, Eq. (6.2),
can be written in spherical coordinates (8.60) as
Vi, = vl Dy pens (8.773)
where ry = ¢, the radial coordinate in N-space, and A% _,, is the Laplacian on
SN =1y

0 0
00, _, 06—,

A%, = 22/20,2. (8.77¢)

This can be done recursively. For N = 2, Egs. (8.77) match Eq. (6.16). If
(8.77a)—(8.77b) are valid for N = k, V&, involving second derivatives with respect
to ¢1,4sz, . .., gk, then they also hold for Vi .., = 0%/ ég%.1 + V&, Use the
recursiveness provided by Egs. (8.61), the two dimensional case for the (ry, g +1)-
plane, and r; ! 0/0r, = riiy 8/0ryyy + ri iy cot 0, 8/00,.

A(zk) = Sin—k+20k_1 sin®~2 0lc—1

=+ Sil’l_2 ﬁk_lA(zk_l), (8.77b)
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8.4.6. Hankel Transforms and Definite Symmetry under Rotations

Another context in which Hankel transforms arise is in finding the
Fourier transforms of functions with definite transformation properties
under rotations. This term merits some explanation. (In Section 4.3 we used
the synonymous characterization of definite symmetry under translations on a
circle.) We examine functions, or sets of functions, which transform among
themselves under rotations. Their characterization is aided if we ask them to
be eigenfunctions of a rotationally invariant self-adjoint operator, as then
they will constitute complete and orthogonal sets of functions on the angle
variables. In two dimensions the procedure can be implemented in terms of
Fourier techniques. If we choose functions f,,(q) == f(q) exp(imb,), where g
and 6, are the radial and angular parameters of q, then a rotation by « will
transform f,(q) into a multiple of itself: T,f,(q) = exp(imea)f,(q). As
Ty, =1, m can only be an integer. The rotation-invariant self-adjoint
operator —i d/d0, can be used to label f,,(q), and these, we know from the
theory of Fourier series, are orthogonal and complete in their inner product
on 0,e(—m,m]. Every function f,(q) (fixed m) will thus have the same,
definite, rotation property and so will its Fourier transform. Consider now the
two-dimensional Fourier transform of the set {f,(q)}, {/.(p)} for fixed m
and f e £%(#?). Using the Bessel generating function (B.4) for t = i exp(i6),
we can write the F, kernel function as

exp(+ip-q) = exp(+ipq cos 0) = i (£)"J.(pq) exp(ind). (8.78)

n=-

If q and p have polar coordinates g, 8, and p, 0, p-q = pg cos(8, — 6,), and
thus, for 6 .= 6, — 6,, we can use the expansion (8.78) in finding

Tn(®) = f(p) exp(imb,)
<] 2n
= (2n) 1! de db imé
2m) f qdgq f S(q) exp(imb,)

x > (—iyJu(pq) explin(6, — 6,)]

ney

[

| adas@) 3, (~ys.0pa) exptins,)

ney

x (2m)-1 L 40, expli(m — m)8,]

fowq dqf(q)(—i)"Ju(pq) exp(imb,). (8.79)
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That is,

@

7(p) = (=i f g dgf(@)Iu(pq). (8.80a)

s =i " p dof ) Toa) (8.80b)

relate the “radial parts” of f,(q) and its F, transform f,(p). For m = 0
(invariance under rotations) we recover the Hankel-Bochner transform (8.66)
(of degree zero) for N = 2. For m # 0 (8.80) yields one transform for every
m which differs from (8.66) for m = N/2 — 1 only in the powers of p and ¢
in the integrand.

In N-dimensional space, the same kind of conclusion follows, except that
the analogue of (8.78) is

exp(£ip-q) = (2m)"*(pg)* ~¥"* 3 exp( ink/2)
x Jyiz+r-1(pg) D, YiM(Q)* YM(Qy), (8.81)

where Q, and Q, are the collective labels for the angular variables of q and p
in Egs. (8.60) and Y, M(Q) are the spherical harmonics of rank k in N-space,
M being a collective label for N > 3. [See, for instance, the book by Vilenkin
(1968, Chapters 1V and 1X).] In N-space, definite transformation properties -
mean that we are dealing with functions of the kind f£,(q) = f(q) Y:.™(2,).
The spherical harmonics are orthogonal and complete on the space Z%(Sy_,),
so an analogue of the reduction (8.79) leads to

F(p) = p*=12 exp(—ink[2) f %2 dgf() i r-1(p0),  (8.822)

£(@) = *~2 exp(ink/2) f P2 dpf(D) iz se-1(pg)  (8.82b)

for the radial parts of f,™(q) and its F, transform. Again, for kK = 0
(invariance), we recover the Hankel-Bochner transform (8.66).

For the same value of the Bessel function index, (8.80), (8.82), and (8.66)
differ only by powers of ¢ and p. These can be easily absorbed into the
definition of the function to be transformed. It has thus been found con-
venient to abstract the transform of the radial part from the number of
dimensions of the original space and define the Hankel transform pair of order
W as

(HH(p) = f*(p) = fo dqf(q)(pg)*"*J.(pq), (8.83a)

(HZH")(q) = f(q) = fo dpf™(p)(pq)**J(pq). (8.83b)
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This is the form appearing in the Oberhettinger tables (1973) and has
the advantage of symmetry in having the kernel a function of pq only.

Most authors call (8.83) the Hankel transform, while our original pair
(8.66) is referred to as the Bochner transform. The Hankel transform occupies
a part of the books by Sneddon (1951, Chapter 2; 1972, Chapter 5). For
further material on this and related transforms, the reader is referred to the
specialized literature. On convolution there are articles by Griffith (1957,
1958) and Haimo (1965); the latter deals in detail with applications. Extensive
tables of Hankel transforms can be found in the Bateman manuscript project
(Erdelyi et al., 1954, Chapter VIII) and the tables by Oberhettinger (1973).

8.4.7. Other Integral Transforms with Cylindrical Function Kernels

Neumann transforms of order p replace the Bessel function kernel in the
Hankel transform by a Neumann function (pg)*'2N,(pq). [See Griffith (1958)
and the Bateman manuscript project (Erdelyi et al., 1954, Chapters IX and
XI) for Y and H transforms.] The inverse transform contains a Struve
function kernel (pq)*?H,(pg). A generalization of these involving Lommel
functions can be found in the Oberhettinger tables (1973, Chapter VI).

Weber transforms of order u are defined when

q[J.(pq)N,(pa) — J,(pa)N,(pq)],

the annular membrane determinant function in Eq. (6.37), is used as an
integration kernel on (a, o). The inverse transform divides the direct kernel
by J,(ap)* + N, (ap)? and integrates p on (0, ). See the original paper by
Titchmarsh (1923) and one by Griffith (1956).

The Meijer—Bessel or Meijer K transform of order » makes use of the
kernel (pq)*?K,(pq) containing the Macdonald function. The inverse trans-
form integrates with a modified Bessel function (pg)*'21,(pq) over a Bromwich
contour. Several Indian mathematicians have published articles on this
subject (Verma, 1959; Saxena, 1959; and Sharma, 1963, 1965). The Bateman
manuscript project [Erdelyi ez al. (1954)] devotes Chapter X to giving a table
of these. This is actually a particular case of the Meijer transform, introduced
by Meijer (1940) as a generalization of the Laplace transform whose trans-
form kernels are exp(Fpq)/2-(pg)¥*~12 times the Whittaker functions
Wi _112.m(pq) for the direct and M, _,,5 »(pg) for the inverse transform. Both
k and m are free parameters. Vilenkin (1968, Chapter VIII) gives many group-
theoretical and special-function relations for integrals with Whittaker function
kernels.

Kontorovich and Lebedev (1938) introduced a particular integral
transform for the solution of problems in diffraction. It involves as a trans-
form kernel a Macdonald function of imaginary index K (p) over g € (0, o)
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and for the inverse transform the kernel 27 ~2 sinh(wq)K,(p)/p, also over
p € (0, 00). Its relation with some of the Neumann series (Section 6.4) is akin
to the relation of the Mellin transform with the Taylor series in Fig. 8.6. The
conditions for validity of the transform pair were further explored by Lebedev
(1947), and the transform was generalized (Lebedev, 1949a, 1949b). A
transform table appears in the Bateman manuscript project (Erdelyi et al.,
1954, Chapter XII) and in Oberhettinger (1973, Chapter VI). Sneddon (1972,
Chapter 6) treats this transform in some detail and applies it to the study of
harmonic functions in cylindrical coordinates.

8.5. Other Integral Transforms

For the most part, integral transforms can be seen as the continuous
analogue of series expansions. The underlying unity is that the expanding
functions in the series and the integral kernel in transforms are usually eigen-
functions of a given operator, self-adjoint in some domain. In this section,
after some rather soft-focus remarks on the Sturm-Liouville point of view,
we shall examine a few examples as well as other transforms which, unnamed,
have appeared before or which are common in the current literature.

8.5.1. The Sturm-Liouville Problem and Integral Transforms

Assume H is an operator which is self-adjoint in the (Hilbert) space of
functions #*(2), where 2 < # with some properly chosen boundary condi-
tions. Assume, further, that we know its eigenfunctions, labeled uniquely by
a (possibly collective) index p € Z < (%, %),

HY,(¢) = Ap)¥o(9), q€2, (8.84)

and its spectrum & = A%) < Z. The set of functions {¥,(¢)},.# can be
shown under certain restrictions to constitute a generalized (Dirac) basis,
orthogonal and complete for #2(2). This is the generalized Sturm-Liouville
problem, similar to the one sketched in Section 6.4. The spectrum, being a
continuous set, however, is indicative of a considerably more delicate
mathematical theory. The overall (simplified) features are not too difficult to
state roughly: the orthogonal basis functions can be normalized so that
Dirac orthonormality holds,

%) = [ AV @) = 30— p), 685
2
and completeness holds,

| ¥ iarvian = oa - 0. (8.85b)

R SRSy, S —
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Although (8.85a) tells us that the ¥',(¢) do not belong to £*(2), they do
nevertheless form a generalized basis for that space so that for any f(q) €
F2(2) we can define its transform function,

FT(p) = j g% (9)*(q), (8.862)
2

and be assured that the inverse transform or synthesis reproduces (generally
in the norm) the original function as

1@ = [ art (@ ) (8.86b)
¥4

This suggests seeing the integral transform—passive point of view; recall
Section 1.3—as a change of basis, where f(g) and f%(p) are the coordinates
of the same vector f € £?(2) in two bases, the latter in the {¥,},.#-basis as
(¥,, f) = f"(p) and the former in the basis of Dirac &’s, {8,},c0, Where
(8,, f) = f(gq). Equation (8.86b) can be formally ““proven” by multiplying
(8.86a) by ¥,(¢'), integrating over p € &, exchanging integrals, and using
(8.85b). Equivalently, multiplication of (8.86b) by ¥, (g), integration over
q € 2, and use of (8.85a) yield (8.86a). As a consequence of (8.84)—(8.86), the
generalized Parseval relation,

(f, 82 = L dqf(q)*g(q) = L dpf*(p)*g*(p), (8.86¢)

will also hold.

8.5.2. Fourier, Mellin, and Repulsive Oscillator Transforms

The Fourier transform (7.1) can be seen as stemming from the eigenbasis
expansion of a defining operator P := —id/dg, self-adjoint on 2 = Z [see
Egs. (7.55) and (7.56)]. Its eigenfunctions are (27)~ 2 exp(ipq), p € Z? = X,
and the spectrum is ¥ = Z. The set is an orthogonal and complete basis for
ZL2%(Z#). The defining operator can also be taken to be P2/2, whose eigen-
functions are the same as above but whose spectrum is & = Z* twice [as
P = (#*, 1£)]. The latter has the advantage of defining, equivalently, the
sine and cosine Fourier transforms: These are eigenfunctions of P2/2 but
not of P.

The Mellin bilateral transform (8.26) can be built by looking for the
eigenfunctions of the operator 4(QP + PQ), namely, (27)~/%¢'?~%/2, Here
L =% but Z = (%, +), i.e., the spectrum covers Z twice. Orthogonality
and completeness (8.86) are given the forms (8.27) and (8.28).

We also have the transform defined by the repulsive oscillator Schro-
dinger Hamiltonian (P2 — Q2), which is closely related to the Mellin
transform. The eigenfunctions of this operator are the y,*(g) found in (7.203).
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They can serve to define a repulsive oscillator transform with the characteris- H
tics (8.84)—(8.86).

Exercise 8.30. Show that if the defining operator is P2 — (u? — 1)Q 2, self-
adjoint on Z23(#"), the resulting transform is the Hankel transform of order p
given by (8.83).

8.5.3. Airy Transforms

-y

Usually, a solid link with the Fourier transform—for which the eigen-
basis properties are well established—will prove the orthogonality and i
completeness for a given transform basis function set. This was the path we
followed for Mellin, repulsive oscillator, and Hankel transforms.
One more transform can easily be presented by this method. Consider
the operator and corresponding eigenvalue equation

H'¥)'(¢) = GP? + QYi(g) = A¥\(9). (8.87)

This equation happens to be the (time-independent) Schrodinger equation

for the free-fall or linear potential. It was solved for A = 0, in (7.61)—(7.64), ey
in terms of the Airy function. Actually that is almost all we need since
Y, q) = Wol(g — A) is the solution of (8.87) in terms of the A = 0 solution, s

as can be ascertained by collecting all terms on the left-hand side and changing
variables. We can thus write the solution to (8.87) in terms of (7.64) with a
translated argument, viz.,

¥il(g) = 2'7° Ai[2"3(q — X)] (8.88)

[having chosen ¢ = (27)~*/2]. Moreover, we can easily show that the set
(8.88), for A € Z, is orthogonal and complete. Indeed, the Fourier transform %
of (8.88) is given by (7.63), multiplied by an exponential factor due to
translation [Eq. (7.28)]:

¥l (p) = (2m) ' exp(—iAp) exp(ip®/6). (8.89)
Now, this set of functions is orthogonal and complete for p € Z and A € Z.
The last A-independent exponential factor does not alter this property, as can
be shown by an argument parallel to that leading from the completeness of
the bilateral Mellin basis to the completeness of the repulsive oscillator wave
functions in Section 8.2. The inverse Fourier transform of (8.89), namely
(8.88), will thus have the claimed property. Equation (8.88) defines the
integral kernel of a transform which we can call Airy’s transform.

An integral transform (8.84)—(8.86), in the active point of view (recall
Section 1.3), is quite obviously associated with a linear operator—that is, if
fT(p) and g7(p) are the transforms of f(¢) and g(g), then af"(p) + bg”(p) will
be the transform of af(q) + bg(q) for a, b € ¥—and thus we can define a
linear operator (Tf)(p) = f(p).

ey - T vre WIS,
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Most of the transforms we have examined thus far are unitary (those of
Fourier, bilateral Mellin, Hankel, repulsive oscillator, and Airy but not those
of Laplace or ordinary Mellin). As the corresponding Parseval identities
suggest, the mapping afforded by T is isometric. The fact that #%(#) can be
shown to be mapped onto itself under Fourier and Airy transforms makes
the transform operators unitary [since £%(%) is a Hilbert space]. The Hankel
transforms achieve the same for the (Hilbert) space #*(# ). The bilateral
Mellin and repulsive oscillator transforms are also unitary, although they
map L) onto L, AR) D L_%%) for the two values of the dichotomic
index. Finally, the harmonic oscillator functions also provide a unitary
mapping (7.180) of F2(#) onto /2, the (Hilbert) space of square-summable
sequences.

8.5.4. Gauss—Weierstrass Transforms

Not all integral transforms are unitary though. When we look at the
time evolution of systems governed by linear differential equations, linear
mappings of functions through integral kernels become abundant. Consider
the simple heat diffusion in one dimension described by the Green’s function
in (8.58) with initial conditions f(g) at time ¢t = 0 and &? = 1/2. Its time
evolution is given by '

0

(GM)(q) = fq) = (27Tt)’”2J dq’f(q’) exp[—(q — q')*/2t]. (8.90)

-

This is a linear mapping of a large function space [containing £ %)] into
%,”, which has been called the Gauss or Weierstrass transform at time ¢.
Although the “total heat” j dqf<®(q) is constant, the usual inner product
(f, f) is not. Hence G,* is not a unitary transform in the usual sense. Never-
theless, in Part IV we shall see that if an appropriate inner product is given,
(8.90) can be turned into a unitary transform. The transform (8.90) and its
inversion have an important bearing on the theory of heat diffusion. This was
initially studied by Doetsch (1936) and Tricomi (1936, 1938). Since then, it has
been the subject of several articles by Hartmann and Wintner (1950), Black-
man (1952), Widder (1956, 1964), Rooney (1957, 1958, 1963), Bilodeau
(1961), and Nessel (1965). There is one recent book on the heat equation by
Widder (1975).

8.5.5. Complex Extensions and Analytic Continuations

A subject which will be more extensively developed in Part IV is the set
of integral transforms obtained from the time evolution of four types of
Schrodinger equations: (a) the harmonic oscillator, (b) the free particle,
(c) the repulsive oscillator, and (d) the linear potential. The Green’s functions
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for these cases all have the general form exp[i(4g? + Bgp + Cp?)] for 4, B,
and C complex. This will define (the semigroup of) complex canonical trans-
forms. They are all unitary in the appropriate Hilbert spaces.

Wave equations describing diffusive-elastic systems also provide integral
transforms on pairs of functions representing elongation and velocity. They
can be made unitary (thus far) only in the case when no diffusion is present.
The inner product to appear in the Parseval identity is the sesquilinear form
associated with the total energy of the system.

Integral transforms between pairs of functions can arise also as analytic
continuations of series. This rather cryptic remark applies to the case of the
Mehler—Fok transform, which can be seen as a Sturm-Liouville problem or
as an analytically continued version of the Legendre transform mentioned in
Section 6.4. The latter expands functions as series of Legendre polynomials
P,(x). By complex contour integration techniques (usually referred to as the
Sommerfeld—Watson transform), the series sum is replaced by an integral with
a kernel (2v + 1)P,(x)/sin mv over v along a vertical path in the complex
v-plane at p + io for fixed p > —% and over o € Z as shown in Fig. 8.6. This
transform is used in high-energy elementary particle physics for relativistic
scattering amplitude expansions in the direct and crossed channel [see the
review article by Kalnins ez al. (1975, Section III-B and the references
within)]. Application of this transform to the diffraction and reflection by a
wedge has been made by Oberhettinger (1954, 1958). This transform has a
family of group-theoretical generalizations related by relativistic partial-wave
expansions. They have been amply discussed by Vilenkin (1968, Chapter X).
Sneddon (1972) dedicates Chapter 7 in his book to the study of the Mehler—
Fok transform and its applications.

8.5.6. Hilbert Transforms

Sturm-Liouville theory need not be involved in all transforms. In
Section 7.4 we saw that the real and imaginary parts of the Fourier transform
of a causal function were related by (7.146) (for a = 0) as

fulp) = 12 j dp'(p — p) i), (8.91a)

fip) = =72 [ (e = p) o), (391b)

where 2 stands for the integral’s principal value and the tildes have been
dropped. Equations (8.91) define f;(p) as the Hilbert transform of fz(p). As
the definition of the Hilbert transform is closely related to analyticity, it has
served, for instance, in constructing a generalized phasor formalism as for
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alternating-current theory, which is applicable to general frequency-modulated
signals. A given real signal o(¢) and its Hilbert transform 7(¢) are merged into
an analytic complex signal o(¢) + i7(¢) = p(¢) expliw(t)t], where p(t) is the
signal envelope and w(t) the instantaneous frequency. As an example, we can
recall the repulsive oscillator wave functions y,*(g) in Egs. (7.203), shown in
Fig. 7.11. As x,*(g) is the inverse Fourier transform of a function having
support on the positive half-axis, it follows that Im x,*(gq) is the Hilbert
transform of Re x,*(g). Figure 7.11 shows the envelope of the former to be
|xa*(q)|. A sound mathematical treatment of the Hilbert transform can be
seen in Titchmarsh’s Fourier classic (1937, Chapter V) or, if available, in
Cotler’s dissertation (1953). Further work on the application of the Hilbert
transform to the theory of causal filters can be seen in the article by Urkowitz
(1962) and the books by Bracewell (1965, Chapter 11) and Sneddon (1972,
Section 3-21). Tables of Hilbert transforms can be found in the Bateman
manuscript project (Erdelyi et al., 1954, Chapter XV).

8.5.7. Stieltjes Transforms

The Stieltjes transform is defined as the square of the unilateral Laplace
transform:

7(q) = (L*f)(q) =f0 dq" exp(—qq") fo dq’f(q") exp(—q"q")
= | d@+arAa). (8.922)
The original function is regained as
fg) = @m)™" lim [f¥(—q — ie) — f*(~=q + ie)], (8.92b)

as can be ascertained by noting that (8.92a) is related to the Cauchy represen-
tation (7.136) by a change of sign in the argument and a factor of 2=i. If f(q)
is continuous at g, (8.92b) follows from Eq. (7.137d). If f(q) is discontinuous,
one has to substitute as usual, lim,_o+[f(q + &) + f(g — ¢)]/2 for the left-
hand side of (8.92b). The Stieltjes transform arose from the Stieljes moment
problem (Titchmarsh, 1937, Section 11.9). It has been investigated thoroughly
by Widder (1937, 1938) and occupies Chapter VIII of his 1941 book. Several
generalizations of the Stieljes transform involve higher powers of the
denominator in (8.92a) [in Widder’s book (1941)], a hypergeometric function
(Varma, 1951), or a Whittaker function (Arya, 1963). Tables of Stieltjes
transforms can be found in the Bateman manuscript project (Erdelyi ef al.,
1954, Chapter XIV).
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8.5.8. Convolution Transforms

Integral transforms or various general types have been further considered
in the literature. One class involves the convolution transform, which is of the
general form

o = daf@)6to - o), (8.93)

where G is a rather general function including, for instance, the diffusion
transform kernel. Various properties of the construct (8.93), the possibility of
inversion, and its relation to hyperdifferential operators have been the subject
of the book by Hirschmann and Widder (1955). Browsing through the list of
references in Widder’s books, one discovers many other transforms associated
with as many other names. It will serve us to close the list here and reserve
Part IV for the presentation of canonical transforms.
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and (c), as do the solutions of the wave equation in other dimensions. As to
property (d), the behavior is different. The disturbance, if originally localized,
will develop a trailing wake, because of the non-8 form of G,*(g, t), which
smears any initial condition out of its original sharpness. This trailing wake,
backwave or reverberation is a characteristic of all even-dimensional spaces.
A stone thrown in a pond does not quite reproduce, thus, the behavior of
waves in three-dimensional space.

8.4.5. General Solution of the Diffusive-Elastic Equation

For the Green’s function of the N-dimensional general elastic-diffusive
medium, we have to calculate, as in (8.70), the inverse Hankel transform of
(8.49), namely,

Gy(g, t) = (IF(N)G(', H)q = (HI%IZ—IG'('a t))(q)
= ¢%g~V2+1 exp(—T't) Jm dpp™1%(c2p? — T2)L2

x sin[t(c?p? — T2 Jyz-1(pg). (8.75)

This is a rather difficult integral to do ““by hand.” It appears in the literature,
however, as a particular case of the discontinuous Sonine integrals. [See
Watson (1922, Section 13.47). In the tables of Hankel transforms by
Oberhettinger (1973), it can be found by Eq. 6.43-11.] The result is

Gx(g, ) = c(m/2)2[Te~Y(c?t? — g?)~ 2™ -i2
2 exp(—Ft)I_(N_l,,z(Fc"l(cztz — g)Y2)0(ct — q),
q # ct, (8.76)

where I,(z) is the modified Bessel function (see Appendix B) and © the usual
Heaviside step. This function has been plotted for various values of para-
meters and variables in Fig. 8.10. The Green’s function (8.76) includes &
terms at ¢ = ct for N > 2. These can be obtained for odd N using (8.68) and
the fact that G,(q, t) is simply discontinuous at the advancing edge of the
wave. For N even, one starts from Gy(q, t).

Exercise 8.27. Consider the diffusion equation limit ¢ — oo of the Green’s
function (8.76), recalling that I,(z) ~ (2mz)~ 2 exp(z) as z — oo. Verify that Eq.
(8.58) is correctly reproduced.

Exercise 8.28. Consider the wave equation limit a — o of (8.76) using
I,(2) ~ (z/2)’/T(v + 1) forv # —1, —2,... as z— 0. This verifies only the even-
dimensional cases. Show that for N = 2, (8.73) is correctly given. For N odd and
larger than 1, the result is zero since (8.76) holds for g # ct.





