6

Normal Mode Expansion and
Bessel Series

The eigenfunctions of the Laplacian operator in function spaces with certain
sets of boundary conditions constitute orthogonal sets of functions on the
region enclosed by the boundaries. This is developed in Section 6.1 for
rectangular boundaries and in Sections 6.2 and 6.3 for circular, sectorial, and
annular boundaries in the plane. These are a few of the systems which appear
in physics and engineering, where a great variety of operators and boundaries
occur. The Laplacian applies mainly to wave and diffusion phenomena,
which makes it specially relevant. As for boundary value problems, the above
have been chosen for simplicity and because Fourier and Bessel/ series appear.
Bessel series are a family of expansions in terms of orthonormal sets of
functions which include those of Fourier as a particular case. In Section 6.4
we give a broad survey of the variants of eigenfunction expansions and some
references.

6.1. Eigenfunctions of the Laplacian on Finite Regions:
The Rectangular Membrane

Chapter 5 dealt with one-dimensional problems of diffusion and vibra-
tion where the key element was the expansion of the solution in series of
eigenfunctions of the Laplacian with boundary conditions which restricted
the “physical” space to a region of finite (compact) extent: 2= for the con-
ducting ring and L for the fixed-end vibrating string. Here we shall see some
general features of these expansions in more than one dimension. If the
boundary conditions are given on certain coordinate lines or surfaces, the
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solutions can be obtained exactly in terms of known functions. In this section
we shall refer mostly to Cartesian coordinates, while in the rest of this chapter
polar coordinates in the plane will be used.

6.1.1. Vector Spaces of Functions on Z7

In working with the space of functions of N variables
X = (X1, Xg, . - -5 Xy) € XY

we can endow it with a sesquilinear inner product which is the natural
extension of the one-variable function space inner product (4.7), namely

€, @) = f dxf(X)*g (x), 6.1)

where R is a region in N-dimensional space which for simplicity we consider
to be a connected subset of Euclidean space with finite volume. The set of
functions with finite norm [i.e., |f|| = (f,f)}? < co with (6.1) being a
Lebesgue integral] which vanish on the boundary B of R can be shown to be
in a Hilbert space. We denote it by £,%(R).

6.1.2. The N-Dimensional Laplacian
In %2(R), the N-dimensional Laplace operator

02 0? 0?

2= 2 e
v “8x12+6x22+ +6xN2

6.2)
is self-adjoint. The weaker condition of hermiticity is easy to prove—without

reference to Cartesian coordinates—by integration by parts using the Gauss
theorem for f, g € €@,

(£, V2g), = f d¥xf(X)*V - Vg (%)

‘ﬁ dV s f(x)*Vg (x) ‘J dVx[V/(x)]*- Vg (x)

= ¢>B d" s {f(x)*Vg(x) — [V/(X)]*g(x)} + L dX[V(X)]*g (x)

= (VL. ), (63)

where as usual ¢V~ !s is the directed surface element of B. The vanishing of
the boundary term is due to the restriction f(x), g(x) = 0 at x € B which has
been assumed in defining %,%(R).
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6.1.3. The Laplacian Eigenbasis

The hermiticity property (6.3) is sufficient to guarantee that if we find
the eigenvectors of V2 in %2(R),

Veu(x) = Augu(), (6.4)
their eigenvalues A, will be real, and any two eigenvectors corresponding to
different eigenvalues will be orthogonal. The proof of these facts follows
(1.106). Pending its exact specification, the label n attached to the eigenvectors
and eigenvalues in (6.4) will be assumed to belong to a denumerable set A"
Actually, one can in all cases establish a natural correspondence between A4~
and 2V, N-dimensional vectors n of integer components. The set {¢,}nc 4~ can
then be chosen orthonormal by appropriate normalization. The fact that V2
has the stronger property of being self-adjoint has the consequence of
allowing the statement that {¢p,},c4 iS not only an orthogonal set but a
complete basis for £,?(R), i.e., any function f(x) in this space can be expanded
as

09 = 2. Jupal®. (6.52)
with generalized Fourier coefficients
fo= (@m Da = | a0/, (6.5b)
and the Parseval identity holds in the form
(f, g = JR d¥xf(x)*g(x) = BEZ/ oy P (6.50)

Exercise 6.1. Note that the vanishing of the functions on the boundary B of
the region R is not necessary to guarantee the sermiticity of the Laplacian in (6.3).
It is only necessary that the surface integral over B vanish. This can be brought
about if the directional derivatives of the functions involved along the normal to B
are proportional to the functions themselves, i.e., d¥~!s:Vf(x) = of(x) d¥ s, <
where o can depend on the points of B where it is taken. We have treated the case

o = o0, The case o = 0 corresponds to functions whose normal derivative vanishes
at B.

The reader can see that for the one-dimensional case the ordinary sine
Fourier series (4.134) is described by (6.5) with R = (0, L), B = {0, L},
ou(x) = (2/L)'? sin(nmwx/L) and ne Z'*.

6.1.4. Boundary Conditions along Cartesian Coordinates

Our next example concerns N-dimensional space when the region R
is a hyperprism R extending along Cartesian axes x; from 0 to L,, j =
152,..., N.
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In Cartesian coordinates V2 has the form (6.2). It is simplest to solve
the eigenfunction equation (6.4) by proposing separable solutions of the
form ¢(x) = Xi(x;)Xa(xg) - - - Xy(xy), substituting them into (6.2)-(6.4),
applying the Leibnitz rule, and dividing by ¢(x). We obtain

X71X{ + X531 X5 + -+ XgtXy = A, (6.6)

where primes indicate differentiation with respect to the function’s argument.
Every summand X; *X; can depend only on x; so its transfer to the right-
hand side would leave an equality between a function of x; and a sum of
functions of all x’s but x;. Hence every summand X;!X; can only be a
constant \; and A, = >¥_, A,. The independent eigenfunction equations we
are left with are Xj(x;) = A;X,(x,) with the boundary conditions X;(0) =
0= X,(L)),j=1,2,..., N. Their solution has been given in Section 5.2, so
we can write the g, (x) in (6.4) as

Pn(X) = (2Y/LyLy - - - Ly)'? sin(nymxy/Ly) sin(ngmxy/Ly) - - - sin(nymxy/Ly)

(6.72)

and label the function by the N-tuple
n = (ny,ny, ..., ny), npeZ b, =1 2 ., N- (6.7b)
In the solution process we have found A; = — (n;m/L;)?, so that the eigenvalue

corresponding to (6.7) is
N
ha == 2 (/L) (68)
ji=1

The spectrum of V2 in %2(Ry) with R as described here is then the set of
all A, for n,e Z*. We note that all values in the spectrum in (6.4) are
negative. '

6.1.5. Mode Labeling Degeneracy

It should also be noted, however, that the numerical value of A, may not
label the eigenfunction uniquely. Assume all L,’s are equal so Ry is a hyper-
cube. Then clearly any permutation of n;’s will yield the same value of A,.
This situation is referred to as degeneracy and has been mentioned before in
Section 1.7, where we pointed out that in order to resolve the degeneracy and
provide a unique numerical labeling for the eigenfunctions, hermitian opera-
tors commuting with the first one had to be found. In the process of deriving
(6.7) we have used ¢%/ox;%,j = 1,2,..., N, as the N labeling operators. They
are all self-adjoint and obviously commute with each other. Any N — 1
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linear combinations of these and V2—itself such a linear combination—thus
provide a commuting set whose common eigenfunctions (6.7) are a complete
and orthonormal basis for £2(Rp). It is the set of eigenvalues {A,}}-; which
labels the eigenbases uniquely. This is equivalent to their specification by the
N-tuple n = {ny, ny, ..., 05}, n;€ .

6.1.6. The Two-Dimensional Case

The use which can be made of the eigenfunctions and values of V2 in
ZL%(R) has been shown in Sections 5.1 and 5.2 for the heat and wave equa-
tions. Let us now proceed along the same lines briefly to analyze the vibra-
tions of a two-dimensional rectangular elastic membrane. The extension to a
prismoidal three-dimensional cavity or higher-dimensional such systems will
then be evident. Any function f(x;, x,, ) on Ry can be expanded in the
functions (6.7) with coefficients (6.5b) which are time dependent:

f(x1, X2, ) = (4L Ly)'? Z Jrino(£) sin(mymx; [Ly) sin(ngmxs/Ls).  (6.9)

nyngey +

For the function (6.9) to be a solution of the two-dimensional wave equation,
its Fourier coefficients must satisfy [as for (5.22)]

€2 2 Foars®) = Mg om0, (6.10)
i.e., they are oscillatory functions of time,
Jrina(t) = bayn, sinwn0,(f — 10)] + Cpyny COS[w 0, (f — £0)]  (6.112)
with angular frequency
Wnyng = (= A0 ) = me[(ny/L1)? + (no/L2)*]'? (6.11b)

and constants b, ,,, ¢,,n, Which can be fixed by the initial conditions at
time 7.

6.1.7. Nodal Lines, Frequency Lattice, and Accidental Degeneracy in the
Two-Dimensional Case

Rather than analyze the Green’s function (which will be discussed in
Chapter 8), we shall point out some features of the normal modes

‘;bnlng(xla Xg, t) = (4/L,L,)"'? sin(nymx,[L;) sin(ngmxy/Ly) cOS Wyt
(6.12)

and their time antiderivatives g, (X1, X5, 1): (2) They are waveforms which
start from rest and maximum elongation and from equilibrium and maximum




226 Part IT - Fourier and Bessel Series [Sec. 6.1

T T :E
T E:
T a8
fesmasannni jzERanenes) OO idiaT
Ny, N,=1,1 21
T
1111 11T ::
1,2 2,2
1
1
Tt B
1,3 2.3
T
T
1,4 2.4 3.4 4.4

Fig. 6.1. Normal modes #n;, 7, of the rectangular membrane and their nodal lines. The
regions of the membrane with positive elongation have been shaded with a
finer grid.

velocity, respectively. (b) The n;, n, mode presents n; — 1 and n, — 1 nodal
lines in the x; and x, coordinates excluding the boundaries. They are simple-
zero lines within the membrane walls, across which the functions change sign
(Fig. 6.1). The nodal lines are fixed in time. (¢) The normal modes oscillate
with angular frequencies w, ,, as given by (6.11b) which are discrete and
whose allowed values form a two-dimensional /attice. See Fig. 6.2. (d) The
corresponding periods are T,,, = 27/wy,n, = MTpn, mn,- Thus in Fig. 6.2
the periods of modes lying on straight lines passing through the origin are
multiples of a fundamental period 7),,,, with p; and p, relatively prime.
(e) ““Accidental” degeneracies can occur whenever L, and L, are commen-
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surable. In Fig. 6.3 are some low-lying degeneracies for a 1:2 ratio of the
rectangle sides. As the corresponding modes have the same angular velocity,
so will any linear combination of them. These give rise to degenerate subspaces
of modes, the elements of which have fixed nodes which are not straight lines.
In Fig. 6.4 is a sequence of such linear combinations. Note that the rotal«
number of nodal lines is conserved. (f) The x-dependent factors of the normal
modes (6.12) are orthonormal under the inner product

(‘Pnlnz’ q’nin’z)D ;f dzxq’nlnz(x)*qpninz(x) = Snlnisnzn’z- (613)
Eg

Exercise 6.2. Consider a membrane in the form of a narrow annulus of
radius p and width w. A fair description of the vibration characteristics is to
assume that the radial functions are those of a string of length w with fixed ends
and the angular functions are periodic with period 27p. What is the relevant inner
product ? Is V2 hermitian in such a region? Show that the mode labels would be
(n, m), ne &+ labeling the radial functions and m € £ the angular ones.

Exercise 6.3. Analyze the modes and oscillation frequency degeneracy of a
vibrating cubic cavity. Note that there is degeneracy between wp,n,n, and the w’s
with the same permuted indices. Relate this to the fact that the system—differen-
tial equation and boundary conditions—is invariant under symmetry transforma-
tions of the cube.

Exercise 6.4. Show that the degeneracies of the oscillation frequency fix
uniquely the ratios of the sides of the vibrating membrane or cavity.

any

4 e o o o o

3 [ ] ° [ ] ® ®

2 ® e o

W Sy
Fig. 6.2. “Reciprocal” lattice of allowed frequency {4+ /@ /@ e e e

values wn;n, for a rectangular membrane
with a length ratio L;:Ls:: 1:2. The dis-
tance from the origin to each of the points N,
gives the magnitude of wayn,. 0 1 2 3 a4 5 D
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The method of separation of variables in finding the eigenfunctions of
the Laplacian operator in more than one variable will be applied in Section 6.2
to polar coordinates in the plane. At the end of this chapter we shall add
some remarks on other coordinate systems in the plane where this is possible.
In each case, when the region R is finite, the spectrum of V2 is negative and
the eigenfunctions are orthogonal, giving rise to a corresponding generalized
Fourier series.
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Fig. 6.3. Frequency degeneracies of a rectangular membrane with length ratio 1:2.
Dashed lines join the degenerate pairs of wnyn,’s. If a partner lies beyond
ny = 6, only the n;, ne values are indicated.
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Fig. 6.4. Degenerate subspaces of normal modes. The modes ¢3,; and ¢, of a 1:2
rectangular membrane have the same angular frequency (10)*/2. We plot here
the linear combinations ¢, = cos f¢s{ + sin 6¢p,s for various selected values
of 0 indicated below each figure. Blank and lightly shaded regions indicate
negative and positive values of ¢y, the fixed nodal lines being the boundaries.
Heavily shaded areas indicate values of ¢, larger than 0.6.

6.2. Laplacian on the Unit Disk: The Circular Membrane

The eigenfunctions of the Laplacian operator will be found now when
the domain is the space of square-integrable functions on the unit disk,
which vanish on its boundary circle. In polar coordinates, we shall see that
these consist of circular functions for the angular variable times Bessel
functions for the radial part. The former have been treated extensively in
Chapter 4 as the basis functions for the Fourier series expansion, while the
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latter (a2 summary of whose properties can be found in Appendix B) are a
basis for one of the Bessel series expansions. The product of the two functions
provides the spatial part of normal modes for the description of a vibrating
circular membrane.

6.2.1. Polar Coordinates

When the region R in (6.1) is the unit disk R, it is convenient to
parametrize the plane in polar coordinates,

X, = FCOS ¢, Xy = FSin ¢, rel0, ), ¢ e(—m, m], (6.14a)
d?x = dx, dx, = r dr dj, . (6.14b)

so that the inner product between two functions on this region can be written
as

Coo = | rar [ dase drec ) (619)

The space of functions with finite norm [induced by (6.15)] which vanish for
r= 1 will be denoted again as %,%(Ro). It is a Hilbert space. The functions
in this space are of course periodic in ¢ with period 2.

The expression for the Laplacian operator in polar coordinates is well
known to be

e (6.16)

Exercise 6.5. Verify directly that (6.16) is hermitian. This is just (6.3) in co-
ordinate form using (6.15) and f, g € €?.

6.2.2. Separation of Variables

To solve the eigenfunction equation for (6.16) on %%(Ro),

2 2
(S +7 2+ o s ) = = Mhlr ), (617)
we propose separable solutions f(r, ) = R(r)P(¢4). We have put a minus
sign in front of the A, on the basis of the observation in (6.8) that the spectrum
of V2 there was negative. By substituting the proposed solution form in (6.17),
applying the Leibnitz rule, and dividing by r~2f(r, ¢), the equation is
transformed into

L R'()
R TR

R'(r) 2

— = =

()
ETO8 (6.18)
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As before, the purpose of the separation of variables method is to be able
to write Eq. (6.17) in a form (6.18) in which one side depends only on one
variable and the other side only on the other, independent, variable. Both
sides can only be equal to the same constant ¢, and we are left with two
ordinary differential equations coupled by the separation constant. As the
functions in %,%(Ry) are to be periodic in ¢, the right-hand side yields the
well-known circular functions

©,(p) = (2m)~"2 exp(im¢), ~meZ, (6.19)

fixing the separation constant as ¢ = m? and providing one label for the
Laplacian eigenfunctions. The left-hand side of (6.18) then becomes

(9_22 L1o_ ’f_j) Ru(r) = —ARy(r). (6.20)

6.2.3. General Solution of the Radial Part

Upon the simple change of scale A2 — r, Eq. (6.20) is Bessel’s differen-
tial equation. (See Appendix B.) The general solution of (6.20) is then

Ro(r) = andn(A12r) + BN (AV2r), (6.21)

where a,, and b,, are as yet arbitrary constants, » is an integer, and J,, and
N, are the Bessel and Neumann functions of order m. [These are also called
Bessel functions of the first and second kind; see the National Bureau of
Standards tables edited by Abramowitz and Stegun (1964). There, the
symbol Y, is employed for the latter, for which the name Weber function is
also occasionally used, as in Watson’s classic treatise (1922). In mathematical
physics, however, Neumann’s name seems to be more popular. See Morse
and Feshbach (1953)].

6.2.4. Boundary Conditions and Frequency Quantization

We now require the space and boundary conditions to hold for Eq. (6.21).
A first observation (Figs. B.1 and B.2) is that the Neumann function becomes
infinity at » = 0 and is in fact not square-integrable, so it cannot belong to
L (Ro) and therefore, unless b, = 0, neither will R,(r). A second remark
is that (6.20) is the same equation for +m and —m. No essential features in
(6.21) distinguish between the two since, for integer m, J_, = (—1)"/,.
The third argument, we note, is that the boundary condition of the function’s
vanishing at the membrane edge, R,(1) = 0, fixes the allowed values of A
and thereby the spectrum of the Laplacian. Indeed, this condition implies
J.(AY2) = 0. Now, this is clearly valid only if A2 is a zero of the Bessel
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Fig. 6.5. Radial functions in the circular membrane normal modes .. The left edge
is the membrane center, while the right edge is the fixed boundary. All m # 0
modes are zero at the former, and all vanish at the latter, coinciding with the
nth zero of the Bessel function.

function. The Bessel function of any order m has a denumerable infinity of
simple zeros. [A small table of the first few is given in Appendix B. A more
complete list can be found in Abramowitz and Stegun (1964, Table 9.5).] The
effect of this condition is then to fix

Amn = (), meZneZ*, (6.22)

where j,,, is the nth zero of the Bessel function of order m (not including r = 0).
The effect of A,,, when placed in the Bessel function in (6.21) is to change the
scale in the argument of R,(r) so that for n = 1, 2, ... the nth zero of the
Bessel function coincides with the region’s edge at » = 1. This is shown in
Fig. 6.5. Finally the restriction (6.22) also provides a second label, n, to mark
uniquely the eigenvalues and functions. The latter are thus recombined from
(6.19) and (6.21) as

(Pgn(r’ 95) = c%n']m(jmnr) CXp(iqu), me ‘@aa neZ*. (6233)
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The constant ¢$, in (6.23a) is introduced in order to normalize the functions
with respect to the inner product (6.14). It can be shown to be
aJx(s)

an = (2'”)_1/2gmn9 8mn = 21/2[ ds

| ]'1 (6.23b)
S=Imn

[see Tolstov (1962, Section 8-13)].

6.2.5. Normal Modes on the Disk

Having found the expressions (6.22) and (6.23), we have completed our
task of finding and classifying the Laplacian eigenvalues and functions in
F%(Rp). They are a complete and orthonormal set of basis functions in this
space. Equations (6.5), the generalized Fourier series for %,%(Rc) functions
on the unit disk, can thus be written using this set. We can now use this in
order to expand the time-dependent function,

[0 = 2 fuO)eSa(rs 8), (6.24a)

meg ,negy +
Jn(1) = L rdr f dpf(r, $, )pan(r, $)* = (Pgn Do,  (6.24b)

which will be required to be a solution of the wave equation describing the
vibrations of a circular membrane of unit radius fixed along its perimeter.
As in (6.9)-(6.10), for f(r, ¢, t) to be a solution of the wave equation, the
Fourier coefficients must satisfy

¢5 2 Fonlt) = Aol (625)

which are two independent sinusoidal, oscillatory functions of time with

angular frequency
wgn = CArlnlr? = cjmn, (626)

exactly as in (6.11a).
The normal modes of the circular membrane will thus be the solutions
for which the Fourier coefficients (6.24b) are different from zero one at a time,

Pan(rs by 1) = Ciann(jmnr) €Xp(ime) cos winnt (6.27)

and their time antiderivatives which involve sine functions of w$,z.

6.2.6. Properties of the Disk Normal Modes

The properties we noted for the rectangular membrane normal nodes
have their counterparts here: (a) The modes (6.27) start from rest at z = 0,
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Fig. 6.6. The allowed angular frequencies of the circular membrane normal modes lie
on the zeros of the Bessel function J,(x). The latter are indicated by the sloping
lines corresponding to the first, second, etc., zero. For m integer (vertical lines),
the position of the zero (heavier bars) gives the value of wpn.

while their antiderivatives start with maximum velocity. (b) If we consider
the real or the imaginary part of (6.27), the m, n mode presents m nodal

diameter lines and n nodal circles, including the boundary. They are simple-
zero lines, fixed in time. (c) The angular frequencies (6.26) can be arranged in
an m-n diagram as in Fig. 6.6, which is the counterpart of Fig. 6.3. They
appear as points—for integer m—on the zero lines in the (m, x)-plane of the
Bessel function J,(x). We can see that, quite naturally, the w,, fall into
trajectories characterized by n. (d) The oscillation periods Ty, = 27/w,, are
all mutually incommensurable, except for Ty, = T_p,. The lack of harmonic

frequencies accounts for the “nonmusical” sound of a drum as compared

with a guitar string, where all frequencies are multiples of a basic one.
(e) The twofold degeneracy of all m # 0 modes is a consequence of the
invariance of the system—differential equation and boundary conditions—
under the group O(2) of rotations and reflections across any line which passes
through the origin. Clearly, as one reflection (across a line by 0°) replaces ¢
by —¢, the ¢$,(r, ) modes are transformed into the 2,,,(r, ¢) ones. Linear
combination in these equal-frequency subspaces only rotates the position of
the angular nodes.

In Fig. 6.7 we show some of the lower-lying vibrational modes of the
circular membrane.
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Exercise 6.6. Assume the initial conditions are invariant under rotations
[i.e., f(r, }, to) = f(r, 1+, 1) and similarly for the time derivatives, for arbitrary
«]. Show that the only normal modes present in such a vibration are the m = 0
modes and that this invariance will hold for all time.

Exercise 6.7. Assume the initial conditions of the membrane are eigen-
functions of an element of the group O(2) of rotations and reflections. Find the
normal modes present in this state. Show that this symmetry will be preserved
forever.

Exercise 6.8. Find the Parseval identity for (6.23).

Exercise 6.9. Consider the region R to be a circular cylinder cavity of unit
radius and length L. The Laplacian eigenfunctions will then be

(2/L)}2¢@u(r, $) sin(kmrz/L)

for me % and n, ke Z*. The system is the ‘‘direct product’ of a circular
membrane times a string. The normal mode oscillation angular frequencies will
be the “Pythagorean sum’’ of those of the constituent systems, that is, wuu =
(w2, + we?)?? in terms of (6.26) and (5.23b). Note that one needs one label for
each dimension of the space.

6.2.7. Bessel Series of Integral Order

The orthogonality and completeness of the normal mode expansion
(6.24) on the disk, for any fixed time, has one rather immediate consequence
for functions f(r, ¢) which are of the form f(r, ¢) = f(r)®5 (¢) for a fixed m1,
[Eq. (6.19)]. Equation (6.24b), when integration over ¢ is performed, will
yield a factor 273, ,,. The generalized Fourier synthesis in (6.24a) will
contain only an m = my, term so the ®3’s can be canceled on both sides,
turning the pair of equations (6.24) into

fr) = ; FinZmnduCimal)s (6.28a)
5 = G j F drf() oG- (6.28b)

Equations (6.28) are the order-m Bessel series and Bessel partial waves: the
expansion of an arbitrary %30, 1) function f(r) into a series of Bessel
functions of order m and its corresponding order-m Bessel coefficient
f7{"‘ = (277)_1/2fmw

The Bessel series (6.28) is one example, in addition to the Fourier sine
series, of expansion of an arbitrary function in %2(a, b) in terms of a com-
plete and orthogonal set of functions with respect to a given inner product.
Note that the relevant inner product here is

0= raferee) = 3, frcen (6.250)

neg +
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of the circular membrane. For positive values of the

function [Eq. (6.27), t = 0] the grid is finer. The fixed radial and angular nodes

Fig. 6.7. The normal modes ¢

this being the form of the Parseval identity. A trivial change of function

f(r) = r~12f(r) transforms (6.28) into an expansion of the new f(r) in
terms of r'2J,(j..#) having the advantage that the integral in (6.28b) and

(6.28c) contains dr rather than r dr as its differential.

Exercise 6.10. Verify the orthogonality of the Bessel functions J,,(j..r) with
respect to the index n under the integral (6.28). This can be done by verifying
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of the membrane are the boundaries between the single- and double-gridded regions.

with 62/6¢?
replaced by — m?, is hermitian with respect to the inner product. Then apply the

argument (1.106).

’

first that the differential operator on the left-hand side of (6.17)

a € (0, 1). This acts as the reproducing kernel in the inner -

]

Exercise 6.11. Consider the f(r) to be expanded in a Bessel series to be the

Dirac 8, a=*8(r — a)
product (6.28c). Find its Bessel series coefficients from (6.28b); (6.28a) then gives

another divergent series representation for the Dirac 8 and its derivatives.
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6.2.8. Other Boundary Conditions

The series (6.28) is called, to be precise, the Fourier—Bessel series. The
roots j,., of the order-m Bessel functions appear in it due to the boundary
condition that the solution to (6.20) at the membrane edge r = 1 be zero.
This condition can be replaced by any other condition which ensures that the
boundary terms in (6.3), namely [f(r)g'(r) — f'(r)g(r)]|;=1, vanish. This is
achieved if f(1) = 0, as we demanded from (6.21), or by the more general
condition that the ratio of f(r) to f'(r) at the boundary be constant. In
particular, if one asks for rf'(r) + kf(r) = 0 at r = 1 to be satisfied by all
solutions, one finds a normal mode basis of the type (6.23a), where the roots
{Jmnti-1 are replaced by the roots {A,,,}=; of rJ;(r) + kJ,(r), and the series
analogous to (6.28) will contain these roots. The resulting series has been
called the Dini series and includes the Fourier—Bessel series as a particular
case. Watson (1922, Section 18.3) discusses this series in some detail. For
further examples and physical problems, the reader can refer to Churchill
(1941), Relton (1946), Courant and Hilbert (1953, Section V-5), Morse and
Feshbach (1953, Section 11.2), and Tolstov (1962, Chapter 9).

Tables of Bessel functions and their derivatives, products, and roots are
necessary for any actual calculation. These tables have proliferated with the
advent of electronic computation. See, for instance, the Bessel function tables
of the British Association for the Advancement of Science (1950, 1952), the
Royal Society Mathematical Tables (1960) (this includes zeros and associated
values in Part III), and the National Physical Laboratory Mathematical
Tables (1962). Tables of Bessel functions of large orders have been edited by
the USSR Academy of Sciences (Fadeeva and Gavurin, 1950) and by the
Harvard Computation Laboratory (1947-1951).

6.2.9. The Limit of Infinite Radius: Hankel Transforms

The expansion of functions f(r) in terms of Bessel series need not be
constrained to the interval r € (0, 1). A change of variables will allow for any
interval (0, R), as was done for simple Fourier series in Section 4.7. Let
q = rR, and introduce the discrete variable p, = j,.,/R for fixed m, so that
pn takes on a discrete set of values proportional to the roots of the Bessel
function, which can be numbered by the natural numbers #n. If we further

introduce f1(¢) = (q/R)"*f(q/R), /;"(p») = 7~ *2Rfy, and hyp, = (jun) ~**Grun,
Egs. (6.28) become

[@ = D B m[RAT0)(020) Tn(Paq),  (6.292)

neg +

FEDD) = I f dafi (@) psd) 2T pad), (6.29b)
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|, darara@) = 3 @IRAHR e . (6.290)

negt

The limit R — oo of Egs. (6.29) can be found. We have to watch the
discrete variable p, = j,./R. As R— oo, higher and higher roots of the
Bessel function will correspond to finite values of p,. For large values
of the argument, the Bessel function J,(z) behaves (see Appendix B) like
2/mz) 2 cos[z — m(m + 1)/2], i.e., the roots approach asymptotically the
equally spaced sequence m(n + m/2 + 2). The values of p, hence also approach
equal spacing Ap = 7/R, which vanishes as R — co. Finally, the values of
My approach unity. This is seen from (6.23b) and the asymptotic behavior
of the Bessel function derivative evaluated at the roots. The factor (2/mz)*?
yields gnn ~ (Mjmn)'? as n— oo and thus 4, — 1. Introducing these con-
siderations into (6.29), we observe that sums >, Ap--- of functions of p
appear. As R — oo these will become Riemann integrals f: dp---, giving,
finally,

£a) = j " o) pa) P, (6.30a)
F5(p) = J 4f (@) pa Y Inlp), (6.30b)
[ daftarea = ) " A (p)y*e (), (6.300)

where we have dropped the subscripts. Equation (6.30b) defines the Hankel
integral transform of f(q) and (6.30a) its inverse, while (6.30c) is the corre-
sponding Parseval identity. Although the derivation (6.28)-(6.30) has not
been rigorous for basically the same reasons as in Section 4.7, the results
(6.30) and their range of validity will be established independently in Section
8.4.

Exercise 6.12. Consider a similar limit for the Dini series.

The Bessel-Fourier series in the form (6.28) is but one of a family of
similar series in Bessel and Neumann functions. These will be discussed in
Section 6.3.

6.3. Sectorial and Annular Membranes

We continue our consideration of the Laplacian operator when the
functions in its domain vanish on boundaries which follow polar coordinates
in the plane. These are used for the description of sectorial and annular
membranes. The results -are nontrivial extensions of the results on the
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Fig. 6.8. Circular sector membrane.

circular membrane normal modes in Section 6.3 and are meant to illustrate
the use of the normal mode method in finding explicit results for a variety of
systems.

6.3.1. Inner Product on a Sector

Let the region R be a sector of the unit circle extending between the
lines ¢ = 0 and ¢ = « (Fig. 6.8). The inner product on this region, in polar
coordinates, will be

@ 8o = f r dr f " a1, b5, ). (6.31)

The space of functions we want to consider is %2%(R,): square-integrable
functions under (6.31) which vanish on the boundary of R, i.e., f(r, 0) =
0 = f(r, «) and f(1, ) = 0.

The expression for the Laplacian in polar coordinates is again (6.16),
and the eigenfunction problem with the same coordinate separation is also
(6.18). The solutions of the right-hand side of this equation, however,
because of our new boundary conditions in ¢, will be akin to the functions
for a fixed-end string of length «, namely,

D) = Q) ?sinpd, p=mmle, meZ*,  (6.32)

and the separation constant in (6.18) will be ¢ = p2.

6.3.2. Solution to the Problem

The Bessel differential equation, which is the left-hand side of Eq. (6.18),
is identical to (6.20), except that m € & is replaced by p = mn/a, me &+,
This replacement applies also to the solutions, Eq. (6.23), which for R, now
read

‘;Dn?n(r’ ¢) = (2/a)1/2gun']u(junr) sin P“}S: mneZ*, (633)
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where all quantities have the same meaning as before, j,, being the nth zero
of the Bessel function of order p. The main difference between (6.33) and
(6.23) is that the “angular” label px takes on equally spaced but in general
noninteger values. The set of Laplacian eigenfunctions (6.33) will be ortho-
gonal with respect to the inner product (6.31) and complete for Z2%(R.).
A generalized Fourier series can be written for (6.33) identical to (6.24) except
for the ranges of summation over m and integration over ¢.

6.3.3. Normal Modes and Frequencies for a Sector Membrane

An elastic membrane governed by the wave equation over the region R.
and fixed at its boundary will exhibit normal modes

Pon(rs b, 1) = (2fa)2g,, T, (Junr) SIN pep COS w8, (6.34)

and their time antiderivatives, the oscillation frequencies w,, being ¢ times
the nth zero of the Bessel function of order p. In Fig. 6.9 are these allowed
angular frequencies for the normal modes of a sectorial membrane of angle
o« = 7/3: the allowed w’s are positive integer multiples of 3. As the figure
suggests, the opening of the angle « produces a “sliding down” of the
allowed frequencies along their frajectories. In particular when « reaches =
we have a half-circular membrane. The allowed values of p are the positive

X
201 3
:/ / /2

»
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?/

4

0 - . m
0 3 6 9

Fig. 6.9. Allowed angular frequencies of the normal modes of a sectorial membrane of

angle « = =/3. These are given by the zeros of J,(x) for m a nonzero multiple
of 3.
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Fig. 6.10. Allowed angular frequencies of the normal modes of an « = = sectorial
(semicircular) membrane.
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Fig. 6.11. Allowed angular frequencies of the normal modes in a spherical cavity.
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integers (Fig. 6.10). Except for the m = 0 modes, therefore, the sounds one
can produce on a circular drum are identical to those one can get from a
half-drum. The mechanics of actual drumming, however, tend to generate
mostly m = 0 normal modes. These are the only circular membrane modes
where the center is in motion.

Exercise 6.13. Extend the sector angle « to 2. You have then a circular
membrane with a fixed strut extending to the center. The allowed angular frequen-
cies will include w;,5 , = cnm, capable of producing harmonic sounds. (See the
particular function J;,, in Appendix B.) Describe the corresponding normal modes.

Exercise 6.14. Provided you are familiar with spherical harmonics, solve the
wave equation for a resonating spherical cavity. Show that the allowed angular
frequencies are only half-integers, as given by Fig. 6.11. These are the allowed
w’s for Exercise 6.13, minus integers.

6.3.4. Bessel Series for Real Order

As in Section 6.2, in considering the generalized Fourier expansion of
functions in %?%(R.) in series of ¢.(r, $), we can consider those which have
the form f(r)®,(¢) so that ¢ integration and cancellation can be made.
This gives rise to the pair of Bessel series equations (6.28) for general real
order m.

Exercise 6.15. Prove this in detail.

| Exercise 6.16. Show that for m = 1 the Bessel series (6.28) becomes the
Fourier sine series.

\ 6.3.5. Annular Boundary Conditions and Solutions

, Consider now a region Rg which is an annulus of interior and exterior
radii p; and p, (Fig. 6.12). The relevant inner product is then

9o = [ *rdr J dof(r, 9)*e (r, 9), 635)

p1

| defining a space %%*(Ry) in analogy with the former cases. The search for

[ the eigenfunctions of V2 in this space follows that of Section 6.2; the angular
functions are here periodic and identical to (6.19), while the radial functions

‘ have the form (6.21). The boundary conditions on the latter are different,
however:

Ru(p) = anuw(A2p1) + buNu(A2p1) = 0, (6.362)
Ry(p2) = anJu(A2p2) + buNu(A2ps) = 0. (6.36b)

-
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Fig. 6.12. Annular membrane.

This set of homogeneous equations will have a solution for the ratio b,/a,
only if their determinant vanishes, i.e., for those values of k = A% for which

Dyx(K) = Jn(pk)Nulpsk) — Jn(pak)Na(psk) = 0. (6.37)

6.3.6. Frequencies and Normal Modes for an Annular Membrane

The problem, then, is to find the zeros of the function D7+*2(k), which
can be shown to be simple. This is not too difficult with standard numerical
computer methods. See Fig. 6.13. Once these are found as ki, Kpas . - .,
Koy - - ., they can be introduced in (6.36) and the ratios p,,, = b,/a,, thereby
determined for the nth zero of (6.37). The radial functions will then be

Bn(r) = CunlJulkmal) + punNulkmat)l,  meZneZ*. (6.38)

The normalization coefficient ¢, is chosen so that
P2
f PPl () = B (6.39)
P1

Bessel and Neumann functions are real, so no complex conjugation is
necessary.

Exercise 6.17. Verify the orthogonality (6.39) of the B,,(r) with respect to
the index n. This can be done as in Exercise 6.10.

Once the radial functions (6.38) have been found, the rest of the program
follows as before: The eigenfunctions of V2 on the annulus R, are
®2.(r, ) = B, (r)®,°(¢4) and constitute a complete and orthonormal set of
functions on %?(Ry) [compare with (6.23) and (6.33)], giving rise to a
generalized Fourier series on Ry. Normal modes for the annular membrane
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can be built as the ¢2,(r, ¢) times oscillating functions of time, of angular
frequency w,,, = ck,, determined by the roots of (6.37). These can be plotted
as in Fig. 6.6. In fact, Fig. 6.13, seen sidewise, is just such a diagram.

Exercise 6.18. Verify and explain the twofold degeneracy of w,, and

DL -

Exercise 6.19. Investigate the case when the interior radius of the annulus,
p1, becomes zero. Show that, as N,(p) — + o for p — 0, pm, — 0 in (6.38). The
annular normal modes thus become the circular ones, except for the m = 0
ones. Why are these absent ?

Exercise 6.20. Consider an annular-sectorial membrane bounded between
r = p; and pg, $ = 0 and a.

o
N PN

P P S e T o I e e e e R e e o a3

|
o

Fig. 6.13. The function Dpt*2(k) in Eq. (6.37) form = 0,1, ..., 5. We draw three curves:
long dashes for p; = 0.25, po = 1; continuous for p; = 0.5, p; = 1, indi-
cating the zeros by arrows; and short dashes for p, = 0.75, po = 1. The zeros
of the last function can be seen to lie at higher values of the argument and to
tend toward equal spacing.



246 Part I - Fourier and Bessel Series [Sec. 6.4

6.3.7. Bessel Series with the Annular Functions

The radial functions B,,,(r) we have found for the annulus also provide
an orthonormal (and complete) basis for the space of square-integrable
functions on the interval (p;, py). In fact, by arguments parallel to those
which lead from the generalized Fourier expansions on Ry and R, to the
Bessel series in Eq. (6.28), we are led to the general Bessel series of order m,

1) = ;jfml?mn(r), (6.40a)
fBn = f (") B, (6.40b)
695 = | * r e (r) = > feeats, (6.400)

which, as suggested by Exercise 6.20, is valid for real m.

The use of cylindrical functions for the series expansion of functions
is not restricted to those types seen here, which arose out of the normal mode
expansion in regions of the plane bounded by polar-coordinate boundaries.
Among these ““other” series expansions we should mention the Neumann
series, which are of the form >, a,J, . (r); the Kapteyn series, of the form
>w-0byJy i a[(v + n)r]; and the Schlomlich series, of the form >2_, ¢, J,(nr).
The region of convergence of the two first series is determined by the analytic
properties of the functions to be expanded. In this sense, they are similar to
the ordinary Taylor expansions. We shall not elaborate on these but refer the
interested reader to Watson’s treatise (1922, Chapters XVI, XVII, and XIX)
for further details and applications. Neumann series also appear in the series
on transcendental functions by Erdelyi et al. (1953-1955, Vol. 2, Chapter 7).

Tables of the roots of Eq. (6.37) are needed for any practical calculation.
Two articles dealing with problems of this kind which offer reasonably
extensive tables are those by Dwight (1948) and Bridge and Angrist (1962).

6.4. Other Series of Orthonormal Functions

In this chapter we have seen the Fourier and Bessel series—and many
of their variants—arise in the description of the normal modes of an elastic
medium enclosed by rectangular and polar-coordinate boundaries. There are
at least two directions in which this approach can be generalized: first, by
consideration of more general boundary conditions and surfaces in higher
dimensions and, second, as “normal mode’ solutions of other types of
equations. In both cases, though, finding orthonormal and complete sets of
functions is a Sturm-Liouville problem, which can be posed as follows.
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6.4.1. The Sturm-Liouville Problem

Define an inner product over the interval (@, b) given by

b
€9 = [ w0y @e®, o >0xe@h), (64D
with a positive weight function o(x). Such an inner product defines the
(Hilbert) space Z,*(a, b) of functions f on (g, b) such that (f, f), < oo.
Consider now a second-order differential operator with p(x), g(x), r(x) real.

H = p(x) dd—; + q(x)% + r(x). (6.42)

We want to examine the conditions under which H is hermitian, i.e.,
(Hf, g),, = (f, Hg),,. Performing the necessary integrations by parts, denoting
d/dx by V for the sake of brevity, and suppressing arguments, we find

(Hf, g), = f o dX[(pV? + qV + r)f*1g

a

= (p(8%/* — f* V) + [og — V@plf*g)lt + | wdr*
X {pV? + o7 2V(wp) — 0]V + o7 [VX(wp) — V(wg)] + rlg.
(6.43)

So that (6.43) will equal (f, Hg),, for arbitrary f and g it is sufficient that
(a) V(wp) = wg, which turns the operator in curly brackets into H; the
boundary term disappears if either (b) Vi/h|,.., = Vh/h|._, for h = fand g
or (b") Vh/h|.-, = k, and Vh/h|,._, = ks, k, and k, constants. These condi-
tions direct us to consider operators (6.42) of the form

H = [o()] " A o()p() o+ r(x), (6.44)

which, we are assured, are sermitian with respect to the inner product (6.41)
in spaces of functions which satisfy boundary conditions which are either
periodic or fix the logarithmic derivative at the interval ends.

We now pose ourselves the task of finding the solutions ¢,(x) to the
eigenvalue equation

Hea(x) = Apa(x) (6.45)

which are in %,%(a, b) and which satisfy the vanishing of the boundary term
by (b) or (b’). We assume here for mathematical tractability that the set of
values over which A can range—the spectrum of H—is an infinite, discrete set.

The solutions to (6.45), once they are explicitly found, will provide us
with an orthogonal set of functions which can be normalized so that
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(¢ ®u)o = 85, The proof of this fact is completely analogous to the proof
in (1.106) for finite-dimensional vector spaces and was briefly commented
upon following Eq. (6.4) in discussing eigenfunctions of the Laplacian which
vanish on finite, closed boundaries.

Exercise 6.21. Verify the validity of the above construction for the operator
d?/dx?, Eq. (6.44) with w(x) = 1 = p(x), r(x) = 0, for the interval (—, w] with
periodic boundary conditions (b) leading to the functions (27)~ /2 exp(imx),
me Z, A = —m?. Note the slightly disturbing feature that the nonzero eigen-
values of d?/dx? are doubly degenerate.

Exercise 6.22. Verify the validity for d2/dx?® under conditions (b’)
in a general interval (a, b). The solutions to (6.45) have the general form
fu(x) = ¢, sin(ux) + d, cos px, A = —p2. Assuming that Vf,/f,|.-. = k, and
Vfulfulz=» = ky, find the allowed values of n and the corresponding ratio of ¢,/d,,.
Normalize. [See Titchmarsh (1946, Section 4.1).]

Exercise 6.23. Study the Bessel series of annular functions (6.38) as stemming
from the eigenvalue equation (6.20), which has the form (6.44)-(6.45) with
w(x) = x, p(x) =1, r(x) = —m?/x%, m > 0. The solutions (6.21) are further
curtailed by the boundary conditions on (py, p2): k,, = ®© = k,,. Other boundary
conditions will give versions of the Dini series. [See Titchmarsh (1946, Section
4.7 et seq.).]

Exercise 6.24. Consider Bessel’s differential equation (B.12) written as an
eigenfunction equation with eigenvalues m? of the form (6.44)—(6.45) with
w(x) = 1/x, p(x) = x? = r(x). What boundary conditions give the orthogonality
relations for the expanding functions employed in the Neumann series ?

6.4.2. On Eigenvalues, Orthogonality, and Completeness

It should be observed that only orthogonality of the eigenfunction set is
guaranteed by the hermiticity of the operator H. Completeness is a more
difficult property to prove or verify. When the operator is self-adjoint (see the
discussion in Section 4.6) and the spectrum as assumed above, the eigen-
function set is complete. An arbitrary function f(x) € %,%(a, b) can then be
written (approximated in the norm) as a normalized eigenfunction series

@ = 3 S, xe@b) (6.462)
where the generalized Fourier coefficients f, are
o = @D = [ 0 dpa )10 (6.46b)
The generalized Parseval identity reads
€0 = [ o) a6 = 3 s (6.460)
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Quantum mechanics, in its Schrodinger formulation, is mathematically
a Sturm-Liouville theory, the operator in question being typically the
system’s Hamiltonian —4V? + V/(x), where V(x) is the potential function.
The region R where x is allowed to range is usually the whole three-dimen-
sional space, so, in a sense, the wave-function expansion lies outside the class
1 considered in this part. Yet if the potential is such that is classically constrains
a particle with finite energy to a bounded region in space, or if we are using
coordinate systems such as cylindrical or spherical where one or more of the
coordinates range, due to geometry, over a bounded interval, the result is a
\ wave-function series. Of particular importance are the bound-state Coulomb
and harmonic oscillator systems. The eigenfunction expansions associated
with the latter will be detailed in Section 7.5; those of the former can be seen

in most quantum mechanics texts, such as Messiah (1964, Chapter 11).

6.4.3. Orthogonal Polynomial Series

Due to their ubiquity, a class of eigenfunction expansions which we can

hardly escape mentioning is that of the classical orthogonal polynomials. There

are three families of these, according to whether the interval (a, b) in (6.41)

is finite, half-infinite [i.e., (a, 00)], or infinite. The first family is that of Jacobi

| polynomials, P{*#(x), orthogonal under (6.41) with (a, b) = (—1, 1) and

‘ ox) =1 —x)*(1 + x)%, o, >—1. When « =8 =19y — 1, ie., olx) =

‘ (1 — x®)”~12 these become the Gegenbauer polynomials C’(x) which appear

! in connection with hyperspherical harmonics [for solutions to the angular

' part of the N-dimensional Laplacian, see Egs. (8.77)]. For y = 4, w(x) = 1,

we have the Legendre polynomials P,(x), which appear in three-dimensional

spherical coordinate separation. The second case, half-infinite intervals (0, c0),

leads to Laguerre polynomials L{®(x) when w(x) = x* exp(— x). The Coulomb

and radial harmonic oscillator quantum systems are solved in terms of these

( functions. Finally, infinite intervals require Hermite polynomials for w(x) =

exp(—x2). These are present in the harmonic oscillator wave functions in
Cartesian coordinates.

The three families of classical orthogonal polynomials are further related,
with some rather technical restrictions, to the existence of a Rodrigues
differential recursion formula as shown by Tricomi (1955) [this can be seen,
in simplified version, in the text by Dennery and Krzywicki (1967, Section
I11-10)]. A result of this recursion formula is that the interval (a, b) determines
uniquely the weight function w(x) and the differential equation satisfied by
the polynomials. For the above intervals, the Jacobi, Laguerre, and Hermite
families satisfy (6.44)—(6.45) with p(x) = 1 — x2?, x, and 1, respectively.

Books on the series expansion in terms of orthogonal polynomials
include the classic by Szegé (1939), Rainville (1960), and Boas and Buck
(1964). The general subject of eigenfunction expansions including many

—
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concrete examples can be seen in the two-volume work by Titchmarsh (1946,
1958). A more readable account can be found in Yoshida (1960).

6.4.4. Two- and Three-Variable Series Expansions

The wave equation, once the time dependence has been ““factored off”
and replaced by a —w? term, is a Helmholtz equation such as (6.4). In two-
dimensional space, the Helmholtz equation is known to have separable
solutions in (only) four coordinate systems: Cartesian, polar, parabolic, and
elliptic. If the boundary conditions are given following these coordinate lines,
the solutions will be given in terms of circular and Bessel functions in the
first two cases and parabolic cylinder and Mathieu functions in the last two.
Corresponding orthonormal and complete sets of normal modes can be
obtained for elastic media enclosed in such boundaries, except that in the
last two cases these remain as two-variable u-v function expansions of the
form U,,,(4)V,.(v), where the separation constants, related to m and n, are
coupled and do not simplify to single-variable series. Only Cartesian and polar
coordinates have this property. A variety of problems involving the two-
dimensional wave equation with various boundary conditions can be found
in Morse and Feshbach (1953, Sections 5-1 and 11-2). For parabolic cylinder
and Mathieu functions we have to turn to more specialized literature (see
below). The latter are given concise treatment in the textbook by Hochstadt
(1966).

The wave equation in three dimensions leads to further special functions,
since the corresponding Helmholtz equation separates now in 11 coordinate
systems. The four orthogonal coordinate systems which separate the two-
dimensional Helmholtz equation yield, under translations along a normal,
Cartesian, circular, parabolic, and elliptic cylinder coordinates. Under
rotation around an axis in the plane they generate spherical, parabolic, and
prolate and oblate spheroidal coordinates. In addition, there are the conical,
ellipsoidal, and paraboloidal systems. The surfaces defined by these coor-
dinates which can serve as boundaries are three-dimensional conic surfaces.
New functions appear: associated Legendre polynomials and spheroidal,
Lamé, Jacobian elliptic, and ellipsoidal functions. The three-variable normal
mode expansions do not simplify to two- or single-variable series except for
those obtained by translation. The spherical coordinates are somewhat
special in that their normal modes have the structure R,;(r)0,,(6)®,.(¢). For
m = 0 they yield the Legendre polynomial series in cos § and the Bessel-
Fourier series in r.

The higher transcendental functions appearing in the solution of the
Helmbholtz equation in two and three dimensions are given a full discussion
in volumes such as those by Hobson (1931), McLahlan (1947), Meixner and
Scharfke (1954), and especially Arscott (1964). Of particular importance, the
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spherical harmonics, orthogonal functions on the surface of a sphere, have
many interesting group-theoretical properties. These have been presented in
books by Edmonds (1957) and Rose (1957). Last, it should be mentioned
that the theory of Lie algebras and groups offers a powerful method for the
determination of certain operator eigenfunctions and their completeness.
The works of Maurin (1968) and Olevskii (1975) develop this field.






