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Concepts from Complex
Vector Analysis and the
Fourier Transform

In this chapter we present the basic properties of complex vector spaces and
the Fourier transform. Sections 1.1 and 1.2 prepare the subject through the
standard definitions of linear independence, bases, coordinates, inner
product, and norm. In Section 1.3 we introduce linear transformations in
vector spaces, emphasizing the conceptual difference between passive and
active ones: the former refer to changes in reference coordinates, while the
latter imply a “physical” process actually transforming the points of the
space. Permutations of reference axes and the Fourier transformation are
prime examples of coordinate changes (Section 1.4), while the second-
difference operator in particular and self-adjoint operators in general
(Section 1.5) will be important in applications. We give, in Section 1.6, the
elements of invariance group considerations for a finite N-point lattice.
Finally, in Section 1.7 we examine the axes of a transformation and develop
the properties of self-adjoint and unitary operators.

If the reader so wishes, he can proceed from Section 1.4 directly to
Chapter 3 for applications in communication and the fast Fourier transform
algorithm. The rest of the sections are needed, however, for the treatment of
coupled systems in Chapter 2.

1.1. N-Dimensional Complex Vector Spaces

The elements of real vector analysis are surely familiar to the reader, so
the material in this section will serve mainly to fix notation and to enlarge
slightly the concepts of this analysis to the field € of complex numbers.
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4 Part I - Finite-Dimensional Fourier Transform [Sec. 1.1

1.1.1. Axioms

Let ¢y, co, ... be complex numbers, elements of ¥, and let f;, f,, ... be
the elements of a set ¥~ called vectors and denoted by boldface letters. We
shall allow for two operations within ¥":

(a) To every pair f; and f, in 7] there is an associated element f; in ¥
called the sum of the pair: f; = f; + f,.

(b) To every fe ¥ (“f element of ¥"’) and every c € €, there is an
associated element cf in ¥] referred to as the product of f by c.

With respect to the sum, ¥~ must satisfy the following:

(al) Commutativity: f; + f, = £, + f,,

(a2) Associativity: (f, + f;) + f3 = f; + (f; + f3),

(a3) 7" must contain a zero vector 0 such that f + 0 = f for all fe ¥]
(a4) For every f € 7] there exists a (—f) € ¥ such that f + (—f) = 0.

With respect to the product it is required that ¥~ satisfy

(b1) 1-f=f,
(b2) ci(cof) = (crca)f.

Finally, the two operations are to intertwine distributively, i.e.,

(Cl) c(f1 + f2) = cfl + cfz,
(C2) (cl + 02)f — le + sz.

The last requirement relates the sum in € with the sum in ¥ We use the same
symbol “+° for both. Immediate consequences of these axioms are Of = 0
and (—f = —f.

1.1.2. Linear Independence

Except for allowing the numbers ¢;, ¢,,... to be complex, the main
concepts from ordinary vector analysis remain unchanged: A set of (nonzero)
vectors f;, f,, . . ., fy is said to be /inearly independent when

N
D a0 =08 = 1,OAEUEN (1.1)
n=1

If the implication to the right does not hold, the set of vectors is said to be
linearly dependent. A complex vector space ¥ is said to be N-dimensional
when it is possible to find at most N linearly independent vectors. We affix
N to ¥ as a superscript: ¥V, Let {e,}n-1 = {€, €5, ..., &y} be a maximal
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set of linearly independent vectors, called a basis for ¥™¥. We can then express
any fe ¥V as a linear combination of the basis vectors as

= fiew (12)

where f, € € is the nth coordinate of f with respect to the basis {e,}¥_,. If f
has coordinates {f,}¥-, and g coordinates {g,}¥-,, then the coordinates of a
vector h = af + bg will be 4, = af, + bg, forn =1,2,..., N, as implied
by (1.1) and the linear independence of the basis vectors. The vector 0 has
all its coordinates zero.

1.1.3. Canonical Representation

Any two N-dimensional vector spaces are isomorphic, as we need only
establish a one-to-one correspondence between the basis vectors. A most
convenient realization of {e,}} -, is given through the canonical column-vector
representation

1 0 fi
0 1 0 f
g = 0 , g, = 0 Y S 0 , ie,f= ff
0 0 Sy-1
0 0 1 S

(1.3)

Throughout Part I, we shall consider finite-dimensional complex vector
spaces.

Exercise 1.1. Map the complex vector space ¥~ onto a 2N-dimensional real
vector space (i.e., only real numbers allowed). You can number the basis vectors
in the latter as €,® == ¢, and ey ., = ie,,n = 1,2, ..., N. (Any other choice ?) How
do the coordinates of a vector f € ¥~ relate to the coordinates of the correspond-
ing vector in the real space?

For economy of notation we shall henceforth indicate summations as in
(1.2) by >,, the range of the index being implied by the context. Double
sums will appear as >, ,, etc. If any ambiguities should arise, we shall
revert to the full summation symbol.

1.2. Inner Product and Norm in ¥¥

In this section we shall generalize the inner (or “scalar”) product and
norm of ordinary vector analysis to corresponding concepts in complex
vector spaces.



6 Part I - Finite-Dimensional Fourier Transform [Sec. 1.2

1.2.1. Inner Product

To every ordered pair of vectors f, g in ¥V, we associate a complex
number (f, g), their inner product. It has the properties of being /inear in the
second argument, i.e.,

(£, c181 + ca8) = aif, g1) + coff, g2), (1.4

and antilinear in the first,
(cify + cofy, 8) = cf(f1, 8) + 5(fs, ), (1.5)

where the asterisk denotes complex conjugation. Such an inner product is
thus a sesquilinear (‘1% linear”) operation: ¥~ x ¥V — %. We shall assume
that the inner product is positive; that is, (f, f) > 0 for every f # 0.

1.2.2. Orthonormal Bases

Two vectors whose inner product is zero are said to be orthogonal. A
basis such that its vectors satisfy

B e = B {

1 ifn=m,

0 ifns#m (1.6)

is said to be an orthonormal basis. It can easily be shown as in real vector
analysis, by the Schmidt construction, that one can always find an ortho-
normal basis for 7"~. Conversely, we can define the inner product by demand-
ing (1.6) for a given basis and then extend the definition through (1.4) and
(1.5) to the whole space ¥™. For two arbitrary vectors f and g written in
terms of the basis, we have

g = (anen, mesm) [from (1.2)]
=> gm(zfne,., em) [from (1.4)]
> 1 gun(Ens &n) [from (1.5)]

Il

= > fio.. [from (1.6)] (1.7)

It is now easy to verify that
1) >0, EH=0<f=0, (1.8)
o = (g D* 1.9)

[In fact, Egs. (1.4), (1.8), and (1.9) are sometimessused to define the inner
product in a vector space: the two sets of axioms are equivalent whenever
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an orthonormal basis exists. This is the case for finite N-dimensional spaces
but not always when N is infinite. In the latter, the definition (1.4)—(1.8)-(1.9)
is used.]

1.2.3. Coordinates

The nth coordinate of a vector f in the orthonormal basis {e,}¥_, is
easily recovered from f itself through the inner product: Performing the
inner product of a fixed e,, with Eq. (1.2), we find

B ) = ( m,an n) = gf,,(sm, g = f (1.10)

Hence, we can write

f=> ee, ) (1.11)

n

1.2.4. Schwartz Inequality

Two vectors f; and f, were said to be orthogonal if (f;, f;) = 0. On the
other hand, two vectors g, and g, are parallel if g, = cg,, ¢ € €, in which case

(81, 82) = c*(g2, 82) = ¢ X(g1, 81) = [c*c~ (g1, 81)(82, 82)1V2, (1.12)

where, note, |c*c~*| = 1. For |(f, g)|, zero is a lower bound, while, in the
event f and g are parallel, |(f, g)] = [(f, f)(g, g]"2. These are the extreme
values, as stated in the well-known Schwartz inequality:

|(f, 8)| < & D)(g, 2). (1.13)

We can prove (1.13) as follows. Consider the vector f — cg. Then, because
of (1.8),

0<(f—cgf—cg)=(1F)—cf g — c*g )+ |c|]*(g g (.14
Now choose (for g # 0)
c = (f, ©*/(g, g). (1.15)

Replacement in (1.14) and a rearrangement of terms yield (1.13).

1.2.5. Norm

The norm (or length) of a vector fe ¥V is defined as

I£] := (& £)v=. (1.16)
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It is a mapping from ¥~ onto #Z* (the nonnegative halfline), having the
properties

If| >0, [f] =0<f=0, (1.17)
lefll = |el I£], (1.18)
If + gl < [f] + gl (1.19)

Equations (1.17) and (1.18) are easily proven from (1.8) and (1.4)—(1.5),
while Eq. (1.19) is the triangle inequality, which states, quite geometrically,
that the length of the sum of two vectors cannot exceed the sum of the
lengths of the vectors. It can be proven from (1.14), setting ¢ = —1, that

0< [f+g|*>=[f]>+ 2Re(f, g) + [g]?
< |f]2 + 2|(F, @) + |gl? (from Re z < |z|)
< [f* + 2[f]- (gl + lgl*  [from (1.13)]. (1.20)

The square root of the second and last terms yields Eq. (1.19).

Exercise 1.2. From (1.14) show that
If — gl =1 Ifl - lel | (1.21)

This is another form of the triangle inequality.

We have obtained the properties of the norm, Egs. (1.17)-(1.19), as
consequences of the definition and properties of the inner product. The
abstract definition of a norm, however, is that of a mapping from ¥ onto
Z*, with properties (1.17)-(1.19). It is a weaker requirement than that of an
inner product and quite independent of it. The definition (1.16) only repre-
sents a particular kind of norm. Again, in infinite-dimensional spaces one
may define a norm but have no inner product.

Exercise 1.3. Prove the polarization identity

f 2 = 3(If + 2|2 — If — g|®» + i3(f — ig|? — |f + ig|>. (@1.22)

Note that this identity hinges on the validity of (1.16). It cannot be used to define
an inner product from a norm.

Exercise 1.4. Define the complex angle between two vectors by
cos © = (f, g)/If]-llgl, @ = 6y + i0,. (1.23)

Show that this restricts ® to a region |sinh 6;| < [sin 0| < 1.
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1.3. Passive and Active Transformations

In this section we shall introduce two kinds of transformations on the
coordinates of vectors in ¥¥, those which arise from a change in the basis
used for the description of the space, referred to as passive transformations,
and active transformations produced by operators which bodily move the
vectors in M. Although the resulting expressions for the two kinds of
transformations are quite similar, the difference in their interpretation is
important.

1.3.1. Transformation of the Basis Vectors

Consider the complex vector space ¥~ and the orthonormal basis
{e.}h=1 (henceforth called the e-basis, for short). Out of the e-basis we can
construct the set of vectors

= Vet (n=12,....N, (1.24)

where V,,, € €. The question of the linear independence of the vector set
(1.24) can be posed as follows. Let ¢y, ¢, . . ., Cy be a set of constants such that

0= if, = ) &Vur, = D ciey, (1.25)

where ¢, = >, ¢nVun- Now, the vectors of the e-basis are linearly indepen-
dent, so ¢, = 0 forn =1,2,..., N. For this to imply that all the ¢,, = 0,
m=1,2,..., N, it is necessary that the matrix V = ||V,,| have a non-
vanishing determinant. Thus, if det V # 0, the linear independence of the
e-basis implies the linear independence of the N vectors in (1.24). The latter
are then a basis as well. Henceforth it will be called the g-basis. The &-basis
will not in general consist of mutually orthogonal vectors, but

(Bns &) = Z (Vin&is Vimer)

ik

=D ViVim = (VIV)pm, (1.26)
k

where V* = VT* is the transposed conjugate or adjoint of the matrix V and
(Vf)nm = Vn’fn

1.3.2. Passive Transformations

We can regard the matrix V = ||V,,| as effecting a change of basis for
V"N a passive transformation whereby the description of the vectors of #™¥
in terms of the e-basis is replaced by their description in terms of the &-basis.
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Fig. 1.1. Passive transformation V
of a (two-dimensional) vec-
tor space. Its description in
terms of a basis {g} is
replaced by its description
in terms of a transformed
basis {€;}. The vectors f in
the space are unchanged.

Let fe ¥V be a (fixed) vector with coordinates f,, n = 1, 2, ..., N, relative
to the e-basis and coordinates f,,, m = 1,2,..., N, relative to the &-basis.
Then (see Fig. 1.1)

DSt == fofn =2 faVnen  (passive).  (127)

The first and last members of this equation, due to the linear independence
of the basis vectors, yield

fo=2 VenFw =2 (V" DS (1.28)
The matrix V-1 exists as V is assumed to be nonsingular (det V # 0).

Exercise 1.5. Let the coordinates of f relative to the &-basis be £, [i.e., second
and third members of Eq. (1.27)]. Performing the inner product with €, and using
(1.26), find f,, in terms of (g, f).

Exercise 1.6. Using the result of Exercise 1.5, define the set of vectors €,°
(n=1,2,..., N)so that f, = (&,2, f). Show that this defines a basis for ¥™~. It
is called the basis dual to the &-basis, since (prove!) (é,, &x°) = 8,,n. If the e-basis
is orthonormal, then £,?> = ¢, (n = 1,2,..., N).

Exercise 1.7. Express (f, g) in terms of the coordinates of f and g in the
€-basis.

1.3.3. Active Transformations

Active transformations are produced by operators A mapping ¥ onto
¥"N, which transform the vectors of the space as frf" = Af. We shall
assume these operators to be linear, i.e.,

A(af + bg) = aAf + bAg. (1.29)

The linearity requirement allows us to find the transformation undergone by
every vector in the space when we know the way the vectors in a given basis
(say, the e-basis) are transformed. Let

e, = Aeg,, m=12,...,N, (1.30)
and define the N2 constants
Anm = (sm s;n) = (sm Aem)' (131)
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Using Eq. (1.11) with &, in place of f, we find
&n = > Aunkn, (1.32)

which is formally identical to (1.24) with 4,, in place of V,,. The inter-
pretation of (1.32) as a linear active transformation, however, requires that
the vectors f € ¥V and the basis € undergo the same transformation; that is,
the coordinates of f’ in the new basis &' continue to be f,, n = 1,2,..., N.
Now, denoting by f, (n = 1, 2, ..., N) the coordinates of f’ with respect to
the original e-basis, we have

Dfien =1 =D futn = D fodunen  (active), (1.33)

and this implies

o= Ausfos (1.34)

so the coordinates of f transform as a column vector under the matrix
A= ”Anrn”-

1.3.4. Operators and Their Matrix Representatives

As a consequence of the construction (1.31), we see that any linear
operator A can be represented by a matrix A, acting on the column-vector
canonical realization (1.3). The matrix A was determined uniquely from the
linear operator A. Conversely, A is uniquely determined by A since the
transformation of the basis vectors (1.32) specifies the transformation of any
vector in the space. See Fig. 1.2.

We shall now see that this one-to-one correspondence between linear
operators and N x N matrices holds under sum and product of the corre-
sponding quantities. We define the linear combination of two operators

Fig. 1.2. Active transformation A of a (two-dimensional) vector space. All vectors—
basis vectors included—are changed. As the transformation is linear, however,
the coordinates of f* = Af in the transformed basis {e;} = {Ag;} are the same
as those of f in the original basis.
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C = dA + bB, quite naturally, as
(aA + bB)f = aAf + bBf. (1.35)
Now let A, B, and C be the representing matrices. Then, using (1.31),
Crn = (&4, (@A + bB)e,) = ale,, Ae,) + b(e,, Be,)

= aAnm + bByp, (1.36)
so that C = ¢A + bB. Similarly, for the product D = AB,
(AB)f = A(Bf). (1537)

The correspondence with the representing matrices D, A, and B can be
established using (1.31), (1.11) for Be,, and the linearity of the operators
involved,

Dy = (€4, ABe,) = (8,,, A z A Bem))
k

= > (e Aey)(ex, Ben) = . A Bim, (1.38)
k k
so that D = AB.

1.3.5. Representations in Different Bases

We shall use passive transformations when a given system lends itself
to a more convenient description in terms of a new set of coordinates. Active
transformations, on the other hand, will describe, for instance, the time
evolution of the state vector of a system. Note that active transformations of
¥"N should not depend on the basis used for the description of the space.
Indeed, the representation of A by a matrix A = || A4,,| in (1.31) was made
relative to the e-basis, but under any (passive) change of basis to, say, the
&-basis, the same operator A would be described by a different matrix A =
| Anm|| Whose elements are

an = (Ena Aém) = Z (ansja AVkmek)

ik
= > ViApVin = (VAAV),,. (1.39)
Tk
Exercise 1.8. Show that
(Af, Ag) = > f(A'A)mngn. (1.40)

Do the same in terms of coordinates in a nonorthonormal basis.

Exercise 1.9. Define the operator At as that having a matrix representation
A" in some (orthonormal) basis. We call Af the adjoint of A. Show that

£, A'g) = (Af, g). (1.41)
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Show that this definition of At does not depend on the matrix representation and
that, for any other basis, A" = (A)*.

Exercise 1.10. Let A and B be linear operators, C = aA + bB and D =
AB. Find the representing matrices C and D in the (in general nonorthogonal)
€-basis.

Exercise 1.10 should convince the reader that by far the simplest descrip-
tion of vector space operations is in terms of orthonormal bases. In fact,
from now on we shall deal exclusively with these bases. This imposes severe
restrictions on the allowed V in (1.24), which will be examined below. If the
reader wants to deepen this necessarily brief account of vector spaces, inner
products, and linear transformations, he may find useful the excellent text by
Bowen and Wang (1976, Chapters 0-5).

1.4. Unitary Transformations: Permutations and the Fourier Transform

1.4.1. Definition of Unitarity

A transformation V which maps an orthonormal basis of the space
7N, g, to another orthonormal basis € is called a unitary transformation.
The necessary and sufficient condition for this to happen can be seen from
(1.26) to be

D VitVim = 8pm ie, VIV=1, (1.42)
k

where 1is the N x N unit matrix. Such a matrix V is also called unitary, and
clearly satisfies V=1 = V*: Its inverse equals its adjoint. As now both the e-
and &-bases are orthonormal, it follows that

£ 8) =D fign = D [n (1.43)

This is the Parseval identity between the coordinates of two vectors f and g in
two bases related by a unitary transformation. (Compare with the result of
Exercise 1.7.)

1.4.2. Groups of Unitary Matrices

Geometrically, a unitary transformation can be seen as a rigid rotation
and/or reflection in a complex N-dimensional space: the angle ® between any
two vectors [Eq. (1.23)] is unchanged. Note that, as det Vt = (det V)*, it
follows from (1.42) that

|det V| =1 (V unitary). (1.44)

One general property of unitary transformations is that they constitute a
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group. This will be defined now. Consider the set % of unitary matrices.
Then, as will be verified below,

(a) Vl’ Vze% = Vl’Vze%.

(b) Vi, V5, VieZ = (V1+Vy)- V3 = V;+(V5-Vy).

(c) There exists a unit element E € % such that E-V = V forall V e Z.
(d) For every V € %, there exists a V- € % such that VYV~ = E.

Abstractly, if the set % satisfies (a)—(d), it is said to constitute a group under
the product operation ““-”. In our case, ““-”’ is matrix multiplication, and we
can verify (a): Let Vi = V! and V§ = V;?!; then (V,Vy)' = ViVi =
V;1Vit = (V,V,) "1 (b) Complex matrix multiplication is always associa-
tive. (c) The unit matrix 1 satisfies 1* = 1 = 1~ and thus belongs to %; it
has the property 1-V =V, so we identify E= 1. (d) (V" )=Vt =V =
(V-9

We conclude that the set of unitary matrices constitutes a group under
multiplication. Although we shall use the notions of groups sparingly in this
text, showing on occasion that sets of operations or objects have the group
property under the appropriate product and drawing some immediate
consequences, we should emphasize that group theory has been one of the
fastest growing branches in applied mathematics. For the reader interested
in further study on this field, we can suggest the books by Hamermesh (1962)
and Miller (1972).

Exercise 1.11. Show that a vector space has the structure of a group under
the ““+°° operation. The unit element is the zero vector.

We shall now examine two particularly important unitary transforma-
tions: permutations and the Fourier transformation.

1.4.3. Permutations

A permutation p of the basis vectors {e,, €, ..., &y} (or of any set of
numbered objects) is a transformation to a new basis {g, &,,..., Ey} =
{€p(1s Ep2ys - - -5 Epay}, Where only the order of the elements in the set is
changed. The string of numbers p(1), p(2), ..., p(N) is a permutation p of
1,2,..., N, and p(m) = p(n) < m = n.

1.4.4. Representing Permutations by Matrices

We can display p by the symbol

(p(ll) p(zz) p(]zVV)) - (pZ;))’
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which on any numbered set replaces the mth element by the p(m)th one. The
order of the columns in this symbol is irrelevant. Such a permutation is
achieved in (1.24) by a matrix P = |P,,| whose mth column has a single
nonzero element—of value 1—in the p(m)th row, i.e.,

[P(pfl) p(22) p(]]\\lr))Jm":Sn,p(m)’ (1.45)

so that €, = &,,. The inverse p~! of the permutation p permutes the set
p(1), p(2),...,p(N)back to 1, 2,..., N. This is achieved by

[P(p(ll) p(22) p(];[V))_l]nm=[P(p(ll) p(22) P(]f,V))]m

~ S = [P(p(ll) p(22) p(JJVV))f]nm’ Cest)

so that €,,;) = &,. As the elements of P and P~ are real, it was concluded in
(1.46) that P~ = P*, It follows that the permutation matrix (1.45) is unitary
and that the permutation of basis vectors is a unitary transformation in ¥"~.

The product of two permutations p,, p, is a permutation ps since,
applied to any numbered set on the right of the symbols,

(p:m>) (pfm) B (pz(pT(m))) B (p:m))' (140)

Note that the product of two permutations is not commutative in general.
The identity permutation e = (%) which leaves every element in a numbered
set in its position is obviously a permutation represented in (1.45) by the
unit matrix. Finally, as the inverse p~! of a given permutation p is also a
permutation represented in (1.46) by P~ = P?, the set of all permutations is
a group. We shall denote it by 7. It has N! elements. As permutations are a
subset of the group of unitary transformations, they are said to be a subgroup
of the latter.

Exercise 1.12. Note that, since the matrices involved are real, det P = +1.
Show that the matrices representing transpositions of two elements [i.e.,
Y2k Lo ), where only k and [ are exchanged] have a determinant equal
to —1.

Exercise 1.13. Show that the product of two transpositions which have one
element in common has the form of a three-cycle [i.e., G 2 2 % o b % M),
where only k, /, and m are exchanged]. Show that the matrix representing a three-

cycle has determinant + 1.
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Exercise 1.14. Consider the real space ¥ for definiteness. Show that per-
mutations with determinant +1 are rotations of the coordinate axes, while
permutations with determinant — 1 involve reflections across planes.

Exercise 1.15. For N > 3, one can produce four-cycles, etc. (up to N-cycles),
from the product of a three-cycle, etc. [up to (N — 1)-cycle], and a transposition
with one element in common. Show that n-cycles are represented by matrices with
determinant (—1)"**. When this is + 1 they can be realized as rotations of the
coordinate axes in N-space.

Exercise 1.16. Show that all permutations represented by matrices (1.45)
with determinant + 1 form a subgroup of the permutation group. Show that those
with determinant —1 do not.

1.4.5. The Fourier Transformation

The unitary transformation which is the prime subject of this part is the
Fourier transformation, defined in 7Y by the matrix ¥ = | F, || with elements

F,,:= N 12 exp(—2nimn/N) = F,,. (1.48)
We can verify directly that (1.48) is a unitary transformation, i.e.,

F'Fpn = 0. FiFue = N71 > exp[—2mik(n — m)[N] = 8,,. (1.49)

Using the geometric progression formula with 5 + 1 terms

(1 — x)"x9y(1 — x*+1), x #1,

b+1, x=1, (1:50)

xa+xu+1 +_._+xa+b={

and letting x = exp[—2#i(n — m)/N], a =1, and b = N — 1, we see that
for m # n, x # 1, and the sum in (1.49) adds to zero, while for m = n,
x = 1, and it adds to N.

1.4.6. Coordinates in the e- and ¢p-Bases

From the above it follows that the coordinates of a vector f in two bases
related by the Fourier transformation are given by (1.28), with F~* = F' by

fo = N2 f,, exp(2mimn/N), (1.51a)
fo=N"127% f exp(—2mimn/N). (1.51b)

The set {£,}¥_; is said to be the (finite) Fourier transform of the set {f,}¥_,
and the latter, the inverse Fourier transform of the former. In our approach,
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we want to emphasize, they are the coordinates of the same vector f in two
bases.

The reasons for regarding the Fourier transformation as a particularly
important unitary transformation should become clear in the applications of
Chapters 2 and 3. Meanwhile, we reserve the tildes in Egs. (1.51a) and (1.51b)
for Fourier transforms, and we shall call the corresponding basis (called the
g-basis in Section 1.3) the ¢p-basis. Explicitly,

P, = N-12 Z &, exp(—2mimn/N), (1.52a)
€. = N2> o, exp(2mimn/N), (1.52b)
Dhen=E=2 fio. (1.52c)

Clearly, the mth coordinate of ¢, in the e-basis is F,,. In Fig. 1.3 we show
the real and imaginary parts of these coordinates for N = 7. We have let m
take on continuous values and have drawn them as dotted lines in the figure.

1.4.7. Powers of the Fourier Transformation

One of the properties of the Fourier transformation matrix (1.48) is
that it is a fourth root of the unit matrix. Indeed,

(F?)pn = . FuiFin = N1 D exp[—2wik(m + n)/N]. (1.53)

Using (1.50), we see that (1.53) equals 1 whenever m + n = N or 2N, as then
all the N summands are N ~1. Hence, F? is a matrix with 1’s above the main
antidiagonal and in the N-N position, with zeros elsewhere. In fact, it is a

permutation

1 2 -~- N—-2 N-1 N

F<=P =15 .

(N~1 N—2 -« 2 1 N) o5 ML)
We shall call this the inversion matrix. Squaring (1.54), we find

F* = 1. (1.55)

Exercise 1.17. Decompose the coordinates of a vector f in ¥V into their
real and imaginary parts as f, = f,® + if,! and f, = f,® + if,.. Relate these by
(1.51a) and (1.51Db).

Exercise 1.18. Associate to every vector f in ¥V another vector f* whose
coordinates in the e-basis are (f*), = (f,)*, the complex conjugates of the original
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vector. Note that this cannot be produced by a linear operator. Show that, in the
<-basis, the coordinates of £* are (f*), = (fy_n)*.

Exercise 1.19. Prove that the components of a vector f are positive if and
only if their Fourier transforms are positive definite, i.e.,

f;t >0« z fm—m'grﬁg"m' >0 (156)
m.m’

for an arbitrary vector g with components &,, in the ¢-basis. This is easy when you
show that the second expression in (1.56) is N2 3, f,| g»|%. The coordinates f,
are numbered modulo N (#n = n mod N).

1.5. Self-Adjoint Operators

1.5.1. Definition of Adjunction

We have seen that linear operators A producing active transformations
in ¥V could be represented by matrices A. We define the adjoint of A, A,
as that operator fulfilling

for every pair of f, g e ¥™V. Equation (1.57) defines At uniquely if it defines
its matrix representative in a unique way. That this is so can be seen letting f
and g be ¢, and ¢, (for n, m = 1, 2,..., N) and setting a matrix A to repre-
sent Af. Equation (1.57) then tells us that

(Af)nm = (sm A*em) = (AB,,,, em) = (sm’ Asn)* = A:m (158)

so that A is indeed, as the notation suggested, the adjoint (transposed
conjugate) of the matrix A. Now, Eq. (1.57) is independent of the basis used
to describe the space, so this property is independent of the matrix realization
of the operator (see Exercise 1.9).

1.5.2. Self-Adjointness and Hermiticity

One particularly important class of operators is comprised of those
which are equal to their adjoints, i.e.,

Ht = H. (1.59)

Such operators are called self-adjoint. They are represented by hermitian
matrices HY = H. (The distinction between hermiticity and self-adjointness
may be a matter of semantics for finite-dimensional spaces ¥¥; it becomes
important, though, for infinite-dimensional ones.)
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1.5.3. The Second-Difference Operator A

The operator which will occupy us through most of Chapter 2 is the
second-difference operator A whose representing matrix in the e-basis is

-2 1 0 0 0 1
1 -2 1 0 .- 0 0
0 1 -2 1
A:=| 0 0 1 -2 (1.60)
P 0
0 0 - =2 ]
1 0 ... 0 1 -2

Again, as the notation suggests, A is the finite-dimensional analogue of the
Laplacian. As A is manifestly hermitian (as well as real), A is self-adjoint.

1.5.4. The A Operator Represented in the ¢-Basis

The matrix A representing A in the ¢p-basis can be found from (1.39),
(1.48), and (1.60) as

Bun = (F'BF)y, = N2 3 Ay expl2mitkn — jm)/N]
= N> (=2exp[2nik(n — m)[N] + exp{2ai[kn — (k + 1)m]/N}
+ exp{2=i[kn — (k — 1)m]/N}). (1.61a)

The last step uses (1.60) explicitly. From the second and third summands we
can extract factors exp( F 2mim/N), respectively, so that

& pn = N7 [~2 + exp(—2mim/N) + exp(2mim/N)] >, exp[2mik(n — m)/N]
= [-2 + 2 cos(2am[N)]8p, ) (1.61b)

[see Eq. (1.49)]; hence A is seen to be a diagonal matrix:
Bon = 85,02 (1.62a)
Ap = —4 sin?(mzm/N). (1.62b)

In fact, the usefulness of the ¢-basis is the property that A is represented in
it by a diagonal matrix. This will be seen time and again in the following
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sections. At the end of Section 1.7 we indicate how F is found by asking for
the property (1.62a).

Exercise 1.20. If the linear operator A is represented in the e- and <¢-bases
by matrices A and A, and similarly for B, show that

A+B=(A+B), (1.63a)
AB = AB. (1.63b)

Exercise 1.21. Show that the product of two hermitian matrices is not
necessarily hermitian. The set of these matrices therefore does nor form a group.

Exercise 1.22. Show that the matrix A in (1.60) has zero determinant and
hence A~* does not exist (nor does A~*'). This can be done using the fact that,
in (1.62b), Ay = 0. Which subspace of ¥ is mapped on 0?

Exercise 1.23. Show that the matrix representing A2 in the e-basis is

6 -4 1 0 -~ 0 1 -4
~4 6 ~4 1 =+ 0 0 1
1 -4 6 -4 0
e _ 0o 1 —'4 6 0
P : _ 1 0
0 o T 6 -4 1
1 0 1 -4 6 -4
-4 1 0 -~ 0 1 -4 6

Which matrix represents A2 in the ¢p-basis?

Exercise 1.24. Show that, for 2p + 1 < N, AP is represented in the e-basis
by the matrix AP with elements

@ = (=102 F ) @ = By (169

where (f) is the binomial coeﬁicient’.VVerif}: the cases p = 0, p = 1 [Eq. (1.60)],
and p = 2 [Eq. (1.64)]. Show that A? = (A)" represents A? in the ¢-basis, and
find its elements.

Exercise 1.25. Consider the projection operator [P, which maps every
vector in ¥’V to its projection along &;. Show that this is represented in the - and
¢-bases by matrices with elements

Pr)mn = 8mnskm (1.66a)
P)mn = Nt exp[2mik(m — n)/N]. (1.66b)

These operators are self-adjoint.
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Exercise 1.26. From the projection operators of Exercise 1.25, build (for N
even) E; = S¥2, Py, and E, == 3%, P, Show that these are represented in
the e- and ¢-bases by

1 0
0
1
" 11 1
E, = 0 ) E1=( i1 21), (1.67a)
-3 3
1
0 0
0 0
1
0
b . 1 on
E, = 1 . K, (%1 %1) (1.67b)
"0
0 1

These operators will be used in Chapter 2.

1.5.5. Functions of Matrices and Operators

The results (1.35) to (1.38) linking linear combination and product of
operators with the corresponding operations between the representing
matrices show that if P,(x) is a polynomial of degree » in x, then the operator
B = P,(A) is Xve\ll_/ defined and represented by the matrices B = P,(A) and
B = P,(A) = P,(A), which are also well defined. [The last equality is a direct
consequence of (1.63).] Now, if we allow n to grow without bound into an
analytic function P(x) expressible as a Taylor series convergent in some region
|x| < p, what happens with P(A)? If the result is a well-defined matrix, this
will give us a working definition for the operator P(A). The functions P(x)
we shall use later are of the type exp(ax), cosh bx, (sinh x)/x, while others
such as (1 — x)~! are quite commonly used [see, for example, the book by
Goertzel and Tralli (1960).] Thus assume that

P(x) = i Pax" (1.68)

converges for |x| < p. Consider now the same series, replace x by the matrix
A, and let o be the maximum of the absolute values of its matrix elements:
|Anm| < «. Then a bound for the matrix elements of A% will be Ne? (the
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equality will happen when a row of maximal elements « of A meets a column
of similar elements). Inductively, we see that a bound for the elements of
A" is N ~Y(Ne)", and hence a bound for the elements of P(A) is N ~*P(N«) so
that for o < p/N, P(A) exists. For the exponential and hyperbolic functions,
p is infinite, so P(A) exists for any A. Correspondingly, the operator P(A) is
defined. Note that if the constants p, in (1.68) are real, as (AH)* = (A", it
follows that P(A*) = P(A)'. Hence, if H is self-adjoint, P(H) will be also.

1.5.6. Multiplication and Commutation

Although we can comfortably work with functions of matrices and
operators, we have to be careful about their composition, since the rules of
ordinary algebra may not apply when several matrices or operators are
involved. Consider the well-known relation exp(a + b) = exp a-exp b for
numbers a and b. The direct proof proceeds as follows:

nz:),%!(a+b)"=§nlzz()kbnk
2me 20

where in the third step we used a double-sum exchange relation. See Appendix
C. The second step [expanding the binomial (a + b)"] is only true, however,
if @ and b commute, i.e., ab = ba, so that all powers of a can be put to the
left and those of b to the right. This is not true for matrices A and B, which
do not commute. [For a thorough treatment of such problems, called
Baker—-Campbell-Hausdorff relations, see the article by Mielnik and
Plebaiiski (1970).] The most we can say here is that Eq. (1.69) is valid for
matrices A and B when these commute, as is the case when they are both
diagonal matrices or when B is a multiple of A, i.e.,

exp(a + b)

NI._‘

I
||M8

= expa-exp b, (1.69)

exp(aA)-exp(bA) = exp[(a + b)A]. (1.70)

This relation will be used often.

1.5.7. Diagonalization and Exponentiation of Various Matrices

The problem of actually exponentiating or obtaining any function of a
matrix A is another matter. If A represents an operator A, it may be that in
some basis A is represented by a diagonal matrix A. This is the case for A,
represented by A in the e-basis [Eq. (1.60)] and by a diagonal matrix A in
the ¢-basis [Eq. (1.62)]. For self-adjoint and unitary operators this is
developed in Section 1.7 in some detail. Since any sum or power of diagonal
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matrices is a diagonal matrix, its elements are given by the sum or powers
of the original diagonal elements. If V is a transformation relating the
representing matrices A and the diagonal A of A [see Eq. (1.37)], then P(A)
can be explicitly calculated by

P(A) = VV-1P(A)VV-1 = V(i an_lA"V)V'l
= V[i pn(V‘lAV)”]V‘l = VP(A)V-, 1.71)

Exercise 1.27. Using Eq. (1.71) as well as (1.60) and (1.62), show that
GY%Y(7) = exp(7A) (1.72a)
is represented in the ¢- and e-bases by
GEYM(7) = [exp(rB)]mn = 8mn €XP(7Ar), (1.72b)
GL%Y(7) = [exp(tA)]wn = N1 g exp(tAy) exp[2mik(n — m)/N], (1.72c)

An = —4 sin®(mm/N). (1.724d)
The operator G*+°1(7) will appear in Exercise 2.17 as the time-evolution operator
for the finite-difference analogue of the heat equation.
Exercise 1.28. From (1.60) it is obvious that >, A,, =0 for m =
1,2,..., N. Prove that >, (A?),, = 0 and
D lexp(rB)mn =1, m=12,...,N. (1.73)
n
Note that this property holds only for the e-basis, where A is represented by A,

Innocuous as it seems, Eq. (1.73) will lead to the (discrete analogue of) total
heat conservation (Exercise 2.18).

Exercise 1.29. Noting that (sinh x)/x contains only even powers of x
in its Taylor expansion, define

G%1(7) = A2 sinh 7AYZ, (1.73a)
Show that this is represented in the ¢- and e-bases by
GRA() = Ban o sin wpr (1.73b)
Goki(r) = N-1 Z wi! sin wyr exp2mik(n — m)/N] (1.73¢)
W = (—Ap)Y2 = 2 sin(wzm/N). (1.73d)

This operator will appear in Section 2.2. It is the time-evolution operator for the
finite difference analogue of the wave equation.
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Exercise 1.30. Prove that if H is a hermitian matrix, it generates a set of
unitary matrices

U(7) = exp(iTH) (1.74)
with 7 real. Define thus unitary operators. They have the property
(Uf, Ug) = (1, 2) (1.75)

for all f,ge ¥V,

Exercise 1.31. Let A(7) be a matrix whose elements are differentiable
functions of 7. Define the derivative of A(7) with respect to 7 as

diTA(T) = lim e A(r + ) — A(D)] = A'(7). (1.76)

From this see that matrix differential calculus is similar to ordinary calculus. In
particular, the Leibnitz rule

di'r (AB) = A'B + AB/, A = A(7), B = B(7) (1.77)

holds. As commutativity does not hold, we must keep straight the order of the
factors.

Exercise 1.32. Let A~1(7) be the matrix inverse to A(7). Show that

%A“l = —A"1A’A-L, (1.78)

Exercise 1.33. Regarding (1.74), show that
d
H=—i—U()|:=0. (1.79)
dr
If U(7) is a unitary matrix, show that H is hermitian. You will be using Eq. (1.78).
Exercise 1.34. Show that every linear operator A can be written as

A = H; + iHa, (1.80)

where H; and Hy are self-adjoint. Equation (1.80) recalls the decomposition of
an arbitrary complex number into a real and an imaginary part.

1.6. The Dihedral Group

In Section 1.4 we introduced the permutation group 7y and saw some of
its properties. Here we shall study a subset of 7y which constitutes a group
by itself, called the dihedral group Dy, which will be seen to mesh in interest-
ing ways with the Fourier transform and the A operator, and will be used
extensively later on.
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1.6.1. Rotations and Inversions of a Finite, Closed Lattice

Consider the two permutations R and [,, represented by the matrices
[Eq. (1.45)]

0 1
R: R:=P(1 4 K1 N)— Lo , (1.81)
213 N 1 .
0 10
0 10
i I(,—P'( 1 2 N-1 N)= '
Ne=1 N=2. 1 N
0 1
(1.82)

[Note that I, has already appeared in (1.54).] The concepts we shall present
here can be illustrated as applied to a finite lattice of N masses joined by
pairs through springs, as shown in Fig. 1.4(a). Assume the lattice is vibrating.
Although the precise description of the time development of the system will
be undertaken in Chapter 2, this system will serve to apply the ideas involved.

Fig. 1.4. (a) A linear, closed /attice constituted by masses M and springs k. (b) The same
lattice undergoing vibrational motion. The time-dependent coordinates fn(z),
n=1,2,..., N, of the masses define the coordinates of the state vector () of
the system.
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Let f,(¢) be the elongation of the nth mass at time #, and construct the time-
dependent N-dimensional vector f(¢) = >, f,(¢)e,, which will be referred to
as the state vector describing the system. The components of the state vector f
are shown as the arrows indicating the elongations of the vibrating lattice,
for some fixed time ¢, in Fig. 1.4(b). We can express f(¢) in a new basis
{e,}¥ -, by the use of a (passive) transformation which for (1.81) is €, = €, ;.
Here and in what follows it will serve us to consider, as Fig. 1.4 suggests,
that mass number N + 1 is the same as mass number 1, N + 2 the same as 2,
etc., thus letting the component label » be numbered, as before, modulo N,
so that the statement &, = g,,,; implies, in particular, €y = &,. In the
g-basis, f(z) has its coordinates given by f,(t) = f,_1(t), n = nmod N.
Insofar as Fig. 1.4 is concerned, the same shape f(¢) of the lattice is described
by a relabeling of the masses which shifts the old labels clockwise by one unit,
while the elongations f,(¢) are correspondingly shifted counterclockwise by
one unit.

1.6.2. Producing New Solutions from Old Ones

Now consider (1.81) and (1.82) as matrices representing in the e-basis
active transformations in ¥, R, and [,. In this case, under (1.81), again
e, = g,,1, but the lattice is now bodily moved clockwise by one unit, and the
new state vector f'(z) = >, f,(¢)e, = Rf(¢) will describe its time evolution.
It is quite obvious, however, that in applying R to the system in Fig. 1.4 we
have preserved the neighbor relation between the masses and that the
original and the rotated lattices are indistinguishable except for our labeling
of the masses. The physical lattices are the same and thus should be described
by the same equations of motion. What we have done then is to produce out of
the state vector f(t) a new state vector f'(t) = Rf(¢t) which also describes a
possible vibration state for Fig. 1.4, which is the old solution rotated clockwise
by one unit.

1.6.3. Invariance of the Equations of Motion

Any transformation which maps the undeformed lattice in Fig. 1.4(a)
onto itself (invariance transformations of the figure) will correspondingly
produce a new solution vector £'(t) out of any given solution £(t) and should
leave the equations of motion invariant, changing only the initial conditions
which determine their subsequent time development.

The dihedral transformations are the largest set Dy of permutations
leaving Fig. 1.4(a) invariant as described and will constitute a group since,
again quite clearly, the successive application of two invariance transforma-
tions is a transformation which also leaves the figure invariant, and the
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identity transformation £ = P(}) is an element in this set. These two observa-
tions state that the set of invariance transformations of a system satisfies the
group axioms (a) and (c) (Section 1.4.2). Now axiom (b) (associativity) is
satisfied since every element of Dy is within =y, where this property holds.
Last, since 7y has only a finite number of elements, for any T € Dy we can
construct the successive powers T, T2 T2, ...e Dy and eventually reach

? = 1, the identity transformation, so T?~! = T-!e Dy and axiom (d)
is also satisfied. Hence Dy C my is a group by itself and a subgroup of

TN

Exercise 1.35. Show that the successive powers T, T2, T2, ... cannot enter
into a “‘loop”’ without involving the identity element.

1.6.4. Multiplying Rotations and Inversions for N Odd

Let N be an odd number and consider the two permutations R and I,
represented by (1.81) and (1.82). We saw that R effects a clockwise rotation
by 2n/N. See Fig. 1.5a. Similarly, [, reflects the figure across a line which
passes through the Nth mass and the midpoint of the spring joining the
[3(N¥ — D)]th and the [3(V + 1)]th masses. They are invariance transforma-
tions of the figure. Applying R & times in succession, we see that R* performs
a rotation by 27k/N and that RY = 1. Under R¥, the mth mass is brought
onto the (m + k)th mass. We can use the shorthand

R¥[m] = [m + k]. (1.83)

Fig. 1.5. (a) Dihedral group symmetries for an N-mass lattice when N is odd: rotations
R and inversions [, through a mass center. (b) Dihedral group symmetries for
an N-mass lattice when N is even: In addition to rotations R and inversions [,
through a mass center, we have the possibility of inversions [, through a
spring midpoint.
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Next consider [,, leaving mass N in its place; i.e.,

lo[m] = [N — m] (1.84)
and [N] = [0] mod N. It is not difficult to conclude that
I, = REI,R™, (1.85)

where R™*:= (R~)* is a reflection of the figure which leaves mass k in-
variant, since R~* maps mass k into the position N left invariant by [, and
R* maps this back to its original place. This can be verified using the shorthand
(1.83)-(1.84):
I [m] = REI,R*[m] = R¥ly[m — k] = R¥[N — m + k]

= [N + 2k — m]. (1.86)
The products of an R and an [ or of two [’s can be easily calculated in the
same way.

Exercise 1.36. For N odd, prove that the 2N elements of Dy satisfy the
“multiplication’’ table:

RFR! = Re+Y, (1.87a)
Ui+ 172005 k even,

R¥], = 1.87b

; lis1eav+m, K odd, ( )
li-1200, K even,

I,R* = 1.87¢

! li—yew+r, K odd, ( )

Il, = R2&-D, (1.874d)

Exercise 1.37. Show that the set Cy == {1, R, R?,..., R¥~1} is a subgroup
of Dy. It is called the cyclic group of N elements.

Exercise 1.38. Show that the operators R¥ and [, are represented, in the
e-basis, by the matrices

0 1
k=

R (IN_k 0), (1.882)
_ 101 0

u,_( 2 1f+1)’ (1.88b)

where 1, is the unit p x p matrix, 1,4 is the unit antidiagonalg x g matrix, and the
0’s are adequate rectangular null matrices. Compare with (1.81), its powers, and
(1.82).

Exercise 1.39. Verify that the elements of (1.88) can be written as
R¥)pp = 8m,n+k, (1.89a)

@M)mn = 8m,N+2l—n, (1.89b)

recalling that row (and column) labels are to be considered modulo N. In par-
ticular, matrices (1.88)—(1.89) acting on row vectors should transform the
entries according to (1.83) and (1.86).
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1.6.5. Representative Matrices in the Fourier Basis

Since the elements of D, are now operators, we can ask for their repre-
senting matrices in the ¢p-basis. Indeed, using (1.39), the Fourier transform
(1.48), and (1.89), we find

(ﬁ)mn = (FfRF)mn
= N2 8141 expl2mi(jm — In)/N]

N~ exp(2mim/[N) Z exp[2=il(m — n)/N]. (1.90)

Hence, R* = R is a diagonal matrix,

(R¥)pn = 8.0 eXPrikm/N). (1.91)
Similarly, we can show that I, is antidiagonal:
{)mn = O,y —n exp(dmilm/N), (1.92)
and in particular
L=1, (1.93)

which is obvious from (1.54). All the operators in Dy are unitary since the
matrices of wy-transformations are. In addition, all [, are self-adjoint.

In performing the calculations leading to (1.91) and (1.92) we can see a
real advantage in treating the row and column indices modulo N, since we can
automatically keep track of » = n + mN mod N and —n = N — nmod N.
We are dealing with matrices M,,, = f(m, n) which are periodic functions of
m and n of period N in both variables. This property holds not only for the
matrices representing operators in Dy but for the matrix F representing the
Fourier transform (1.48) as well as A and A [Egs. (1.60) and (1.62)] repre-
senting A. Since we are identifying the (N + k)th row with the kth one and
similarly for columns, we are actually bending any such matrix into a torus.
The linear combination and product of any two such matrices have the same

property.

Exercise 1.40. Show that if g = R*f, then their coordinates relate as
&n = fa-rs  &n = exp(2mikn/N)f,, (1.94)
while if h = [of,
b = fy-nr  ho=fun (1.95)
Out of (1.94) and (1.95) you can find the coordinates of I,f.
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1.6.6. Invariance of A under the Dihedral Group

One last property we want to point out for the operators in Dy is that
they all commute with the operator A introduced in Section 1.5.3, i.e.,

ARk = RFA, (1.96a)

Al = LA, (1.96b)

Equation (1.96a) can easily be proven using the representatives of A and R¥

in the ¢-basis, which are diagonal matrices [Egs. (1.62) and (1.91)], since all

diagonal matrices commute among themselves. Equation (1.96b) can be

proven for / = 0, noting that for any matrix A, (IoAlp)n, = Ay —my-n- FOr

arbitrary /, I, can be written in terms of R’ and I, by (1.85) and the equa-
tion can be proven thence.

Exercise 1.41. Show that any operator function of A will also commute with
operators in the dihedral group.

1.6.7. N Even

When the number N of masses in a lattice is even, then, in addition to
the [,-transformations which leave masses /and 1N + /in their places, we can
perform transformations which invert the lattice with respect to the centers
of two opposite springs so that no mass is left in its place (see Fig. 1.5b).
We thus define the operator [K, by its action on the lattice masses:

Ko[m] = [N — m + 1]. (1.97)

Note that Ko[l] = [N], K3N] = [3N + 1], and (IK,)? = 1. In analogy
with (1.85) we can define K; = R'K,R~!, which reflects through the mid-
points of the springs joining masses [/] and [/ 4+ 1] and masses [4N + /] and
[3N + 1+ 1].

Exercise 1.42. Construct the multiplication table of K’s, R’s, and [I’s. Among
others, show the relations

KkKl — Rz(k—l), Kkuz = Rz(k—l)+1’ ulKk = R2U-RB-1 (1.98)

In particular, if N is a multiple of 2 but not a multiple of 4, note that K, and
Iy +2y2 commute. Why ?

Exercise 1.43. Show that the matrices representing [, in the e- and ¢-bases
are hermitian and unitary:

Ko)mn = Smv-n+1,  Kodmn = 8m,n-n €Xp(2mim/N). (1.99)

Show that for N even, K, is an antidiagonal inatrix all of whose diagonal elements
are zero, while K, has the same shape as I, but different elements. Also show
that, as in (1.96),

AK; = KIA. (1.100)



Sec. 1.7] Chap. 1 - Complex Vector Analysis/The Fourier Transform 33

Exercise 1.44. Show that Dy has 2N distinct elements: N rotations (including
the identity element) and N inversions. Verify this for N odd as well as even.

1.6.8. Polar Decomposition of Operators

We make one last remark about the role of self-adjoint and unitary
operators with respect to the set of all operators in ¥~ : every non-singular
operator A (i.e., such that det A # 0) can be represented in the form

A = HU, (1.101)
where H is self-adjoint and U unitary. For the proof we refer to Gel’fand
(1961, Section II-15). Recalling Eq. (1.80), we are reminded by (1.101) of
the decomposition of an arbitrary complex number into the product of its
modulus (a positive real number) and its phase. The phase itself is the
imaginary exponential of a real number. Here, see Eq. (1.74).

1.7. The Axes of a Transformation: Eigenvalues and Eigenvectors

When applying an operator A to the vectors of ¥V, a good insight into
the nature of A is given by the directions in ¥ left invariant by the operator.
As we are particularly interested in self-adjoint and unitary operators, we
shall develop here the results for these cases. In fact, the knowledge of these
transformation axes (and the eigenvalues) specify the operator uniquely.

1.7.1. Invariant Directions

Assume a vector x € ¥"¥ is mapped by the action of A into a multiple
of itself:

Ax = px, nEe®. (1.102)

This only means that the direction defined by x is invariant under the action
of A. When an equation such as (1.102) holds, x is said to be an eigenvector
of A with eigenvalue p. This is the problem, for instance, of determining
which directions in the ¥ 2-plane in Fig. 1.2 are left invariant by the action
of the operator. In a basis where A is represented by a matrix A, Eq. (1.102)
can be written as

(A — ul)x = 0. (1.103)

1.7.2. Characteristic Equation

If there exists a nonzero vector x satisfying (1.102), then (1.103), being a
set of N homogeneous equations, requires

Py(w) = det(A — ul) = 0. (1.104)
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This is called the characteristic equation for A, and py(n) is its characteristic
polynomial. As this is an Nth-degree polynomial in p, we are assured by the
fundamental theorem of algebra that there exist exactly N roots w;, i =
1,2,..., N, of py such that (1.104) holds. Of course some of these can be
multiple roots of py, but not all of them can be zero, as py(p) = p¥ =0
would imply that A = 0 and A would map all of ¥ into 0. The set of
eigenvalues is said to be the spectrum of the operator. This is a property of
the operator, not of the particular matrix representation. This is true as long
as the defining bases are all nondegenerate, for suppose we subject the basis
in which A is represented by A to an invertible transformation V as given
by (1.39). Then, from (1.103) it follows that

0= VYA — p)x; = (VIAV — g, )V-1x; = (A — 1, 1)V-1x; = 0, (1.105)

i.e., the vectors V~Ix, are eigenvectors of A (representing A in the &-basis)
w1th the same eigenvalues p;.

1.7.3. Spectrum and Eigenbasis of a Self-adjoint Operator

We consider now the case when A is a self-adjoint operator Ht = H.
When this happens, we shall prove that (a) the spectrum of H is real and (b)
eigenvectors corresponding to different eigenvalues are orthogonal. Indeed,
consider eigenvectors x; and X, corresponding to eigenvalues p; and p,,
which are not necessarily distinct. Then, Eq. (1.102) for x, in inner product
with x, yields

pi(Xg, X1) = (X, HX;) = (HX,, X;) = p3(X, Xy), (1.106a)
1.€.;
(k1 — 13 (X2, X1) = 0. (1.106b)

Equation (1.106b) for x, = x, implies that the eigenvalue g, is real. This
then holds for all eigenvalues. Next, if x, # x; and py # pi, Eq. (1.106b)
tells us that x, is orthogonal to x;.

1.7.4. Invariant Subspaces of Multiple Roots

Last, we shall now show that for self-adjoint operators (c) the m-fold
roots p; of the characteristic polynomial are associated with mutually orthogonal
m-dimensional subspaces of V"N, each invariant under H. When all roots are
distinct (m = 1), we have shown above that (x;, x;) = 0 for u; # p;, I,j =
1,2,..., N, and the set of eigenvectors of A is a basis for V. When
multiplicity occurs in some of the roots p;, we can proceed as follows:
Consider a first eigenvalue pu, # 0, a corresponding eigenvector x;, and the
(N — 1)-dimensional subspace ¥ ! orthogonal to x;. Then, as H leaves
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the direction of x, invariant, it will also transform ¥} ! only onto itself:
let y e 7Y ! so (y, x;) = 0; then, since H is self-adjoint,

0 = wm(y, x1) = (y, Hx,) = (Hy, x,), (1.107a)

so that Hly is still orthogonal to x; and thus in #"};*. Now, choosing an
orthonormal basis in ¥Vt {1, ' -V .. . el'Y}, and scaling x, if
necessary so that |x;| = 1, we can build a matrix X; with columns given by
the vectors

Xl = ”xb SS.N_l)a 8(2N_1)’ s ooy e%v—_ll)"' (1'107b)

Now, since any two columns »n, m of X, are orthogonal,
D R XK = Oy XX, =1, (1.107¢)
k

so that X, is a unitary matrix. If we multiply the hermitian matrix H by X;,
the first column of HX; will be pu,x;, while the other columns will be

N-1
He' ™V = 3 Hief' "D eV, (1.107d)
=1
Hence
p 0
HX, = X L
' 1(0 Hl)’ (1108
or
X{HX, (#1 0) (1.108b)
0 H)’

and adjoining (1.108b), we can see that H*isan (N — 1) x (N — 1) hermitian
matrix. Thus far we have used one eigenvector corresponding to a nonzero
eigenvalue to perform a wunitary transformation on H and reduce it to a
block-diagonal form. Moreover, the characteristic polynomial (1.104) can
be written as

py(p) = det(H — pl) = det(X{(H — p1)X;) = det(X{HX; — 1)
= (py — ) det(H' — p1) = (py — w)py-1(), (1.109)

where in the term before last 1 is the (N — 1) x (N — 1) unit matrix. In
this way we see that the characteristic polynomial py_,(x) of H! has all the
roots of py(n) but p;.

The process for H can now be repeated for H* using some other nonzero
root u, (which may be equal to p, if this root turns out to be multiple) to
successively “extract” root by root. If eigenvectors x{ - - - x{™ belong to the
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same m-fold root p;, then any linear combination will also belong to the
same eigenvalue, as

m

m m
HD cxf= > Hx? =g, > el (1.110)
r=1 r=1 r=1

and thus the set {x{’}™, spans an m-dimensional space ¥"7, invariant under
H and orthogonal to all other invariant subspaces or axes. If at the end of
the recursive process we find m, zero roots, these will correspond to the
mo-dimensional subspace ¥ Jo of ¥V orthogonal to all other extracted
eigenvectors, and (1.110) holds for #"o as well. By the Schmidt procedure we
can build an orthonormal basis for this subspace.

1.7.5. Diagonalization by Unitary Transformations

In conclusion, we have proven that if H is a hermitian matrix we can
build a unitary matrix X = X;X,---Xy (the factor X; extracting the jth
eigenvector and containing j — 1 ones along the diagonal) such that

X'HX = HP, (1.111)

where HP is a diagonal matrix containing along the diagonal the eigenvalues of
H and X containing the eigenvectors of H as columns.

1.7.6. The Second-Difference Operator and Fourier Transformation

As a concrete example, the operator A of Section 1.5 was shown to be
diagonalized by the Fourier transform, i.e., F'AF = A in Eq. (1.61). The
eigenvalues of A are thus the A, of Eq. (1.62). Note that A, = Ay_, and
Ay = 0, so that for odd N, all roots of the characteristic polynomial but one
are double, while for even N, Ay, is also simple. Since the eigenvectors of a
self-adjoint operator can be made into an orthonormal basis, the matrix
representing the operator will be diagonal in that basis. For the A operator
this is precisely the ¢-basis.

1.7.7. Eigenvalues of Functions of Operators

The eigenvalues and eigenvectors of a hermitian operator H can be used
to find those of any function P(H). Indeed, let Hx = ux; then

P(H)x = > p,H™x = > pu"x = P(w)x. (1.112)
n=0 n=0

It follows that if x is an eigenvector of H with eigenvalue p then it will also
be an eigenvector of P(H) with eigenvalue P(u).
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Exercise 1.45. Consider the operators [, of the dihedral group represented
by the hermitian matrices I, in (1.88b). As [,2 = 1 and 1 has 1 for its sole eigen-
value, show that [, can only have eigenvalues + 1. Find a set of eigenvectors for
l,. For this note that loe, = ey_, and lo®@n = @y -m.

1.7.8. Unitary Operators and Their Spectra

The case when A is a unitary operator U, UU' = 1, will now be
examined. Of the three main results we proved for self-adjoint operators (on
the spectrum, orthogonality, and completeness of eigenvectors) only the
first differs for unitary operators. The other two hold verbatim. First, note
that if Ux = ux holds, then, multiplying by p~1U*, we find U'x = p~1x, so
that if x is an eigenvector of U with eigenvalue p, it will also be an eigenvector
of Ut with eigenvalue p~1. Now consider the analogue of Eq. (1.106) for
unitary operators for any two eigenvectors of U and U*:

pi(Xg, X;1) = (Xg, UX;) = (Utxy, X;) = pg Y¥(xo, Xy), (1.112a)
ie.,
(1 — p3*)(X2, X1) = 0. (1.112b)

For x, = x; we thus conclude that the allowed eigenvalues p must satisfy
p* = p1 ie., they can only be complex numbers of unit modulus. Thus
the spectrum of a unitary operator is restricted to lie on the unit circle. Next,
as was the case for hermitian operators from (1.112b), if u; # py = ps ¥,
then the corresponding eigenvectors are orthogonal. Last, the constructive
proof of the statement of Section 1.7.5 can be followed as before with some
minor changes. Since (Uy, Ux) = (y, x) = (U'y, U*x), it follows that if U
leaves a subspace of ¥~ invariant, so does U'. The statement stemming from
(1.107a) thus also applies for unitary operators. The construction (1.107)-
(1.108) can now be followed, replacing hermitian by unitary matrices, and the
proof is complete. We do not have to worry about null eigenvalues here.

Exercise 1.46. Consider in ¥"2 the unitary rotation around the z-axis given
by the matrix

cosfd —sinf O

R.(0) = | sinf cosf 0]. (1.113a)
0 0 1
Verify that its normalized eigenvectors are
0 1/(2)1/2 1/(2)1/2
x;={0]}, x; = | —i/(2Q)2 |, X3 = | /(22 (1.113b)
1 0 0
and that they constitute a unitary matrix X = |x;, Xa, X3|. The first of the eigen-

vectors is the ordinary axis; the second two are polarization vectors. Find the
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corresponding eigenvalues from (1.113a) by the characteristic equation and
check the assignments. Notice that the eigenvalue problem has no complete
solution in a purely real space.

Exercise 1.47. The rotation matrices (1.113a) are unitary. Find the hermitian
operator which generates the set as (1.74). You can use Eq. (1.79). Verify that the
eigenvectors (1.113b) are also eigenvectors of the generating operators. Find the
corresponding eigenvalues.

Exercise 1.48. The rotations of the dihedral group Dy in ¥V are unitary.
They are represented in the e-basis by (1.88a), while in the c¢p-basis they are
represented by (1.91). What are the eigenvalues and eigenvectors ?

Exercise 1.49. Consider the Fourier transform matrix. Show that its eigen-
values are among the set {+1, +i}. Find eigenvectors for F, noting that F
transforms €, to ¢, and ¢, to ey_,.

The reader may ask if any larger class of operators has the property
common to self-adjoint and unitary ones: orthogonality and completeness
of their eigenvectors. In fact, this is a property of all and only normal opera-
tors, i.e., those operators N which commute with their adjoints N*N = NN*,
The proof of this statement can be seen, for instance, in the book by Fano
(1971, Section 2.3). As to the question of whether all operators have eigen-
vectors which diagonalize their representing matrices, the answer is in the
negative. The most one can do in the general case is to achieve a reduction
into the Jacobi canonical form: a block-diagonal form, one block for each
distinct eigenvalue and each block being a matrix with a shifted diagonal of
I’s beside the main diagonal. A discussion of this can be found in the book
by Gel’fand (1961, Section III).

1.7.9. Eigenbases of Operators with Degenerate Eigenvalues

As we have seen, the eigenvectors of a self-adjoint or unitary operator in
¥"N constitute an orthonormal basis for the space called the spectral basis or
eigenbasis of the operator. If this operator describes the time evolution of a
system (to be seen in Chapter 2), it is very convenient to use this basis since
the coordinate directions defined by the eigenvectors will remain invariant in
time and will change only in scale. Moreover, the eigenvectors are con-
veniently labeled by the eigenvalues of the operator, except, that is, for the
ambiguities which may arise when two or more eigenvalues coincide in a
multiple root of the characteristic polynomial. Such eigenvalues are said to
be degenerate. The term is borrowed from quantum mechanics. Our nearest
example of degeneracy appears in the eigenvalues of A which are equal by
pairs: A, = Ay_,. To resolve the degeneracy and use eigenvalues to label the
basis vectors uniquely we may hope to find one (or more) extra operators
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whose eigenvalues will specify the eigenvector labels completely within each
of the invariant subspaces of the first operator.

1.7.10. Removal of Degeneracy

Specifically, we have Ax; = u;x; for the first operator, and we need Bx; =
v;x; for the second, so that although some of the x’s and some of the »’s may
be degenerate, we hope that the assignment of the pairs (u;, v;) to x;; will be
one to one. We shall prove that two operators A and B can have simultaneously
the same set {x;}{_, of eigenvectors if and only if they commute. If they have
the same eigenvector set, they will both be represented in the common
spectral basis by diagonal matrices, which commute. If they commute, then
once we have found the spectral basis for A (so that the representing matrix
A of A is diagonal with possibly repeated eigenvalues), the representing
matrix B for B in the same basis can only be block diagonal, each block with
the size and position of the sets of degenerate eigenvalues of A. Each block
in B can be diagonalized as (1.111) without affecting A; the result is a final
eigenvector basis {X;})-; where both A and B are fully diagonal.

1.7.11. The Case of the A Operator

The A operator, we noted, has doubly degenerate eigenvalues. We can
use any of the dihedral operators commuting with A [Egs. (1.96)] to complete
the labeling. The operator R seems the wisest choice: in the ¢-basis it is
already diagonal [Eq. (1.91) for £ = 1], and all of its eigenvalues are distinct:

Rep, = exp(2nin/N)ep,, n=12,...,N. (1.114)

Indeed, R could be used alternatively to define the ¢p-basis vectors uniquely,
with no labeling degeneracy. As another choice, the [, operator [Eq. (1.92)
for I = 0] can be used. (The matrix I, does not appear to be block diagonal
since the pairs of degenerate eigenvalue vectors are not placed sequentially
in the basis.) If we define

‘Pm+ = 2—1/2(¢Pm + <PN—m)s (11153)

1 1N — 1), Nodd,
Gl IN — 1, Neven,

Pn” = i27Y(Pn — Py-_m); (1.115b)
oF = Py, and P2 = Pyjo for N even, (1.115¢)
we can see that
Aepp* = A, *, (1.116a)
lo®Pn* = £ @n*, (1.116b)
so that (1.115) is the common eigenbasis of A and [,.
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Exercise 1.50. Verify that the basis (1.115) indeed has N orthonormal
vectors.

Exercise 1.51. Find the matrix transforming the ¢-basis to the ¢ *-basis
(1.115).

Exercise 1.52. Write out explicitly the matrices representing A, Iy, and R in
the ¢ *-basis (1.115). You can do this by using the results of Exercise 1.51 or, for
the first two operators, directly from (1.116).

Exercise 1.53. Generalize the choices of basis given by (1.114) and (1.115)—
(1.116a): Show that R* defines a basis equally well as long as k is not a divisor of
N. Regarding [;, construct eigenbases of A and [, with

PR = Pn + BntOy-m  em*[* + [Bn*2 =1, (1.117a)
LoiR* = R, (1.117b)
where the range of m is the same as in Eqs. (1.115). Show that a good choice is
an* = 2712 exp(2milm/N), Bn* = £27 Y2 exp(—2milm/N). (1.117c)
Show that this indeed generalizes the ¢ *-basis in Egs. (1.115)—(1.116).

Exercise 1.54. Recall that for N even the transformations [K; [(1.97) and
below] also come into play. One can define, in analogy to (1.115),

pnt = 2712[exp(imm/N)p, + exp(—imm/N)Qy_nl, (1.118a)
L = i272[exp(imrm/N)p, — exp(—imm[N)Py _nl, (1.118b)
form=1,2,...,4N — 1, and
Piiz = Py, PET = Pn. (1.118¢)
Show that these are eigenfunctions of K, i.e.,
IKoph* = +h*. (1.118d)

Show that the vectors defined above have real components in the e-basis. One
can do the same for the other IK,’s.

Exercise 1.55. Consider in all detail, since it can be done algebraically, the
eigenvalues and vectors of 2 x 2 complex matrices, i.e.,

= (0 Gl
e X)) =2 () = e (1.119)
Show that the eigenvalues are

A* = 3a + d) + {B(@ — AP + b2, (1.120)

which are real for M hermitian (a, d real and b = c*). They are also real for M
real and [4(a — d)]> + bc = 0. Note that >; A, = trace M and IL;\; = det M:
These are general properties for any dimension.
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Exercise 1.56. Examine now the eigenvectors in (1.119). Show that
y: A —a c
x* b At -—d
Note that two proper eigenvectors need not exist for arbitrary M (for example,
when b = 0). Show that when A* and « are real, the angle between v* and v~ is
(without assuming their normalization)
PN P 5 Gl _")*] 1.122
v+, vo) xx[l o —a | (1.122)
They are thus orthogonal if M is hermitian or unitary. The results of the last
exercises will be handy later on.

(1.121)

Exercise 1.57. Show that if x is an arbitrary normalized vector in ¥V, then
xhes =31 £ Ipx, xFix =11 + K)x (1.123)

are eigenvectors of [, and [, respectively, with eigenvalues + 1. The operators
3@ + [) and 1(1 + K,) are projection operators onto orthogonal subspaces.

1.7.12. Finding the Fourier Transformation

Exercises 1.58-1.60 show how we can find the Fourier transformation F
as that which diagonalizes the second-difference matrix representative A
given by (1.60).

Exercise 1.58. Consider diagonalizing A through an (unknown) unitary
matrix F as AF = FA, where A is diagonal with elements A,. Show that the
m — n element of this equality leads to the recursion relation

Frniin = Q2+ M)Fpp — Fpo1,n. (1.124)

The indices in (1.124) are to be considered modulo N. This allows us to write any
F,, in terms of Fi, and F,, = Fy, as

Frniin = Un()Fin — Up—-1(x0)Fon, X, =14 A/2, (1.125)
where the U, are polynomials in x,. Combining the two preceding equations
shows that they satisfy the recurrence relation

Un(x:) = 2%:Un-1(%0) — U —a(X5), (1.126a)
Us(xy) = 1, Ui(xy) = 2x,. (1.126b)

Exercise 1.59. Show that the solution to the recurrence relation (1.126) is
given by
U,(x) = sin[(m + 1) arccos x]/sin(arccos x). (1.127)

These are the Chebyshev polynomials of the second kind of degree m, and (1.126a)
is their Christoffel-Darboux formula. [See the mathematical handbook by
Abramowitz and Stegun (1964, Chapter 22).] The recurrence relation for the
elements of F ““closes” for m = N = 0. From (1.124) for m = N and from
(1.125) form = N — 2and N — 1, show that this leads to a pair of homogeneous
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simultaneous equations in F,, and Fy,, the vanishing of whose determinant
requires

Un-1()[Uy-3(x) + 2x] — [Uy-2o(x) + 1 = 0. (1.128)

The roots of this polynomial equation will determine the allowed values of A,.
By the use of trigonometric identities, (1.128) can be reduced to

sin 8(1 — cos N6) = 0, cos@=x =1+ A2 =0 = 2nk/N,
k=0,+1, +£2,..., (1.129)

whose roots yield precisely the values of A, given by (1.62b), so the index n can
serve to number columns—any other one would just permute the A,’s in A.
Note, though, that all eigenvalues but Ay (and Ay if N is even) are twofold
degenerate. See Weinstock (1971).

Exercise 1.60. Substituting the eigenvalues A, into (1.125) and letting
Fin = ynFon, find F,,. The requirement of unitarity >, |Fun|? = 1 will fix | Fo,|
but leaves a three-dimensional freedom in choosing each complex y, and the
phase of Fy,. The choice arg Fy, = 0 and y, = exp(—2win/N) produces the
Fourier transform matrix (1.48). Examine first the columns F,y and F, y;2 if N
is even. There, U(xy) = m + 1 and Up(xy;2) = (—1)"(m + 1). Proceed then to
the other columns, noting the twofold eigenvalue degeneracy.

Table 1.1. Coordinates in the e- and ¢-Bases of Vectors Subject to Various
Operations or Acted upon by Operators*

Operation f Jfa Is
Linear af + bg afn + bgn afn + bin
combination
Inner product f, 2 > f2ea a9
n m
Translation R*f e expmikm|N) fr
(rotation)
Inversion 1% § Sfr+ok-n exp(dnikm|N) fy -m
KA Srvak-n+1 expldni(k + Hm/N1fy-n
Second N fov1 = 2fa + faa —4 sin?(am|N) fu
difference
Complex i g
conjugation
Convolution f(e)g fn&n NUaSf gy
. i
(Section 3.1) f(p)g N-12 Zfsgn—s fmgm
8
Correlation fcg NS fho f2e.
8

(Section 3.2)

e In all cases n and m appear mod N.






