Appendix B

The Bessel and Related
Functions

We define the Bessel function of integer order k as
J(2) = (2m)-1 f d6 cos(z sin 0 — k8). (B.1)

This was Bessel’s original definition in 1824 [see Watson (1922, Section 2.2
and the references therein)]. It leads to our first use of this function in Egs.
(5.48¢)—(5.50) by the following steps involving trigonometric identities,
considerations about the parity of the functions, and the invariance of (B.1)
under 0 — +0 + «:

f 8 cos(z sin 8 — K6) = f B expli= sin ) expl —ik6)

= f " 40 cos(z sin 6) exp(—ikf).  (B.2)

With the substitutions § = x/2, k = 2(n — m), and z = 27(k/M)*'? we obtain
(5.48c¢).

The middle term in (B.2), with the substitution ¢ = exp(if), gives us
(B.1) as a closed contour integral around the origin:

Ji(2) = @mi)- 99 dtt %~ explz(t — t-1)2]. (B.3)

It follows from here that the J,(z) are the Laurent series coefficients of the
exponential function in the integrand, i.e.,

Gy(z, 1) = explz(t — t~)/2] = ngJk(z)t". (B.4)
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This is the Bessel generating function. For t = i exp(if) and z = pq we obtain
(8.78). From (B.1) we can see that J(z) is an analytic function of z in the
neighborhood of z = 0. Its Taylor expansion can be found from (B.3) by the
Taylor expansion of the exponential and the Cauchy integral (8.12) for

(). = s
oo S () LA

= i (m—,ln): (%)Mn(zni)'l?gdtt"""‘k‘l

Ji(2)

= (=D z\2n+k
- ,Zon! (n + k) (i) : (B.3)

For k an integer it thus follows that
Ju(etz) = efmn ] (2). (B.6)

The ratio test shows that this series converges for all finite z. Equation (B.5)
can be generalized for complex values of the index by the gamma function:

Ju(z) = i (—=D)"[n! T(n + k + D]"(z/2"+*, ke¥ (B

In particular, for k = +4, we find
J12(2) = Qfnz)M? sin z, (B.8a)
Foz) = (222 cos z. (B.8b)

The Bessel function J,(z) has a countable infinity of simple real zeros
for z > 0 and, at z = 0, a k-fold zero. The location of j ,, the nth zero of
Ji(2), is an increasing function of k. These zeros are transcendental numbers
bounded from below by k, and as n — oo their spacing increases monotoni-
cally, tending toward =. They interlace since ji , < jii1.n < Jrins1 <
Jr+1n+1 <---. Table B.1 gives the first zeros of a few low-order Bessel
functions.

Table B.1 Zeros of the Bessel Function j,

- 0 1 2 3 4 S
2.40482 3.83171 5.13562 6.38016 7.58834 8.77148
5.52007 7.01559 8.41724 9.76102 11.06471 12.33860

8.65372 10.17347 11.61984 13.01520 14.37254 15.70017
11.79153 13.32369 14.79595 16.22347 17.61597 18.98013
14.93091 16.47063 17.95982 19.40942 20.82693 22.21780
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A Christoffel- Darboux three-term recursion relation for Bessel functions
can be obtained by differentiating the generating function (B.4) with respect
to t.

> kJ(2)t*~t = 8Gy(z, )]0t = (z/2 + z/2t*)Ga(z, 1)

ke
= D 2[Ji@) + Ji+ 242, (B.9)
ke
where we have shifted the dummy sum index where necessary. Linear inde-
pendence of the power functions then implies

Jis1(2) — 2kz=Uz2) + Ju_1(2) = O. (B.10)

Similarly, differentiating (B.4) with respect to z and rearranging terms by
(B.9), we find the raising and lowering operators,

(kjz ¥ d]dz)]i(2) = Jyc+1(2), (B.11)

which can also be seen to hold directly by the series expansion (B.7).

Equation (8.65) can be shown to hold for integer N (integer or half-integer
1) by noting that for N = 2 (¢ = 0) it coincides with (B.1) for k = 0. For
N = 3 (» = 1/2) the integral is elementary and leads correctly to (B.8a).
Last, the Bessel function as given by (8.65) can be seen to satisfy (B.11) by
integration by parts.

Applying the raising and lowering operators (B.11) in either order to
Ji(z), we find that the Bessel function satisfies the second-order differential
equation

zzd—2+zi+22—k2J(z)=0 (B.12) -
dz? dz k : X

This is Bessel’s differential equation. As is true for any (Fuchsian) equation,
(B.12) has two independent solutions. They are J,(z) and J_,(z) for k not an
integer; when k is an integer, these two functions are not linearly independent,
but

J_i(2) = (=1)Ju(2), (B.13)

as can be ascertained from (B.7) by observing that the I-function in the
denominator of J_,(z) has poles forn = 0, 1,..., k — 1, so the sum actually
starts from n = k. In the case of integer k, the second solution to (B.12), built
for real k as

N (z) = [Ji(2) cos(mk) — J_(2)]/sin 7k, (B.14)

defines the Neumann function (also called Bessel of the second kind or Y-
function). As k approaches integer values, N,(z) continues to be a well-defined
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function which can be found from L’Hospital’s rule. Its explicit series ex-

pression can be found in the literature [see, for instance, Arfken (1966,
| Section 11.2), Whittaker and Watson (1903), and, of course, Watson’s
treatise (1922); the last contains a very complete account of these functions].

Bessel and Neumann functions have been plotted in Figs. B.1 and B.2.
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Some of the main properties of Bessel vs. Neumann functions are their
behavior at the origin:

J(2) ~ [2T(k + D]7'z¢, k#-—1,-2,-3,..., (B.152)
z2-0

Nuz) ~ =27~ T(k)z"%, k#0, No(z) ~ 2= 'lnz (B.15b)
20 2—-0

Their asymptotic behavior can be shown to be

Ju(z) =~ (fnz)"? cos[z — m(k + 1/2)/2], (B.16a)
Ni(z) ~ (2fm2)Y2sin[z — =(k + 1/2)/2]. (B.16b)

[See Watson (1922, Chapter VII).] Both Bessel and Neumann functions
satisfy the three-term and differential recursion equations (B.10) and (B.11).
The properties of the zeros (simplicity, reality, spacing, and interlacing) are
common to both functions.

The modified Bessel differential equation

/ dz

(zzd—zz + zd—dz — kz)f(z) =0 (B.17)

has solutions J,(+iz). It is convenient to introduce the modified Bessel
functions

exp(imk/2)Ji(exp(in/2)z), —7 < argz < 7/2,
1(2) = . . (B.18)
exp(3ink/2)Ji(exp(—3in[2)z), =/2 < argz < m,
which have the series expansion
I(z) = Z [T (n + k + 1)]71(z/2)2" ", (B.19)
k=0

[Compare with (B.7).] For k not an integer, independent solutions of (B.17)
are provided by I(z) and 7_,(z). When k is an integer, /_,(z) = I,(z). Sug-
gesting analogy with Neumann functions, one defines the Macdonald function,

Ki(2) = (@/2)-i(2) — 1(2))/sin 7k, (B.20)

which is independent of 7,(z) for all k. The limits and asymptotics of the /-
and K-functions are

L) = G0+,  k#-1,-2-3.., (B.21a)

K = @) TR)2,  k#0; K@ = —Inz (B2Ib)
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I, k(z) (21rz) ~ 12 exp(2), (B.22a)
Kk(z) (71/22)1/2 exp(—2z). (B.22b)

For real z and positive k, both functions are free of zeros.

From the Bessel modified equation we shall obtain another important
differential equation. Let y = (32/2)%3 and write (B.17) in terms of it for
g(») = f(z); then define g(y) = y~*2h(y). When k = 1/3, terms cancel, and
we are left with Airy’s equation:

(5 - 7)o =0 (B.23)

Equation (7.61) is found from here by y = : 2183, Tt thus follows that
Y1, 115(2y%2/3) and y*2K;,5(2y%/2/3) will be solutions to (B.23). Actually,
one defines the first and second Airy functions:

Ai(y) = 7= H(y[3)2Ky5(2)

= YY1 _15(2) — L5(2)]/3, (B.242)
Ai(—y) = yY2[J_115(2) + Jye(2)], (B.24b)
Bi(y) = (y/3)"?[I_1/5(2) + L,5(2)], (B.24c)

Bi(—y) = (/3" [J_1,8(2) — J1(2)], z = 2723, (B.24d)

These are plotted in Figure B.3. The Taylor expansions are of the form

Ai(y) = a1Fi(y) — eaFa(), (B.25a)
Bi(y) = 3'2[¢c;F1(y) + coFa(y)], (B.25b)
where the constants are
¢y = 37%31'(2/3) = 0.35502805. .. = Ai(0) = 3-V/2Bi(0), (B.26a)
¢ = 3718/I(1/3) = 0.25881940. .. = —Ai'(0) = 3-V2Bi'(0) (B.26b)
£
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Fig. B.3. The Airy functlon of first and second kind.
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and the functions are
Fu(3) = 2, 3"(n)3)u[TGm + m]~Hm+»=1, n=1,2, (B.27a)

m=0

where we have used Pochhammer’s symbol
@n=ala+ 1)a+2)--(@a+m—1)=T(a + m)T(a). (B.27b)

For y — + o0, the asymptotics are

Ai(y) = 2717~ 12y~ 14 exp(—2y°//3), (B.28a)
Ai(—y) = w=12y=1%5in(2)%2[3 + =/4), (B.28b)
Bi(y) ~ 712y~ 1/* exp(2y®?[3), (B.29a)
Bi(—y) =~ w12y~ cos(2y®?3 + =/4). (B.29b)

The integral expression (7.64), which we asserted represents the Airy
function, can be put in terms of the usual and modified Bessel functions as
in (B.24). The process is rather involved, so we refer the interested reader to
the book by Watson (1922, Section 6.4). References to Airy’s original
“rainbow” equation and the solutions by Stokes and Hardy appear there.

Further properties and tables for the Bessel and related functions can be
found in Abramowitz and Stegun (1964, Chapters 9 and 10), while integrals
of Bessel functions—as for the Green’s functions in Section 5.3—and Struve
functions, mentioned in Section 8.5, occupy Chapters 11 and 12 of Abramo-
witz and Stegun. Further references and tables have been given in Sections
5.2, 5.3, and 6.4.



