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Fourier Transforms

The continuous partial-wave decomposition of a function over the full real
line constitutes the Fourier analysis of the function. The precise formulation
of this decomposition, a broad outline of its range of applicability, and its
vector space aspects constitute Section 7.1. Its main properties are given in
Section 7.2. Section 7.3 proceeds toward applications by the introduction of
the Dirac 8 and its role in finding the Green’s function, which determines the
time development of diffusive and elastic systems with source or driving-
force terms. Except for a few connections, the following three sections are
independent of each other. Section 7.4 deals with functions which have
support (i.e., are not necessarily zero) on half-infinite or finite intervals. The
former are interesting in that they can be used to describe causal processes.
The Fourier transforms of these functions satisfy certain dispersion relations
due to their behavior in the complex plane. Subtractions for band-absorption
filters are described. Section 7.5 deals with the quantum oscillator wave
functions. The harmonic oscillator wave functions constitute a denumerable
complete and orthonormal basis for the space of square-integrable functions.
The repulsive oscillator functions, on the other hand, though less well
known, serve both as a generalized basis for that space and as a fine working
ground for various Fourier analysis techniques. Finally, Section 7.6 describes
a type of complementarity between a function and its Fourier transform
which gives rise to the Heisenberg uncertainty relation between the dispersion
in measurement of two quantum-mechanical observables.

7.1. The Fourier Integral Theorem

In this section we shall prove the reciprocity between a function f(q),
g €2 (the real line), and its Fourier transform f(p), p € %, which was sug-
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256 Part III * Fourier and Related Integral Transforms [Sec. 7.1

gested in two earlier sections. Its precise formulation constitutes the Fourier
integral theorem. Several examples, useful later on, will be given.

7.1.1. Introduction

In Section 3.4 we followed the finite Fourier transform for spaces whose
dimension was allowed to increase without bound [Egs. (3.50) and (3.51)],
while in Section 4.7 we expanded functions f(g) periodic in a growing
interval [Eqs. (4.138) and (4.139)]. In both cases we found the limiting
expressions

@) =0 [ dfe) explion) = ), (1)

flp) = @m)=12 J_w dqf(q) exp(—ipq) = (Ff)(p). (7.1b)

Provided the integrals exist—or can be made sense of—f(p) is called the
Fourier transform function corresponding to f(g) and represents the partial-
wave coefficients for its generalized expansion, as an integral, in the exponen-
tial functions exp(ipq). The Parseval identity

(f,g) = j " dgf@yre(a) = J dof(p)*E(p) = (FE,Fg) (1)

can be seen as an integral version of the Pythagorean theorem for spaces of a
continuous infinity of dimensions.

7.1.2. Statement of the Theorem

The conditions for (7.1) and (7.2) to hold must include that the integral
over an infinite interval exist and must specify what the meaning of (7.1a) is
when f(g) is discontinuous at some points. The Fourier integral theorem
states that if f(q) (a) is piecewise continuous (continuous except at most at a
number of isolated points), (b) has bounded total variation (so that when
approximated by any step function the sum of the absolute values of the
step height differences is finite), and (c) is absolutely integrable [i.e.,
|7, dq|f(q)| < ], then for any q" € &,

L

dp| = [ dafiq) expt—ipa) | expliv)

— lim3{f(@" + 9 +fl@’ ~ 9. (13)

When the three conditions are satisfied, (7.3) tells us that (7.1a) indeed
reproduces the f(q) by the Fourier transform (7.1b) at all points of continuity
of the function. If f(g) is discontinuous at some point g, the integral in (7.1a)

lim (2m)- Y2 f
L—
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yields the value of f(g) at the midpoint of the discontinuity. This was also a
characteristic of the Dirichlet theorem for Fourier series in Section 4.2.
Again we shall work with the understanding that any two functions f(g) and
g(gq) which differ from each other at most on a denumerable set of points (a
set of measure zero for Lebesgue integration) are equivalent.

7.1.3. Proof: The Case of the Rectangle Function

The strategy we shall follow in proving the Fourier integral theorem is
first to establish the result—as if it were an example—for a rectangle function
and then to use some of the limits obtained in order to prove that for any
piecewise continuous and bounded function the result holds as well. Consider
the rectangle function of width e and height 7:

REM(q) = {7), —¢/2 < q < ¢[2,

0, otherwise.
[This is identical to the rectangle function introduced in Section 4.2 except
that the domain of (7.4) is #, whereas in (4.24) it was the interval (—m, 7]
which when extended to Z carried an infinity of copies of itself spaced by 27.]
The Fourier transform of (7.4) can be easily calculated by (7.1b) as

Ren(p) = @m)2 [ dgRe(g) exp(~ipg)

(7.4

€/2

— @n o | dgexp(—ipg)

-&/2

= (2m)™Y%en sin(pe/2)/(pe/2). (7.5)
See Fig. 7.1. Now, in proving (7.3) for this function we must evaluate

L
lim 2m)~*2 [ dpRe"(p) exp(ipq)

L— ® =T

R(e,n)(q)

L
= lim W'lnf dpp 1 sin(pe/2) cos pq
-L

L—oo

L

= lim ﬂ"lnf dpp~Y{sin[p(q + ¢/2)] — sin[p(q — ¢/2)}. (7.6)
) 0

In the first step we have used the fact that the imaginary part is odd in p

and hence vanishes, while the second is only a trigonometric identity and a

halving of the integration range as the integrand is even. We are thus faced

with limits of integrals of the kind
L
I(s) = lim | dpp~!sinps
L— o 0
b

= signs lim | dyy~!sinuvy, (7.7)
0

V= 0
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Fig. 7.1. The rectangle function R®;”(q) (right) and its Fourier transform R®"(p) (left)
for various values of ¢ and 7 such that en = 1.

where we have changed variables to y:=bp/L and v:=|s|L/b, b > 0,
thereby putting the onus of the limit on the argument of the trigonometric
function. We have introduced the sign function, which takes the values
1, 0, or —1 according to whether s > 0, s = 0, or s < 0, so as to keep the
upper integration limit positive. The last form is also valid when s = 0.
We shall now show that the value of the integral in the last term of (7.7) is
w/2. For this purpose we employ the result on the Dirichlet kernel, Egs.
(4.19)-(4.20), using the evenness of the integrand and a change of scale
x = wy/b in order to write it as

b
lim | dy[sin(zy/2b)]~* sin vy = b, v =alk + $)/b, keZ+* (1.8
V— © 0
(£ is the set of positive integers). Now we subtract this from (7.7) as
b
[(s) sign(s) — /2] = lim f dog(x) sicey, (7.92)
V- ®© 0

g(») = 1/y — =[2b sin(=y/2b)] 1. (7.9b)
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The proof that (7.9a) is zero proceeds very much as in the proof of the
Dirichlet theorem in Section 4.2; namely, we note that g(») is bounded in the
interval [0, ] with a bound independent of v, as is its derivative g'(y). We
can integrate (7.9a) by parts and see that

b
lim v“[—g(y) cos vyl + f dyg'(y) cos vy] =10} (7.9¢)
V=@ o
We conclude that
b
lim | dyy lsinvy = 7/2, (7.10a)
V= 0 0
and hence
L
lim dpp~1sin ps = = sign s. (7.10b)
Low J_p

Thus, the rectangle function is reconstructed in (7.6) as

Ren(q) = nlsign(q + ¢/2) — sign(q — &/2)]/2. (7.11)

We note that (7.11) coincides with the original function (7.4) for all values
of the argument except at ¢ = +¢/2, where the original function is discon-
tinuous while the integral (7.6) converges, as promised by (7.3), to the
midpoint of the discontinuity: R®™(+¢/2) = /2. The two functions are
therefore equivalent.

Exercise 7.1. Show that the Fourier transform of a rectangle function
R®-am(g — (a + b)/2) of height  whose nonzero values are in the interval [a, b] is

R(p) = (2m)~*2nip~*[exp(—ibp) — exp(—iap)]. (7.12)

Verify along the same lines as above that the Fourier integral theorem holds
for this pair.

7.1.4. The Case of Piecewise Continuous Functions

The validity of the Fourier integral theorem for the rectangle function
and Exercise 7.1 shows that this theorem also holds for step functions com-
posed of a finite number of steps. Now, any continuous function with bounded
total variation can be approximated uniformly by a sequence of step func-
tions. Intuitively at least, we can expect that the Fourier integral theorem
holds for these functions if, additionally, they are absolutely integrable so
that the first integration in (7.3) is defined. We shall now set out to prove this
using the results obtained above. '
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If f(x) is absolutely integrable, as long as L is finite we can exchange the
order of integration in (7.3) so that
L

e[ duf@) [ dpesslinta’ - o)

- ﬂ—lf dgf(q + ¢)q-sinLg. (1.13)

The limit L — co will thus require an integral of the kind (7.10a) with a
function f(y + b) placed in company with the oscillating sine. Now, Eq.
(7.10a) is actually independent of b, which was only required to be finite and
positive. As we can write fg = fz + f: for 0 < b’ < b, the integrals [z and
f z being /2, it follows that f Z vanishes. Note that the argument (7.9) also
applies for integrals fz, a < 0, as we need only set b = —a in (7.8). Assume
now that f(y + c¢) is continuous and of bounded variation in (a, 0) and (0, b);
then we state that

1alf(c*) + fc7)] ifa<0<b,

b + ifa=0<5b
lim j dyf(y + ¢)y "tsinvy = (e 1 ¢
voo Jg %ﬂf(c_) ifa<0=25
0 when 0 ¢ [a, b],
(7.14)

where f(c*) = lim,_, f(c + ¢), ¢ > 0. Indeed, for the second case we can
break up the integral as fg = fz + J'Z for 0 < 8 < b and 8 as small as we
please. Using the mean value theorem, we see that the first integral will
yield inf(c*), while the second one vanishes. These arguments can be
applied to prove the other cases, constituting essentially the Riemann-
Lebesgue theorem.

The infinite integral in (7.13) can be now broken up as f°_°w = f‘iw +
fz + f : . Since f(q + g’) is assumed absolutely integrable on %, for every
preassigned e, > 0 and ¢, > 0 we can find integration limits ¢ and b such
that f a_w and f : , with the integrand in (7.13), are less than these numbers,
leaving only the contribution from fz, to which Eq. (7.14) applies. In this
way, the Fourier integral theorem (7.3) is proven.

Exercise 7.2. Consider the single-tooth “sawtooth’’ function

— ) qe(_M/Zs M/2)9
sulq) = {O, otherwise, (15e)

and its Fourier transform
Su(q) = (2m)~*%iMp~*[cos(pM]2) — (pM[2)~*sin(pM]2)].  (7.15b)

Verify the workings of the proof of the Fourier integral theorem, in particular
the use of the mean value theorem and the splitting of the integral over Z.
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Following the usage in earlier sections we define the quadratic norm of
fas

it =600 = | [ aar]| (.16

Exercise 7.3. Prove the Parseval identity (7.2) in the form

im [* afwrew - [ dasare. @.17)

You can replace f(p) and g(p) by their expressions (7.1b), exchange integrals for
finite L, and then use (7.3). Note that, in particular, |f| = [f].

Exercise 7.4. Prove the Schwartz inequality

|(f, g)IZ < (f’ f)(g’ g)a (7.183.)

which here assumes the form

(-} 2 @ @
[ asareof < [[ alsor][[” ale@?].  @so
and its Fourier-transformed version by the Parseval identity. This is nothing

more than the proof in (1.13)—(1.15). The Schwartz inequality (7.18b) has been
shown to be but a special case of the more general relation

U:: dqf(q)*g(q)l < fw dq|f(q)*g(q)|

© 1/p © AP
<[[" avr@r]"[[" @ale@r]” @159
for p and p’ such that p=* + p’~* = 1. The last two members are known as

Holder’s inequality. For p = 2 = p” we recover (7.18b). When p = 1, p’ = w0,
the corresponding expression for g(g) becomes the supremum of the function.

Exercise 7.5. Write out the integral expressions which represent the triangle
inequalities (1.19) and (1.21). These are a special p = 2 case of the Minkowski
inequality

U_Z dq|f(q) + g(q)l”]m < U: dq[f(q)lp]m + U_Z dqlg(p)l”]w, (7.19)

which is valid for p > 1.

7.1.5. Example: The Gaussian Bell Function
The unit Gaussian bell function of width w,
Gu(q) = (2mw) =12 exp(—¢?/2w), (7.20)

will be used quite often. It is a function which is infinitely differentiable. It is
positive, its maximum being G,(0) = 27w)~ 2, and it decreases to
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0.60653 . .. of this value at ¢ = + /2. Due to the normalization chosen in
(7.20), G,(g) can be shown by Euler’s integral to enclose unit area,

[ wsu@ =1, (7.21)

independently of its width.
The Fourier transform of the Gaussian (7.20) can be calculated as

Gulp) = @) [ dgGula) ex(—ipa)
— @nw 2| dgexp(—g?2 — ipg)
= @0 o exp(—pof2) [ dgexpl—(q + iop)/20]

= (2m)~12 exp(—pzw/Z)f dq'G.(q")

= 0™ 12Gy4(p). (7.22)

The fourth equality requires a common complex integration result: The
integrand is analytic and free from singularities in any band parallel to the real
axis and decreases rapidly at |Re g| — co; hence f:':i:i’i = [ _. Thus, the
Fourier transform of a Gaussian of width w is another Gaussian of width 1]w.

See Fig. 7.2.

Exercise 7.6. Verify the Parseval identity for the Gaussian bell function.
Show that

[Gol = (4mw)=2t = |G, . (7.23a)

You can use the value of the Euler integral (7.21) for 2w. Differentiating the last
equation with respect to w, show that

1QGo| = (w/m)**/2, (7.23b)

where (QG,,)(q) = gG,(q). This is related to the second moment of the Gaussian
function and will be used in Section 7.6.

7.1.6. On the Function Spaces €, ©, (%), L (%), and &’

The theory of Fourier transforms includes a much greater amount of
information and caveats than meets the eye in Egs. (7.1) and (7.2) or the
more rigorous (7.3) and (7.17). First, let us emphasize that we can have two
geometric interpretations of the pair of functions f(¢) and its Fourier trans-
form f(p): (a) the view developed in Parts I and II, which regards f(¢) and
f(p) as the coordinates, in two bases, of the same f, an element of some
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Fig. 7.2. The Gaussian function G,(g) (left) and its Fourier transform (right) for
various values of the width. Note that the maximum of the latter is independent
of w.

appropriate vector space ¥~ of functions with domain # (see Section 4.5),
and (b) the Fourier transformation as an active transformation of this vector
space into itself as f—f = Ff. The two points of view, passive and active
transformations of ¥; are conceptually different ways of interpreting Egs.
(7.1). Both are useful. The first picture is widely used in quantum mechanics
where (q) and its Fourier transform (p) represent the configuration- and
momentum-space wave functions, respectively, of the same stafe vector
which describes a quantum system. The second picture, to which we subscribe
in most of this chapter, is to regard the Fourier transform as an operator [
mapping various function spaces ¥~ onto themselves or onto other spaces
F7, not coincident with ¥. We shall take the argument of the original
function f to be ¢ and that of f = Ff to be p.

We shall now present some function spaces which are of interest in their
relation with Fourier analysis. We define %, as the space of infinitely
differentiable functions of fast decrease (i.e., such that for all m and n,
g™d"f(q)/dq" — 0 as |g| — o0). Examples of functions in this space are the
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Gaussian bell function (7.20), all its derivatives, and any polynomial times
these functions. It is rather easy to prove (Section 7.2) that the Fourier
transformation F maps %,® onto itself. Next, we recall the definition of
L), the space of square-integrable functions over # in the sense of
Lebesgue, i.e., f € L% %) when |f| < co. As mentioned in Section 4.5, this
is a definition of integration which is wider and more powerful than the
ordinary Riemann integral; it coincides with the latter for integrands which
satisfy the conditions of the Dirichlet or the Fourier integral theorem. The
Parseval identity suggests that, as the square norm of f and f = [Ff are equal,
L) is also mapped onto itself under F. This can be shown rigorously to
be true. The Parseval identity (7.2) assures us that the Fourier operator F is
isometric (i.e., angle and length preserving) in €,*; moreover, as £*(Z%) is a
Hilbert space (Section 4.5), the domains of F andF* = F~? [the adjoint of an
operator being defined as in (1.57)] are equal and characterize [ as a unitary
operator in L*X%).

It is easy to see that ¥, C ZL3(#), but further it can be proven that the
first space is dense in the second. This is quite important and means that any
f € £%(#) can be approximated in the norm as close as desired by a sequence
of functions which are elements of %, . The implication of denseness of one
space in another is that certain operators defined in %, can have their
domains extended to #?(#), much the in same way that one can extend
continuous functions from the rationals to Z. Thus, although most of our
results will be proven for functions in %, ®, their validity will extend to £*(%).

Two more function spaces are important in the context of Fourier
transforms. One is the space (%) of absolutely integrable functions in the
sense of Lebesgue. This is the space for which we proved the Fourier integral
theorem minus the continuity conditions: Lebesgue integration allows us to
disregard these. The image of £*(#) under F does not coincide with Z*(%).
Finally, there is the space of generalized functions which we denoted in
Section 4.5 by .%’. The action of F on this space will appear in Section 7.3
when the Dirac 8 on Z is introduced.

Bringing up these notions—mere definitions and statements—from
functional analysis may seem discouraging to the reader who is meeting
Fourier transforms for the first time. He is urged to continue with the next
few sections so as to get a better grasp of the Fourier pair of equations (7.1)
by exploring its properties and applications. The development will be done
with as little hairsplitting as necessary, with the assurance that (most of) the
formal manipulations can be rigorously justified.

The existing bibliography is very wide. Functional analysis volumes such
as those by Gel'fand et al. (1964-1968), Yoshida (1965), and Kato (1966)
tackle the general structure of function spaces. Fourier analysis is in the
foreground of several books, e.g., those by Titchmarsh (1937), Bochner and
Chandrasekharan (1949), Sneddon (1951), Lighthill (1958), Bochner (1959),
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Arsac (1966), and Butzer and Nessel (1971). The book by Dym and McKean
(1972) proceeds with an agile pace through many areas of interest to physi-
cists. The applied literature is equally solid: Carslaw and Jaeger (1947) and
three books by Papoulis (1962, 1965, and 1977), to cite only a few. Further,
most books on mathematical physics include at least one chapter on the
subject of Fourier transforms. Classics which have been mentioned earlier
are Whittaker and Watson (1903), Morse and Feshbach (1953), Courant and
Hilbert (1953), and L. Schwartz (1966). A table of Fourier transforms of
functions of practical use has been compiled by Oberhettinger (1973b).

7.2. Various Operators and Operations under Fourier Transformation

Given a function f(g) and its Fourier transform f(p) = (Ff)(p), we
shall apply certain operators to the former—translation, differentiation, etc.—
and explore the corresponding transformed operators as applied to the
latter. Next, operations such as function multiplication and convolution will
be studied. In this way, (a) we can find Fourier transforms of new functions
in terms of known ones, and (b) we can study the ways in which the Fourier
transform operator meshes with others. This will indicate the range of prob-
lems for which the Fourier transform becomes the natural solution tool.

7.2.1. Linear Combination

The first operation in the function vector space which comes to mind is
that of linear combination of functions. Assume f(q) and g(q) have their
corresponding Fourier transforms f(p) and g(p). Their linear combination
h(q) = af(q) + bg(q), a, b €%, quite obviously has A(p) = af(p) + bg(p)
for its Fourier transform, as can be verified in a single line. The Fourier
transformation is thus a /inear operator:

F(af + bg) = aFf + bFg,  ie., (af + bg)(p) = af(p) + b&(p). (1.24)

7.2.2. Powers of the Fourier Transformation

We can apply the Fourier transform twice as [F(Ff)](g). Assuming that
[Ff is in the domain of F [for spaces #,%, L*#), or others mentioned in
Section 7.1], it is not difficult to see, changing the sign of ¢" in (7.3), that we
obtain

Fh)(q) = f(=9) = Uob)q),  ie, f(g)=f(-9) (7.25)
where we have defined [, = [5?! as the operator which inverts the real line

through the origin. Note that 1,2 = 1 is the identity operator, and hence the
Fourier operator is a unitary fourth root of the identity:

F = 1. (7.26)
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7.2.3. The Translation and Multiplication-by-Exponential Operators

The translation operator, defined by its action on an arbitrary function

(Tuf)(q) =S(q + »), (7.27)
has the following property under Fourier transformation:

TE) = ETONE) = @m 2 [ dg(T,80a) expl—ipa)
= @n-2 [ dafta + ») expi—ipa)

= @0 [ dgfig) eswl-inta’ ~ )

exp(iyp)(FE)(p) = exp(iyp)f(p). (7.28)
[Compare with Eqgs. (4.36).] If we define E, as the operator which multiplies
a function f(q) by exp(ixg), i.e.,

(E.f)(q) = exp(ixq)f(q) (7.29)

(where we remind the reader that g and p are dummy variables), we can write
Eq. (7.28) as an operator equation,

FT, = E;F, FIJE-T = Ey; (7.30)
valid when applied to any function in the common domain of the operators.

It tells us, as does (7.28), that the Fourier transform of a translated function
is exp(iyp) times the Fourier transform of the original function. Now

T, 05t = T_,, [IoElgt = E_,, (7.31)

which is proven applied to an arbitrary function. It follows thus that (7.30)
can be written as

I

FE, = T_,F, FEF-*=T_, (7.32)

which states that the Fourier transform of an f(q) times exp(iyq) equals the
Fourier transform of f(g) translated by —y. See Table 7.1.

Exercise 7.7. The translation operator T, maps Z*#) onto itself and
fulfills (T.f, T,g) = (f, g). It is hence a wunitary operator. Show that unitarity of
T, implies that of E, by (7.30)—(7.32). Of course this can also be verified directly.
Each set of operators (7.27) or (7.29) forms a one-parameter continuous group
since TyT, = Ty4yy ExExr = Ex+x, and To = 1 = E,.

Exercise 7.8. Show that

TyEx = exp(ixy)E,T,. (7.33)

This is the Weyl commutation relation. Its physical interpretation is one of the
cornerstones of quantum mechanics [see Weyl (1928), and for the corresponding
harmonic analysis, see Wolf (1975)].
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7.2.4. The Dilatation Operator

We turn now to the dilatation operator, which we define as
(D )(q) = aY3f(a"1q), 0<ae& (7.34)

[Compare with Eq. (4.44a), where a was constrained to be an integer; the
change of scale by @~ /2 has been kept here so that dilatation will be a unitary
operation. See Exercise 7.9.] The Fourier transform of (7.34) is, by a change
of variables involving a,

521() = (FODNP) = o) [ dafta™q) exp(—ipa)

= (277)‘”261”2f dq’f(q") exp(—iapq")

= (Dya(FD)(p) = a"*f(ap). (7.35)

Hence the Fourier transform of a function dilated by a factor a is dilated by
a factor of 1/a. See the corresponding entry in Table 7.1, where the factor
a2 in (7.34) is omitted. Thus as an operator equation,

FD, = Dy,F, FDF~t = Dy, (7.36)
In particular, D, = 1.
Exercise 7.9..Show that the dilatation operators are unitary, i.e.,

(Dof, Dog) = (1, g), (7.37)

mapping F%(Z%) onto itself. They also form a one-parameter group since
DyDy = Dge. Study the workings of (7.36) on the unit Gaussian (7.20).

Exercise 7.10. Consider the most general linear transformation of # as
brought about by

(TyDaof)(q) = a~2f(a™'q + y) = (DaTaf)(q). (7.38)

Show that the set of all these operators forms a two-parameter group.

Exercise 7.11. Equation (7.38) implies the operator equation
TyDe = DeTay. (7.3%)
By multiplying both sides by F and F~*, show that
ED, = D E,-1,. (7.39b)

Exercise 7.12. Show that the Fourier transform of an even function [f(—¢g) =
f(q)] is even, and that of an odd function [f(—¢) = —f(q)] is odd.
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Exercise 7.13. Show that if f*(¢) is the function complex conjugate of f(q)
and if f(p) is the latter’s Fourier transform, the Fourier transform of the former
will be

o) = 7 (-1~ (7.40)

In particular, if f(q) is a real function of g, the real part of f(p) will be even in p,
while the imaginary part will be odd. Results of this kind are collected in Table 7.2.

7.2.5. Product and Convolution

We now turn to the subject of product and convolution of functions
under Fourier transformation. The ordinary product of two functions is

(f-e)a) =f9)e(a), qe2, (7.41)
while we define the convolution of f(gq) and g(q) as

(fxg)g) = f_w dq'f(q")g(q — q') = f_w dq'f(qg —q)8(q), qeZ.
(7.42)

The results we shall prove are that (a) the Fourier transform of the product
of two functions equals (27)~1/2 times the convolution of their Fourier
transforms and that (b) the Fourier transform of the convolution of two
functions equals (27)*/? times the product of their Fourier transforms. The
operations (7.41) and (7.42) are thus mapped into each other under Fourier
transformation.

The properties of integrability and continuity of the convolution will be
collected after the proof of the preceding statements. For the moment we
only have to assume that we can exchange the integration order in two
following two equations. Statement (a) follows from

Fe) = @n 2| daf(@)e(@) exp(—ipg)
—en [ dg | dTe)e(@) expliv'g) exe(-ipg)
=0 [ @ife) [ dag(@) exol-ito ~ pa)

= (277)“”2_[00 dpf(p)g(p — p') = @m) A(Fx &)p),  (143)

ie.,

F(f-g) = (2=)~Y2(Ff)  (Fg), (7.43b)



Sec. 7.2] Chap. 7 - Fourier Transforms 269

while statement (b) is proven similarly by exchanging f and f, etc., and
inverting the sign of the exponentials, leading to

fxg(p) = @ (p)&(p) (7.44a)
F(f « g) = 2m)Y2(Ff)-(Fg). (7.44b)

[These formulas are the analogues of Egs. (3.6) and (3.8) for finite Fourier
transforms and of Egs. (4.59) and (4.61) for Fourier series. See Table 7.1.]
In Part II we saw that convolution “smooths” functions. This is the case
here too. Some results on convolution are the following: (a) If f, g € L*(%),
their convolution (7.42) exists at every g € %, is bounded since

=)@l < [f] gl (7.45)

is uniformly continuous, and tends toward zero for |g| — co. [The convolution
need not be in £*Z); compare with (3.9)-(3.10) and with (4.70a).] (b) If
fe £Y(#) and g is bounded, g(g) < v, then their convolution (7.42) exists at
every ¢, is bounded since

@l <7 [ i@, (1.46)

and is uniformly continuous. (c¢) If f € (%) and g(q) is uniformly contin-
uous either in LX#) or in F*(#), then so will be, correspondingly, their
convolution. (d) If f € #® and g is such that (f* g)(g) is finite for all finite g,
then f x g € €. Other properties are given in Exercise 7.15.

Exercise 7.14. Prove the relation between convolution and inner product.

(F*g)q) = (f*, Tlog) = (*, E_.8), (7.47)

where f* represents the function [f(g)]*. This is the analogue of Eq. (4.71) and
reduces the proof of (7.45) to the Schwartz inequality. The proof of the uniform
continuity of the convolution requires a form of the triangle inequality using
(7.47) for T, and T, . for small, arbitrary e > 0. Proofs for the other statements
can be found in the literature. See Dym and McKean (1972).

Exercise 7.15. Prove the following properties of the convolution: (a) com-
mutativity, f * g = g  f; (b) associativity, f * (g * h) = (f * g) x h; and (c¢) distri-
butivity, f * (ag + bh) = af x g + bf * h.

Exercise 7.16. Show that the convolution between an arbitrary function f(q)
and the rectangle function (7.4) of unit area (y = 1/e) is the e-smoothed function

(F % R&U9)(g) = o= f ' g’ @), (7.48)

q-¢l
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Exercise 7.17. A function can be ““cut’’ between —e/2 and /2 by multiplica-
tion with the rectangle function of unit height. Show that the Fourier transform
of the cut function, using (7.5), will be

FRG) = 207 [ dp'fip = o0~ (a2, (7.49)
Comparison with (7.14) for the limit £ — co should be suggestive.

Exercise 7.18. Show that the convolution of two Gaussian functions (7.20)
is a Gaussian, viz.,

(Go * Go)(q) = Go+0(q). (7.50)
Compare with Eq. (5.11).

7.2.6. Differentiation

We shall now analyze the relationship between differentiation and
Fourier transformation. Assume that a function f(g) and its derivative
f'(q) = df(q)/dq satisfy the conditions of the Fourier integral theorem. The
transform of the latter will be

T = em [ daf (@ exol—ipa)

@) Sl expl—ipa)| = — [ dafa) 7, exo(—ipa)|
= ipf(p). (7.51)

Here we have integrated by parts, used the fact that the Fourier integral
theorem requires f(g) — 0 for |g| — oo in order to eliminate the constant
term, and recognized f(p) in the final expression. By repeated application of
(7.51) we can state that if the functions involved satisfy the conditions of the

Fourier integral theorem, then
) = (ip)"f(p), (7.52)

i.e., the Fourier transform of the nth derivative of a function is (ip)* times the
Fourier transform of the original function.

This relation is quite symmetric. If we search for the Fourier transform
of (—ig)™f(q), this will be

@n2 [ dg(=ig)y(q) exp(~ipg)

= @m)~1" f dgf(q) % exp(—ipg). (1.53)
1]
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That is,

Civrin = 2= 7

(—ig)"f(p) = Wf(p); (7.54)

the inverse Fourier transform of the mth derivative of a function is (—ig)™
times the inverse transform of the function.

7.2.7. The Operators Q and P

Equation (7.54) is a rather clumsy way of writing a result as the variables
g and p must be explicitly referred to as the arguments of fand f. To improve
the notation we shall introduce the operator Q whose role is to multiply the
function it is acting upon by its argument, i.e.,

(@N)(2) = zf(2), (7.55)

where z may be g, p, or any other dummy variable. Similarly, letting

e =i ) (7.56)
represent — i times the operator of differentiation, we can put Egs. (7.52) and
(7.54) in operator form as

FP = QF, FQ = —PF, (7.57a)
respectively; that is,
FPF-! = Q, FQF-! = —P. (7.57v)

Similarity transformation by F thus turns P into @ and conversely with a
minus sign.

It requires only one line to prove that Q@ and P are hermitian operators:
For functions f(q), g(q) such that gf(q)g(q) is integrable,

€0 = diftarasta) = @5 (7.550)

while if they are differentiable functions whose derivatives are in F*(Z),
integration by parts yields

P9 = —i [ daf(@)* 2 5(a) = ~f(@)*¢@)|°.

+if” alt 0|0 - Ere. (7.58)

For both operators one can find extensions in the domain which turn these
into self-adjoint operators. Some of the relevant properties of these operators
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—possibility of exponentiation into unitary operators and existence of a
complete basis of generalized eigenvectors—were sketched in Section 4.5.

A further important property of the operators of differentiation and
multiplication by the argument is their commutator:

[(QP — PQ)](2) = (—i@d% - Pz) 1)

= (—izd% + id—iz)f(z) = if(2); (7.59a)
that is,
[Q, P] = QP — PQ = i1. (7.59b)

A pair of self-adjoint operators with the properties (7.57) and (7.59) are said
to be canonically conjugate. Later on we shall study the various consequences
of these simple relations. The appropriate physical interpretation of these
equations is one of the cornerstones of quantum mechanics, where @ and
AP are the position and momentum operators, / being Planck’s constant A
divided by 2#. Equation (7.59b) is the Heisenberg commutation relation.
Exercise 7.19. Show that from (7.57) it follows that
FS(Q, P)F-t = S(—P, Q), (7.60)

where S(Q, P) is any polynomial or series function of @ and P which specifies
the order of the entries in its expansion.

7.2.8. Example: Free-Fall Schrodinger Equation

In some instances, the property (7.60) allows one to reduce the degree
of a differential operator and simplify the process of finding a solution.
Consider the second-order differential equation whose explicit form is

W) = 4P + Q) = (2 g + a)H@) = 0. @6
Application of F on the left and (7.60) lead to
4@ - Pp) = (3° + 1 5)¥0) = 0. (1.62

The last two members of (7.62) are the transformed, simplified equation
which, being of first order, can be immediately solved as

J(p) = cexp(ip®/6), ce. (7.63)
Now the inverse Fourier transform of (7.63) yields a solution to (7.61) as

P(g) = c(2m)~1/2 J_ dp exp(ip®[6 = ipq) = c(2m)t2213 Ai (213g). (7.64)

3
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The integral in (7.64) is not trivial. It is known in the literature as Airy’s
integral and gives rise to the Airy function Ai(z) (see Appendix B). It is
related to the Bessel function of order 4. Note that the Fourier transform
method served to find the solution in spite of the fact that (p) is neither in
LAX) nor in LYZ). In Fig. B.3 we show a plot of the Airy function. It
decreases exponentially for g > 0 and oscillates increasingly faster for g < 0.
The second solution of Airy’s differential equation (7.61), the Bi(z) function,
increases faster than exp z for z > 0 but does not appear in (7.62). Actually,
quite ordinary-looking differential equations possess generalized function
solutions which, we may surmise, lead to linearly independent solutions.
Equation (7.61) is related to the free-fall (or /inear potential) quantum
Schrédinger Hamiltonian, which will be further investigated in Sections 8.5
and 10.1.

Exercise 7.20. Regarding the commutator symbol defined in (7.59b), show
that for any three linear operators A, B, C with a common domain the commuta-
tor is distributive with respect to linear combination,

[A, bB + ¢C] = b[A, B] + c[A, C], (7.65)
and that a Leibnitz rule of sorts holds:
[A, BC] = [A, BIC + B[A, C]. (7.66)

Exercise 7.21. Show that the commutator of Q™ and P" is

[Q, P] = —m:g'") (’Z) ( Z)ks(—i)k@m-kpn-k, (1.67)

where () = m!/(m — k)! k! is the binomial coefficient. This can be done by
induction, first on m and then on n, using the basic Heisenberg commutation
relation (7.59b) and the Leibnitz rule (7.66).

7.2.9. Integration

The validity of Eq. (7.52) can be extended to negative indices, i.e., to
integration < P(x) = fj dx'f(x"), as long as the new function is also
integrable. For this it is necessary that f(0) = 0, which means that the definite
integral fi’w dxf(x) vanishes. In this case, if f(q) satisfies the conditions of
the Fourier integral theorem, <~ (q) will do so as well.

7.2.10. Differentiability and Asymptotic Behavior under Fourier
Transformation

Repeated differentiation of a function f(g) with Fourier transform f(p)
may, as Eq. (7.52) suggests, eventually produce a function whose Fourier
transform fm(p) fails to be integrable because of the growing factor (ip)".
In that case, although (7.52) may still be formally written, it ceases to be the
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Fourier transform of an ordinary function. Because of (7.1a), the latter would
have to be the improper integral of a growing function.

Deferring the introduction of such divergent integrals until Section 7.3,
we can look closer at those functions f(g) which are » times differentiable
and whose asymptotic behavior is that of a negative power m of the argument.
One such result can be easily proven. Assume f(g) and ¢™d"f(q)/dq™ belong
to ZL*Z#). If this holds, it also follows that q'd%f(q)/dg* e L*Z) for
0<r<mandO < s < n As all these functions have finite norm, we can
use the Parseval identity and triangle inequality in writing

|@ | = |[F-Q prf] = |PrQmf] = [(@"P" — [@", P"Df]
< |Q P | + [[Q, PMf| < oo, (7.68)

where we have used the commutator (7.67) of Q™ and P", noting that it
involves only powers of @ and P which are less than m and n. Hence if f(q)
and qmd"f(q)[dq™ € L*(R), it follows that p'd*f(p)/dp* € LX(R) for 0 < r < n
and 0 < s < m. The converse of this result is a consequence of exchanging f
and fin (7.68).

If in the preceding result we let m and » be arbitrarily large and note
that #*(#) functions must vanish asymptotically, we can validate the
statement that the Fourier transformation maps %, onto itself.

7.2.11. Hyperdifferential Form for the Translation Operator

We shall now proceed to show some operator identities involving the
Fourier transformation, translations, multiplications, dilatation, and differen-
tiation. We shall work in a naive way on a space of %, ® functions which have
convergent Taylor expansions and whose Fourier transforms have the same
properties. The results are valid—in the appropriately generalized sense—
for other function spaces as well.

We show first that [as for Fourier series in (4.124)],

e S PN
T, = exp(iyP) = Zon—! P, (7.69)
This can be proven by writing out the Taylor expansion of /(¢ + y) around g

and isolating the operator acting on f(g). We can follow an alternative proof
as, clearly,

exp(ixQ)f(@) = 3 B 0f(q) = explixo)f(@) = E(@). (.70

Now, by applying F to the left of this equation and using (7.30) and (7.32)
for E, and T, or (7.57) and (7.60) for Q and P, Eq. (7.69) follows from (7.70)
fory = —x.
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7.2.12. Hyperdifferential Form for the Dilatation Operator

One new hyperdifferential relation is that of the dilatation operator
(7.34). We state that

D, = exp[—ilna-3(QP + PQ)], a>0. (7.71)

To prove this assertion, we apply it first to the function g¥, recalling that
q dq*/dg = kq*. Expanding the exponential series and using (7.59) for the
exponent, we can write

> e @p - iyt

exp(—3In a) Z (= ln a) ( dq)nqk

— g-l2 i —lna) k"q*

= a2 exp(—k In a)qg* = a=Y?*(a"Yq)~.
(1.72)

The result (7.71) is thus proven for monomials g*. Expanding any analytic
function in g as its Taylor series implies the validity of (7.71) for the space of
functions where the series involved converge.

Exercise 7.22. Verify (7.36) using (7.71) and (7.60).

Exercise 7.23. Detail the validity of (7.71) for @ < 0. It is clearest to work in
the complex a-plane and see that no multivaluedness appears in the final result.

7.2.13. Convolution Operators

Assume S(P) is an operator function of P defined in terms of a formally
convergent series. We saw that S = exp had the rather simple effect of
translation on functions f(q). What about other such functions? We can
write, using (7.60) and (7.44b)

S(P)Y = FFS(P)FFf = F-1S(Q)Ff = F~X(S-Ff)

= 2m)~Y(F-1S) xf. (7.73)
The action of S(P) on a function f is easiest to write down after Fourier
transformation, as S(Q) only multiplies the function f(p) by the function
S(p). The inverse Fourier transform of this product of functions is thus

(27)2 times the inverse Fourier transform of the function S in convolution
over g with f.
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7.2.14. Gaussian Operator

As an example to be used later in connection with the time evolution of
the solutions of the diffusion equation, consider the Gaussian operator, which
we define as

G, = exp(—3wP?) = (2n/w) Gy (P). (1.74)

Equation (7.73) together with the property that the Gaussian function be
proportional to its own Fourier transform [Eq. (7.22)] leads to

(Guf)(q) = 27/w)?[Gy(P)](9) = (Go * £)(q)

& (2ﬂw)'”2j_ dq’ exp[—(q — ¢')’[20]f(q").  (1.75)

7.2.15. Solution of Inhomogeneous Differential Equations and
Green’s Functions

A second example of the use of (7.73) which reaches a broad range of
applications refers to the solution of inhomogeneous differential equations
with constant coefficients,

V@) =S c, %f(q) = la), (1.76)

where ¢(g) may be a constant—in case (7.76) is, for instance, a step in the
solution of a partial differential equation—or a source function representing
input of heat into a system. The operator on the left-hand side can involve
terms with negative values of n representing indefinite integration. Equation
(7.76) thus has the structure

UP (@) = o(q), U@ = 2, exiz), (7.77)

where the ¢(q) is known and fixed and f(g) is to be found. Formally, we can
divide by U(P), call S(P):= [U(P)]"%, and use (7.73) for ¢ replacing f.
We shall do this explicitly: the Fourier transform of (7.76) is

[FUPI(p) = [U@IF1(p) = 2, calip)F(p) = 3(p). (7.78)

n

Hence
f(p) = #(p) / > cuip) (1.79)

is the Fourier transform of the solution. To recover the latter, we apply the
inverse transform, thus expressing f(g) as a convolution of the inhomogeneous
part ¢(q) of the equation with a kernel:

f(q@) = (V * 9)(q), (7.80a)

vy = e[ a3 (iD= explipg) = (2n)-”2<rF-1U-1>(q).( R
e i 7.8
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This is Eq. (7.73) with ¢ for fand U ~* for S. The actual calculation of V' (q)
may require more techniques than we have at this point: the function U,
usually a polynomial, can have roots on the real axis, forcing us to run the
integration over a set of poles. The formal solution (7.80) is presented for the
moment as a general strategy to be followed. Some tactics will be given in
Section 7.4.

7.2.16. Domain Distinctions for Hyperdifferential and Integral Operators

Various features in the above equations may seem perplexing. Hyper-
differential operators S(P), as such, can be properly applied only to infinitely
differentiable functions (and even then questions about convergence may
arise). Yet the last member of (7.73) and certainly the examples (7.75) and
(7.77) tell us that in its integral form, if the operator kernel (F~1S)(q) is a
“decent” function, the domain of the operator S(P) can include discon-
tinuous functions and in fact need not even be constrained to integrable or
LX) functions. [See, in retrospect, Eqgs. (4.99) and (4.100).] It is sufficient
that the convolution integral exist. The question is, then, what is the domain
of definition of the operators? If the “ordinary” forms (7.27), (7.34), or
(7.75) are used to define the translation, dilatation, and Gaussian operators,
their domain includes all functions in #*(#) (and of course, much larger
classes such as the generalized function of Section 7.3), while if the hyper-
differential forms (7.69), (7.71), and (7.74) are used, the domain is restricted
at least to €, ® functions (although other ¥ *-spaces may be proposed). The
two sets of definitions lead, rigorously, to different operators. By abuse of
notation we have employed the same symbol for both. This has been for
economy rather than through carelessness, however, since one can show—it

Table 7.1 A Function and Its Fourier Transform under Various
Operators and Operations

Operation f(@) ()
Linear combination af(q) + bg(q) af(p) + b2 (p)
Translation fla + ») exp(iyp)f(p)

exp(—ixq)f(q) Jp + %)
Dilatation f(aq) a~Yf(pla)
Complex conjugation f(g)* F(=p)*
Multiplication f@e(a) @m)~22(f+ £)(p)
Convolution (f*g)q) @M/ (p)E(p)
Differentiation d*f(q)|dg® (ip)"f(p)

(—ig)*f(q) d"f(p)ldp~ '
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has been mentioned before in Section 4.5—that %, ® is dense in the space %"
of generalized functions. One can always contrive sequences of €, ® functions
{fa(@)}-1 such that lim,_, (g, f,) = (g, f), where fe€ ¥’ and g is any ““test”
function in an appropriate space .. Extending the domain of the hyperdiffer-
ential forms amounts to adding the limit points of all these sequences and
thus arriving at the domain of the integral operator forms. The two forms
are thus weakly equivalent. Certain manipulations and proofs will be easier
on one or another form. The Fourier transform, as a prime example, has
been given by an integral form [Eq. (7.1b)]. We shall see below that it also
has a differential realization.

Exercise 7.24. The Gaussian operators (7.74) have the manifest property of
multiplying as

Gme’ = Gm+w', Go = 1] (781)

Using the associativity of operators and of the convolution product (Exercise
7.15), you can show rather trivially that the Gaussian convolution relation (7.50)
holds.

Exercise 7.25. The multiplication of Gaussian hyperdifferential operators
(7.81) is formally valid for all w, w” € Z, telling us that these form a one-parameter
continuous group of operators. Yet, in their integral form (7.75), only G, for
o > 0 can be applied to £*(Z) functions. Excluding the case w = 0, show that
on LY () the set of integral operators (7.75) forms a semigroup.

Exercise 7.26. Show that if a function f(q) is positive [i.e., f(q) > 0 for all
g € Z] then its Fourier transform f(p) is positive definite, i.e.,

[ @[ ao - e > 0 (782

for all p(p) € £?(Z). This can be proven by writing f as the Fourier transform of f
and exchanging integrals. This result and its converse constitute Bochner’s
theorem. Compare with Exercises 1.19 and 4.6 for Fourier finite transforms and
series.

7.3. The Dirac 6 and the Green’s Function for a System

The Dirac §, as a generalized function, has already appeared in Section
4.5 in relation to spaces of periodic functions of period 27. Here, a parallel
Dirac 8 will be introduced as a generalized function on the full real line. Most
concepts developed here will thus have their analogues for spaces of periodic
functions, but some will be new. We show that the Green’s function of a
system governed by a differential equation is the solution of the inhomo-
geneous version of that equation where the inhomogeneous part is a Dirac 8.
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7.3.1. Three Function Sequences and a Limit

Among the functions we have worked with, we shall select three whose
common properties merit that we place them under the same symbol. These
are the rectangle function (7.4), its Fourier transform (7.5), and the Gaussian
bell function (7.20). We denote them by

8(q) = R™C0™"(q) = (nq)~'sin(kq[2),  RYV*(q),  Gui(9):
(7.83)

They are all real and even and enclose unit area. See Figs. 7.1 and 7.2. When
we examine the convolution of (7.83) with an arbitrary continuous function
f(g) we obtain, for every k, a function

e = dafia - a9, (7.84)

Now, upon letting k grow without bound, we assert that we reproduce the
original function: lim,_ . f*(q¢) = f(¢g). Indeed, for the Fourier transform
of the rectangle function in (7.83), the limit of (7.84) is the content of the
Fourier integral theorem given in Section 7.1. Equation (7.14), in particular,
for y = —g’ and ¢ = q is the desired expression for ¢ a point of continuity
of the function, together with the ensuing discussion on the extension of the
result on f: to J-fx For the rectangle and Gaussian function in-(7.83) we
can use the mean value theorem. For the former this is just (7.48) since k =
1/e — oo, while for the latter, since lim,._, , G1,.(¢) = 0 for ¢ # 0, integration
limits g + ¢’ similar to the former can be found such that the integral J'qfs'
approximates f‘fm as closely as desired. As kK — oo, &’ — 0, and (7.21) ensures
that in (7.84) f(q) is regained.

[We have followed the presentation of the limit of (7.83) in complete
analogy with that of Fourier series in (4.75) up to the choice of sequences,
R being the analogue of the Dirichlet kernel and the Gaussian being the
counterpart of the Jacobi theta function. Convolution rather than translated
inner product only was chosen here for convenience.]

7.3.2. The Dirac 6 Symbol
We shall introduce the symbol of the Dirac 8 on %,

lim 8(q) = 8(q), (7.85)

adding that the interpretation is, as in (4.79), that the limit is to be taken
outside the integral under which the 8%(q) are placed in company with a
continuous fest function f(q). The Dirac 8 and several other symbols with
similar definition are said to be generalized functions, since they obey many
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of the formal manipulations usually associated with ordinary functions, as
will be seen below. As a symbol, the main property of the Dirac 8 is

[ ar@isa - a) =550 = @) (7.86)

for any continuous f(q). It is thus the reproducing kernel for (Lebesgue)
integration and acts as a “unit function” for the operation of convolution
(see Exercise 7.15). Note that (7.85)—(7.86) is consistent for function sequences
(7.83) whether or not f(q) is absolutely integrable. Also, it is not necessary
that lim,, ,, 8%(q) = 0 for g # 0 (as it is sometimes stated when introducing
the Dirac 8): The 8* sequences can also become infinitely oscillatory, as was
the case with the R sequence.

7.3.3. Derivatives of the Dirac &

Among the three sequences of functions in (7.83), the R and the Gaussian
sequences are composed of infinitely differentiable functions (the latter are,
in addition, %, ® functions). We can consider their nth derivatives and intro-
duce the nth derivative of the Dirac §,

lim d"8%(q)/dg" = 5™(q), (7.87)

with the same interpretation for this symbol as for (7.85). It has the property
that, for any ™ function f(g) [whose nth derivative f™(q) is continuous],

f_w dq’f(q")3"(q — q) = (f* 3")(q) = f"(q), (7.882)

as can be easily verified before the limit (7.87) is taken. One minor point in
the proof of (7.88a) which should be noted is that

8™(q — q") = 0"8(q — q")/og™ = (—1)*"8(q — q")[og’™. (7.88b)

The first form may be extracted from the integral, while the second can be
used to integrate by parts, ending the verification with (7.88a) for f™(g").

7.3.4. The Heaviside ©-Function

The Dirac 8™ symbolism can be extended consistently to negative values
of n, that is, to the antiderivatives,
, >0
, q=03=0(q), (7.89)

q
8-1(g) = f dg'5(q) = {3
0, g<0
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where we have defined ©(q), the Heaviside step function. Note that ©(0) is
undefined from the integral (7.89) alone, although if we were to use any of
the sequences defining the 8, the value ®(0) = 4 would appear. The converse
of (7.89),

5(q) = d%@(q) — 0(q), (7.90)

can also be used to define the Dirac 8, as its placement in convolution with a
differentiable function (which vanishes at + co) yields, by integration by parts,

© =@ = | " OGN - q) = - [ e T
= —f: dg’ df(q — q")/dg’ = f(q) = (& +F)a). (7.91)

Exercise 7.27. Justify (7.89)-(7.91) by any of the sequences of functions
(7.83). The R sequence will lead to the use of the Si(¢g) (sine integral) function,
while the Gaussian sequence requires the erf(g) (error) function. For a list of
their asymptotic properties, see the Abramowitz—Stegun tables (1964, Chapters 5
and 7).

7.3.5. Divergent Integral Representation of the Dirac 8

The Fourier transform of the Dirac 8 or its derivatives may be defined
either as the limit of the Fourier transforms of the sequences (7.83) or directly
by the use of (7.88) with the Fourier kernel for £, yielding

§B(p) = (2m)~V2(ip)". (7.92)

Equation (7.52), treating the 6 as an ordinary function, leads to the same
result.

Exercise 7.28. Consider the Fourier transforms of the sequences (7.83) and
show that the k£ — oo limit of these is indeed (7.92). Examine the norms: show that
the limit of these is infinity, so that the 8™ do not belong to F2(%).

As every function in the sequences (7.83) satisfies the conditions of the
Fourier integral theorem, it follows that [if we keep in mind the definition
(7.87) and take appropriate account of the exchange of limits, kK — co and
integration f L_ : —»ffw] we can write the inverse Fourier transform of (7.92),
regaining 6™ as

8™(q) = 2m~* f_m dp(ip)" exp(—ipq). (7.93)

[Compare Eq. (7.93) with the divergent Fourier series representation of the
periodic Dirac 8 in Eqgs. (4.82) and (4.94).]
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At the risk of becoming repetitious, we must emphasize that the integral
(7.93) does not exist in the ordinary sense but is a symbolic equality between
the limits of two sequences of integrals, one containing the functions
d"8(q)/dg™ and the other its integrated Fourier transform, both in company
with an arbitrary " test function. The reason for introducing these expres-
sions is that they allow us to verify directly in convenient shorthand, and
disregarding the difficulties in justifying exchange of integrals, many of the
calculations which otherwise require more circuitous, if rigorous, derivations.
As an example of its use we shall rederive the convolution equation (7.43):

FE@) = @02 [ daf@e(@) exel-ipa)

o)

- e[ aglen= [ aie) exp(ip'g)|

X [(270‘ b f_ dp"g(p") exp(ip”q)} exp(—ipq)

e[ [ @i

X {(2w)‘1f_ dg expli(p’ + p" — p)q]}

Il

e[ [ e - - )
= @m0,

In the last expression we have a divergent integral of the type (7.93) for
n = 0. By replacing this by 8(p — p’ — p”), one of the two integrals is
canceled, setting either p” = p — p” or p” = p — p’. [In this form, the proof
of the convolution result can be compared with its finite-dimensional counter-
part in Section 3.1, Egs. (3.1)—(3.3), the coupling coefficient (3.5) being the
Dirac 8.]

Exercise 7.29. Using (7.93), verify the result (7.52), showing that the inverse
Fourier transform of (ip)*f(p) is f™(q). Note that the former is a product
between (ip)* and f(p), so the latter should be the convolution of the inverse
Fourier transforms. Show that Eq. (7.93) actually embodies—in symbolic form—
the Fourier integral theorem.

Exercise 7.30. Show that the Fourier coefficients (7.92) and divergent integral
representation (7.93) also represent correctly—up to an arbitrary additive con-
stant—the antiderivatives of the Dirac 8. The Heaviside step function—minus +—
is obtained from (7.93), with » = — 1, when Eq. (7.10b) is used. The reason the
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constant does not appear is that in validating (7.52) for negative derivatives we
disregarded the constant term in the integration by parts, arguing that this
should be zero. This now forces us to obtain functions such that

lim f(q) exp(—ipg)|=. =

The result is thus that the sign, rather than the Heaviside, function appears in the
Fourier synthesis.

Exercise 7.31. Prove that the convolution of two Dirac 8’s is a §:
f_ dgd(q — q")8(q — q") = (g’ — q").

This is immediate if seen naively. It can also be proven by sequence limits on
Gaussian or rectangle functions using Eq. (7.50) or (7.48).

Exercise 7.32. Consider functions f(g) which are periodic in q with period
27—or any period, for that matter. Show that the Fourier transform f(p) is a
sum of Dirac &’s sitting on p = integer with coefficients which are the Fourier
series expansion coefficients. In this way one regains Fourier series from the
transforms.

7.3.6. 8(g*> — a?)

The Dirac 6 will appear time and again in the description of diffusive,
elastic, and quantum systems. One of its applications will involve §(¢? — a?),
so let us analyze what happens when the argument of the § is a function of g.
We shall not refer here to sequences of functions but to the intuitive picture
of 8(g) as an infinitely high, narrow ““function’ with unit area sitting at the
origin. In this picture, 8(¢% — @?) must have two peaks, one at ¢ = a and
another at ¢ = —a, as for both points the argument of the 8 is zero. We shall
analyze the effect of 8(¢% — a?) on a test function, changing variables to
v =q*— a®>. We have to be careful about the ranges, though: define
qg=—(; + a®)¥?forq < 0and g ==+ (v, + a®?2 for g > 0. We thus write

(f_: * fw) dq 8(q* — a*)f(q)

= _f_a (v, + a2)"1/2 dv, S(Ul)f(—(vl 4 a2)1J'2)

o

| s - v

7 3n + @)1 oy 30 (Ca + )
@la)(lal) + @la)-(~|al)

| daiap-1m — lab + 8(q + labifca)
- (7.94a)

Il
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Hence, we can state that
8(q* — a®) = (2|a])~*[3(q — la]) + 3(g + |a]]. (7.94b)

7.3.7. 8(F(q))

This result can be generalized to the expression 8(F(¢)), where F(gq) is
any differentiable function with simple zeros. (See Fig. 7.3.) Assume the
roots of F(q) are ay, a,, ..., ay, and let I}, I,, ..., Iy be intervals such that
(@) @; € I, and (b) F(g) is monotonic on 7; so thatg = F~*(v) on 7, is uniquely
defined. The natural change of variable is to let v; := F(g) for g € I, and
dg = dv,/[F'(F~*(v;)). We can thus write

[ ansransio) =3 | dnr@)f@

=3 dvd(v) f(F~*@))/F'(F~(v)). (7.952)

i JEUI)
Now, whenever F(q) is a decreasing function of ¢, F'(g) < 0 and F(Z)) is an
integration interval where the ordinary bound order is reversed. By placing
an absolute value on the denominator of the last integral, the normal bound
order is restored. Use of 8(v;) now yields

2SEHOYIF(FEHO)] = 2 S@)IF (@) (7.95b)

Hence,

8(F(9)) = . |F'(a)|"*8(q — a). (7.96)

Equation (7.94b) is derived from (7.96) for F(q) = q® — a?, a,,, = T |a|, and
F’'(q) = 2q. In particular, the behavior of the Dirac 8 under change of scale
of the argument is thus

3(cq) = |c|~*8(q). (7.97)

F(q)

a d2 3
7 —Dq

Fig. 7.3. A function broken into its
monotonic segments.
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7.3.8. The Dirac § and the Solution of Inhomogeneous Differential
Equations

The Dirac 8 appears as a natural tool in the solution of inhomogeneous
differential equations, i.e., those of the form

S(q, diq)f(q) — ) (7.98)

where S(q, d/dq) is a differential operator involving sums of functions of ¢
times derivatives in ¢, ¢(q) is a fixed source function, and we must solve for
f(q). [An equation of this type was seen to describe a damped, forced har-
monic oscillator in Section 2.1, where we postponed the general inhomo-
geneous solution. A particular case of (7.98) was also briefly given in (7.61)-
(7.64) and in (7.77) for the case when S'is a function only of d/dq.] In Sections
5.1 and 5.2 when we analyzed the solutions to the heat and wave equations
in continuous, finite media, we saw that arbitrary initial conditions could be
seen as an integrated superposition of Dirac §’s. Here, too, the source func-
tion in (7.98) can be interpreted as such a superposition:

W) = [ dg'earnia - 4 (7.99)

If we can find a solution to the reduced inhomogeneous equation

S (q, %) G(g.9") = 8(qg — q), (7.100)

then the solution of (7.98) will follow as

£(q) = f dq'v(4")G(4, 7). (7.101)

This can be verified simply by substituting (7.101) into (7.98), assuming the
differentiation in ¢ can be exchanged with integration and applying (7.100).
An identity follows. The meaning of G(gq, ¢) in the solution of the reduced
equation (7.100) is that of the Green’s function of the process described by
(7.98): the behavior of the system under a wunit (a Dirac 8) source or impulse
function. This is the same Green’s function which has appeared time and
again in connection with the solution of homogeneous differential equations
and which carried the disturbance due to initial conditions. The connection
between initial conditions and source functions will be made afterwards.
Here, we shall find a general solution to the reduced equation (7.100) for the
case when the differential operator S is independent of ¢, i.e., when it appears
as U(P), P := —id/dq, a function of the derivatives alone. This special case is
quite important: it describes the damped, driven harmonic oscillator pro-
posed in Section 2.1. The damped harmonic oscillator equation in turn is
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instrumental in the solution of the heat and wave equations in one or more
dimensions, which will be the subjects of Chapter 8.

7.3.9. The Green’s Function of an Operator

Consider
[UP)G1(q) = (g — q'). (7.102)

The Fourier transform of this equation is, due to (7.30), (7.57), and (7.92)
forn = 0,

[U(@G1(p) = Up)Go(p) = 2m) =12 exp(—ipq’). (7.103)

This equation may be solved algebraically:

G(p) = [m)"2U(p)]~* exp(—ipq") = (E_oV)(p), (7.104a)
V(p) = 2m)~*2/U(p). (7.104b)

The inverse Fourier transformation thus gives the solution of (7.102) as

G(q) = (FE_,V)(q)
= (T_F~*V)(g)
= 2m)~Y2[F-X(1/U)I(q — ¢). (7.105)

This function will be actually calculated below for the damped harmonic
oscillator case. The result (7.105), however, gives us the general result that the
Green’s function for any inhomogeneous differential equation with constant
coefficients is a function of ¢ — ¢g’, ¢’ being the source position and g the
location where the effect is felt. Such systems are thus translationally invariant.
In Section 7.4 causality will come into the picture for partial differential
equations in space and time variables. Equation (7.105) tells us that the
Green’s function of an operator is a function such that the operator turns it
~ into a Dirac 8.

The solution (7.102)—(7.105) for ¥(p) = f(p) and f(p)~* == 1/7(p) allows
us to write a neat formula binding an operator and its Green’s function as

f(—id%)'lf(q) — @n)23(g). (7.106)

Exercise 7.33. Use Eq. (7.106) in order to prove that, for the Gaussian
function (7.20),

exp(—%r%—z)am = 5(q). (7.107)

This formally represents the backward time evolution of a Gaussian temperature
distribution to the point where it becomes a Dirac 8.
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Exercise 7.34. Formally rederive Eq. (7.106) in the form
. d
fla) = @0 (=i 7 )8(a), (7.108)

noting that f(—id/dg) can be written in terms of the translation operator
(7.69) as

f(—id—(;) = (2m) 12 f_: dq’f(q") exp( —-q’ d%)

= @n [ df@)T e, (7.109)

whose action on any generalized function is well defined.

Exercise 7.35. Using the results of Exercise 7.34, show that the convolution
of two functions can be given an operator form as

= d d
(f*g)q) = (zw)1/2f(—i7q)g<q) = (2w)1’2§(—id—q)f(q). (7.110)

7.3.10. Application to the Driven, Damped Harmonic Oscillator

A concrete example of a differential equation with constant coefficients
is given by the forced, damped harmonic oscillator, whose solutions f(q)—
using ¢ for time—obey

d? d
(Mip+ e+ k)@= Fl@r  e>0, (a1

[See Eq. (2.1). We maintain the coefficients of inertia, dissipation, and
restitution as M, ¢, and k.] This is a differential equation of the kind (7.98)-
(7.102) with

U(p) = —Mp* + icp + k = —M(p — p.)(p — p-) = [Cm)'*G(p)] 7,
(7.112)
where the roots of the polynomial are
Dy =1ic2M + [k[M — (¢/2M)?]*? =T + p,, (7.113a)
T=e2M >0, p.=(@?— T2,  p,= &M (7.113b)
The Green’s function of the differential operator (7.111) is

G(g) = —(ZWM)‘IJ dpl(p — p+)(p — p)]~* exp(ipg). (7.114)
The integrand in the last equation, we note, has two poles in the upper

complex p-half-plane. These are depicted in Fig. 7.4(a) as a function of the
damping constant c.
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Fig. 7.4. (a) Migration of the complex oscillation frequency poles as a function of the
damping constant c¢. The arrows indicate the points in the complex p-plane
where ¢ = 2(kM)*2« for « = 0.2,0.4,...,1 (damped oscillating and critical
cases) and « = 1.2,1.4,...,2 (overdamped case). (b) Complex integration
contours in the p-plane for ¢ > 0 and ¢ < O for a fixed pole pair.

The techniques of complex integral calculus are a handy tool for evalua-
tion of the integral (7.114). The factor exp(ipq) for ¢ > 0 makes the integrand
vanish asymptotically for large Im p in the upper half-plane, while for g < 0
the vanishing occurs for large |Im p| in the lower half-plane. Cauchy’s
residue theorem can be used to construct integration paths C* and C~ as
shown in Fig. 7.4(b). When ¢ > 0, C* encloses the two poles, the integration
along the real axis is the one in (7.114), and the contribution of the semicircle
at infinity is zero due to Jordan’s lemma. For ¢ < 0, C ~ encloses no singu-
larities and hence the integral (7.114) is zero. For the former case, g > 0,

G(g) = 2mi 3, Res{l(p — p.+)(p — p-)1~* exp(ipq)}

2ni[(p+ — p-)"texp(ip+q) + (p- — p+) ™t explip-q)]

—4n(p, — p_)~ " exp(—Iq) sin pq. (7.115)
The Green’s function (7.114) turns out to be, then,

Il

Il

M ke _F i e > Oa
G(g) = {( pe)exp(—Tq)sinp.g, ¢ 7.116)

0, qg < 0.
The value at g = 0 is zero for both cases.

The solution to the original forced damped oscillator equation (7.111)
is thus

f@ = d'Fasa - a) (7.117)

plus a general solution of the homogeneous equation.
The Green’s function (7.116) can be compared with the solutions of the
free damped harmonic oscillator [Egs. (2.11a), (2.12), and (2.13) for the
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oscillatory, critical, and overdamped cases for I' less than, equal to, and
larger than (k/M)'2 (see Fig. 2.4); in fact, they are the same function for
g = t]. This leads us to interpret the initial condition f(g") in the latter as the
result of the action of a unit impulse force F(q) = f(¢")é(g — q’) in (7.111),
which is a homogeneous differential equation for g > ¢’. Similarly, an initial
velocity f(g") results from the action of a force f(q") @8(q — q")/éq and gives
rise to a solution which is the derivative of (7.116) with respect to ¢:

—T'G(q) + M ' exp(—Tq) cos p.q, q > 0,
={1/2M, g=0, (7.118)
0, qg > 0.

dG(q)
d

For times earlier than that of the initial conditions, the system is considered
to be undisturbed, as indicated by (7.116) and (7.118). This property of the
solution indicates that the system is causal. Causality assures us that the
effect of a force 8(¢ — ¢') will reach the system only for times g later than ¢'.

7.3.11. Causality and Poles in the Complex Plane

The statement of causality is again present in (7.117), telling us that the
disturbance at a point ¢ in time depends only on the past history of the driving
force: ¢’ € (— o0, g¢). Any equation which governs the time development of a
physical process is expected to exhibit this fundamental requirement. Given
any differential equation with constant coefficients characterized by U(P) as
in (7.102), one can verify easily whether it leads to causal solutions or not.
| Generally, if U(p), as a function of p, has roots in the upper complex p-plane
i only, the system will be causal. The proof of this fact follows closely the above
development. We have said ““generally,” since equations can be contrived
where the function U(p) grows faster than the decrease of the exponential
factor in (7.114), making the use of the Jordan lemma impossible. Other cases
which fall outside the statement are those where U(p) has an infinity of poles
accumulating into an essential singularity or branch cuts which complicate
the use of the Cauchy theorem.

7.3.12. ““Cut’’ Functions of Time as Causal Solutions

Having examined the property of causality and its relation to Fourier
transformation, we shall examine again the solutions of the forced, damped
harmonic oscillator, assuming that all the observable quantities are zero up
to an initial time ¢ and beyond a final time 4. The first requirement corre-
sponds physically to either the situation where the measured quantities and
driving force are actually zero up to that moment or where the measuring
process starts at g = a. At that instant, the observed values are f, = f(a) and

e



Sec. 7.3] Chap. 7 * Fourier Transforms 291

fa=4df(q)/dq|,-.. The second requirement [f(q) = O for g > b] similarly
means either that the system is in equilibrium, that we have turned off the
measuring apparatus, or that a power failure has ended our day’s work. The
boundary values f, = f(b) and f, = df(q)/dq|,-, are not expected to be
present, however, in the prediction of f(g) for a < g < b. We consider
functions f,,(g) which are zero outside the finite interval [, b]. Consequently,
their derivatives include Dirac 8’s at @ and b because of the discontinuities at
these points:

() (9) = 3(q — @)fa — (g — B)fs + (Far(9); (7.1192)
()" (q) = 8'(¢ — a)fa — (g — )fs + (g — a)f2
= 3(q = B)fy + (/ar(q). (7.119b)

We must take some care in distinguishing the derivatives of cut functions
(fa)' etc., from the cut derivatives of functions (f”),,. See Fig. 7.5. It is the
former which appear in the damped oscillator differential equation (7.111).
Fourier transformation of (7.119) yields

(Fap) = @)% exp(— ip)f (@3- + iBfrP), (7.1202)

(Far(p) = 2m)~2ip exp(—ipg)f(@)]%-
+ 2m) 2 exp(—ipg)f(@)|s=a — PYu(p).  (7.120b)

af

m-J

o

4 Iab

Fig. 7.5. Cuts, derivatives, and cut deri- \/
vatives. (A) An ‘‘arbitrary” £ Y
uncut function f(g). (B) The i (a) s s E
cut function f,(q). (C) The
derivative of f(g). (D) The cut
derivative. (E) Derivative of the \/
cut function.
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The Fourier-transformed differential equation thus yields, after some
rearrangement and solving for f,,(p),

JaoP) = Je(p) + fu(p) = 15D, (7.121a)
where, using (7.112),

fe(p) = =M [(p — p:)(p — pI'F(p) = 2m)'*G(p)F(p) (7.121b)

is the part of the solution determined by the driving force, and, for d = a or
b, the boundary conditions appear as

file) = =@ lp ~ pdp — p)7 sAp(ip)p £ /M2 1 ]
= [(cfu + MF2) + ipMT_2G)p). (71210

where T _; is the translation operator (7.27)—(7.30). The cut solution to the
problem is finally the inverse Fourier transform of (7.121). Using results on
translation, convolution, and differentiation, we can write

Jalq) = fe(q) + fa(q) — fo(9), (7.122a)
min (g,b)
Ma)=Fs6a) = | da'Fla)6la - o) (7.1220)

Ja(q) = [(cfa + Mfs) + Mfydldq]G(q — d)
= f4leG(q — d) + MdG(q — d)]dq] + Mf;G(q — d). (7.122¢)

7:3.13, Stationary and Transient Solutions

The solution f;,(¢q) is composed of three parts. The first, fz(q), is the
response of the system to the driving force F(q) and equals (7.117) for a
force which may be nonzero only for g€ [a, b]. It is referred to as the
stationary solution of the inhomogeneous differential equation. Next, we
have two transient terms which depend on the boundary values of f,,(¢) at a
and b and which are solutions to the homogeneous differential equation.
We now analyze the way the three summands in (7.122a) combine, referring
to Fig. 7.6. The first part, fi(¢q) [Fig. 7.6(B)], is due to the source function

[Flg 78{1&}] [t Is zero for q<a, and because of the G(q — qJS behavior of

the Green’s function, it will only contain information about the source for
a < q' < q. This is causality. For ¢ > b, F(gq) is zero and leaves fx(q) to
oscillate freely with the damping of the medium. Next, we have the boundary
term /(g) in Fig. 7.6(C). It is 7ero up t6 4 = 4, where it jumps té f, with
slope f, and oscillates freely thereafter. The third part, f,(¢) in Fig. 7.6(D),
is zero up to g = b; jumps to f;, the value of the first two terms at ¢ = b, with
slope f3; and oscillates freely. The sign of f,(¢) in (7.122a) is negative, how-
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Fig. 7.6. Driving force and causal b T
response. (A) The applied U
driving force during the £
time interval [a, b]. (B) a G
The pure time-unlimited AAAAA AR Y
response of the system to A AR '
the driving force. (C) *“ Ar-
bitrary” initial conditions "fb D
to the measurement pro-
cess. (D) Boundary condi- . ,I\ [\ ﬂ A /\AAA{)
tions at ¢ = b due to the ' ]VVVVVVV
the cut of the observation

interval. (E) Total mea- £1 E
sured response of the sys-
tem in the time interval Iy . >

1 .
[a, b]. ALY

ever. This means that the latter function combines with the first two to yield
a total value of zero for f,,(q), ¢ > b. This is shown in Fig. 7.6(E).

The overall statement of causality is then that, for a < g < b, f,,(q)
contains information about the initial conditions and the source function
up to the time of measurement. The boundary conditions at ¢ = b do not
enter the solution at all. As expected, a hypothetical future power failure
cannot affect the outcome of the experiment.

The mathematical aspects of causality will be further analyzed in
Section 7.4 from the point of view of Fourier transforms. Laplace transforms
will be used in Section 8.1.

7.4. Causality and Dispersion Relations

In this section we shall investigate some properties of functions f,..(q),
/- u(q), and f,,(g) which have support on the intervals [a, ), (—c0, b], and
[a, b], ie., £ (q) = O for g outside these intervals. The constraints on the
Fourier transforms of such “cut” functions will lead us to some basic
requirements—called dispersion relations—which enter the description of
causal filters, refractive media, and scattering amplitudes between elementary
particles.
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7.4.1. Causal Functions

Consider the causal exponentially damped function with support on the
half-line [a, 0):
exp[—e(q — a)l, g <a,
0u(g — @) = (T-.0.)(q) =11, q=a, (7.123)
0, g <a,Ree>0.

Note that for Im e # 0 the function oscillates as well. Its Fourier transform
can be easily found as

(F(T-.90.))(»)

@m)-12 j dg expl—e(q — @) — ipq]

= —i(2m)"Y2(p — ie)~! exp(— iap). (7.124)

It is a function with a single, simple pole at p = ie in the upper complex p-
half-plane, with residue —i(27)~*'2 exp(ae). The Heaviside step function ©(q)
in Eq. (7.89) is the limit of (7.123) as ¢ — 0* from the upper complex e-half-
plane.

7.4.2. Two Results on Fourier Transforms of Causal Functions

Equations (7.123) and (7.124) will be used later on. Certain characteris-
tics of the latter, however, are common to Fourier transforms of all functions
with support on the half-line [@, o). Consider one such function

@), q>a,
Jan(q) =<3f(@), q=a, (7.125)
0, g <a

which we assume satisfies the conditions of the Fourier integral theorem.
Its transform is thus

Fon(p) = @m)-12 j daf(q) exp(—ipg). (7.126)

We shall now explore the general properties of (7.126) which result from the
restriction (7.125). These turn out to be rather recognizable features as a
function of complex p = Re p + i Im p. We state that the Fourier transform
of a causal function which has support on [a, ) is (a) an entire analytic
Sfunction in the lower complex half-plane Im p < 0 (entire functions in some
region, we recall, are those which do not exhibit singularities of any kind in
that region), and (b) its growth in the lower half-plane is bounded by
C; exp(—a|lm p|), where C; is a constant. Moreover, the inverse Fourier
transform of a function satisfying (a) and (b) is one with support on [a, c0).
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We prove the second statement first by the estimate on (7.126),

feel] < @) [ da|f@)] exp(~ipg)

= @i [ dlf@lexnig ). (129)

a

As g is not bounded from above, the estimate is vacuous for Im p > 0 since
the last term is infinity. For Im p < 0, as a < ¢, exp(a Im p) majorizes the
exponential factor and hence, as anticipated,

feol] < @) 2 explamp) [ dalf(q)

= C; exp(—a|Im p|). (7.128)
The constant C; is finite if f(¢) is assumed to be in L(Z).

Exercise 7.36. Since by assumption f(q) is of bounded total variation, find
from (7.127) the alternative estimate for

| faw(p)| < (2m)~ 112 qrelgaafgo)lf(q)l-IImpI‘1 exp(—¢|Im p|). (7.129)

To show that f,.(p) is an analytic function in the lower half-plane
Imp < 0, the basic argument is that the total derivative of (7.126) with
respect to complex p exists as the factor exp(—ipq) is entire and analytic in
the complex plane p and

dfuws(p)/dp = (277)‘”2foc dq(—1iq)f(q) exp(—ig Re p) exp(q Im p). (7.130)

For all complex p with Im p < 0 the existence of the integral is guaranteed
in spite of the extra factor —ig because of the decreasing exponential term.
The bounds (7.128)—(7.129) assure us that no infinities are present. This
argument extends to all derivatives in the Taylor series for f,.(p).

7.4.3. The Converse Result

The proof of the converse, namely that if f,.(p) is an entire analytic
function and majorized by (7.128)—(7.129) in the lower complex half-plane,
its inverse Fourier transform is zero in (—oo, @), is performed straight-
forwardly:

furlg) = @72 [ dpfua(p) explivg)

= @m)-1 f dpfo(p) expliq Re p) exp(—q Imp). (7.131)
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For Im p < 0 the integrand is analytic, entire, and, moreover, due to (7.128)-
(7.129), contains a factor exp[(g — a)|Im p|]. For ¢ < a this is decreasing.
The Jordan lemma and the Cauchy integral theorem can now be used, as in
Section 7.3, in order to show, by the integration contour in Fig. 7.4(b), that
(7.131) is zero. For g > a there is no general condition since f(gq) in (7.125) is
arbitrary.

Exercise 7.37. Use Cauchy’s theorem and Jordan’s lemma in order to
perform the inverse Fourier transform of (7.124) and recover the ©.(q) function
in (7.123) for ¢ > a. In this case it happens to be possible to use complex contour
integration for the upper complex p-half-plane as well. This was also possible for
the damped oscillator Green’s function in Section 7.3. The workings of this
technique for ¢ = a will be discussed below.

Exercise 7.38. Show the Fourier transform of the exponentially damped
anticausal function ©.(b — ¢g) with support on (—o0, b] to be

(FT,100:)(p) = i(2m)~*2(p + ie)~* exp(—ibp), (7:132)

which exhibits a pole in the lower half-plane. As in Exercise 7.37, verify that the
inverse Fourier transform of (7.132) is the original function.

Exercise 7.39. Consider anticausal functions f_ .,(q) with support on the
half-axis (—, b]. Following the proof of the corresponding statements for
causal functions, show that the Fourier transforms of f_.,(g) are (a) entire
analytic functions in the upper complex half-plane Im p > 0 and that (b) their
growth is bounded by

|/~ =5(p)| < C7exp(bIm p), (7.133a)

b
G = @m [ dglf@] or @mye max |f@)|-Amp)t (71330)

Conversely, show that if f_ ..,(p) satisfies (a) and (b), it is the Fourier transform
of a function which vanishes on (b, ).

7.4.4. Fourier Transforms of Functions with Finite Support

Last, the Fourier transforms of functions f,,(¢) with support on a finite
interval [a, b] can be analyzed. They will be shown to be entire analytic
functions on the whole complex plane (excluding the point at infinity, of
course, since otherwise the function would be a constant). These functions
lie in the intersection of the classes of causal and anticausal functions with
support on (—oo, b] and [a, o). Their properties will thus be the union of the
properties of the two classes, and hence f,,(p) will be analytic in the upper
and lower complex half-planes. Moreover, as the Fourier transform integral
is over a finite range in g and f,(q) is integrable, the expansion of the Fourier
kernel exp(ipg) in Taylor series will produce a series of integrals which
constitutes the Taylor expansion of f,,(p) for real p. The circle of convergence
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is the whole complex plane. The growth of this function will be bounded for
Imp < 0and Im p > 0 by (7.128)—(7.129) and (7.133), respectively. Finally,
the inverse Fourier transform of functions which are entire and analytic on
% with the above bound conditions will have support on the finite interval
[a, b]. Results of this kind, relating support, analyticity, and growth, are
referred to as Paley—Wiener theorems.

7.4.5. The ‘‘Cutting’’ Process

Having found the properties of Fourier transforms of functions which
vanish on a half-axis, we can explore further the ““cutting” process. Assume
f(q) is a function satisfying the conditions of the Fourier integral theorem.
The three “cuts’ one can perform on it are

faalg) = lim 0.(q — @)/(g), (7.1342)
F-a@) = lim O, = q)f(9), (7.1340)
S @) = fonl@) = foal@) = f-a(@) = f-aal@),  (7.1340)
@) = f-d) + forla). ¢ =aorb. (7.134d)

The Fourier transforms of (7.134) can be found as the convolutions of the
Fourier transforms of the ©, functions, Eqs. (7.124) and (7.132), and f(p):

Joelp) = lim @)t [ dp'(p — p' = i) expl—ialp — (P
(7.135a)

Tasp) = = Jim @ri)~* [~ dp'(p = p' + 1)~ expl=ib(p — pIF(P),
(7.135b)
Jolp) = @) [ dp o - )
x {exp[—ia(p — p")] — exp[—ib(p — P}/ (P, (7.135¢)
@ = tim e [l —p -9 = (- L
% expl—ic(p — PP (7.1354)

In the expression for f,,(¢) and its Fourier transform, the limit e — 0%
disappears from the expression, since a rectangle function with value 1
between a and b can be used. We keep the form, however, for purposes of
uniformity.
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7.4.6. Boundary Values of Analytic Functions in a Half-plane

Equations (7.135) involve the expression

Fp) = (?-wi)‘lf_oo dp'(p — p’)~texpl—ic(p — pOIf(p’), Imp #0,
N (1.136)

associated to the functions f(p). In (7.136), the pole of the integrand lies on
the integration path, so we can only give meaning to f.(p) for values of p
which lie off the real axis. It is not difficult to show that f,(p) is an entire
analytic function for Im p # 0: the factors of the integrand containing p are
entire and analytic in this region, and their derivatives with respect to p do
not worsen the integrability with respect to p’. In terms of (7.136) we can
write (7.135) as

Fou(p) = lim fu(p — ie) forImp < 0, (7.137a)

e won(p) = Tgljg Fop + ie) forImp > 0, (7.137b)
Jap) = lim (fo = /)P — ie)

= Elijgg (fo = )P + ie), (7.137¢)

f(p) = :11131 [fulp — i) — fup + ie)] forImp = 0. (7.137d)

There are several observations to be made about these equations. The
first ones pertain to Egs. (7.137a) and (7.137b) and in fact were implicit in the
discussion of Fourier transforms of functions with half-axis support. They
tell us that Fourier transforms of causal and anticausal functions are boundary
values of entire analytic functions in the lower and upper half-planes, re-
spectively. For these, we have interesting relations if the limit e — 0% is
symbolically placed on the integrand, which then becomes (p’ F i0*)~!
times an integrable function F(p) = exp(—ip’a)f(p — p’). The pole now
slides onto the real axis, and the integration contour must be deformed into
the lower or upper half-planes (Fig. 7.7), conveniently as a semicircle C;¥

\4
4

" Fig. 7.7. Deformation of the integration
D P

W
W

contour as the integrand poles
slide onto the real axis (a) from
below and (b) from above.
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of radius 8 > 0. The integral can be split in two parts, one along the real axis
minus the interval (— 6, 8) and the other along the semicircle around the pole.
The former is called the principal value of the integral:

2 f: dpp~*F(p) = lim ( J__: + L @) dop-*F(p).  (7.138)

This definition is extended to any integrand with singularities on the integra-
tion interval by taking limits on both sides of each pole. The other part of the
integral, over C;¥, uses Cauchy’s theorem to evaluate

dpp~*F(p) = +inF(0), (7.139)

Cs¥

which is valid only if the function is continuous at p = 0.

7.4.7. (p £i0*)""

The placing of the limit e — 0* on the integrand thus entails the following
symbolic relation,

lim (p T ie)™* = Pp~1 + ind(p), (7.140a)

g-0+

where all members are defined in terms of the corresponding quantities under
integration in company with continuous functions. By formal differentiation
one arrives at

lim (p ¥ ie)™™ = Pp~" + in(— 1"~ (n!)~1671(p). (7.140b)

e—0+

As applied to Egs. (7.1352a) and (7.135b), Eq. (7.140a) tells us that

Jew(P)
J-e(P)
It should be emphasized that the principal value of an integral avoids the

poles of the integrand by excluding a vanishing segment symmetric around
the pole.

b= 2@y [Ty exn-inafto - )+ 470). (.141)

Exercise 7.40. Verify that (7.140) yields, as in Exercise 7.38, the correct
few(q) and f-..(q), Egs. (7.134a)—(7.134b). To this end, perform the inverse
Fourier transform of (7.141) by integration over p. The second summand will
yield 1 f(q), while the first will be f(g) times

Qmi)2 f dp'p’~* explip’(q — ©)]

L
=71 lim [ dp’p’~*sin[p’(qg — ¢)] = ¥ sign(g — ¢), (7.142)

[
L:%‘6

thereby reconstituting (7.134a)—(7.134b) as 4(+signs + 1) = O(£s). To prove
(7.142), use the patity of the integrand, its behavior at the origin, and (7.10D).
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The use of the last equation underlines the importance of considering integration
intervals symmetric around the origin.

7.4.8. Cauchy Representation of Functions

Equation (7.137d) presents a result which is of great interest by itself.
Assume we have a function f(p) which is quite arbitrary: it may have dis-
continuities or be zero on segments. The analytic continuation of such a
function into the complex plane is generally impossible since, by a well-
known theorem, if an analytic function is zero on a segment, it must be zero
everywhere. What Eq. (7.137d) tells us, then, is that one can find a function
£.(p) by (7.136), which is analytic everywhere off the real axis such that the
jump of f.(p) across this axis is the original function f(p).

Exercise 7.41. Consider f(p) to be a rectangle function of value 1 between a
and b. Show that Eq. (7.136) for ¢ = 0yields fo(p) = 2mi)~* In[(b — p)/(a — p)].
The logarithm function has branch points at zero and infinity, and the branch
cut is usually placed along the negative real axis. This segment corresponds to
a < p < b. Verify that the jump in the imaginary part of logarithm of
(b — p)/(a — p) across the branch cut [a, b] is thus 27i. The support of f(p) is the
segment where fo(p) is nonanalytic. For every ¢ € Z you have such a representa-
tion.

The representation of functions by ““‘jumps” of analytic functions in
€ —Z given by Egs. (7.136)-(7.137d) for ¢ = 0 is called their analytic or
Cauchy representation. It is important because it also holds for generalized
functions as the Dirac 8 and its derivatives: If we place 8(p) in (7.136) for
c =0, we obtain §,(p) = —(2#ip)~1. Now, this function is a bona fide
analytic function except at p = 0, where it has a simple pole of residue
—(2mi)~ 1. The jump across this pole in the direction of the imaginary axis is
infinite, and Eq. (7.137d) assures us that

8(p) = —Qmi) lim [(p— i) = (p+ 7] (1.143)

holds. This is actually a result we have obtained before in (7.140) and which
must have been noted by the attentive reader in Eq. (7.135d), where the
right-hand side of (7.143) appears in the integrand and acts as a reproducing
kernel under integration.

The treatment of generalized functions by complex variable theory and
Fourier transforms can be made completely in terms of the Cauchy repre-
sentation (7.136)—(7.137d). The interested reader is referred to the book by
Bremermann (1965) for this approach.

7.4.9. Dispersion Relations

The relations we have developed for Fourier transforms of functions
with support on various segments become a handy tool for the further

.(}a
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description of causality. Consider the function f(q) in Eq. (7.134a) cut to
fu(q). As the Heaviside function ®(¢ — a) acts as the unit function for this
space of causal functions, Eqgs. (7.135a) and (7.136)-(7.137a) become the
identity

FealD) = (27Ti)”1f dp'(p — p')~*expl—ia(p — p)fawu(P):
o Imp <0, (7.144)

valid for all causal functions with support on [a, ). For real p we can use
(7.140) for the factor (p — p’ — ie)~*, which replaces (7.144) with the
principal value of the integral plus % f,.(p). Subtracting this last term, we
find the relation

Jaclp) = (i) P i d'(p — p')*expl—ia(p — p)feu(p)y  preal,
o (7.145)

which is also valid for all causal functions satisfying the conditions of the
Fourier integral theorem. The real and imaginary parts of this equation read

RSeu(p) = 72 [ dp'(p — )" Imfexpl—ia(p — p)Vael2
(7.1462)

Imf,u(p) = —n~12 f dp'(p — p’)~* Re{exp[—ia(p — p"))fux(P)}
) (7.146b)

Equations binding together the real and imaginary parts of a function
are called dispersion relations. They are usually found in the literature in the
form (7.146) for a = 0. We shall now proceed to bring out the physical
meaning of the dispersion relations (7.146) in connection with the causal
filtering of signals.

_ Exercise 7.42. Show the dispersion relations for an anticausal function
f-ws(p) to be identical with (7.144)—(7.146) but for a minus sign in front of the
integrals.

7.4.10. Description of Causal Filters

We consider a given causal function s,.,(q) to represent a signal which
up to time ¢ = a is zero and which from then on represents some measured
time-dependent quantity. We can feed this signal as input to a “black box”
processor and obtain an output signal s’(g). This abstract mechanism applies
to an electronic device receiving and encoding information, the attenuation
and selective color filtering of light through a dispersive medium, and the
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elastic scattering of an incident elementary particle beam (represented by its
wave function) by an atomic or nuclear traget. The common properties one
can require for a meaningful description of these processes are that they obey
the following: (a) linearity: if s; and s, are input signals whose separate
output is s; and sj3, the output of ¢;8; + cs8,, Where ¢y, ¢, €%, should be
¢181 + ¢o85; (b) time invariance, that is, if the signal s(g) is converted into
s'(g), any time-shifted version of the same input s(¢ + ¢,) for fixed g, should
be converted into the corresponding time-shifted output s'(¢ + ¢,); and
(¢) causality, which means that the output shall not precede the input: if s(g)
starts at ¢ = a, s'(q) should not start before g = a.

From these requirements we can say that if we are able to know the
output ¢y,(g) corresponding to an idealized input 8(g), then for any
input function

see@) = [ 4050 = %5000 (7.147)

[the s,.,(g") being now generalized linear combination coefficients], the
output will be

@) = [ d'9oald = %5000") = (o # 522)0) = (@500
A (7.148)

The filtering process (Fig. 7.8) is thus described by a linear operator ©®
whose action on the input signal is given by the conyolution with the causal
filter function ¢y, (q). [This operator ® can be given a differential form; see
Eq. (7.110).] Causality of the filter’s function implies that a value of the
output s'(q) at time g depends on the input s(gq’) for ¢" before q (¢' < q).
The output signal does not appear before the input. There can be delay
filters whose describing functions have support on [b, ), b > 0, causing any
output to be delayed by b with respect to the input. Another possibility are
finite-memory filters described by functions with support on a finite interval
[b,c], 0 < b < c. [In Sections 3.1 and 3.2 we described filters acting on
signals which were sets of N data points, asking for linearity and for the
property that waveforms be converted into waveforms of the same frequency.
The latter amounts to property (b) above. We did not ask for causality in
Section 3.1, since all components were counted modulo N, with the conse-
quence, that, as can be seen in Fig. 3.2, the output signals could propagate
in both directions, the filtering being seen as a “‘simultaneous’ processing
of the input points. There, waveform rather than unit-impulse filtering is in
the fore.] ‘

Equation (7.148) can be Fourier-transformed into

Sow(p) = (M) 2F0(P)sew(P)- (7.149)
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Fig. 7.8. Causal filtering. (a) ‘“ Rectangular” signal and (b) its Fourier transform, show-
ing the real and imaginary parts (broken lines) and absolute value (continuous
line). (c) Causal filter function ¢, a decreasing exponential, and (d) its
Fourier transform. (e) Causal output signal, convolution of the input and
filter function, and (f) its Fourier transform [product of (b) and (d)].

In this form we display the filter transfer function as the coefficient function
of p, which modifies each of the input partial waves. [Compare with (3.12).]

Now, the filter’s transfer function cannot be arbitrary, as it is the
Fourier transform of a function with support on [0, c0). Physically the
argument can be seen as follows. Assume that @(p) were 1 for all values of p
except for p € [r, s], so that all p partial waves would be unaffected by the
filter except those in the band [r, 5], which are absorbed. The filter would then
subtract from the signal its partial-wave content in this range. If the latter is
roughly constant, the subtracted part would be the Fourier transform of a
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Fig. 7.9. Noncausal filtering. (a) The signal and (b) its Fourier transform—the same as
in Figure 7.8. (c) Noncausal filter function built by specifying that its Fourier
transform (d) eliminate all partial waves p € (— 5, 5): it is a Dirac & due to the
“background” minus the Fourier transform of the subtracted rectangle.
(e) Output signal and (f) its Fourier transform. The former has support on the

entire g line and hence the filter is noncausal.

rectangle function, Fig. 7.1. The output signal would undergo the process
drawn in Fig. 7.9, which has turned a causal input into a noncausal output.
The requirement of a filter to be causal is then that if some partial-wave
bands are absorbed, the phase of the remaining ones be modified in such a
way that the output remains causal. Mathematically, if the signal partial-
wave content §,.,(p) in (7.149) is entire and analytic in the lower half-plane
and the output §,,(p) is required to be likewise, the transfer function ¢(p)
must have the same property.

The condition for a causal filter is thus that its transfer function satisfy
the dispersion relations (7.146) for a = 0. We shall now relate this to its
absorptive and dispersive characteristics.
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7.4.11. Absorptive and Dispersive Characteristics

We can write the transfer function in (7.149) as

#(p) = 2m)~2[a(p) + iB(p)],  «(p), B(p) real for p real. (7.150)

If we insist on having a filter which transforms real input signals into real
output ones, as only real quantities are meaningful (exception taken of
quantum-mechanical measurements, where phases of the wave function,
although not directly measurable, have measurable effects), then ¢(g) must
be real, whence (Table 7.2) ¢(p)* = @(—p*). This implies that «(p) must be
an even function of p, while B(p) must be odd. Assume the input signal is a
single wave:

s(q) = cos wq, (7.151a)
§(p) = (@2)V2[8(p — w) + 8(p + w)]. (7.151b)

By taking into account the parity of «(p) and B(p) in (7.150), the output
signal will be

§'(p) = @/)*{u(p)[3(p — w) + 3(p + w)] + B(P)(p — w) + 3(p + w)]}
= (7/2)"*{l)[8(p — @) + 8(p + w)] + B(w)[(p — w) — 8(p + w)]}
(7.152a)

s'(q) = «(w) cos wg + P(w) sin wq. (7.152b)

We can thus identify «(p) with the absorptive characteristics of the filter,
«(p) = 1 meaning perfect transparency, and B(p), which shifts the phase of
the input monochromatic waves, with its dispersive properties. These are, of
course, not independent but, if the filter is to be causal, must satisfy the
dispersion relations (7.146). These read

«() =72 [ o - p) B, (7.153)

B = —72 [ o — p)elp) (7.153b)

In deriving the dispersion relations (7.146) we assumed the causal function to
satisfy the conditions of the Fourier integral theorem. Now, for band-
absorbing filters, a(p) < 1 for some finite bands on the p-line, but «(p) = 1,
perfect transparency, may be the case for all other values—or it may be
constant. In this case Egs. (7.153) cease to be valid as the addition of a
constant term to «(p) in (7.153b) does nothing to 5(p) since

9} dp'(p — p) =0
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while (7.153a) is changed by the constant’s addition. Worse cases are those
in which we want to represent differencer filters, i.e., where s'(q) ~
d"s(q)/dq™, as there we need ¢(q) ~ 8™(g) in (7.148) and hence ¢(p) ~ p"
in (7.150). The transfer function still qualifies as causal, but the dispersion
relations (7.153) lose their meaning. For these functions we can still write,
however, dispersion relations with n subtractions.

7.4.12. Subtractions

We shall assume that (p — p; — i) fou(p), & > 0, is absolutely
integrable and, it will turn out, f;.,(p) must be n — 1 times differentiable.
This function is still causal since it is entire and analytic in the lower half-
plane as the newly introduced n-fold pole lies on +ie’. We write the usual
dispersion relation (7.145) for the new function (¢ = O here), letting ¢’ — 0
and taking note that the principal value in (7.145) does not refer to the new
limit, for which (7.140b) must be used. We have

o

(b = p)oulp) = @) 2 | dp(p = )

x {(p" — p)™" + (= Din[(n — D]728""V(p" — p1)}
X fou(P')- (7.154)

We thus write the new n-times-subtracted dispersion relation
Joulp) = @)X = 32 [ o' = )7 = P Foulp)

+ 3, 00 = P oupldos™ (1.153)

For n = 0 we recover (7.145). The addition of a constant to f;.(p) now
requires one subtraction, for which the second term in (7.155) is fo.(py),
which means in turn that the value of f5,,(p) must be known at least at one
point p,. For n subtractions we must know »n data values about the function
Fow(p). The real and imaginary parts of (7.155) will finally relate the absorp-
tive and dispersive parts of the filter transfer function.

Exercise 7.43. Repeat the subtraction procedure using different points
P1, D2, - - -, Ds In factors raised to powers ny, ng, . . ., ng such that >, n, = n. The n
data values can thus be the values of fo.(p) and/or its derivatives at one/several
points py.
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Exercise 7.44. Repeat the subtraction procedure for functions faw(p) and
functions f_ «,(p).

7.4.13. Further Comments and References

There are many directions in which the interested reader can continue
in the subject sketched in this section. Bremmerman’s book (1965) has been
suggested before for its unified treatment of complex variable theory,
generalized functions, and Fourier transforms. Growth conditions of
Fourier transforms of functions analytic in strips lead to a number of results
of the Paley-Wiener type. A digest of these can be found in Dym and
McKean (1972, Section 3.3) or in the introduction of the original book by
Paley and Wiener (1934). Communication theory, as can be expected, makes
full use of dispersion relations in describing filter networks with complex
impedance. On this subject, see the book by Friedland et al. (1961). Related
to this subject is the description of the behavior of an electromagnetic signal
in a dispersive medium, where the phenomena of phase vs. group velocities
and forerunner waves appear. Brillouin (1960) has written a book on the
subject with contributions due to Sommerfeld. It does not use the language
of dispersion relations. A more recent and unified treatment can be found in a
book by Miiller (1969).

The application of dispersion relations in elementary particle physics
has grown into a major field including S-matrix theory and Regge poles. .
The fundamental requirement of causality allows the specification of several
necessary properties of the S matrix, an operator describing a scattering
process. Subtraction constants are related to interaction strengths. A book
by Hilgevoord (1960) contains the results up to 1960, before the current surge
of interest in the field. Many texts on quantum mechanics contain chapters
on this subject. Among the books specializing in this subject, see those by
Newton (1964, 1966), Nussenzveig (1972), and Simon (1976).

7.5. Oscillator Wave Functions

There is one rather interesting denumerable orthonormal basis {¥,}7- o
for £*(#) whose properties under Fourier transformation are such that they
are self-reciprocal under the operation F¥, = (—i)"¥,. In this section we
shall find these functions and explore their main properties. They are par-
ticularly important in physics since they happen to be the wave functions of
the quantum-mechanical harmonic oscillator system. We shall prepare in
this way the terrain for the introduction of the Bargmann transform (Section
9.2). The second main topic is the repulsive oscillator wave function basis.
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7.5.1. Self-Reciprocal Functions and Operators under Fourier
Transformation

In Section 7.1 we saw that the Fourier transform of a unit Gaussian
bell function of width w was another such function of width 1/w [Eq. (7.22)].
Hence a function proportional to a Gaussian of unit width,

Wo(g) = 212711G,(q) = =~ * exp(—¢°/2), (7.156)

will be self-reciprocal under Fourier transformation: F¥, = ¥,. We have
chosen the constant 7~ */* in front of the exponential so that the function will
have unit norm:

[¥ol? = (¥o, ¥o) = f_ dg|¥o(q)2 =1 (7.157)

[compare with (7.21)]. How can we generate other self-reciprocal functions?
If we had an operator Z such that

FZF-1 = pZ, (7.157a)
then Z%¥, as well as any Z"¥, would have the property
FZ™¥, = (FZF~Y)"¥, = p"Z™¥,. (7.157b)

Moreover, as F* = 1 [Eq. (7.26)], p can be only a fourth root of unity, i.e.,
p=1, —1, i, or —i. Most of the operators we have introduced can be
expressed in terms of the operators @ and P [Egs. (7.55) and (7.56)]: multi-
plication of a function by its argument and —/ times differentiation. Further,
as these operators turn into each other under Fourier transformation [Eq.
(7.57)], we can propose their most general /inear combination:

Z = aQ + bP. (7.158)
Asking for
M = FZF~! = aFQF-* + b[F‘g[F‘1 = —aP + bQ, (7.159)

we obtain b = Az and @ = —Ab. For A = 1 or —1 this equation has only
the trivial solution @ = 0 = b. For A = j or —i, choosing a = 22 for later
convenience, we find

Z:=2""%Q + iP) = 2‘”2(q - d—‘;), (7.160a)
Zt=2"1%(Q — iP) = 2-1/2(4 = %}). (7.160b)

We have written (7.160b) as the adjoint of Z since Q and P are self-adjoint
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operators in #*Z%) and (i1)' = —il. Now, by acting on the ground-state
function (7.156), Z in (7.160a) produces the zero function:

I%(q) = 2-1'2w-1'4(q ; dif]) exp(—g?2) = 0. (1.161)

Thus, only Z* in (7.160b) can be used to produce other self-reciprocal func-
tions. Since the operator Z is self-reciprocal under Fourier transformation,
with A = —i, Z'¥, will be also; (Z")?¥, will correspond to A = —1, (Z")*¥,
to A = i, and (Z")*¥, to A = 1. Now, functions corresponding to different
eigenvalues of unitary (or hermitian) operators are orthogonal. In fact we
shall show that all ¥, = ¢,(Z")"¥, are mutually orthogonal and choose the
constants ¢, so that they be orthonormal. For this purpose we need to know
some facts about the operators (7.160). Their commutator [see Eqs. (7.59),
(7.65), and (7.66)] is

[Z,Z!] = 72 — 7'Z = 1[Q + iP, Q — iP]
= 4([Q, Q] + i[P, Q] — i[Q, P] + [P, P])
=—i[Q,P] =1. (7.162)
By induction, we can prove that
[z", 7] = mz™ 1, (7.163a)
[z, (Z)"] = n(z')*~?, (7.163b)

min (m,n)
[Z", @) = ;Zl o k;’;(!:!_ o @r Tk (11639

Exercise 7.45. Verify (7.163). Compare with (7.67) for Q and P.

7.5.2. Orthogonality of the Generated Set
From adjunction it follows that, for m > n, (¥,, ¥,,) is proportional to
((ZT)¥o, (Z)™Fo) = (Z7(ZT)"¥ o, ¥)
= (Z)y'Z™¥o, ¥o) + ([Z7, (Z)']¥o, ¥o). (7.164)

Now, due to (7.161), the first term disappears, while the second, after use of
(7.163c), shows that we are also left with powers of Z acting on ¥, and
hence it also vanishes. If m < n, we repeat the procedure on the second
member of the inner product, obtaining zero again. Hence (7.164) is zero
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for m # n, and all {¥,}7_, are mutually orthogonal. When m = n, the last
term in (7.164), for m = k = n, yields

0T, = |6 |2, Y,) = |6]%0! (T, Fe). (7.165a)
This allows us to fix the modulus of ¢, as (n!)~*/2, so that |¥,| = 1 and, for
all n, m:
(¥, ¥,) = Spm- (7.165b)
+0.8
Yo ¥y ¥,
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Fig. 7.10. Harmonic oscillator wave functions
W.(q) for various values of n. The
g-axis is drawn on an arctan scale.
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Table 7.3 The First Few Hermite Polynomials

Hy(q) =1

Hy(q) = 2q

Ha(q) = 49% — 2

Hy(q) = 8q° — 12¢

Hi(q) = 16g* — 48g% + 12

Hs(q) = 32q° — 160g® + 120g

Hs(q) = 64q° — 480g* + 7202 — 120

H.(q) = 128¢7 — 13449°% + 3360g° — 1680q

Hg(q) = 256q° — 3584¢° + 13,440¢* — 13,44042 + 1680

By choosing ¢, as real, the basis functions are thus

Yi(q) = (n))"M*(Z)"¥o(q)

- @1 2)(g - £) ¥

= (n! 2”77'”2)_1/2( = %)" exp(—q2/2)

= (n! 2% V2= 1)" exp(q®/2)d"/dg™ exp(—q?)
= (n! 2"7Y2)~Y2H, (q) exp(—q?/2). (7.166)

Exercise 7.46. Verify the next to last equality in (7.166). This can easily be
done by induction. Show that ¥,(—¢g) = (—1)"¥,(g). This is checked by noting
that ¥y(q) is even and Z' is of odd parity.

It is not difficult to see that ¥,(¢) has the form exp(—g?/2) times a
polynomial of order n, H,(q). These are the Hermite polynomials. In Fig. 7.10
we have plotted some ¥,(¢q)’s for n up to 35. The first few Hermite poly-
nomials are given in Table 7.3. Equations (7.166) for n = 0, 1, 2, ... thus
define a denumerable orthonormal set of functions which are self-reciprocal
under Fourier transformation:

(F¥.:)(9) = exp(—imn/2)¥1(q). (7.167)

7.5.3. Raising and Lowering Operators

The construction procedure we have followed is interesting in itself:
From the ground state ¥,(q) we have been able to obtain all other ¥,(¢) by
successive application of the raising (or creation) operator Z*. The action of
this operator is to transform ¥',(¢q) into ¥, .,(¢q) as

I, = ()" VAT, = (n + DY, . (7.168)
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The action of Z as defined in (7.160a) is that of a lowering (or annihilation)
operator: using (7.161) and (7.163b), we find

¥, = (n)~PZ(ZH"¥,
= (n)"V¥{(ZYZ + [Z, (Z)']}¥,
= ()" Pn(Z I, = nPW, (7.169)

in particular, for n = 0 we regain (7.161).

7.5.4. The Quantum Harmonic Oscillator Hamiltonian Operator
Equations (7.168) and (7.169) can be combined as
N¥.(q) = Z2'2¥,(q) = n'*Z"¥, _1(q) = n¥'.(q)
1 d d o d? 5
=3 (q - z]) (‘I + CE)%M) =3 (~W +4q° = l)lyn(‘I)
n=0,1,2,.... (7.170)

We shall call N the number operator for the set {¥,};-o. This operator is
self-adjoint (as [Z%,Z] = [Z',Z] on L*(Z)); its eigenfunctions thus ought to
be orthogonal, as we showed them to be above. In quantum mechanics, the
operator N defined here is related to

2
H* = % (—%2 + q2) = %(Pz + Q% =N + 11, (7.171)
which happens to be the Schrédinger Hamiltonian for the harmonic oscillator
system. The eigenfunctions of the Schrédinger operator (7.171), the eigen-
states of the system, are thus {¥,(¢)}r-o Wwith eigenvalues—energies—
n+3+n=0,1,2,... in natural units. If ordinary physical units are used,
this is Aw(n + %), where 7 is Planck’s constant / divided by 27 and w is the
classical oscillator frequency. The energy being quantized in units of /w,
Z7 and Z act as creation and annihilation operators of energy quanta for the
system.

Exercise 7.47. Verify the commutation relations
[N, Zt] = 7, N, 7] = —-Z. (1.172)

Show that if ¥, is an eigenfunction of N corresponding to an eigenvalue n, (7.172)
implies that Z"¥, and Z¥, will also be eigenfunctions of N with eigenvalues
n+ landn — 1.

Exercise 7.48. In searching for operators with the properties (7.157) in order
to generate self-reciprocal functions under Fourier transformations, we can pro-
pose second-order ones of the form

J = aP? + b(PQ + QP) + cQ?, FJF-! = ud. (7.173)
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Following (7.158)-(7.160), show that only u? = 1 yields nontrivial solutions. For
n=1,b =0, and we have a = ¢, so we define

Jo = #P? + Q%) = 1H" = IN + 11, (7.174a)
which is, up to a chosen multiplicative constant, the operator (7.171), which
neither raises nor lowers ¥, to any of its neighbors. For u = —1 we have two

independent solutions:

Jy = 3P2% - Q% + % QP + PQ) = —¥Z)? = J; + iJa, (7.174b)

J_ = 4(P2% - Q?) — %(@P + PQ) = —42%2 = J.t = J; — iJ,, (7.174c)

where we have chosen a convenient set of constants for @ and b. The operators
J; and J_ thus raise and lower ¥, by twos. Some further group-theoretical
properties are obtained in Exercises 7.49 and 7.50.

Exercise 7.49. Verify that the commutation relations of the operators (7.174)
are

[Jo, J:1 = £, [be, 1= -2, (7.175a)
[\ﬂl, Jz] = —i\ﬂo, [\ﬂo, J]l] = I.\Dz, [\DQ, \Uo] = IJ]]_ (7.175b)

[Equation (7.175a) or (7.175b) determines the J’s as the generators of the iso-
morphic Lie algebras s/(2, R) ~ su(1,1) ~ so(2, 1) ~ sp(2, R). See the book by
Miller (1972) on Lie algebras and groups.] Show that, as in Exercise 7.47, if ¥,
is an eigenfunction of J, with eigenvalue n/2, J.%¥, will also be an eigen-
function of J, with eigenvalue (n + 2)/2. In acting on ¥, the raising operator
(7.174b) therefore generates all ¥,’s for even n only—or all odd »’s if we start
from ¥;.

Exercise 7.50. Verify the identities
C=024+022—-Jd2=J.d; —Jo(Jo FI) =55 (7.176)

The first equality follows from (7.175) only, while the second requires the concrete

realization (7.174) in terms of differential operators. Note that [C, J;] = O for

i = 0,1, 2, defining C as the Casimir operator of the Lie algebra (7.175). Show

that

J. ¥, = d* W, .0, 4d 2=+ Dn+2), 4d|>=nn-1),

(7.177)

by making |J.¥,|? = 1 for all n, by using J. = J% in order to let all operators

act on one side of the inner product, and finally by applying (7.176). Note that

(7.177) checks with (7.168)—(7.169) when the relation (7.174) between J’s and Z’s
is used.

7.5.5. Completeness of the Harmonic Oscillator Wave Functions

We now return to the study of the functions ¥,(¢) of Eq. (7.166). We
note that they are all infinitely differentiable and, due to the exponential
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factor, are rapidly decreasing, i.e., g"d"¥' (q)[dq™ — 0 for |g| — oo and any
m, n, and r. The set thus belongs to %, ®. Moreover, as we shall show, an
L) function f(g) which is orthogonal to all ¥,(g)’s is equivalent to the
zero function. The denumerable set {¥',(¢)}x- o thus constitutes an orthonormal
basis for £*(Z%). To this end, we construct a generating function of the set:

Gl 0) = > () 2 )

n=0

w~1% exp(q?/2) Zo (n!)~(—x/2)"d"/dg™ exp(—q?)
=t exp(—q?/2 + gx — x?/4)
exp(x*/4)¥o(q — x), (7.178)

where we have used the next to last form of Eq. (7.166) and the Taylor
expansion of the Gaussian function around g. Now, if (¥,, f) = 0 for all
n=0,1,2,... and f e £*Z%), then

0= (G ). 1) = exp@) | dgelg = 0ftq) (.179)

which means that (¥, * f)(x) = 0. The Fourier transform of this restriction -
is Wo(»)f(») = 0,whichin turn implies /() = 0, and hence f(g)isequivalent

with 0. In this sense the set {¥,}7., €€, C LAZX) is dense in L*(#) and,

in fact, also dense in the space of generalized functions %’ with test functions

in%€,”.

7.5.6. Harmonic Oscillator Expansions

Any vector f in Z%Z%) or %’ can be approximated (in the sense of
the inner product with a test function in %, ®) by a linear combination of ele- 5‘
ments in €, * as

flg) = iofn“"lfn(q), (7.180a)

where, due to the orthonormality of the basis, the generalized Fourier
coefficients are

¥ = (¥, 1). (7.180b) i

The {f,¥}7-, constitute the coordinates of f in the W-basis. The original l
function f in (7.180b) and its synthesis (7.180a) can differ at most on a set of
isolated points on #. Moreover, the Parseval identity

€9 = diftarea = i;ofn‘"*gn‘” (7.1800)
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also holds. The completeness of the ¥-basis implies that, in the appropriate
space of test functions,

ZO ¥o(q)¥a(95) = 8(q1 — g). (7.180d)

Expansion series in the denumerable W-basis follow the same philosophy as
the expansions in exponential and Bessel series discussed in Chapter 6, except
that the space is here £?(Z%) rather than #?(q, b) and the self-adjoint operator
whose eigenfunctions we are using is N in Eq. (7.170) rather than V2 as
before. For the parallel of the Dirichlet conditions for pointwise convergence
of Fourier series we have to turn to the literature on orthogonal polynomial
expansions. See the book by Szegd (1939, Chapter IX) and those of Alexits
(1961) and Boas and Buck (1964). As in the case of Taylor series where the
expansion in powers of ¢ (around the origin) is uniformly convergent within
the largest circle, with center at the origin, where the function is regular
(analytic and free of singularities) and divergent outside, expansions in series
of polynomials orthogonal on a segment (a, b) (i.e., Legendre, Gegenbauer, or
Jacobi polynomials) converge inside the largest ellipse with foci on @ and b
where the expanded function is regular. For polynomials orthogonal on a
half-axis (@,o0) (i.e., Laguerre polynomials), this region becomes the ‘““in-
terior” of a parabola with focus on a, while for Hermite polynomials—and
thus the present ¥,(¢) functions—the series (7.180a) will converge within any
band centered around the real axis where the expanded function is regular.
The convergence is uniform for any finite subregion of this band. If the func-
tion has a bounded discontinuity at some point ¢,, the width of the band
shrinks to zero and the series converges—as in the Fourier case—to the
midpoint of the discontinuity.

7.5.7. Translations

We shall illustrate the use of the expansion relations (7.1802a)—(7.180d)
for the case of the franslated harmonic oscillator wave function:

0

Ta¥() = ¥olg + & = 2, Tun(@¥n(q), (7.1812)
Tonl@) = (¥ T) = (T_¥, Fy). (7.181b)

In the process of finding the linear combination coefficients 7,,,(a), we shall
present several useful techniques, which will be applied later on.
According to (7.180b), the solution is

T = | dg¥ol@)¥ola + ) (1.18)
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This integral is surely a finite number, as the ¥’s fall off as exp(—¢?/2) for
|g| — 0, yet it is not trivial to calculate. We can make use of the generating
function found in (7.178) by multiplying (7.182) by powers of two dummy
variables, summing over n and m, and exchanging sums and integral:

@

T(x,y) = D, (m!n!)~22(x/212(y[2V2)"T pn(a)

m,n=0

~ | da6ux, 60 + @
= 7~ exp[—(x* + y?)/4 + ay — a®/2]
XJ dgexp[—g* + q(x + y — a)]

= exp(—a?/4) exp[(xy + ay — ax)/2]. (7.183a)

To solve the integral we have completed squares in the exponent and used
the Euler integral (7.21). The use of the generating function thus allows us to
solve the integral in (7.182) by solving the simpler integral in (7.183a). If we
can now find the two-variable Taylor series of 7'(x, y) and rearrange it in the
form given by the defining sum in (7.183a), we shall regain the coefficients
Tn(a). To this end we use the well-known Taylor series of the three last
exponential functions and a triple-sum rearrangement formula [Appendix C,
Eq. (C.5)], writing

k, 0

exp(—a’/4)

m,

T(x,y) = exp(—a?/4) Z (k! m! nl)=12-k-m-n(_]ymgn+mym+kyntk
n=0

min(m,n)
> [kl — k) (n — k)]
k=0
X 2—m—n+k(_l)m—kam+n—2kxmyn. . (7183b)
Comparison of like powers of x and y with (7.183a) thus yields
Trn(a@) = exp(—a?/4)2~-®+mi2(—1)™(n! m!)/2

min(m,n)
x> [kl(m = K)!(n — k)25(—1yar 2k, (7.184)
k=0

Exercise 7.51. Verify that (7.184) fulfills 7},(0) = 8,, and that due to
(7.69)
4
Vin = % Ton(@)|a=0 = Omn-1(1/2)'? — Sy nsal(m + 1)/2]*2  (7.185a)
constitutes a ‘“half-infinite’” matrix which represents V in the W-basis and
agrees with the action of —iP on ¥',(¢) obtained from (7.160) and (7.168)—(7.169).
Equation (7.184) is the exponentiation of (7.185a).
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Exercise 7.52. By Fourier transformation, find the action of the multiplica-
tion-by-exponential operator (7.29). On the W-basis functions it is represented by
a half-infinite matrix whose coefficients E¥%,(a) are (—i)™~" times those of the
translation operator in (7.184). From these find that matrix representing Q:

o

g
da

Verify that this agrees with the action of @ on ¥,(g) obtained from (7.160) and
(7.168)—(7.169).

Ohn = = Efu(@)|a=0 = 8nn-1(n/2)" + Spnsal(n + 1)/21V2. (7.185b)

Exercise 7.53. Verify that QY == | Q%.| and PV == | —iV%,|, considered as
half-infinite matrices whose rows and columns range over all nonnegative inte-
gers, in (7.185) satisfy the Heisenberg commutation relation (7.59b).

One case which will appear later on (as coherent states) is the oscillator
wave-function series for the displaced Gaussian bell ¥y(q¢ + a). For n = 0
the sum in (7.184) reduces to the single term k£ = 0, and hence

To(a) = exp(—a?/4)(m!)~12(—a/22)m (7.186a)
whereby

¥ulg + 0) = exp(=a®) X () =0/ o(g)

= exp(—a?/4)Gy(—a,q). (7.186b)
In view of (7.178), this is an identity.

7.5.8. Coherent States

One rather remarkable property of the functions (7.186) is that, for all
complex a, they are eigenfunctions of the lowering operator:

Z¥(q + a) = (—a/2"?)¥ (g + a). (7.187)

This fact is somewhat unexpected since Z is not a self-adjoint operator.
Equation (7.187) holds as can easily be verified since each term in the
sum is lowered by one value of m, the term » = 0 disappearing. As the sum
is infinite, however, lowering the terms by one unit still leaves us with an
infinite sum. '

A function proportional to (7.186b) can be found by acting with exp(aZ")
on ¥y(g) and using the first equality in (7.166):

Y.(g) = explZ)¥ola) = 3, (1)~ T ¥ola)

= S ()12 (g) = exp(cWo(g — 2V%)

G,(2Y2¢c, q) = m~ Y% exp(—q?/2 — 2 + 2'2%gc), (7.188a)
cYo(q). (7.188b)

l

7Y (q)
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This is the definition of the coherent states in quantum optics [see, for example,
the book by Klauder and Sudarshan (1968, Chapter 7) for a full account].
Mathematically, the states (7.188) do not look, perhaps, too exciting at
present since they are basically displaced Gaussians. For complex ¢ (7.188)
will be seen to be rather useful. Physically, moreover, they happen to be the
closest quantum-mechanical approximation to the classical harmonic
oscillator motion and are widely employed in laser theory.

The coherent states (7.188) are not orthogonal; their inner product
(overlap) can easily be calculated by the unitarity of translations and the
result (7.186a):

(X, Xo) = exp[(c*® + ¢"*)/2)(T —gu2cFo, T - g112:%F)

exp[(c*? + ¢'?)/2](Wo, Tauizer— 2120 F,)

expl(c*? + ¢'?)[2]Too(2*2c* — 21/2¢")

expl(c*? + ¢'?)/2] exp[—(c* — ¢')?/2] = exp(c*c’). (7.189)
In Part IV we shall show that the set of coherent states {Y.}..¢ forms a basis

for the (Bargmann) Hilbert space of entire analytic functions with certain
growth conditions.

II

7.5.9. Some Properties of the Harmonic Oscillator Expansions

The expansion of an #?(#) function in a harmonic oscillator wave-
function series has several properties which have their counterparts in
Fourier series and which we have collected in Table 7.4. (a) The ¥ partial-
wave coefficients of a linear combination of functions are the linear combina-
tion of their partial-wave coefficients. (b) The functions of the W-basis are
real; hence if f,” are the series coefficients of f(g), f(¢)* will have coefficients
fY*. (c) The series coefficients for f(—gq) are, due to the parity of the basis
functions, (— 1)*£,Y. (d) The series coefficients for df(q)/dq can be found from
(7.185a) and are shown in Table 7.4. In this basis, therefore, unlike the
Fourier case, they are not multiples of the series coefficients of the original
functions. (e) If 7(q) is the Fourier transform of f(q), due to (7.167), their
W partial-wave coefficients will be related as f,¥ = (—i)"f,”. (f) Combining
the two former results or directly from (7.185b) the W coefficients of gf(q)
can be found in terms of those of f(g) as in Table 7.4. (g) The role of V under
Fourier transformation is here taken by the number operator N in Eq. (7.170)
or H" in (7.171). Thus if f(g) has ¥ coefficients f,¥, those of (—d?/dg? + q?)-
f(q) will be 2n + 1)f,”. (h) The ¥ coefficients of the product f(g)g(q) are
the corresponding generalized convolution of the coefficients of the factors.
The finite-dimensional counterpart of this operation has been discussed in
Section 3.1. Unfortunately, it is not so simple as for Fourier series or
transforms.
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Several miscellaneous properties of the harmonic oscillator functions
follow. Some of them—mainly pertaining the Hermite polynomials—can be
found in most special functions texts.

Exercise 7.54. Relationships between differentiability and convergence rate
are not so easy to obtain for the W-basis coordinates as for Fourier series coeffi-
cients in Section 4.4. Using similar techniques—absolute values, Schwartz
inequalities, and Fourier transformation—for the operator H in (7.171), show
that if f(g) and f(p) are such that their second derivatives are square-integrable
(ie., |[f”] < oo, |[f”]| < ), then the W-basis coefficients’ decrease is bounded as

Il < @n+ DXE7] + [£7]). (7.190)

Exercise 7.55. Prove the three-term recursion relation for the harmonic
oscillator wave functions

Yoi1(q) = [2/(n + DI"2q¥(q) — [n/(n + D]V?Y,_1(q). (7.191)
This can easily be found from (7.166), (7.185), or the Christoffel-Darboux
formula for Hermite polynomials. It provides an economical algorithm for the
numerical computation of the oscillator functions.

Exercise 7.56. Show the explicit form of the Hermite polynomials to be

[n/2] —1)™ n—2m
Hotg) = m S C1C0)

o mi(n — 2m)!° (7.192)

where [n/2] is the largest integer smaller or equal to n/2. This is most easily done
using the generating function (7.178), expanding the next to last expression in
powers of x, and comparing the coefficients with those of the second expression.
You will come to use a double-summation exchange formula: Eq. (C.3).

Exercise 7.57. Prove the rather remarkable expression
exp(—y d?[dg®)q" = y"?H.(q/2y?). (7.193)

This can be done first for y =4, comparing directly with (7.192) and later effecting
a change of scale in g.

Exercise 7.58. Consider the variables g. = ¢q, * gs, so that 9,, = 9,, +
0,_ and 9,, = 0,, — 9,_. On €= functions of g. only, where the operator
action is well defined, the following identity holds:
exp(—42,,2)f(q+) = exp(—$0,,%) exp(—42,,2)f(g+). (7.194a)
Applying this on the Newton binomial
2 fn
flgs) =g+ = Z ( )ql’"qg‘”‘, (7.194b)
m=0 \M

you can find by (7.192) the addition formula for Hermite polynomials,

Ho(q1 + g2) = 2772 > (:1)Hm(zmql)Hn_,,,(zlqu), (7.194c)
m=0
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which in turn leads to
n 1/2
V(s + 43) = 7927 expla — 3120 3 (1) Ea@ 0 a-n(225).
m=0

n
\m
(7.195)

The last equation can be verified independently by multiplying by (x/2%/2)*/(n!)'/2
and summing over #n, using a double-summation exchange (Appendix C) and the
generating function (7.178). See the difference from Eqgs. (7.181)—(7.184).

Exercise 7.59. An upper bound for the zeros of Hermite polynomials is
(n — D[2/(n + 2)]*'2 [see the book by Szegd (1939, Section 6.32)]. For large n,
show that this constrains ¥,(¢g) to be significantly different from zero only for
q < (2n)'’2. The “width”’ of the functions ¥,(¢) in Fig. 7.10 is thus ~ 2(2n)*2,
Show that, from the discussion in Section 2.1 and the description of phase space
(Fig. 2.24), the maximum elongation in p and ¢ of an oscillator with energy
n=E = (p? + q?)/2 is precisely (2n)*/2.

7.5.10. Fourier Transformation Suggested as a Hyperdifferential Operator

One further consequence of the construction of the harmonic oscillator
wave functions ¥,(g) as functions which are self-reciprocal under Fourier
transformation, Eq. (7.167), is that, as eigenfunctions of the operator H”" in
(7.171),

(F¥,)(q) = exp(—imn/2)¥,(q) = exp[—im(H" — PI¥,(q).  (7.196)

The last term is an exponentiated operator with the action of the Fourier
transform on all elements of the W-basis. As this basis is dense in the space
of generalized functions, the action (7.196) will extend weakly to it. We can
thus write the Fourier (integral) transform as the hyperdifferential operator

F = exp(in/4) exp[—in(P? + Q?)/4]. (7.197)
This equality is valid if the functions acted upon are %, functions. For

Table 7.4 A Function and Its Harmonic Oscillator Partial-Wave Coefficients
under Some Operators and Operations

Operation

f(q)

f;"!’

Linear combination
Complex conjugation
Inversion
Differentiation
Multiplication

Fourier transformation

af(q) + bg(q)

fla)*

f(—q)

df(q)ldq

qf(q)

(-t - 1)@

i)

afy¥ + bgn¥

f'"W*

(= Drf¥

[ + DY — 2 41222
[(n + D354 + nti2f,7 (]2

nfn¥
(=0fa®
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FAR) or generalized functions, inner products with %, © test functions must
be taken in order to give meaning to this expression.

In Part IV we shall give a unified description of hyperdifferential
expressions such as (7.193) and (7.197).

7.5.11. The Quantum Repulsive Oscillator and Its Wave Functions

The second theme to be presented in this section on oscillator wave
functions is a short analysis of the solutions of the differential equation

Hx\(q) = Axa(9), (7.198a)

H" = l([pz — Q% = _1(a + g2 (7.198b)
— 2 - 2 dq2 q S *

Equations (7.198) resemble the harmonic oscillator equations (7.170)—(7.171)
except for the sign of the @2 term. The operator H" is the Schrodinger
Hamiltonian for the repulsive quantum oscillator system, whose potential
energy —q? repels the particle from the origin. Some of the reasons to be
interested in the solutions of (7.198) are the following: (a) They represent a
neat application of Fourier transform theory, similar to the Airy function
solution of (7.61)—(7.64), the free-fall (linear potential) quantum system.
(b) Properties of orthogonality and completeness of the set {x,(g)}re, to be
discussed in Section 8.2, will hinge on this derivation. (¢) The repulsive
oscillator, together with the linear potential, free-particle, and harmonic
oscillator quantum Hamiltonians, constitutes a basis for the class of quadratic
operators H = aP? + bQP + cQ? + dP + eQ + f1,a,...,f€%, whose
Green’s functions constitute the integral kernels of the linear canonical
transforms of Part I'V.

7.5.12. Finding the Repulsive Oscillator Wave Functions

Straightforward Fourier transformation of the differential equation
(7.198) is not conducive to its solution since from (7.57) FH'F~* = —H", so
no simplification is gained. If we could rid ourselves of the g2 term in (7.198b)
and replace it by, say, g, d/dq, or qd/dg, the Fourier method would reduce the
degree of the differential equation as was done in (7.61). A change of function
could achieve this: we let y,(g) = exp[l(q)lva(q) and, exp[l(q)] being self-
reproducing under d/dg, we arrange {(g) so that the second derivative cancels
the troublesome g2 term. Setting {(g) = cg?, with ¢ as yet undetermined,

2
Hrya(g) = —%exp(cqz)[j?2 + 4chiq + 2¢ + (4c? + l)q"’]v;\(q). (7.199)
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If, now, 4¢2 + 1 = 0, i.e., ¢ = 0i/2, o0 = + 1, the differential equation which
v,(q) has to satisfy is
[P2 + 26QP — (2A + oi)]ur(q) = O, (7.200)

which is amenable to simplification by Fourier transformation. Applying F,
we find

[Q2 — 26PQ — (2X + ai)]o,(p) = O; (7.201a)
ie.,
. d R all 2
ZUZp% + p% — (X — ai) |5A(p) = 0. (7.201b)
The solutions for this equation have the form p® exp(bp?) with a = —% — ioA

and b = io/4. Equation (7.201b) is singular for p = 0, so the solutions for
p > 0and p < 0 are uncoupled and independent. Let these be chosen as

0*(p) = @m) =12 prt2 "  exp(iop®/4) = 5,7(—p),  (7.202a)

where
p, p>0, 0, p=>0,
= = 7.202b
b {O, p<o, 7 {—p, p<0. ( )
We shall now set ¢ = 1. The ¢ = —1 case follows similarly. Retracing our

steps through the inverse Fourier transform and the change of function
involving exp(ig?/2), we find

x*(q) = 2“”2(277)“1] dppz*'*~™ expli(p®/4 + pq + 47/2)] = xa¥(—9),
(7.203a)

where we have introduced a phase 22 into the definition for later con-
venience. A change of variable p = 2 exp(iw/4)z'/2, the Taylor series expan-
sion of exp(ipg), and Euler’s integral form for the gamma function (Appendix
A) allow (7.203a) to be written as a series:

x2*(q) = Cyexp(ig®/2) ZO [+2 exp(in/4)q]"T(n/2 — iA]2 + })/n!,
" (7.203b)
» = expli(7/8 — LA In 2)]-27327~1 exp(mA/4). (7.203c¢)

It can also be put in terms of Whittaker’s form of the parabolic cylinder
function (see the special function tables of Erdelyi ez al. [1968, Vol. 2, p. 119,
Eq. 3)D:

X2 *(q) = CiDi_1jo( F 22 exp(3in/4)q), (7.203d)
C; = exp(im/8)2 %4z~ exp(mA/H)T(1/2 — i}). (7.203e)
For ¢ = —1, the expressions for x,*(g) and x, (g) are interchanged.

The function y(g) is shown in Fig. 7.11. The overall asymptotic behavior
|g| > 11is given by the exponential factor for ¢ in (7.203a), namely y,*(q) ~
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Fig. 7.11.
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Repulsive oscillator wave functions y,*(g) for values of A between 2 (top) and
—2 (bottom). We show the real, imaginary, and absolute values of this
function by heavy dotting, light dotting, and continuous plot. The dotted
parabola extending downward from A = 0 represents the repulsive oscillator
quantum potential. “Inside” this region, the quantity ¢g2/2 + A is negative,
so the curvature of x,*(g) is proportional to the function; i.e., solutions are
damped. “Outside” this region, g?/2 + A is positive, and the solutions
oscillate.
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exp(ig?/2). The function thus oscillates with strongly increasing rapidity.
The repulsive functions (7.203) are neither in #*(Z%) nor in £Y%). They
will be seen to constitute, nevertheless, a complete orthonormal basis—in the
Dirac sense—for the Hilbert space Z*(%).

Exercise 7.60. Follow the procedure (7.198)—(7.201) in order to find the
harmonic oscillator wave functions as solutions of (7.170)-(7.171) by the use of
the Fourier transformation.

7.5.13. Alternative Path: Fourier Transformation of ¢ I, - Complex

Another way to find the repulsive oscillator wave functions (7.203),
which will provide an alternative form for the solutions of (7.201) equivalent
to those considered from (7.202) onward, is to see the function 4,*(p) as
the product of pz*/?~™ and a Gaussian of imaginary width exp(ip?/4). The
inverse Fourier transform will thus be the convolution of the inverse Fourier
transforms of the factors.

Exercise 7.61. Show that the formula (7.22) which finds the Fourier trans-
form of a Gaussian G,(q) of width w as w~2Gy,,(p) holds for complex w as
well as long as Rew > 0. This involves a change of variable ¢° = w~*2g for
complex w which inclines the path of integration to an angle —1 argw. See
Fig. 7.12. This integral can be evaluated by complex contour integration for
|arg w| < m/2 and as a limit outside the integral for w pure imaginary. For the
factor under discussion,

exp(ip?/4) = 272 exp(im/4)G(p); (7.204a)
the inverse Fourier transform is thus
(F~1G2)(q) = (21))"2Gyja(q) = (2m)~? exp(—ig?). (7.204b)

We always mean i = exp(iw/2), lest multivaluation problems appear.

The calculation of the inverse Fourier transform of pz/2~* is a more
complicated affair. To begin the excursion, let us calculate the Fourier
transforms of ¢, * and g _%, where 7 is a complex number and g is defined as

o la

‘K/:/ " - ¢
Fig. 7.12. “Bow-tie”” contour deforma-

tion. Shaded areas indicate the
g quadrants where the Gaussian
integrand diverges for |g| — .
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l=
Fig.7.13. ““Sector” contour deformation. arg (c+ip)
Shaded half-plane indicates ——10 =3 —
asymptotic divergence.

in (7.202b). To avoid integration contours at the edges of the convergence
regions, we shall first multiply the function g, by a decreasing exponential

©.(q) = exp(—cq) and g_* by O(—¢q) = exp(cq), ¢ > 0:

[F(g.0(+ )I(p) = @m) | da(q.) expl—q(xc + ip)]

wexpi(c+ip)
— @m) e + i)t j ozt exp(—z), (7.2052)
0

where we have effected a change of variables z = g(+ ¢ + ip). The integral
in (7.205a) is thus taken along a ray in the direction of arg(c + ip) which lies
in the region of convergence of the integrand, Rez > 0, i.e., for ¢ > 0
(Fig. 7.13), and which by Cauchy’s theorem equals the same integral along
the positive axis. This integral can then be recognized as Euler’s integral
formula for the gamma function I'(r + 1) (Appendix A). For +i=
exp( +im/2), the transform we are looking for is the limit of (7.205a) as
¢— 07, namely,

(Fg.)p) = @)™ expl[F i(r + Dnf2]0(r + 1) lim (p ¥ ie)" ™,
(7.205b)

Expressions of the type lim,_o(p F 7e) " were dealt with in Section 7.4 for
integer n [Egs. (7.140)] leading to derivatives of the Dirac 8. For complex n—
call it v—the situation is not so extreme but does require care. As the function
is multivalued, consider

(x + iy)Y = |x + iy|" exp[iv arg(x + iy)] (7.2062)

where the branch cut runs along the negative x-axis. For x > 0 the limits
y — 0% can be taken without problem, yielding |x|” exp(iv arg x) = x*. For
x < 0, however, we have to specify that we approach the negative axis from
above or below (Fig. 7.14): If y — 0%, arg(x + iy) — =, while if y —0~,

-
Fig. 7.14. Real limits of the complex branch‘z cut T X
power function. A branch cut 0
extends along the negative real Ai

axis.
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arg(x + iy) — —m; thus (7.206a) becomes |x|” exp( + ivm). Introducing now
the functions x . defined as in (7.202b),

lim (x F iy)’ = x,.” + x_" exp(F ivm) (7.206b)
y—0+
forv # —1, —2,.... [The analysis of (7.206) as » becomes a negative integer

can be found in Gel'fand et al. (1964, Vol. I, Section 4.4).] We can now
put (7.206) into (7.205b) for v = —7 — 1 and obtain the Fourier transform
of the ¢.* functions, which can be conveniently written in matrix form:

—iexp(—int/2) iexp(inT/2) ) (p;"l)
i exp(im/2) —iexp(—imt/2)) \pz*~1)"
(7.207)

[F(Z+:) — (2a)~Y2T(r + 1)(

From a development parallel to the above, or by inverting (7.207) for
T<>—1 — 1, we find

(P Z o -ripys i exp(in/2) —iexp(—imt/2)\ (q3"*
F (P—’) = (2m)~2T(r + 1)(_iexP(—i7rT/2) i exp(imr/2) )(q:r_l).
(7.208)

Exercise 7.62. Verify that (7.25) holds for (7.207)—(7.208), namely,
(F?q.7)(q") = (—q")+"* = q%. (7.209)
You will come to use the gamma function reflection formula (A.9a). The matrix

forms (7.207)—(7.208) are quite handy.

Exercise 7.63. The functions ¢g." are solutions to the differential equation

iQPf(q) = g 5‘3 ey = ), (7.210)

Show that, under Fourier transformation, Eq. (7.210) behaves as expected from
(7.207)—(7.208).

7.5.14. Completion of the Alternative Path

Having found Egs. (7.207) and (7.208), which will appear later in
various contexts, we return to our original aim, namely, the alternative
calculation of the repulsive oscillator wave functions as the convolution of
two inverse transforms, (7.204) and (7.208), with the phase defined in (7.203a),

xa*(q) = 22 exp(ig®/2)(F =19, *)(q)

= 212*iN2 exp(in[4) exp(ig®/2)[F ~(pz*2~*Gy)](q)
= 2M2(2m) =12 exp(ig®[2)[(F~'pz'2~™) * Gyzil(q).  (7.211)
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Equation (7.208) can be now used for 7 = —1 — jA, and, after a few simpli-
fications, one arrives at an alternative expression for (7.203) given by

X?\i(q) — 2i)\/2(2ﬂ.)—3/21"(_% = IA)J dq/(a)\iq':IIZ—i)\ + b)\:i:q’_—1/2—i?\)

x expli(—q'? + 2qq" — q?/2)], (7.212a)
where

at = iexp(mA/2) = by, a,~ = exp(—mA/2) = b,*. (7.212b)
The repulsive oscillator functions have appeared little in the literature. The
reason for this seems to have been the fact that their explicit expression is not
very compact and the evaluation of integrals involving them would require
the use of arduous analytical calculations. In Part IV we hope to convince the
reader that integral transform techniques are available to reduce their

evaluation to much simpler analysis involving only matrix algebra.

7.5.15. Fourier Transformation of the Repulsive Oscillator Wave Functions

We can bind together the two expressions for the repulsive oscillator
functions (7.203) and (7.212) if we consider the problem of finding the
Fourier transform of the y,*(g). Far from being just a messy calculation,
this will show several interesting relations which will be used in Part IV. We
remarked before that FH'F~* = —H", so we can expect that Fy,* will be a
linear combination of the yx%,. From Eq. (7.203) and by using various
formulas for Gaussians, their Fourier transformations, and convolution,

(Fxa*)(p) = 22(2m)*2 exp(im[A)[F(G; - F ~19,*)1(p)
= 2M2(Gyy * 0, %)(p)

= 2N2(27) -1 eXp(irr/4)J dp'p s 12—
x expli(—p?/2 + pp’ — p"?/D)]. (7.213)
It will be observed that the integral, although akin to (7.203), has the same
sign of the Gaussian exponentials as (7.212) for —A. By a change of variables
q' = p’[2, one obtains separately the two summands of this equation, which,
after some cancellations and rearrangements, read, in matrix form,

o\ (—iexp(—mA2)  exp(VD) \ (x*a
[F(xx) - C“( exp(m\/2) —z‘exp(—nx/z)) (x:A)’ (7.2142)
C}, = exp(in/4)(2m)~ 12T G — iN). (7.214b)

Exercise 7.64. Verify that (7.214) yields
(F*x2*)(q) = xa*(=q) = a7 (q), (7.215)
as was done in Exercise 7.62, thereby checking that (7.25) holds properly.
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It might appear amusing that the matrix form (7.214) matches that of
(7.207) for = = —% — i}, that is, the Fourier transform properties of the pair
Xa* are the same as those of qz*2~*. This fact is neither isolated nor acci-
dental. As will be brought out in Part 1V, what happens is that the yx,*(q)
are unitary integral transforms of gz1/2~%*. The transform in question has as
its kernel the exponential factor in the integral (7.203a). We have seen that
this transform and the Fourier one commute. In fact we shall come to prove
that y,* = F~1/2g;¥2-" As the power functions are simpler to handle
than the parabolic cylinder ones, it is more convenient to work in the trans-
form space of functions and finally transform back the results. See Exercise
9.7.

As stated before, the repulsive oscillator functions are orthonormal in
the sense of Dirac and complete in F*(Z#). Orthogonality is easy to prove:

Exercise 7.65. Using the self-adjoint operator H” and the defining equation
(7.198), show that (xa*, x&) = 0 for A # X',

Exercise 7.66. Using the Parseval formula and the fact that y,*(g) are the
Fourier transforms of 0, *(p), with disjoint supports, show that (x,*, x¥) = 0.

Dirac orthonormality will be discussed in Section 8.2, while complete-
ness must wait until Part IV. Generating functions and other properties will
appear in various sections.

7.6. Uncertainty Relations

A given function and its Fourier transform exhibit a number of comple-
mentary properties. We have seen time and again that a very “peaked”
function has a “broad” transform and vice versa. The precise statement of
this reciprocal width relation will be given. It constitutes, when applied in
quantum mechanics, the fundamental Heisenberg uncertainty relation.

7.6.1. General Discussion

The Fourier transform of a rectangle function of width e [Egs. (7.4) and
(7.5)] is proportional to sin(pe/2)/p. The spread or width of the latter can be
defined roughly as that of the central peak of the function (Fig. 7.1) between |
the values —= and = of the sine argument; that is, p = +2=/e. The width of
the rectangle function transform is thus 4x/e. The product of the widths of
the two functions is then 47—a constant independent of e. The narrower the
rectangle, the broader its transform and vice versa. As a second example, the
Gaussian bell function of width w, Eq. (7.20), has a Gaussian of width 1/w
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as its Fourier transform. The product of the widths defined in this way is
unity.

These examples suggest that a relation of the kind width(f) x width(f) =
constant should exist—if we can agree on a general definition of what the
width of a function means. As we shall see, there are at least two working
definitions. One is particularly important as it gives rise to the quantum-
mechanical uncertainty relation between position and momentum measure-
ments recognized by Heisenberg.

7.6.2. Moments

Given a function f(g), we associate with it, using the language of
probability theory, a positive distribution function |f(q)|?. The rth moment
of such a distribution is defined to be’

7= awisor|/|[ awraor)| (1.216)

The first moment ¢ is the average of | f(q)|2, which can be interpreted as the
“center of gravity” of the area under the curve. If the function f(g) has
definite symmetry under reflections through the origin, its average ¢! is zero.

Exercise 7.67. Show that if a function with zero average is displaced by a,
the average of the displaced function will be a.

7.6.3. Dispersion and the Heisenberg Uncertainty Relation

The second moment g2 represents the peaking of the distribution
| f(g)|? around the origin. For the Gaussian function we can use (7.23) to
find its g2 as |QG,|?/|G,|? = /2. For the rectangle function of width e,
the second moment is ¢2/12. Second moment and ““intuitive” width are thus
not the same. In particular, a displaced Gaussian will have a larger second
moment than its undisplaced version. It is thus convenient to define the
dispersion A; of a function f(g) as the second moment of | f(g)|* with respect
to its average, i.e.,

s=| [ daa - oeisar || aaior]

= (@ — gD [?/]f]> (7.217)
It describes the peaking of f(g) independently of the location of the peak.
We shall prove the main result of this section (Section 7.6), which can be
stated as follows: the product of the dispersion of a function f and that of its
Fourier transform f has a lower bound of value :

AA; = 1/4. (7.218)
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7.6.4. Proof of the Uncertainty Relation

It is sufficient to consider functions whose average is zero. If this is not
the case, we can always translate f(g) by g without changing its dispersion.
The Fourier-transformed function f(p) will be multiplied then by a phase
exp(ipg?) which also leaves its dispersion invariant. Assuming now that at
least the first derivative of f is in £2(#) and g* = 0 for f and f, we write

I£1#A,47 = |Qf|*| QF >

= |af|*|Pf]® [by (7.57)]
> |(Qf, Pf)|? (Schwartz inequality)
> 1@, P — (PLODE (|22 > (Im 2)?]

1|, QPf) — (f, PQf)|? (O and P self-adjoint)
= 3|, [Q, PIf)|2 = L|f||* [commutator (7.59)], (7.219)
which proves (7.218).

Il

Exercise 7.68. Show that had we kept (¢ — F)"’ and (p — pY)? in the deriva-
tion (7.219) the same final result would be obtained.

7.6.5. Dispersion of Coherent States and of Oscillator Wave Functions

Let us verify the uncertainty relationship for some of the examples at
hand. For the Gaussian function G,(q) we saw that A; = w/2, as
Gu(p) ~ Gyiu(p), Ag,, Ag, = %. For this function, therefore, the lower limit
of the uncertainty relation (7.218) is attained. For the coherent states (7.188),
essentially rescaled and translated Gaussians of unit width, the same is true:

Ay, = QY |*/[Y]2 =3  ce®. (7.220)

For the harmonic oscillator function of Section 7.5 (see Fig. 7.10), the
dispersion can be calculated as follows:

Ay, = (¥, Q*F,) = 4(¥,, Q*¥,) + 4(¥,, P*¥,)
= (¥, H¥,) = n + 4, (7.221)

where we have used their properties under Fourier transformation and the
fact that they are eigenfunctions of the operator H in (7.171). The dispersion
of the ¥',(¢) and their Fourier transforms is thus proportional to n. (Recall
Exercise 7.59.)

7.6.6. Minimum Dispersion States

The Gaussian function can be shown to be the only function—up to
translation, normalization, and dilatation—which attains the minimum
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allowed by the uncertainty relation (7.218). For the equality in (7.218) to
hold, (7.219) requires (a) that the Schwartz inequality be valid as an equality,
i.e., that Qf be parallel to Pf, and (b) that (Qf, Pf) be pure imaginary. The
first requirement implies that f(g) satisfies df(q)/dg = icqf(g) for some
constant ¢ € %, which means that f(g) = ¢’ exp(icq?/2), ¢’ € €. The second
requirement then narrows the choice to Re ¢ = 0. Finally, if the function is
to be square-integrable, Im ¢ > 0. We are thus left with the Gaussian bell
function, and, through (complex) translations, with all coherent states.

7.6.7. Equivalent Width

We must remark that the proof of the uncertainty relation required that
the first derivative of f(q) be square-integrable. This bars the preceding
analysis from applying to the rectangle function. In fact, the evaluation of
Ay requires the integration of p? times [sin(ep/2)/p]? over p € %, which is
infinity. Yet, as we argued at the beginning of this section, some form of
width reciprocity does hold for this pair of functions. Another definition
which embodies the intuitive concept of ““broadness’ of a function is that of
equivalent width:

W= daf(ayro) (7.02)

[Compare with Egs. (4.69) for Fourier series.] The quantity (7.222) gives the
equivalent width of a rectangle function which has the same area as the area
under the curve f(q) with height f(0). The equivalent width can easily be
zero or infinity if £(0) = 0 or f(0) = 0, so the estimate has to be made
judiciously, translating f(g) if necessary. The complementarity relation
afforded by the definition (7.222) is

W, Wy = 2. (7.223)

Equation (7.223) can be proven by noting that the numerator of each factor
equals (27)*'2 times the denominator of the other. Checking: For the rectangle
function of width e, W5 = e, while by using (7.10b), W3 = 2u/e. For the unit
Gaussian of width w in (7.20), W, = (2nw)/2.

Last, as our estimation of the “width” of the ¥,(q) in Exercise 7.59
suggests, other definitions of width may be set up.

7.6.8. Complementarity and Operator Noncommutation

Complementarity relations between properties of a function and its
Fourier transform ‘are particularly suited to describe the observed facts in
quantum mechanics. Although this is not the place to expound the general
theory and supporting data, we shall try to indicate where uncertainty rela-
tions of the Heisenberg type appear by giving a few simplified rules of the
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game. (a) Replace a classical observable S(g, p) function of position g and
its canonically conjugate momentum p by a self-adjoint operator in £*(%),
S(Q, P), usually in the Schridinger representation given by (7.55)-(7.56).
(b) The state of a system is described by a wave function ¥(q), where [¢(g)|?
represents the probability density of finding the particle at the position g;
hence ||| = 1 since the probability of finding the particle in the whole of #
is unity. (c) The momentum-space description of the state is given by (p).
(d) The mean or expected value of the observable S when the system is in the
state Y is § = (¢, S¢). (e) There is a dispersion in the results of measurements
on S given by A,(S) = (S — §)¢|% Note that if ¢ happens to be an
eigenstate of S with eigenvalue o, then § = o and Ay(S) = 0.

Itis in the last point that we establish contact with our derivation (7.219),
for assume that two quantities represented by operators S and R are subject
to simultaneous measurement. What quantum mechanics tells us is that the
results of the two measurements cannot be simultaneously dispersionless
unless S and R commute. The proof will clarify the statement further: by a
process similar to (7.219) and by setting § and 7 to zero as justified by Exercise
7.68,

Ay(8)-Ay(R) = [S[2[RY[* > [(Sep, RY)[* > 3{($, [S, RIY)|? (7.224)

The product of the dispersions of the two measurements is thus bounded
from below by the expectation value of [S, R] when the system is in a state .

For measurements of position and momentum the representing operators
are Q and AP for which (7.59) holds. The actual value of the left-hand side
depends on the state ¢, but a lower bound is determined by their commutator
expectation value, i.e., /4.

Other observables whose dispersion product is bounded by (7.224) are
the components of three-dimensional angular momentum. There are further
uncertainty relations between physical quantities such as angle-angular
momentum and time-energy whose form, however close to (7.224), does not
stem from this argument alone.

A good account of quantum mechanics and the role of uncertainty
relations can be found in Messiah (1964, pp. 129-139). Some hard-core
research articles on uncertainty relations other than the basic Heisenberg
one have been written by Susskind and Glogower (1964), Carruthers and
Nieto (1965, 1968), and Jackiw (1968).





