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Summary. — We study the construction and action of certain Lie algebras
of second- and higher-order differential operators on spaces of solutions
of well-known parabolic, hyperbolic and elliptie linear differential equa-
tions. The latter include the N-dimensional quadratic quantum Hawil-
tonian Schrédinger equations, the one-dimensional heat and wave equa-
tions and the two-dimensional Helmnholtz equation. In one approach.
the usual similarity first-order differential operator algebra of the equa-
tion is embedded in the larger one, which appears as a quantum-mechanical
dynamic algebra. In a second approach, the new algebra is built as the
time evolution of a finite-transformation algebra on the initial conditions.
In a third approach, the inhomoceneous similarity algebra is deformed to
a noncompact classical one. In every.case, we can integrate the algebra
to a Lie group of integral transforms dcting effectively on the solution space
of the differential equation.

1. - Introduction. s ’ .

The last fifteen years have scen a remewed interest in the Lie theoretical
treatment of partial differential equations, both linear and nonlinear (*3).
From the method of construction of the similarity algebra, however, it is clear

(*) L. V. OvssaxNigov: Gruppovye Svoystea Differentsialnikh Uravnyeni, Academy of
Sciences of the USSR (Siberian Branch) (Novosibirsk, 1962) (translated by G. .
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that only algebras of first-order differential operators in the independent and
dependent variables will appear. During the same period, theoretical physicists
have been working with ¢ hidden » symmetry and dynamical algebras for
Schrodinger systems. These usually turn out to be differential operators of
order hizher than the first. The quadrupole operators in the harmonic-oscillator
S, alzebra () and the step operators of the %,p dynamical algebra
((3), Chapter 20) are of second order in the space derivatives; for the Kepler
system, the Runge-Lenz vector components in &C, are of second order (&),
while the generators which are noncompact in the %¢,, dynamical algebra
—conformal transformations of the Fock sphere in momentum space—are
integral operators in configuration space ((®*), (5) Chapter 21). (Sce, how-
ever, (1°).) Other cases of symmetry algebras also involve operators of infinite
order expressible as integral transforms (%12). These algebras have been used
in order to find transition operator matrix elements and expectation values
in nuclear shell theory ((*), (®) Chapter 20) and hydrogenic physies ((1%1),
(13) Chapter 21), extending the techniques of the angular-momentum Racah
algebra to these fields.

Both in differential equations and in dynamical-algebra physiecs, the study
of the associated Lie group seems to have been of secondary importance,
exception taken of the rotation, Galilean, Lorentz and Poincaré transformations.
The work of Moshinsky and collaborators (-20) has shown, however, that,

Bruyax).”
i*y G. W. Brryax and J. D. Cork: Similarity Methods for Differeniial Equatwm
_{pplmt Mathematical Sciences, Vol. 13 (Berlin, 1974).

*)  W. MILLER jr.: Symmeiry and Separation of Variables. Encyclopedia of Mathematics

and its Application, Vol. 4 (New York, N. Y., 1977).
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*) B. . WYBOURNE: Classical Groups for Physicists (New York, N. Y., 1974).
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at least regarding the harmonic-oscillator Sp.yc group, finite transformations
result in a semi-group of integral transforms which represent eanonical trans-
formations for a quauntum system, and thus suggest a host of interesting
problems both in quantum mechanies and in group theory. This semi-group
and associated ones include, as particular cases of finite group elements, the
integral transforms of Fourier, Bergmann, Mellin, bilateral Laplace, Gauss-
Weierstrass, Hankel and Barut-Girardello ((3*), (**) Part. 4) and have led
to what seems to be a significant integration of various developments in group
theory, special functions and partial differential equations of parabolic
type ((**¢), (**) Chapter 10). In the mathematical literature, it has been
shown that every N-dimensional real Lie algebra has a realization in second-
order differential operators in N variables, with no first-order part (*7).

Consider m-th order differential operators in one independent variable
written as

n d*
(L) Po =3 Pug)
k=0 q

where d°/dq°= 1. We are interested in the exponentiation of (1.1), exp [ixP"],
and that of analogous versions in more than one independent variable. The
original work of Lie (2%) dealt with the cases (1.1) for n = 1 and P,(q) = 0.
These can be called point transformations, mapping a function f(g) on f(g (g, 2}).
The present work with similarity groups in differential equations entails cou-
sidering the solution f as an independent variable. If the equation is linear,
all similarity operators involving f appear as fc,cf, which is equivalent to 1
acting on f(g). This remark brings in operators (1.1) with a P,(¢) term whose
exponentiated action is

» d
(1.2) fa(q) = exp |ix | Py(q) — + Polo) || fla) = ulg, 2) (¢ (2, 2)) ,
dq

where a multiplier function u(g, «) thus appears. Groups generated out of
operators of this kind seem to have been first applied by BARGMANY (*). The

(®Y) K. B. Worr: Journ. Math. Phys., 13, 1205 (1974).

(??) K. B. Worr: Jowrn. Math. Phys., 15, 2102 (1974).

(3*) K. B. Worr: Integral Transforms in Science and Engineering (New York, N. Y.,
1979).

(29 C. P. Bover and K. B. WorLr: Rev. ex. Fis., 23, 31 (1976).

(») K. B. Worr: Jowrn. Math. Phys., 17, 602 (1976).

(2®) K. B. Worr: Journ. Math. Phys., 18, 1046 (1977). :

(?) R. Ya. Grapovskava and S. G. Kreiv: Math. Nachr., T3, 9 (1976).

(38) Sophus Lie’s 1880 Transformation Group Paper (translated by M. ACKERMANN,
commented by R. Heryaxy) (Brookline, Mass., 1977).

(*) V. BareManNN: dan. Jath., 48, 568 (1947).
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action (1.27 will be called geometric as the value of f.(7) at some g depends on the
value of j(4') at a single point q'. Of course, when Py(q) = 0, u(q, )= 1. The
next step, » = 2, has been solved completely for P,(q) = €55, Py(q) = €5, + ¢4
and Plq)= cp.¢*+ ¢ € With ¢, constant (®»25) and when P,(g) = ¢y,
Pilg) = epnq — e1 007 Polq) = €42¢* + Co—oq72 (**). In these cases, the group
action is that of an integral transform

(1.3) fula) = expliaP=)f(g) = [aq' () K(g, ¢'5 @)
1

over an interval I which is 2 and R+, respectively. The kernel K(q, ¢'; )
is a Gaussian, exponential and or Bessel function. As a—>0 (or as ¢,,—0)
this kernel becomes a Dirac é.

The present article is devoted to explore some groups generated by oper-
ators of the kind (1.1) in more than one independent variable, acting on spaces
of functions which satisfy a linear partial differential equation. In doing so,
we must emphasize several points. First, that for one-parameter groups, the
Eernel in (1.3} involves only the Green’s function of the equation, so it is actually
the case of finite-dimensional groups we are interested in. Second, if f(q, )
belongs to the space of solutions of a given partial differential equation

(1.4) (H-¢)f(q,t)=0,

and the group action is required to map this space onto itself, the algebra of
operators (1.1) must satisfy the well-known condition

(1.5) [((H—2), P™] = R(H—2,),

where the operator R; is determined by P;”. Now, if X is an operator indepen-
dent of ¢, then it is easy to verify that

(1.6) X = exp[tH] X exp [—tH]

satisfies (1.3) with R = 0. This only means that any transformation of the
initial conditions will produce a transformation in the solution space of (1.4).
Although this remark would appear to trivialize the search for symmetry trans-
formations, it rather directs us, as for the dynamical groups of quantum
mechanies, to search for finite algebras of operators which include H or under
which H transforms in a simple way. Thirdly, for hyperbolie or elliptic equa-
tions, the form (1.4) still applies, if we consider H to be a matrix with operator
entries and f as a column veetor composed out of a function and its ¢-derivative,
The group of transforms (1.3) will require likewise a function matrix kernel
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on which the group identity « = 0 in (1.3) only requires that it reduces to the
reproducing kernel of the space of solutions—not necessarily a Dirac 4.

Rather than embark here on a general theory of hyperdifferential operators
(for these, see (*)), it seems to us that it is relevant at present to give various
specific examples of partial differential equations of parabolie, hyperbolie
and elliptic type: the free-particle Schrodinger, heat, wave and Helmholtz
equations, in which algebras of second- and higher-order differential operators
appear, and where the remarks listed above apply one at a time.

In sect. 2 we follow the « dynamiecal algebra » construct of quadratic quan-
tum Hamiltonians in N space dimensions: « noninvariance » algebras, properly
containing the similarity algebra of the differential equation. This algebra is
exponentiated to a group WySp,yz. The Schrodinger similarity algebra (31:32),
SFeloy= Wy A&/ g @ Oy] contains all and only first-order operators in space
and time, while %% /..y p contains all up-to-second-order ones. The integral
transform kernels are given explicitly and related to the algebra geuerators.
As the time evolution operator need not be in a given group when the latter
maps solutions of an equation into solutions of the same, in sect. 3 we develop
one such case: conformal symmetry operators acting on the initial conditions
of a (Schréodinger-invariant) parabolie differential equation. For arbitrary time
we find that this group evolves into an isomorphic group of integral transforms.
In sect. 4 we produce a complementary Schrédinger symmetry group for the
(conformal invariant) wave equation. Lastly, in sect. 5, we deform (229
the symmetry algebra of the Helmholtz equation [SC, = ¥(,,] and examine
the resulting integrated process in terms of the Green’s function and
boundary data.

Each of the three approaches listed here, dynamical algebras (sect. 2,
transformation of initial conditions (sect. 3 and 4) and algebra deformation
(sect. 3), scem extensible to wide, overlapping classes of partial differential
equations, linear as well as nonlinear. Indeed, as will be clear, infinite-dimen-
sional algebras can be produced in every case and the problem is rather to
be able to reduce oneself to finite-dimensional ones. In the concluding sect. 6
we offer some comments on this situation.

2. — Symplectic symmetry in a class of parabolic equations.

In this section we give a detailed account of the Lie algebra % ff}'az,\-,g, the
corresponding Lie group and its action on a space of functions an R¥; this

(*) 8. SrrixseEra and F. TrEVES: Journ. Dijf. Eq., 8, 333 (1970).

(**) C. P. Boyer: Helv. Phys. dcta, 47, 389 (1974).

(**) U. NiepErer: Helv. Phys. Acta, 45, 802 (1972).

(3% J. G. NagEeL: dnn. Inst. H. Poincaré, 13 A, 1 (1970).

(*¢) C. P. Boyer and K. B. Worr: Journ. Math. Phys., 14, 1853 (1973).
(*) K. B. Worr and C. P. BoYER: Journ. Math. Phys., 15, 2096 (1974).
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i with the purpose of fixing the notation for subsequent sections, present
results which have not appeared explicitly before, and show how this algebra
appears as a symmetry algebra for the free-particle Schrodinger equation
in particular.

Consider the operators defined through their action on a suitable space of
functions on I¥:

(2.1a) Q.flq) = ¢./(q), qeR",

(2.1b; P.flq) =—ilf(q)/cgn, Mmyn=1,2,..,N,

and the unit operator 1. These 2N - 1 operators form a basis for (*) a real-
ization of tlhie Heisenberg-Weyl algebra %% with commutation relations

(22) [me Pn]=i6rnh1 ’ [Q,,,, 1]=07 {P’” 11:0'

We shall consider g to be a row vector and g7, its transpose, a column vector.
The Lie algebra exponentiates to the Heisenberg-Weyl group Wy whose elements
Wi(x, y, 5}, parametrized through row vectors x, y € R and z € R act on suitable
functions of q as ’

(2.3)  Wix, ¥, 2)j(q) = exp [i(Z 7@+ Sy, P+ z1)]f(q) s

= exp [i(xqT+ xx7/2 + 2)]f(q + ¥) -

We shall reserve Roman lower- and upper-case letters for A-dimensional row
vectors and matrices, and corresponding Greek letters for 2N -dimensional ones.
Let thus § = (x, 3). The group composition rule for Wy can be found

o

from (2.3) or directly from (2.2) to be

(2-4a) WE, 2)WE,, )= WE + &, 54 2+ {E,.QE_:) y
where ‘ »

. 0 —1

(2.40) Q= 1 o’

~

1 being the N x N unit matrix.
Out of the universal enveloping algebra of %7 we can now build the second-

(*¢) K. B. Wovrr: The Heisenberg-Weyl ring in quantum mechanics, in Group Theory
and its Applications, Vol. 3, edited by E. M. Loesr (New York, N. Y., 1975).

S
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order operators and their associated 2 2 2Y matrices

(2.5q) Crs = @, Q, —=T(C,.) = — i( e 0)
mn S’n" 0 b
(2.50) B,, = P,P, <> T(B,,) = 5(0 S)
7 m¥ n mn 0 0 ’
1 Em 0
(2.5¢) A, = 3 (QuP,+ P, Q,) > T(A,,) =i ( 0 _E.,.,,) ’

where we have used the ¥ XN matrices
(2.5d) E™ = AIE;’;"H i E;’;‘n — dmjénk . Smn — Emn _:_ E'» = Snm ;

which have, respectively, one and two nonzero elements. There are N(2N — 1)
of these operators. They can be shown, morcover, to satisfy the ecommutation
relation of the 2.N-dimensional symplectic real Lie algebra &y 5. Similurly,
one can verify that the commutation relations of the operators and their asso-
ciated matrices are identical. These matrices —and linear combinations thereof—
satisfy T'Q -+ QI'T= 0. TUnder exponentiation, Z = exp[/i=T] will satisfy
ZQXT= Q. This property defines the 2N «2Y real symplectic group. We
write £ in four I x ¥ blocks:

A B
(2.6) z=(c D), ABT = BA®, CDT=DC®, AD'— BCT=1.

The exponentiation of the individual matrices in (2.3) is easy as all but
I'(A.,) are nilpotent. The expounentiation of linear combinations is relatively
more complicated, but can be handled by using various subgroup decomposi-
tion. In particular, the A-operators have a sublagebra &¥Cy generated by

(2.7) M, = Ann— Ain ’
for which the representation matrices exponentiate to orthogonal ones.

The adjoint action of Sp,ys on the generators of %7 can be written in
2N-vector form as

Q pr —B7\ (@ Q
28) Szlp)SF=|_cr arflp) =% P)’

the composition law holding accordingly as

(2.9) sz,sz,= ‘I"Szzlz,;

S v e et e o RA et e e e —— s amar ot ceve————y
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and §, = 1, where ¢ is a possible sign factor (see below). From (2.8), in a manner
entirelv analogous to ((2°) sect. 9'1), one can find the action of this Sp,wz
group of operators on a suitable space of functions of g € B as an (in general)
integral transform

S N __r ' 1 !
(2.10) flg) == Szf(q) =fd‘q flq")Cz(q, q')
B.V
with kernel

(211)  Cslg, g') = exp [~ iNn/4]([2]" det B)+-
-exp [i(}q' B~*4q'"— q'B~'g" + 1qDBq")].

This class of integral transforms has been termed caronical. The sign factor ¢
in (2.9) turns out to be given by sign[det (B,B,)/det (B,) det(B,)] so that the
adjoint action (2.8) is faithful, but (2.10) yields a 2:1 ray representation of
Sp,y,- When the group parameters are allowed to go complex, (2.11)
still holds for a subsemi-group and ¢ is still only a sign. The analysis follows
that of ref. ((**) appendix B) for the N’ = 1 case, with det B in place of b. The
case det B = 0 will be analyzed next.

Since any Sp,y » matrix with det 4 =0 can be decomposed into elements as

o 4 B 1 0\ /4 0 \/t 4B
(=) (c p) =\cam 1flo aJlo 1 )"

we can look separately into each of the subgroups in this product. The action
of the first two can be found independently of (2.10)-(2.11) and yields

a) Gaussian multiplication

1 0\ I
(2.13) S c 1 j(q) = exp [:,—quqT] flq),

b) linear transformation
A 0
(2.14) Slo gra)f(@) = (det A)yij(gA™),
¢) pure integral transformation (1 B) .

0 1

These particularize the transform (2.11). Their behaviour as det B—0
can be analvzed noting that, from (2.7), B is a symmetric matrix in this
case, which can be brought to diagounal form through an orthogonal mafrix R.
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When B =|b,,0...], the kernel (2.11) is a product of N Gaussians of the form
2 I'yas \a

(2=bn)texp(i(g,— q,)%/2b,], == s B waws SV

for which the b,,— 0 limit can be ascertained as in ((23) sect. 9'1) where the
one-dimensional case is shown to become a Dirac 8(q,— ¢,). It follows that
when B is a matrix of rank r and R is such that B = RB'RT with B’ diagonal
(byby ... 5,0 ... 0), then the kernel (2.11) is

(2.15) [(27)"by by ... b, exp [— irz[4]-

-exp E—z[ S it (lq — q']R)i]] ﬁ o(l(gq — g R1) ,

k=1 n=r+1
and the transform (2.10) effectively only involves r integrations.
The Wy and Sp,y groups can be now composed as

(2.16) I{Z,E, 2} = S W(E, 2) .

As the generators of Wy transform among themselves under the adjoint action
of Sp,vr, the composite operators (2.16) will be elements of the semi-direct
product WyASp.y g, with Wy normal. We call this the \\'eyl-symplel‘-tic group
WxSp,yz. The group composition reads

(2.17) ’{zu i zx}’{zee g, :z} == ’{zxzz,- B3+ 8y m+ 44 FEEQET .

as can be found from (2.16), (2.8) and (2.4). The identity element is /{1, 0, 0}
and I{Z, §, 2} = I{Z-1, — EZ-!, — z}. (We note that EQET= 0.)

A particularly important subgroup is that of purely geometric trans-
formations

4 0
(218) Mo  gear® ¥ 2@ =
= (det 4)~texp [i (}gCA-1q7 - qAT™ 12T + L yxT + 2)] flgA™ ~ y),

where recall § = (x, y). Here the value of If(q) depends only on.the value
of f(q’) at one point, and (2.18) is the subset of all transformations with this
property.

Consider now the time evolution of a function f(q) as dictated by the
N-dimensional free-particle Schrédinger equation

(2.19a) (% S P, Pn)f(q,- t) = i8.f(q,1).
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This is a canonical transform of the initial condition fo{g) given by

(2.190)  fig, 1) = exp [12,1f(g, 1')]mo =

1. (1t
= €XP [“Elt z Pnpn] fo(‘]) = l{({) 1) ; 07 0; 0} fo('])s

where the last transform is the evolution operator of the system. Now, if the
“initial condition f,(q) is subject to a WySp,v transformation and becomes
a new g,(q), f(q, 1) will change correspondingly as

1 1
(2.20a)  g(q,1) =1 0 1 10,0,019(q) =

U Shondlt -

A-L{C B-11iD
=’{ C D sx:y:z}fo(Q)-

We now write the last group element as the product of one geometric trans-
formation times an evolution operator for the free particle in a transformed
time ¢, here a N XN matrix T", as

_ A4 -41C 0 , 1 T '
(.20 |1 C (4 + tC)r yx, y—xT', zp | 0 1 +0,0,0¢1f(q),

where
(2.20¢) . T = (4 +1tC)B + D).

The most obvious difference with the one-dimensional case is that here in
general T will not be a sealar multiple of the unit matrix. Let us consider then
the question: when is T'=t'1 for all t? Clearly, this happens when the four
submatrices of Z are multiples of the same N XA matrix. Conditions (2.6)
then further require that this matrix be orthogonal—ecall it R—so that
A=aR, B=bMR, C=cR and D = dR with ad — bc = 1. The set of all
WyS8p,y p elements of the form '

a b\ ‘,L a b
(2.21q) I g SRE g, ¢ q)€5Puxs ReOs,

[
constitute the Sehrodinger group

(2.21b) Schy = Wy A[SP:r © Oy C WaSpaxn,
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which is regarded (33t) as the similarity group for the free-particle Schréodinger
equation, -as well as that of the associated harmonie and repulsive oscillator

and the free-fall (linear poteutial) equations (°t). When Z belongs to this sub-
group, eqs. (2.20) can be further manipulated to yield the result

5 o0 . (a + tc) 0 . , ~. o
(2.22a) g(q,t) = R (a - te)-1R) 7 +t'x, 2 flq, ) =

= (a + te)~¥'2exp [i (% ca~lg®+ {a‘lq - .—i[yo— t'x]} xT + :)] flg'st),

(2.22b) ¥ = (dt + b)/(a + ct),
(2.22¢) q = (a + ct)(qR - [dt - b]x) L ¥

In this form, f(q,t) is shown to have undergone a geometric transformation
in the (q,t)-space, to a function g(q,t) which is a multiplier funetion times
flq'y t'), the original function in the transformed variables (q’, t'). Schy is gen-
erated by the Heisenberg-Weyl operators (2.1), the angular-momentum gen-
erators (2.7) and by the «isotropie » SO, generators of Gaussian multiplication,
dilatation and time evolution:

(2~23a) H‘.‘, = é‘z Qm Qm = % Cmm b
(2 23b) Ho = i [Qm Pm T P Q } ‘lg'z Amm )
(2.23¢) H,=}3P,P,=13B,..

The time-t Schrodinger algebra is obtained from this through application of (2.8)
on the time-0 Schrodinger algebra, Sy given by the time evolution operator
n (2.195): ‘

(2.24q) QY =Q,—tP,, P =P,, MH=M,,.

The three « dynamical » group generators (2.23) are, for time ¢,

(2.24d) HY, H_,--tH —it*e,,
(2.24¢) SHY = H, + 2it8, ,
(2.24d) HY = H,=—i¢,,

where the second-order operator H, on the initial conditions has been replaced
by — ic, on the space of solutions of (2.10«4). The generators (2.24, of Neh,
are those of Bluman and Cole (2) in the notation used by MILLER (() sect. 272, (37)).

(*) E. G. Karxins and W. MILLER jr.: Journ. Math. Phys., 13, 1728 (1974).
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For N =1 this is indeed the full symmetry algebra as W, 8p, =~ Sch,. For
N > 1 however, Wy Spyyp contains extra generators which remain of second
order on the space of solutions of (2.194) at time £. These can be written out
explicitly through (2.5) and (2.24«). The operator — ic, is present as in
(2.24h)-(2.24d;, but not elsewhere. The assignment (2.24d), of course, holds
only for the free-particle Schrodinger-equation case written out here. For
the harmonic and, repulsive oscillators, the free-fall system or, in fact, any
system whose time evolution operator lies in the %75 &,y x algebra, this con-
tinues to be the full dynamical algebra, containing properly the similarity
algebra of first-order differential operators (3t). In fact, the similarity group
is even smaller than Schy in the cases where the Hamiltonian rotational in-
variance is broken, as for the anisotropic oscillator (312¢), where ¥ ¥y z con-
tinues to be the dinamical algebra of the system. In every case the generators
of Wy Spas e, which are not in the similarity group, generate an integral trans-
form action on the time-i solutions of the corresponding equation.

3. — Conformal symmetry for parabolic equations.

A function f(g,t) whieh is a solution to a linear evolution equation

(3.1a) Hf(q, t) = ¢,f(g, 1)

-

with initial conditions

(3.1b) (g, D)o = fo(Q)

can be found from the latter through a formal evolution operator

(3.2) (g, 1) = exp (tH) fi(q) =qu' folg")G(g, @'5 1) -

For simplicity we shall work here with only one space dimension. The general
case, althouch not identical, follows basically the same line of argument. The
svstem characterized by H is elearly independent of the initial condition f,(g).
As long as this gives rise to a unique f(g, t), the latter can be traced back to
its initial condition fy(q).

If we effect a transformation T on f(q), a transformation T% will be induced
at the time-f solution, given by '

(3.3) T = exp[tH]Texp[—tH].

(38) C. . Boyer and K. B. Worr: Jowrn. Math. Phys., 16, 2215 (1975).
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We would like to particularize our considerations to geometrie transformations
generated by operators of the kind '

(3.4) PV = Pqu) 2e+ oPy(q) ol .

These form an infinite-dimensional .lgebra, as can be easily verified seeing that
linear combinations and commutators of operators of this eclass lie again in
the same class. Another operator relevant to the transformation of the initial
conditions is H itself. The commutator of H and (3.4), when H contains second-
derivative terms, will lie in general outside the elass of geometrie transforma-
tions. The one-parameter transformation group generated by (3.4) can Dbe
found through the standard techniques of Lie theory and lead to a mul-
tiplier action

(3.5a)  falq) = Tifolq) = exp [af{Py(q) & + oPo(q)}] folq) = [11(q, )1 fo(3:(2)),
(3.50)  @.(q) =FYF(q)—a), wulq,2) = GQ/G(r.0)=1/n(g.0):— ),

5 d P;
(3.5¢) Flg) = — f pa. € =exp[ a Pﬁ?i]

where, in order that ¢ (q) be one-to-one, F(g) must be strietly monotonic.

A Lie algebra of operators generated by (3.4) on the space of initial condi-
tions will generate a corresponding Lie algebra on time-t evolved solutions
of (3.1a)

(3.6) P18 = exp [tH][P,(q) ¢, + cPy{q)] exp [— tH]

and the éxponentiated operators will map solutions of this equation into
solutions. As we assume f(¢g, t) can be traced back to its f,(¢), then

(3.7)  falg,t) = exp [xP™?]f(g, 1) =

= exp [tH] exp [xP¥][dv(q) fle', 6(q, 4’3 ) =
% >

=exp[tH]fdvq)fq, (g, )7 G (ra(q)s 45 1)* =

D

—qu fd»(q fla'y ulq”y 2)°Ggalq), 4’5 )* Glg, (75

- D

In the preceding formulae we have written the inverse time evolution as an
integral with a measure dv(q’) over a region D in the complex plane, with the
complex conjugate of the direct time evolution kernel. When the evolution
operator is unitary on #*(R), dv(¢’) = dq' and D is the real line itself. When
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the process is diffusive as for the heat or «radial » heat equation, an integra-
tion over the ¢’ complex plane C is necessary with an appropriate measure
given below ((2v22), (2%) section 9'2). The expression of f,(g,t) in terms of
jlg, tj is thus that of a double-integral transform

(3.8a) falgq, t) = j dg” f dv(g')f(g'y ) E(q, ¢’y q"5 85 &)
A
(3.80) E®(g,q',q"5t; a) = ulq’, 0)°G(pa(q"), ¢'5 1)*G(g,¢"5 1) .

The order of integration in (3.8a) can be exchanged only when both integrals
are finite and well defined. WWhen this is possible, we can write

(3.9a) falg, 1) =fdv(q’)f(q’, HEM(g, q'515 )
D
(3.90) EW(g, ¢'3t; 2) = [dg" KW(g, ¢, ¢"5 ti ) -

e should point out clearly that the single-integral form (3.9) is not always
possible. When H is a diffusion operator, (3.9) would imply that K(q, ¢'; t; )
itself iz a solution of the evolution equation (3.1) in ¢ and t corresponding to
a Dirac d-distribution. As this is not regressible in time at all, it cannot be the
subject of the first step in (3.8). These steps can be applied, however, when '
fig, ) = G(q. c: t). corresponding to f,(¢) = d(¢ — ¢). In this case f (g, 0) is a
Dirac é centered at ¢ = ¢__(c), and with a modulation factor which can be
obtained as

(3.10)  falg. 0) = u(a: 2)98(ga(g) — €) = 1(g, ®)°8(q — ¢-.(0))/ga(p=alc)) =
= t(g=s(e), 2)°|Py(g—-.(c))| 6(g — () [|Ps(e)},

where we have assumed that ¢'= ¢_(¢) has only one solution and used the
identities ’ '

(3.11a) 3(g(xr) — 2') = |g' (g7} (x"))|28(xr — g~ (a"))
(3.11b) eu(y) = F'(9)/F (F(F@) — «)) = Py(pa)/Pa(y) -

It follows that under geometric transfor nations of the initial conditions,
G(g, ¢; t), the Green's function «centered%-on ¢ is transformed into

(3.22) Ga(g, €5 1) = p(g=s(0), @)° | Py (@=a(€) |G (g5 g—ale); 1) /| Pale)] 5

which is only a recentered and rescaled function.
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We would like to give a more detailed account of the generating operators
in (3.6) for the case when H is o Hamiltonian or diffusion operator which belongs
to the class of Wa&p, g-similar systems. In this case, the transformations one
can implement on PM are given T\Iy the Weyl-sympleetic transformations of
the last section:

a ? dQ —bP + y1
(3.13) ’{Z, E, :} P I{z’ g, :}.-1 i Q4+ aP—a1)°

The operators which generate symmetry transformations at time ¢ are then
(3.14)  PMO = Py(dq + ibd + y)(— ieq + a2, — ix) L oPy(dg L ibe, - y)

with a, b, ¢, d, r and y given functions of ¢. Time derivatives will appear in
(3.14) whenever H is reconstituted by ¢ and ¢,.
In order to be specific, let us consider the three-dimensional Lie algebra
of conformal transformations of the real line generated by
\

(3.15a) C.=20,, Co = qcq, Co=¢C,
with commutation relations
(3.15%) [Coy Cal = = Cy ’ (C, C—z]'z 2G,.

The generators (3.13) will correspond, respectively, to translations, dilatations
and pure conformal transformations obtained from (3.5) and locally generate
Spy = 80,, through the subgroups given in (2.12). When the time evolution
of the system is governed by the heat equation (eq. (3.13) with a =1 = d,
¢=0, b=—2it and x =y =2z = 0), then (3.14), as applied to (3.13a), reads

(3.16a) C% =3,=C_,,

‘ g
(3.16b) € = (g + 213,)3, = C, + 2t¢: =~ ¢, - 213,

H
(3.16¢) €Y = (g + 2t3,)28, = Cyy +— 248, + 41q32 ~ 423 =

H - ' - -
== (2t + q*) 0 + 4qtC, — 127, T4

the symbol £ meaning that the two operators are equivalent when applied to
the solution space of the heat equation. One may check easily that (1.3) holds
for (3.16). The operator (3.16a) generates translations q —¢ — a, t —- ¢, (3.16b)
generates dilatations g —exp[3]q, t —exp[23]¢, while the action of (3.16¢),
which for ¢ = 0 is the conformal transformation q — ¢'(1 + yq), for general ¢
requires a double integral transform of the type (3.8). From ((2*), (3*) sect. 9'2)
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(3.17) dr{g) = (2at)texp[— (Im¢)?2t]d ReqdImg.

Correspondingly, we find the kernel

” *2
(3.18) K¢, ¢’y 4" 15 ) = (dat)~t exp [— {(I‘E—,T{ = q’) —(¢— q”)g}/u] )

and D to be the complex plane. As expected, the first integral over ¢’ can be
performed only if f{¢',?) is an entire analytic function of growth (2, 1/4%).
The double-integral process (3.8)-(3.17)-(3.18) can be explicitly verified for
Gaussian functions of appropriate growth. Finally, it is interesting in itself
to note that the procedure followed here will yield a continium of conformal
&(,, algebras built out of the enveloping algebra of the original #0,, algebra
(3.15a): the commutation relations (3.15b) continue to hold for the operators
(3.16), whether one or both operators in the commutator assumes either of
the forms separated by the £ sign. As we can again easily verify, the algebra
senerators (3.16) constitute a particular case of a deformation induced by (3.13)
on %C,,. The general case is

(3.29a) D_,=aC_,, a#0,
(3.29%) D, = C,+ ayC_, -+ BaC%,, v, feR,
(3.29¢) D,=a1C,+2yCo+ (B +ay?) C_,+28C, C_,+

+ 2aByCE, + af*C2,.

The case (3.16) corresponds toa =1, f=2t,y = 0.

These will be up-to-third-order differential operators in the underlying space
co-ordinate (g in this case, but the circle co-ordinate, for instance, in Bargmann’s
realization () of 80,,). If we wish to reduce the action of this algebra to the
solution space of a parabolic differential equation with a gnadratic Hamiltonian
operator H, the H operators present in the extended algebra (3.19) will be
replaced by ¢,. yielding up-to-second-order differential operators in a two-
dimensional space (g,t). All of these conformal algebras for the differential
equation, will-be symmetry algebras of operators of second order in the
derivatives.

4. — Point and Schrodinger symmetries for the wave equation.

We now turn to the problem of finding symmetry operators for a class of
equations of the form

(+.1) &g, Dsedf(g, ) + Dftg, ) =0, .
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which include the wave equation (for D = — ¢}, ¢ = 0), the damped-wave
equation (¢>0) and the Klein-Gordon equation (D = — ¢} + u*, & = 0).
Although the method of solution may apply also for elliptic equations, as the
Helmholtz equation (D = -+ &} + &%, ¢ = 0), we reserve next section for an
alternative treatment of the latter. In fact, we shall present the results ex-
plicitly only for the wave equation in one space dimension. Other cases and
dimensions lead to less transparent formulae.
For the wave equation, (4.1) can be written as

o) D0)-+0).

where the first row defines f,(q, 1) = cf(q, t)/ct and the second reproduces (4.1).
Now, whereas the similarity algebra of the Klein-Gordon equation is the
J0,, algebra of space and time translations (generated by ¢, and ¢.) aud Lorentz
rotations (generated by i¢,- ¢¢.) and the same holds for the damped cases
when we replace ¢, by ¢,-+ €2, the wave equation has a larger symmetry
group. To display this we can pass to the characteristic co-ordinates § =g — 1,
n = q¢—1t, so that the equation now reads c*f cfcyn = 0..: Any point trans-
formation generated by (3.4) with P,= constant in & or 7 will leave this
equation invariant. If -

(4.2)

(4.3) X =A(§e,+ B(n)c,+ ¢,

its 2 X2 matrix representative will be

A+ B)o,+ A—B
(4.4) x=(( + )Gtc )

a«(A - B) Eq aa(A ’*:‘ B) + 4

with 4 = A(g +¢t) and B = B(g—1) and ¢ constant. We can check that
[(W—24,X]=0. ‘ :

Since infinite-dimensional algebras are not very informative, one restricts
A(§) to be 1, & or &2, and similarly for B(n), following (3.13). The ¢ element
trivially multiplies the solutions by a constant. The similarity group of this
equation can thus said to be the conformal algebra

D LL, 3 s D SL g = A1 DF O+
This algebra contains time translations (4 = } = — B), space translations

(4 = } = B), hyperbolic rotations (4 = £/2, B = — 7/2), dilatations (4 = §2,
B = 7/2) and two pure conformal transformations (A4 = §/2, B = £%%2)
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all with ¢ = 0. In addition, as with any lincar cquation, we have scaling
(4 =0=D1,c0). We can now apply an approach similar to that used in
sect. 3, namely, the time evolution operator will translate the transformation
of the initial conditions to a transformation of the ensuing solution. Here,
the time evolution operator is the operator matrix

i G G
(4.5a) exp [tW] = G él
(4.5b) G = ¢'sinh (18,), G = cosh (13,), G = &,sinh (£3,),

where we note that only nonnegative powers of ¢, are involved. In fact, on a
suitable space of functions,

(4.6a) cosh (1c,) h(q) = }[h(g +t) + R(g—1)],
(4.6D) &' sinh (12)h(q) = } f dg' h(g) -
g+t

Now, the most general transformation of the initial conditions is not only the
most general operator X in (4.4) evaluated at ¢ = 0, but includes all 2 x2 ma-
trices with operator entries. The diagonal elements of this matrix operate
separately on the initial function and its time derivative, while the oﬁ-diagdnal
elements eiffect linear combinations between them. Again, in order to curtail
the excessive freedom, we can resort to the one-dimensional %] S, p = Fefy
algebra of sect. 2, spanned by P2, }(PQ — @QP), @, P, @and 1. The 2x2
matrices ean be built considering the direet sum composition, whereby inde-
pendent Schrodinger operators are placed in the diagonal entries and zeroes
of the off-diagonal ones. A subalgebra of this is obtained when the two operators
are equal. We shall eall it $%/; . A second possibility is that of the tensor
sum of the Schrédinger algebra with a ., p algebra of 2 X2 matrices with
constant coefficients. The latter isolates the linear combinations between the
two initial conditions. Again, 9%/, is contained as a subalgebra when the
4%, r element is zero. In concentrating on the %%/, algebra of diagonal’
matrix operators, we note that, out of the six generators of this algebra,
1(QP -~ PQ), P and 1 belong to the &C, . sini ‘arity algebra (4.4) and generate
dilatations, space translations and sealing, re pectively. The P2 operator gen-
erates integral transformations of the diffit.ve or free-particle Schrédinger
type (eq. (2.130) with r = 1 = X). Since P* commutes with the time evolution
operator W in (4.3), the action of this operator is the same for all time 1. We
are thus left to explore the action generated by @ and Q= On the { = 0 con-
ditions this is just multiplication by an exponential or Gaussian factor. In
order to study the time evolution of their action and the corresponding integ-
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ration to the group, let us consider the time evolution of a function F(Q), i.c.

F(Q)» 0 F(Q) 0
(4.7) 0 F(@y = exp [tW] 0 (@) exp [— W] =
GF(Q)G— GF(G)G GF(Q G— GF(Q)G
“\GF(@ G- GF(@G GF(@QG—GF@)G)®

When we replace G and its derivatives by (4.50) and use their action (4.6),
we obtain, for the first row,
4.8) F(@)“f(q,1) =

= [eosh (t¢,) F(q) cosh (f¢,) — ¢ sinh (¢¢,) F(q) ¢, sinh (¢6)1f(q, t) +

+ [0;*sinh (¢8,) F(q) cosh (¢¢,) — cosh (t¢,) F(q) ¢7* sinh (1¢.)1f(¢g. t) =

= HF(@+0fla+2t, 0 + [Flg+t) + Flg—0]f(g, ) + Flg—t)i(g — 26, t)} —

o+t
+ 3[dg’ Fl@)i(g' + b, 0) + fla' —t, )] —

== a2t att a'+t
—3{F (q+t>quf(q 0+ Flg— 04 142, t)}—ldaquda a0
a2t a—t =t

The second row only involves differentiation of- (4.8) with respect to f.

When F(q)= ¢ and g¢3, (4.8) represents the action of the algebra operators
which can be thought of as infinite-order differential operators. Together
with the differential operators P, P2, ¢7,—tz, and 1, they constitute a Schro-
dinger symmetry algebra for time-t wave equation solutions. Although @”
and @ are thus integral operators, their exponentiation to the group is well
defined by (4.8) itself for F(q) = exp[ixq] and exp[igg*], respectively. These
transformations, together with Schrodinger free-particle diftusion, translation,
dilatation and scaling constitute the symmetry group for time {. Note that the
first two transformations are time independent, whereas the other are not.
Moreover, time translation is not an element of this Schrodinger Schy p-group.
If W were included in the algebra, we would immediately generate an infin-
ite-dimensional one.

5. — Deformation of the symmetry algebra of the Helmholtz equation.

In this section we examine in some detail the deformation of the similarity
algebra of the two-dimensional Helmholtz equation

(5.1) H.f(q) = (— Pi— P; + k*)f(q1,q.) =0
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In this context, the deformation of an algebra is the following: out of the
universal enveloping algebra of a given Lie algebra, we search for finite-
dimensional subalgebras. This was done for &C,, in (3.19) and yielded another
FC,, algebra. Here, the known two-dimensional Euclidean similarity algebra
JFC, for (5.1) will be subject to a similar process: S0, = &(,,. Although this
deformation is representation dependent (3%3), it turns out that the solution
space of (5.1) exactly fits the necessary requirements. In principle, the contents
of sect. 2 and 3 can be seen also as the deformation of ¥, and so will the re-
sults of this section in terms of ¥;. The method of deriving results, however,
seems to indicate that here £C, is the natural starting point.

It is well known ((3) Chapter 1) that the similarity algebra of the two-
dimensional equation (5.1) is a vector space & spanned by the four operators

(5.2) Pn sz M3=Q1P2—'Q2PU1

satisfying [H,. X] = 0. (See egs. (2.1).) This algebra is &/, @ #0,, direct sum
of the one-dimensional algebra generated by 1 and the Euclidean algebra S0,
generated by the rest of (5.2). As the former acts trivially—the subgroup gen-
erated by it multiplies the solutions of (53.1) by a constant, as is always permis-
sible in a linear equation—we shall work with the factor algebra and space
=&, /= FC,. The SC, operators can be exponentiated to a Euclidean
symmetry group I0, of geometric transformations. This manifest similarity
group is actually the full symmetry group, in contradistinction to the free-
particle Schrédinger equation of sect. 2. The Helmholtz equation has thus a
rather poor symmetry.

We can construet further operators commuting with the operator H, in (5.1)
through considering the universal enveloping algebra of (5.2). The elements
of this which are at most quadratie in (5.2) form a ten-dimensional space which
we call &,. with a vector basis given by (5.2) plus Pj, P;, P,P,, M3, {M;, P}
and {M,. P,}, where {A, B} = AB - BA is the anticommutator of A and B.
On the space of solutions, the operator P; 4 P; is equivalent to %21, which
suggests that we work with the eight-dimensional space &, = &,/(H:, 1). The
adjoint action of I0, on %, then divides it into five orbit families, whose rep-
resentatives we choose as

(5.3a) $,= P} +aM,,

(5.3b) S = P} +4 0P+ cPy,

(3.3¢) S;= M; + dM;+ ¢Py,

(5.3d) S.= {M,, P} + M, + gP,+ kP,,
(5.3¢) S;= M; + wP; + a2M,+ yP,+ 2P,,

bl o, B 0 B e
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where a, b, ..., = are real constants (*). If we let all coefficients of first-order
terms (in &) be zero, orbits (5.3a) and (5.3b) coalesce and we recover the results
of Miller (*) pertaining to the operators which serve to find the separating
co-ordinates of (5.1), namely Pi, M, {M,, P,} and M} -+ «* P}, corresponding
to Cartesian, polar, parabolic a: & elliptic systems. It should be noted that
none of the operators (5.3), wh 1 second- and first-order terms are present,
leads to new separable co-ordinate systems. This seems reasonable, since we
know independently ((®) p. 493-504) that the purely second-order ones yield
the only four orthogonal separating systems. A supporting computation (%)
shows that this is the case, including the known nonorthogonal separating
systems associated with the Cartesian and polar orbits. This result should
not be surprising as is known that the correspondence between second-order
operators and separating co-ordinates is not one to one. (Another example can
be found in (**) on the separating co-ordinates of the Klein-Gordon equation.)

The vector space %, does not close into a finite-dimensional Lie algebra,
yet a subspace of it does. It has been shown that out of the enveloping algebra
of S0y (*%5) one can produce a set of operators which are at most quadratic
in the generators and an ideal under Lie brackets with the generators of the
semi-simple subalgebra. This method, sometimes called the Gell-Mann formula,
consists in commuting the second-order Casimir operator of &€y with the N
normal generators and adding multiples of the same. In the case of (5.2} for
N = 2, we can define the operators

(54a)  MP? = [M}, P+ P, =
1 . 1 o &
=5-A-:{Ma, P:} +‘[P =";M3P2'.'(77—§—.)P1’

(5.4b) MO = -—2ik [Mi, P,] + P, =

1 1 : o
=-§Z{M3!P1}+szz“ZM3Px+(T+:'z_k)sz

which are Hermitean, when 7 is real, in #2(R?). Direct computation yvields

(5.5a) [Msr Mi"r)] == iM(zx'r’ ’ {Ma: M'(.’l'r)} = iM;.l’r’ ’
(5.50) (MO, M) = it M(P2 - P2) .

(*) F. Soro, La ecuaciém de Helmholiz y el grupo tridimensional de Lorentz, Tesis
profesional, Facultad de Ciencias UNAM (1977).

(*) P. M. MorsE and K. Fesusacu: Methods of Theoretical Physics (New York,
N. Y., 1953).
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Acting on the solution space of the Helmholtz equation, as P? 4 P! is equi-
valent to k21, (5.5) closes into a &€, , algebra. The generators of this algebra
are M,z % and the two operators (5.4). These are among the orbit family
(5.3d) in .#,. The representation of this &°C,, algebra on the solution space
of (5.1) can be obtained by noting that

(5.6a)  Mi— MO M1 — M (1— k[P 4 P ]) 'S
- ([T52E + 71— (2% = <) P P = — f— e — A 1),

(5.60) A=—} +ith.

For 7 real, this belongs to the principal or continuous series denoted by
BARGMAXNN () as (..

Thiz is not the only deformation of the Helmholtz similarity algebra.
In (34) it is shown that, out of an J£,%Cy algebra composed of %y in semi-
direct product with an Abelian ideal of second-order symmetric unit trace
components, one can produce a %y, algebra and a corresponding SLy g-
group. In the case of the N-dimensional Helmholtz equation, this Abelian
ideal is provided in a natural way by the operators kP, P, in %, which on
the space of solutions have unit trace. This deformation follows closely eqs. (5.4)
and can be implemented for any N. For N = 2 we can do better: noting that
S p=C,,. we construct a generalization of this process through asking
for the Abelian ideal to be built out of arbitrary functions G,, G, of P, and P.,
such that [M;. G,] = ¢G, and [M,, G,] = — ¢G,. We define, with appropiate
normalization ¢ = in,

- - | in, ) i M2 1 :
(5.7a) M")z-:}nzk"[ 5 G+ 76 = G+( +7]7)G“
(5.7b) M"""’—_————i M3, G,] rG=-———1—MG+ T+—i— G
: : 2pegn S TH T TR T T TR 2k) 7%

1
(3.c)  MPT == M.

The condition that (5.7) close into a Lie algebra on the Helmboltz solution space
implies that G} - G} be a function of P} 4+ : only. This is satisfied by the

2

operator polynominl functions '&..
(3.8a) G, = (P} + PO T.(P, [P} + P}}),
(5.8b) G, = (P— + P-)(n—-l)l'P t’,._l(P [P’ + P ]I) ,
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where 7',(r) and U, (x) are the Chebyshev polynomials of the first and second
kind. One can show, as in (5.6), that (5.7)-(5.8) for real = belong to the prineipal
series O irreduecible representation. For n =1, (5.7) reduce to (5.4); for
n=2 it reproduces the general case in ref. (34), while the deformation family
presented here appears to be ne % We shall denote the Lie algebra (3.7)-(3.3)
by L0, 4.

.Before proceeding to exponmitiate (5.7)-(5.8) to the group, we would like
to point out that part of the conclusions of sect. 2 can be applied to the Helm-

‘holtz-equation case: the Lie algebra with vector basis {P,. sz, P, P;P;, Pi, M}

has the structure (/2 .o/,) S50, (where ./, is the n-dimensional Abelian
algebra) and maps solutions of this equation into new solutions. The exponen-
tiation of this algebra will yield a group of integral transforms with Gaussian
kernels (2.11) mapping solutions into solutions. This group is generated by the
commutant of ¥;5%,p with H, in (5.1). The &C,,. operators in (3.6), on
the other hand, are outside #.¥/,r and are of order » + 2'in the genera-
tors of #;. Explicitly, for n =1,

(5.92) M} =LYQ,P;— QP P,) - (t+i[2k)P, =
= kY— ¢, €¢, -+ q2Ca0) — l(‘c + if2k) ¢y,
(5.9) MP? =14Q,P;— @PP,) - (v +i2k)P, =
=k — &, + 1 80u0) — {(T + I[2K) &, .
The exponentiation of (3.7)-(3.8) can be achieved, nevertheless, due to the cir-
cumstance that a subspace of solutions of the Helmholtz equation can be map-

ped through Fourier transformation onto the space of functions f(pry Pa) =
= (p*— k2)¢(0) with support on the unit circle, with co-ordinate §:

(5.10a)  f(q) =2 f f d*pexp[ip-qlf(p) =
: ..—.fdﬂ exp [ik[q, cos0 - ¢,5in0]]6(0) = (Ig)(q) ,

(5.106)  $(0)d(p® — k) = (S7?) f f d2qexp [—ip[q cosb + g.sinb1]f(q)

where we have defined constants, so as to agree with (3). The space of Schwartz
distributions on the unit circle is then mapped through [ onto the space of
solutions of (5.1). Operators which transform the latter space will have a cor-

. responding realization in the former. The ¥, generators in (3.2) become

(5.11) P.==Fkcos0, P,=ksind, M,=—i,,

\
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while the &0,,, generators (5.7)-(5.8) become

(5.12a) M" = —i[n-1sinn6z,+ (} + i7k") cos nf],
(5.12b) M" = — i[— n~1cos nb8, + (} -+ izk") sin nf],
(3.12¢) M™M= — in-1¢,.

These are self-adjoint in £*(S,). The S0,,. action of (5.12) on the circle is
now easy to find through (3.5). In fact,

(5.13a)  R™(a, B, y)$(6) = [exp [ia" exp [ifM"] exp [iy F]]¢(0) =

= pu"™0 + a/n, B)G(OF[0 + «/n) + y/n) ,
(5.13b) O[7] = 2ntaretg (exp [B]tg[nL/2]),
(5.13¢) #™(, B) = [sin (ng)/sin (n@[L]) TH".

The action (5.13) is untary on #2(8,) as the Jacobian of the transformation is
exactly ofiset by the multiplier factor in (5.13¢):

(5.14) a(O[0 + a/n] 4 y/n)/a0 = |0 + afn, /3)12 $

In the Euler angle decomposition (5.13a), ﬁ;""’ generates rotations of the
circle and M;»¥ corresponding ones in the g-plane. It is thus the action
of M and M® which is of specific interest, since they deform the circle
through (5.13b) and (5.14).

In finding integral kernels representing the action (5.13) in the Helmholtz
solution space, we can use the exponential eigenfunctions of P, (and P,) appear-
ing in (3.11a) and used in ref. (3). This set, however useful it has been, is not
completely appropriate since, as eq. (5.10b) attests, integration over the two-
dimensional g-plane is more than required by harmonic analysis in terms of
the generalized eigenfunctions of a single operator. Now, the spectrum of P, in
the space of solutions of the Helmholtz equation is given by & cos6, 6 € (— x, 7],
i.e. the interval (— k, k) twice, — k and ». In order to distinguish between
the two degenerate eigenvalue functions, we can restrict 6 to the half-circle
[0, 7] and introduce a dichotomic index ¢= -1 for 0 6 = 7, which should be
the eigenvalue of an operator commuting w’ u P,. This can be chosen to be
(symbolically) P,/|P,|, i.e. an operator who o eigenvalue is 4+ 1 (— 1) when
¢(6) in (5.8) has support on the [0, =] ([— i.h, 0]) half-circle. The two values
f = 0 and 0 = =z are exceptional as the spectrum of P, is simple and no dicho-
tomic index is neeessary. Since these constitute a set of measure zero, we may
disregard them for the purpose at hand. Equation (5.8) can be then cast in
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the form’
(5.15) g =2 fdf)f'a(O)@a.a(q),
o=l
(]
where
(5.16a) Dy ,(q) = exp [ik(q, cosf + oq.sinb)], §el0, =],
_ [0, =1,
(5.165) Fal£0) = 6(0) , - fe { L0l
Similarly,
(5.17) 3f(@)[eg: = ik I o|sin§d0f(0) Poolq) -
=41

0

The harmonic coefficients fa(G) can now be found in terms of (5.153) and (5.17)
through a single integral over ¢,, by using

(5.18) f dg, exp [ikq, cos 6] exp [— ikq, cos§'] = 27(0— 6')/k sinf ,

as

(5.19) F46) = (4 [, [ sinbf(q) — i0Ef(@)/20:) Do (q)* -

We should note that (5.19) does not depend on ¢,. This expression for fafe)
thus substitutes (5.10b) as the transform inverse to (5.10a)-(5.17). The action
of exp[ifM»"] on f(q) can be now found through (5.13), (5.15) and (3.19)
as an integral transform—in g,—of the «initial conditions » at any point q, as

(5:20)  exp[BMP1flg) = 3 |40 40, £)f(05'(0) Paola) =

=quif(q’)€K‘"”’(q, q’; B)ig: ~|dgcf(g)/c: E™"(q. q'; B) ,

-

where the integral kernel representing the group action is

n

(5.21)  K™(g,q'; f) = —ilim)* 3 o|an @m0, B) Poriar (@) Poolq) =

C=x1
0
S

= (2n)"1fd0 [sin (nf)/sin (n@"(0)) 4"
0

-exp [ik(g, cos0 — g; cos OF(0)) ] sin [k(¢,5in 0 — ¢ sin 0] .
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Although we cannot provide a closed expression in terms of elementary fune-
tions for the kernel (5.21) in the general case, we shall proceed to show that
the integral action (5.20) is quite transparent.

First consider f = 0. In this case,
E™g, q'; 0) = K(¢:— a1, §a— 0s)

is the Helmholtz-equation Green’s function which provides the solution f(g;, g,)
in terms of the boundary conditions and normal derivative at any line
q, = constant. In fact, for ¢, = ¢', K_(¢,— ¢,, 0) = 0, while the derivative can
be integrated as

ot

(5.22) CE (@, — G35 0)/2leme = 7 sin (k{g, — @) /(0. — 45) -

This function acts in (5.22) as the reproduecing kernel for the space of solutions
of the Helmholtz equation: if we Fourier transform with respect to ¢, the econ-
volution of f(¢.q.) and (5.22), the result is the Fourier transform f(p,, ¢.),
which has support on p,€[— k, ] times the Fourier transform of (5.22),
which is a rectangle function with the same support.

For values of § =0, the integral transform (5.20) is no longer a convolu-
tion for ¢,= ¢,. yet it expresses the transformed f(q,, ¢.) in terms of the
boundary conditions f(¢;. ¢.) and its normal derivative ¢f(q;, ¢.)/Cq, integrated
along ¢;. This is due to the fact that M™® is a differential operator of second
order in g,. while only of first order in g,—all higher derivatives in ¢, correspond,
due to (3.1), to higher derivatives in ¢, times a first-order derivative in ¢,. The
value of the transformed f(q,. ¢.) depends thus only on the values of the original
function and normal derivative along a line ¢, = constant. The action of any
other one-parameter subgroup conjugate to (5.20) will clearly involve only
integrations along lines in the g-plane at an angle determined by the conjugating
rotation group element. As expected, the kernel K™"(q, q¢'; f) is a solution
to the Helmholtz equation (5.1) both in the g and in the g’ variables. The
composition and associativity properties ean be verified by making use of the
reproducing property of (5.22) and the measure transformation (5.14). The
latter also shows that

(5.23) E"?(q, q'; — ) = E™"(q', q; B)*.

Lastly, one can verify that the infinitesimal integral transform action (5.20)
for §—0 is correctly given by the (n - 2)-th order operator (5.7a)-(5.8).
Indeed, using

(5.34a) ' cOP(0)/ef = w1 sin[20(0)],
(5.24b) U6, B)[eB = (3 + iTh") a6, ) cos[nOP(B)] ,
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one can apply ¢'cg on (5.20). Differentiating the kernel (5.21) and evaluating
at § =0, one finds

(5.25) dE™"(q, q'; B)[CBlsmo =
i

) i e rele ! ~(n,t ’ '
=’{“;{E(Q1CICQ2—Q2C/C’II) G, - (f—-:—ls) GX}IL( ? )(q, q i P P,

On the left-hand side, extra trigonometric factors in @§'(0) enter, while on
the right-hand side the Chebyshev polynomials in P, and P, only produce cor-
responding factors in sinnf and cos . Since the kernel at 3= 0 is a fune-
tion of ¢,— ¢, and q,— ¢., derivatives with respeet to ¢, become derivatives
with respeet to — ¢, which can be integrated by parts by noting that only first
derivatives in ¢, appear and that (5.20) is independent of these variables.
If we exchange M,; and G, in the final operator acting on the boundary data.
the — ¢/2k= factor in (5.23) is replaced by a correct -- i 2k as in (5.7«)
and we are left with an expression analogous to (3.20) with iM™"fg) in
place of f(q’). Since the remaining kernel is the Helmholtz kernel. we can finally
set g.= q; and use the reproduction property of (5.22) to conclude that the
generator of the transformation (5.20)-(3.21) is indeed M". It must be noted
that this procedure has been rather more laborous than the corresponding
one for Lie geometric actions () which are basically Taylor expansions, and
that of one-variable integral transforms (%22}, where the Dirac o appears
at f = 0.

Even though the SO, , . action (2.21)-(2.22) is an integral one, it should not
obscure the fact that certain solutions to the Helmholtz equation are self-
reproducing under it. Thus, for example, a plane wave @,(q) directed along
the ray 0 given in (5.16a) (letting # run over the whole circle for simplicity o
as to disregard o) will become, under the action of R™"(«, 3,7) a plane
wave directed along Z"Q(O—y,’n)-—a,’n and be multiplied by a factor of
p™?(0— y/n, f)*. Similarly, eigenfunctions of a subgroup generator of 80, .
will transform among themselves as the rows of the €?,. irreducible representa-
tion matrices decomposed with respect to that subgroup. The decomposition
with respect to the compact S0O,-subgroup vields the polar partial waves
((®), eq. (3.19)). Self-reproducing solutions under M *-transformations are
given by the eigenfunctions of M™®, which can be found in principle rhrough
obtaining the eigenfunctions of M{™" and then performing (5.16). For 7 =0
these are given by the separated products of parabolic cylinder functions in
parabolic co-ordinates ((®), eq. (3.33)). If 7 is arbitrary (%), no such analytic
expression can be given, however.

The similarity algebra deformation sketched here applies to hyperbolic
and elliptic equations in any number of dimensions, which possess an inho-
mogencous classical similarity algebra where the equation itself appears as
the restriction of the Abelian ideal to a nondegencrate conic surface.
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6. — Conclusion.

The examples we have treated in this paper have in common the quest
for finite-dimensional « higher » symmetry algebras for certain common dif-
ferential equations using various strategies. We have not set out to find a
«universal» symmetry group, as have ANDERSON and collaborators (4-43), which
show that all completely integrable N-dimensional dynamical systems posses
the global symmetry group' of the Newtonian free particle SLy,, . (Sce also
ref. (#1).) We are also aware of the fact that the very productive applications
of Lie algebras to separation of variables by MILLER, BOYER and KALNINS
(see 1) and references within) do not make essential use of finite group prop-
erties and in fact do not require nor need that the second-order differential
operators form an algebra. The first approach would seem to trivialize the
study of particular examples and, in the extreme, the second would argue to
obviate the introduction of Lie structures. It is our point of view that the treat-
ment of integral transforms from a group-theoretic point of view needs at
present concrete examples given in classical language. There are indications
that the proper mathematical framework for the group -action produced by
hyperdifferential operator Lie algebras may well be the theory of Lie-Bécklund
contact transformations in the infinite-dimensional tangent space of Ibragimov
and ‘Anderson (**). In this brief survey of algebras and groups associated with
some representative linear differential equations, we hope to have pointed out
that the theory of integral transforms may be the first to benefit from the
extension of Lie-theoretical methods to operators of higher degree.
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@ RIASSUNTO ()

_Si studia la costruzione e I’azione di certe algebre di Lie di operatori differenziali del
secondo ordine o di ordine pilt alto su spazi di soluzioni di ben note equazioni ditferen-
ziali lineari paraboliche, iperboliche ed ellittiche. Quest’ultime comprendono le equa-
zioni di Schrédinger hamiltoniane quantiche quadratiche a NV dimensioni, equazioni
d’onda e di calore ad una dimensione e 'equazione di Helmboltz bidimensionale. In un
primo approccio la solita algebra dell’operatore differenziale del primo ordine di similarita
dell’cquazione & immersa in quella pitt grande. che compare come un'algebra dinamiea
quantomeccanica. In un secondo approccio si costruisce la nuova algebra come evo-
luzione temporale di un’algebra a trasformazione finita sulle condizioni iniziali. In
un terzo approccio 'algebra di similarita inomogenea & deformata in una classica non
compatta. In ogni caso, si pud integrare I'algebra ad un gruppo di Lic di trasformazioni
integrali che agiscono effettivamente sullo spazio delle soluzioni dell’equazione ditfe-
renziale.

(*) Traduzione a cura della Redazione.

I'pynnst HHTerpaabHLIX Npeodpa3osanuii, 05pazosaunnbie aaredpasyu Ji anddepenunaibubix
ONepaTopoB BTOPOro i $0.ee BLICOKUX MOPAIKOB.

Pesmoye (*). — Mper uccneayeM KOHCTDHDOBaHHE H JefiCTBHE HEKOTOpbIX airedp T
mubdepeHUaabHBIX ONEPAaTOPOB BTOPOro  0o01ee BBICOKHX MHOPAIKOB HA MOPOCT-
PAHCTBAX PELICHHH XOPOUIO M3BECTHBIX NAapadoTiyecKus, [HIEPOOIHYECKHX H J L THOTH-
4ecKuX JHHENHbIX AnddepeHnnanbubix ypabHeHuil. [ToclenHue BRIOYAOT N-MepHbIE
KBaApaTHYHblE KBaHTOBble ypaBHeHus LIpzanurepa, oOJHOMEpHbIE YDaBHEHHA Te-
[UIONPOBONHOCTH U BOJHOBBIE YDaBHeHHS H IByMepHoe ypasuewite [easmroisua. B
nepsBoM moaxome, anrefpa nuddcpeHUHanbHBIX ONepaTOpPOB NEPBOTO MOpAIKA BHE-
npsieTcs B 60bluyto anrebpy, KOTOPas BHICTYNAET KaK KBAHTOBOMCXAHIYECKAs IHHAMI-
yeckas anre6pa. Bo BTopoMm moaxcie, HOBasi aarebpa CTPOMTCH, KaK BPeMEHHas 3BO-
JUEOLIHS anreGpbl KOHEYHBIX PE0GPA30OBAHHIT, HCXOIA W3 HAa4a IbHBIX YCICBHH, B TpeTheM
noaxoae, anrebpa 1ehoOpMHUPYCTC B HEKOMNAKTHYIO KIaCCHYECKYIO aaredpy. B kaxioMm
Clyyae Mbl MOKeM MpOIHTErpHpOBaTh airedpy B rpynny Jlu HHTerpaisHbix mpeodpa-
30BaHH, ACHCTBYIOWUX dDHCKTHBHO Ha MPOCTPAHCTBE peweHud And@epeHUHaIbHOIO
YPaBHCHIIS.

(*) ITepesedeno pedaxyueii.



