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Abstract 

The Wigner function of a Schriidinger-cat state j;, +f, is the Wigner function of f; plus that of f,, plus a strongly 
oscillating cross-term. called the .vrni/r~itr~c.tior~ of the cat state. We show that the marginal projection of the smile yields the 
transmissivity of the physical hologram of the object beam f, with the reference beam ,f;,. We review properties of lineal 
covariance for possible applications in computer hologram interpretation or design. 0 1997 Elsevier Science B.V. 

1. Introduction 

The Wigner function was originally applied for the 
understanding of quantum corrections in thermodynamic 
equilibrium [I]. Since then it has been used extensively in 
quantum mechanics because it provides a cogent interpre- 
tation of states in phase space [2]. Applications of the 
Wigner function to signal analysis in the space [$a] or 
time domains [5] are relatively recent and new interpreta- 
tions may be fruitful. In this Letter we point out that the 
strong oscillations of the Wigner function between two 
interfering signals. called the srnilrf~r~riorz of a Schriidi- 
nger cat state, bears interesting holographic information. 
We first define the terms used, then particularize one of 

the signals to be a plane reference beam; then we indicate 
that linear [6] and in particular the fractional Fourier 
transformations [7] of the reference beam produce covari- 
ant transformations in the hologram. 

’ Corresponding author. E-mail: rivera~ce.ifisicam.unam.mx. 

2. Wigner function 

The model of paraxial monochromatic wave optics 
used for one-dimensional signal analysis defines the Wigner 
function (for fixed wavelength A # 0) as (see Ref. [x]) a 
sesquilinear functional of two (Lebesgue square-integra- 

ble) signals ,t;,(y) and ,f‘,(~/). y E !)-i (the real line). and a 
function of the phase space coordinates of position and 
momentum, (4.~1 E !)i ‘. 

(1) 

In the paraxial regime, the optical momentum (also called 
space frequency of the signal) can be identified (in a 
medium of unit refractive index) with the ‘small’ angle H 
between the optical z-axis and the ray vector. Most com- 
monly. the Wigner function is used for f; =f, and inter- 
preted as the phase-space quasiprobability distribution of 
the system in that state; when f. # t‘,, several names are 
found in the literature. such as cross-correlation and 
Woodward ambiguity functions. that apply to (I) or its 
Fourier transform [8]. 
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The Wigner function is not a classical probability func- 

tion because it can take negative values in small areas of 

phase space. Lohmann [4] showed that in the process of its 

optical production. the ‘true’ Wigner function is convo- 

luted in (1 and in /I with Gaussians G,,( y ) = 

(71.1i.V I” exp( -C/‘/Z ~1,) whose width product is minimal 

(i.e.. satisfy the Heisenberg relation with equality). so the 

’ mrasurcd‘ Wigner function is the intensitv 

ICC,, * ,f’)(y.p)ll on the screen. Indeed, the Moyal identity 

[8] between Wifner functions and !N -inner products ( . ) is 

/ \){ 2 d‘/ d I’ W( .f;,..f;‘,l(/./’ ) W( ,f’, ..fl Y./J) 

= ( .t,i . r; J( ,/ I ../A ) (23) 

When .A, =.I,‘, and f, == /‘I thl\ is the poGtl\,e function 

i(,r;,. t’, )I’. Aa particular cases. when I;, is ;I (Gaussian CT,, 
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Fig. I. Level curve& of the Wigner function for a Schriidingrr ca state composed of two Gaussian signul~ G, ( y) or wdth u = I and peak 
separations of I. 2. 3. 4 and S units. (a) Gaussian signala with the same Ggn, and (h) of opposite siyr. Note that as the. two Gaussian\ 

scparatr. the smile region remains localized around the midpoint. and incrcaxes its okllation t’requency ‘;~cr(t\\ thr trcth‘ 



and its width limits are zero or infinity, one obtains the q- 
or p-projections (marginal distributions) of (I 1. 

j#)WKf;,Jlw) =.t;,W’ f,(q). (zb) 

i,iW’(f;,.f.,lq.P) =.&(P) .fi(u>, 

wherr ,fl p) is the Fourier transform 

(2c) 

I 
f( p) = ; ,) dqf(q) e-‘r”‘i’A. 

/ 'i 

,f( q) = 
/ 

dp,f( p) ez”“‘“/*. (Id) 
!li 

3. Schriidinger cat states 

The so-called Schriidinger cat paradox concerns classi- 

cal intuition applied to a coherent superposition of a live 
and a dead cat. & and ,f’,, given by their linear combina- 
tion ./i(q) +,f’,(q). Because of sesquilinearity, the Wigner 
function ( I) of such a state decomposes into three real 

terms. 

W( 6, + f, J;, +.f’,lq.p) 

= W(.f;,,.f;,lq.p) + W( .f‘,.f‘,lq.P) + S( .f;,..f’,lq.P)* 

(3) 

where 

S(.f,,,f‘,Iq.p) =2ReW(.f;,..f,lq.~). (4) 

In Fig. I. the three terms are readily recognizable: the 
standard interpretation of (3) identifies W(,f,,.,f,lq.p) as 
the phase space distribution of one constituent state .f;,. and 
W(,f’,.f, 1q.p) as that of the other. ,f‘,. The most prominent 
feature of the figure. however. is the cross term (4). which 
oscillates strongly. and has been called the srG(r ,firncrion 
of the Schriidinger-cat state [9]. 

4. Holographic reconstruction 

We recall that the transmissivity of a photographic 
plate exposed to the object beam ,f,(q,:) illuminated by a 
distinct but coherent reference beam ,fJq,:) at the stan- 
dard ; = 0 plane (screen) is 

M,(q) +.f,(qP 

= I.f,,(q)l’ + If‘,(q)? + zRef;,(q)* I’,(q). (5) 

and produces the (one-dimensional) hologram. The first 
two terms in the sum are usually assumed to vary slowly 
across the screen and result in a constant ‘background’ 
illumination on the plate. The third term in the sum may be 
negative in some intervals, but its sum with the other two 
is of course non-negative. 

When we integrate Eq. (4) over p to find its projection 
over q. we introduce the hologram function 

H(.t;,..f’,lq) = ~,idl,S(.I;,.I’,lq.p) 

= 2Re.fdq) f,(q). (6) 

We note that this is exactly the interference term in (5). 
The projection of the smile function thus contains the 
properly holographic information of the beam ,f, under the 
reference beam ,f,,. 

5. Plane waves 

Consider first the case where the two constituent wave- 
functions of the Schriidinger cat state are paraxial plane 
waves E,t( q.; ) = exp(7 rr i( pq - :)/A) in the optical space 
(q. :) E !11 ‘, of fixed wavelength h f 0 and momenta 

(inclination angles) p = pa and p,. At the standard screen 
each wavefunction is a ‘plane-wave‘ signal 

&,f( q) = E,t( q.:) I r=o = exp(Z?ripq/h). (7) 

whose wavelength otr tl~r .scr~ctz i\ A/p. From (I) we find 
that the Wigner function of a plane wave (7) is 

w( 5:, .+‘/.I’) = 6( I’ -/Jo). 

Its projection on q is unity. 

(8) 

The Schrijdinger cat state of two plane wavefunctions. 

E,t,$q. ,-) + E,fI( q, :) is shown in Fig. ?a; the L = 0 plane 
(line) is the standard screen and holographic plate. The 
corresponding Wigner function of F,tI(q) + c.,$q) is shown 
in Fig. 2b: we see the two plane-waves of the cat state 
marked by the 8 at p = p. and p = p, as razor edges; 
there is also the s/nilr of the cat (1): 

s( E,:‘,, . +&P) = z’i( I’ - 3 Per + P, I) 

Xc”“(2~(~~,~-/~,)q/A). (9) 

This is a third razor edge between the two, modulated by a 
trigonometric function of wavelength ,4 = A/( p,, - p, ). 
The q-projection of the Wigner function (3) of the cat state 
is 2 from the two plane waves. plus 2 cos[Zn( p,, - p )q/h] 
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Fiy. 2. (a) Two plane waveh in optical space (I-; and, (h) on phvrc space. (Actually. I\vo narnw C;au\G;m\ G,, ( p ~- ,I,, I md (i,, ( p + ,I,, I 
\h itt1 II‘ = 0.001 and ,‘,, = 2.) Their smile function i\ the MoirG pattern and h~~lo~rarn at the wrern. 

from (9). The hologram function (6) is thus W(F,~,,E,~,I~) E;,j q,,-). the hologram will reproduce the object plane 

= ?[I + cos(3ry/.4)]. (It ranges in [0.4]; proper normal- wave E,) q.; ) as a first-order beam. Seen as an operation 

ization should bring it to the transmissivity function with between signclls. this indicates that the smile function (9) 

range in [().I].) Under the plane-wave reference beam define5 a linear correspondence from E,;(Y) IO R,$ (1). 



6. Plane wave reference beams 

Consider now SchrGdinger cat states composed of a 

plane reference signal &,$q) plus a generic object beam 
,f(q) with Fourier transform fir) as given in (2d). The 

smile function of the Schriidinger cat state c,$q) +,f(q) is 

s( E,~,..f‘l4.P) = 2Re W( E~,,.flq.p) 

Xe-?‘V/A,f’( q + &) 

= 4ReeJ”““-“,,‘“/A,~((2p -p,J), (11) 

cf. Eq. (2b). The q-projection of this smile function is the 
plane-wave hologram function 

= 2Ree~‘“““Y/“f(q), (12) 

When the signal ,f; although no longer a plane wave, 
still has a peak at momentum (space fequency) p, - this is 

P 
Fig. 3. Wigner function of a Schriidinger-cat state composed of a 

plane wave of momentum p. = - 2, and a signal with a peak at 
momentum p, = 2. The smile maximum is along the line fi 

= +( /Jr, + p, ) = 0. 

/ 

/ 
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Fig. 4. The smile wavelength (width of the teeth) is .I: the real 

and imaginary parts of the Fourier transform of the signal (or 

Gausian-diffused measurement) are found at definite lines in 
phase space. 

indicated by f’, as shown in Fig. 3 - then the smile 

function (I I) will still exhibit a peak at the midpoint I, 
= i( p. + 11, ). and can be written in the form 

= 4Ree’“““‘~~[/‘,,~/‘,1’“/” ‘: .f,( PI +/I’). (13) 

At the peak p = I, ( p’ = 0). the smile function oscillates in 
q with the difference wavelength .,I = h/( [~,~ - p, ). This 
Moire pattern has the width of the ‘teeth’ at the maximum 
of the smile function. The exponential factor in (I I) can be 
set to 1 or A i by choosing q = 0 or ($/A - I/. t)q = 
+ f. See Fig. 4. Then the smile function provides the 
complex Fourier transform of the object signal along those 

lines: 

LT( E,$f', l0.j + i/J’ ) = 4Re.f,( p, +I)‘), (13a) 

(13b) 

If the smile function is known from Lohmann’s Wigner 
function imager. Eqs. (I 3) yield the complex Fourier trans- 
form ,fi( p, + p’ ) of a Gaussian-convolved signal ,f,(q ) = 

CC,,. * f)(q_); so the pure signal Fourier transform. ,fi p) h 
G,,,,(ip),f,(/>), is the formal but simple multiplication of 
a growing Gaussian times the measured function 6. 



Whether this ‘backward diffusion’ process (with some 

cutoff) can be competitive with other Wigner function-re- 

storing algorithms [IO] or whether it will be swamped hy 

noise cannot be answered yet. 

7. Translation and linear canonical covariance 

Sipnalx fly) can be translated in phase space by means 

of operatora in the Heisenberg-Weyl group. In what fol- 

lous we consider the fixed wavelenpth A = 3n- that we 

omit in the notation. and consider the operators exp( ~-\-ii ~ 

&L/L ( \-,J) E !)I’ I. up to c/-independent phases e #:I = 

exp[ it/A .\-.!.A)] whose prrcihe form is unimportant here. 

The\e are the translations 

f’,(q) = [./( Y.J,):,/‘](~/) = e’~be~‘~4,f.((/+.t-). 

17/(/I) -‘.-lJ’e”“jq I’+!.). (l-1) 

The Wigner function ( I 1 is CCU.L~~~U~I~ under translations 

hecause it hax the property 

W( I( .V. \‘):f;,. i( .\.v):,f,Iq.p) 

= CV( f;,.,f, IL/ -t .\ ./’ + V) (15) 

For ,/;, = /‘, this means that the Wigner function of a 

translated wavefunction is the translated Wigner function 

of the wavefunction. 

Further, Moxhinsky and Garcia-Calder6n [I I] showed 

that the Wigner function (I ) is also covariant under linear 

canonical transformations. These are integral transforms 

[h] in (2: I ) correspondence with 2 X 7 matrice?, 

dct it4 x I. cd’ the form 

wjlth integral kernel (for /I # 0 and up to a y-independent 

phu$e c”” ) 

c t II, 
(I I 

(‘,,,( q.q’) = -=exp i -q” - - ’ 
ii 

tl 

JsTt, 7 11 ,, (I Y + G Cl ? 
- 11 

( l6b) 

Paraxial Imaging systems are represented by h = 0 matri- 

cc\ whose canonical transform collapses to 

(16c) 

In quantum optics thih is called a .sq~c~.i~t,q transforma- 

tion. and is performed by relativistic means: in phase-space 

optics it i$ realized by a magnifying (reducing) lens zys- 

tern. 

For linear canonical tranaformationh. covariance holds 

az 

= W( f,,./,I~U/ + 1y.q + d/J). (17) 

For f,,-/, thih only hay> that the Wisner function of a 

wavrfunction transformed by first-order optics i\ the 

Wigner function of the original wavefunction, only subject 

to the linear tramformation of the underlying phase xpacc. 

(This correpondence doex not hold beyond linear tran\for- 

mations; for nonlinear one5 see Ret’. [I?].) In particular. 

the fractional Fourier tran\t’orm I\ 

‘<, 
i 

cos H - \in H 

\in H c‘os H : I 

it brings about ;I rotation of phase space hy H around the 

origin: for H = : TT it corresponds. but for nornluli/ation. to 

(IO). 

8. Covariance of the smile function and hologram 

When the signal is a Schriidinger-cat ztute composed of 

a reference and object beams. covariance relateh the sepa- 

rate transformations of the two. The hologram t’unction 

will follow only for point transt’ormations q’(q). FI-~,m 

Eq\. (3). (1). ( IS) and (17). we find the rrlaticms 

H(,I( r.\.):f,,.f’,lq) =H( f;).,/( pY.m \,):/,I(/ i I). 

(Isa) 

Eq. ( I Xa) states that the hologram of ;I translated ob.ject 

with a similarly translated reference heum is simply the 

translation of the original the hologram. and that a holo- 

gram illuminated with a rotated reference heam will pro- 

duce a similarly rotated object beam. Eq. ( I Xb) tells LIS that 

the linear transformation of phase hpacc maLcs the smile 

function of / CM ‘) f’, with the reference beam ./ii coin- 

cident with the smile function of /, under thr bcarn 



P‘(M),f,, obtained by transforming ,f, with a linear sys- 
tem. When the reference beam is a plane wave 

&,‘,,(q) = e- ‘%5x(: ;’ )( ,‘“.cl) 

of wavelength A = 2x. and since canonical transforms 
compose as their matrices multiply [6], its 

transform is 

Its Wigner function is a Dirac razor-edge 6 on the plane 
(q,p) = (aq + hp,,cq + dp,,). q E !)i In particular, the 
fractional Fourier transform rotates the phase space about 
the origin carrying with it the Wigner function plot of the 
states and reminding us of the Radon transform of a 
density function that reconstitutes the object from its shad- 

ows; in this case of the smile function, though. Eq. ( I Xc) 

covers the limit case of squeezing transformations q’ = aq 

for CI > 0 and typically ~1 = - I for imaging systems by 

one lens. Because in (7) and (I 9) the plane-wave exponent 
is really 2ripq/A, (18~) also describes the change of 
wavelength from 2rr to h = 2a0. Whereas in quantum 
mechanics the scale between position and momentum co- 
ordinates is fixed by nature to the Planck constant A = 
/1/2n. in optics the reduced wavelength A/2n has no 
such restriction. 

9. Concluding remarks 

We bring attention to the fact that the strong oscillation 
region in the Wigner function of Schrodinger cat states 
bears information on the hologram between their constitu- 
tents. When the reference beam is a plane wave. its 
Wigner function is a razor edge fi in the phase plane and 
some particularly simple relations ensue between the ob- 
ject beam and its smile function. Covariance allows us to 
translate and tilt this razor edge. thereby obtaining holo- 
grams for linear canonical (paraxial optical) transforms of 
the object beam. These are relations which may be useful 
both for the interpretation or for the design of holograms. 

We leave open the choice of regarding the signal or the 
hologram function as known by computation or by experi- 

ment. and the other to be found. Having a standard refer- 
ence signal, the smile function of a Schrodinger-cat state 
presents holographic information of the object state. This 
is particularly transparent in the paraxial wave optical 
model: it may clarify similar strategies for close-to-Wigner 
functions obtained in the time domain [5] and the quantum 
optics of squeezed light [I?]. 

Acknowledgements 

I thank a good question by Z. Zalevsky, and Dr. D. 
Mendlovic for hospitality at the Department of Electrical 
Engineering, Tel-Aviv University. Discussions with N.M. 

Atakishiyev. and S.M. Chumakov are gratefully acknowl- 
edged. as is graphical help from G. Kriitzsch at 

UNAM/Cuernavaca. This work was performed under Pro- 
ject UNAM-DGAPA IN IO6595 Opticu Mrttm6ticu. 

References 

[II 

PI 
bl 
[31 

151 

[61 

[71 

[81 

[91 
[IO1 

[I II 

[I?1 

E. Wigner. Phys. Rev. 40 (1932) 719: M. Hillery. R.F. 

O’Connell. M.O. Sully, E.P. Wigner, Phys. Rep. 106 (1983) 

121. 

H.-W. Lee, Phys. Rep. 259 (1995) 117. 

M.J. Bastiaans. J. Opt. Sot. Am. 69 ( 1979) I7 IO. 

A. Lohmann. Optics Comm. 42 (1980) 32: H.O. Bartrlt. 

K.-H. Brenner. H. Lohmann. Optics Comm. 32 (1980) 32: H. 

Bartelt. K.-H. Brenner. Israel J. Techn. I8 (1980) 260: K.-H. 

Brenner. H. Lohmann. Optics Comm. 12 (1987) 310. 

L. Cohen, Proc. IEEE 77 (1989) 931: K.W. DeLong. R. 

Trrbino, D.N. Fittmghoff. C.L. Ladera, SPIE 2377 (1995) 

1-k: J. Paye. A. Migub. J. Opt. Sot. Am. B (1996) 

K.B. Wolf, Integral Transforms in Science and Engineering 

(Plenum Press. New York. 1979) Part IV. 

D. Mendlovic, H.M. Ozaktns. J. Opt. Sot. Am. A IO (199.3) 

1875: A.W. Lohmunn. J. Opt. Sot. Am. A IO (1993) 21x1: 

H.M. Oraktas, D. Mendlovic. J. Opt. Sot. Am. A 10 ( 1991) 

2521: D. Mendlovic. H.M. 07akta.x. A.W. Lohmann. Appl. 

Optic< 33 (199-I) 6188: D. Mendlovic. Y. Bitran. R.G. 

Dorsch. A.W. Lohmann. J. Opt. Sot. Am. A 12 ( 199.5) 1665. 

W. Schempp, in: Lie Methods in Optics. Eds. J. %nchel- 

Mondrq6n. K.B. Wolf. Lecture Notes in PhyGc\. Vol. 250 

(Springer. Berlin. 1986) pp. I. 

K.B. Wolf. Optics Comm. I.32 (1996) 34.3. 

C. Gonralo. J. Bescos, L.R. Berriel-Vald6a. P. Artul. Appl. 

Optic\ 26 (1990) 75 I. 

G. Garcilt-Caldrr6n. M. Moshinsky. J. Phys. A I3 (1980) 

LlX5. 

N.M. Atakishiyev, S.M. Chumakov. A.L. Rivera. K.B. Wolf, 

Phys. Lett. A 315 (1996) 118; A.L. Rivera. N.M. Atak- 

ishiyev. S.M. Chumakov. K.B. Wolf. Evolution under poly- 

nomial Hamiltonians in quantum and optical phase spaces, 

Phys. Rev. A ( 1997). accepted. 


