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Abstract

The Wigner function of a Schrodinger-cat state f, + f, is the Wigner function of f, plus that of f|, plus a strongly
osciliating cross-term, called the smile funcrion of the cat state. We show that the marginal projection of the smile yields the
transmissivity of the physical hologram of the object beam f, with the reference beam f,. We review properties of linear

covariance for possible applications in computer hologram interpretation or design. © 1997 Elsevier Science B.V.
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understanding of quantum corrections in thermodynamic
equilibrium [1]. Since then it has been used extensively in
quantum mechanics because it provides a cogent interpre-
tation of states in phase space [2]. Applications of the

W:nnpr function to stenal qna]\/cu in the space [31 A] or

TURCUen (5244 afjarysis it Space

time domains [5] are relatively recent and new interpreta-
tions may be fruitful. In this Letter we point out that the
strong oscillations of the Wigner function between two
interfering signals, called the smile function of a Schrodi-
nger cat state, bears interesting holographic information.
We first define the terms used, then particularize one of
the signals to be a plane reference beam; then we indicate
that linear {6] and in particular the fractional Fourier
transformations [7] of the reference beam produce covari-
ant transformations in the hologram.
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used for one-dimensional signal analysis defines the Wigner
function (for fixed wavelength A # 0) as (see Ref. [8]) a
sesquilinear functional of two (Lebesgue square-integra-
ble) signals f,(¢)and f(g), ¢ €N (the real lme) and a

function of the nhase space coordinates of
coorcdinates of

......... piasc urlu\-\a

momentum, (g,p) € N 2,

I .
W(fofilg-p) =< [ dxfola = +v)

Xefl‘n[/:,\/)‘ f\(q +

(=

0. 0

In the paraxial regime, the optical momentum (also called
space frequency of the signal) can be identified (in a
medium of unit refractive index) with the ‘small’ angle ¢
between the optical z-axis and the ray vector. Most com-
monly. the Wigner function is used for f, = f, and inter-
preted as the phase-space quasiprobability distribution of
the system in that state: when f, # f|, several names are
found in the literature, such as cross-correlation and
Woodward ambiguity functions. that apply to (1) or its
Fourier transform [8].
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The Wigner function is not a classical probability func- (G, = f )(q,p)ll on the screen. Indeed. the Moyal identity
tion because it can take negative values in small areas of [R] between Wigner functions and W -inner products () is
phase space. Lohmann [4] showed that in the process of its .
optical production. the “true’ Wigner function is convo- . dgdpW( fi.flg.p) W( T .filg.p)
luted in ¢ and in p with Gaussians G (¢g) = - o ,
(rw)”Hexp(—¢”/2w) whose width product is minimal = (Lo fDCG)- 2u)
(i.e.. satisty the Heisenberg relation with equality). so the When f, =/, and f, =/ this iy the positive function
‘measured’  Wigner function is the intensity W o fOF. As particular cases. when f,, is a Gaussian G,
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Fig. 1. Level curves of the Wigner function for a Schridinger cat state composed of two Gaussian signals G, (g) of width w = 1 and peak
separations of 1. 2. 3, 4 and 5 units. (a) Gaussian signals with the same sign, and (b) of opposite signs. Note that as the (wo Gaussians
separate. the smile region remains localized around the midpoint, and increases its oscitlation frequency “across the teeth’
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and its width limits are zero or infinity, one obtains the ¢-
or p-projections (marginal distributions) of (1),

[h,dl’ W(foufilla.p) =1u(a) filq). (2b)

L\d‘/ W( fo.fila.p) zﬂ)(l’) fl( P). (2¢)

where f{ p) is the Fourier transform

\

= [ darayem,

f(q) = L dpf(pyermir/t. (2d)

3. Schrodinger cat states

The so-called Schridinger cat paradox concerns classi-
cal intuition applied to a coherent superposition of a live
and a dead cat. f; and f, given by their linear combina-
tion fo(q) + f/(¢). Because of sesquilinearity, the Wigner
function (1) of such a state decomposes into three real
terms,

W( f. +f f'J_f),n\
AW RN RRENE L AV i)
= W(fyfoldp) = W(FiFila-p) + S(fasfila.p).
(3)
where
S( fo.filg.p) =2ReW( f,.filq.p). (4)

In Fig. 1. the three terms are readily recognizable: the
standard interpretation of (3) identifies W{f,.folq.p) as
the phase space distribution of one constituent state f,,. and
W(f,.f,lq.p) as that of the other, f,. The most prominent
feature of the figure. however, is the cross term (4), which

()\L]lldlc\ Sl[Ungl_y dllu []d\ [)CC[I LdlICU UlC )Hlll(’ [llrl(,ll(lrl
of the Schridinger-cat state [9].

4. Holographic reconstruction

We recall that the transmiss

ity
plate exposed to the object beam f(q,z) llumma[ed by a
distinct but coherent reference beam f(g,z) at the stan-
dard =0 plane (screen) is

|fola) + Fl @)
=1 + 1A +2Re fo(q)” fi(q)- (5)

and produces the (one-dimensional) hologram. The first
two terms in the sum are usually assumed to vary slowly

across the screen and result in a constant ‘background'
illumination on the plate. The third term in the sum may be
negative in some intervals, but its sum with the other two
is of course non-negative.

When we mtegrale Eq. (4) over p to find its projection

:2-@{ dpW( Ff . fla.m
‘lﬂf ! vSoJid )
=2Re folq) fi(q)- (6)

We note that this is exactly the interference term in (5).
The projection of the smile function thus contains the
properly holographic information of the beam f, under the
reference beam f,,.

5. Plane waves

Consider first the case where the two constituent wave-
functions of the Schrdinger cat state are paraxial plane
waves EN¢.2) = exp(2mi( pg — 2)/A) in the optical space
(¢.z)e R ", of fixed wavelength A+ 0 and momenta

(inclination angles) p = p, and p,. At the standard screen,

each wavefunction is a ‘plane-wave™ signal
eNq)=E)(q.2) | .o =exp(2mipg/A). (M)
whose wavelength on the screen is A/p. From (1) we tind
that the Wigner function of a plane wave (7) is

w(et stq. n\* S(p—py). (8)

ATy ,/“ Py)

Its projection on ¢ is unity.
The Schrbdinger cat state of two s,
E)(q.2) + Ej(g.2) is shown in Fig. 2a: the £ =0 plane
(hne) is the standard screen and holooraphic plate. The
corresponding Wigner function of &, (q) + &, (q) is shown
in Fig. 2b: we see the two plane-waves of the cat state

marked h\/ the 3 at p=p, and p=p, as razor edges:
Ked aat p=p, and ¢ 72 edges

there is also the smile of the cat (4):

"C!
I
=
(g1
g
I
<
a

\ -
2

Al
3(8,,“ Eplq-p)=

\

5 ll’()+l7|1)

Xcos(2m(py—p1)g/A). )

This is a third razor edge between the two, modulated by a
trigonometric function of wavelength A= A/(p,—p,).
The g-projection of the Wigner function (3) of the cat state
is 2 from the two plane waves, plus 2cos[27( p, — p,)g/A]
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Fig. 2. (a) Two plane waves in optical space g~z and, (b) on phase space. (Actually, two narrow Gaussians G, (p —pdand G (p+p)
with w = 0.001 and p,, = 2.) Their smile function is the Moiré pattern and hologram at the screen.

from (9). The hologram function (6) is thus H(e,f‘”,s,fllq) E .{g.2). the hologram will reproduce the object plane
=2[1 + cos(2mg/A)]. (It ranges in [0.4]: proper normal- wwe E)(g.2) as a first-order beam. Seen as an operation
ization should bring it to the transmissivity function with between signals. this indicates that the smile function (9)

range in [0.1].) Under the plane-wave reference beam defines a linear correspondence from &) (¢) 10 &(q).
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6. Plane wave reference beams

Consider now Schrodinger cat states composed of a
plane reference signal s,f:)( ¢) plus a generic object beam
f(g) with Fourier transform f( p) as given in (2d). The
smile function of the Schrodinger cat state &.(¢) + f(q) is

[P P S S PRET 77 AP0 S I Y
Skbl'u‘f“[‘/ ) —ERUVV’\tp”,flq pj
2
=" Rel dxe 2mirota=x//A
A j:H

=2mips /A g 1
xe™ 2 g+ 4x)
:4Ree4””""’“’"“f(2p—p()), (1)

cf. Eq. (2b). The g-projection of this smile function is the
plane-wave hologram function

H( s,f‘”,flq) = L“dpS(s,ﬁy,ﬂq,p)

=2Ree "M/ Af( ). (12)

When the signal f, although no longer a plane wave,
still has a peak at momentum (space fequency) p, — this is

Fig. 3. Wigner function of a Schrédinger-cat state composed of a
plane wave of momentum p; = —2, and a signal with a peak at

momentum p, =2. The smile maximum is along the line p
=4(py+ p)=0.
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Fig. 4. The smile wavelength (width of the teeth} is 1: the real
and imaginary parts of the Fourier transform of the signal (or
Gaussian-diffused measurement) are found at definite lines in

phase space.

indicated by f, as shown in Fig. 3 — then the smile
function (11) will still exhibit a peak at the midpoint p
=1(p,+p,). and can be written in the form

S(a,ﬁ},f;!q.ﬁ + %p’)
= 4Ree’7H /"*-[/"y*/>\])r//)tf*]( p,+p). (13)

At the peak p = p (p" = 0). the smile function oscillates in
g with the difference wavelength A= A/(p,— p,). This
Moiré pattern has the width of the “teeth” at the maximum
of the smile function. The exponential factor in (11) can be
set to 1 or +i by choosing ¢ =0 or (p'/A—1/A)g=
+ 3. See Fig. 4. Then the smile function provides the
complex Fourier transform of the object signal along those
lines:

S(ep A0+ 5p ) =4Re fi(p, +p'). (13a)

/ |

of or +A.d \ ~
Jil—=———— P+ | = +t4Imf +p').
(8/’”'“’4()\—-[7//\) PT3p T e +0)
(13b)
If the smile function is known from Lohmann’'s Wigner
function imager, Eqs. (13) yield the complex Fourier trans-
form f,(p, +p') of a Gaussian-convolved signal f(g)=
(G,. * fXq); so the pure signal Fourier transform. f( p) ~

G,/“,(ip)fvl( p), is the formal but simple mulitiplication of
a growing Gaussian times the measured function f|.
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Whether this “backward diffusion” process (with some
cutoff) can be competitive with other Wigner function-re-
storing algorithms [10] or whether it will be swamped by
noise cannot be answered yet.

Signals f(¢) can be translated in phase space by means
of operators in the Heisenberg-Weyl group. In what fol-
lows we mnslder the fixed wavelength A=2m that we

ivg)., (x.v)e b
expl il .\.,\.)\)] whose precise form is ummportdnt here.
These are the translations

Frly) = [7(xx)f ](g) = e eTIYE (g + x).

mit in o not
ot

~ o i £ 5 p

frCp)=c e f(p+y). (14)

Thu Wianoar function (V) 5o caramant nnder tranclationeg

The Wigner function (1) is corariant under translations

because 1t has the property

WI( 7 (x \'\ Foolv. vy Fly )

L W LY R AR RNV O R A AV i ]
=W(/1.Alg+xp+y). (15)

For f, =/, this means that the Wigner function of a
translated wavefunction is the translated Wigner function
of the wavefunction.

Further, Moshinsky and Garcia-Calderdn [11] showed
that the Wigner function (1) is also covariant under linear
canonical transformations. These are integral transforms
[6] in (2:1) correspondence with 2 X 2 matrices

M = ‘ d b
ol

Jae A4 1 Y Y oo

det M = 1. of the fo

{

Fula) = [/( ‘ ’j,] f'](q) = [ 44 Cula.a) 1(4).
(16a)

with integral kernel (for » # 0 and up to a g-independent
phase ¢*)

] , N [(a . 1 d
Cyly.g ):\/?W—_h-exp i _,—hq'*;qq 75 /
(16b)

Paraxial imaging systems are represented by b = () matri-
ces whose canonical transform collapses to

[’( {” 0 \ -I ) = i:/r a” 142 ‘:lu/:/’lu f( a/a).

|" Ve 1/a)’ J" g7
(16¢)

In quantum optics this is called a squeezing transforma-

tion. and is performed by relativistic means: in phase-space

optics it is realized by a magnifying (reducing) lens sys-
tem.

For linear canonical transformatons. covanance holds
as

/
W(‘/ ‘a h)f”. (u h)flll /))
\ (
=W( f,.f\laq ~ bp.cg + dp). (17)

For f,=/f, this only says that the Wigner function of a
wavefunction transformed by first-order optics is  the
Wigner tunction of the original wavefunction, only subject
to the linear transformation of the underlying phase space.
(This correspondence does not hold bevond linear transtor-
mations; for nonlinear ones see Ref. [12].) In particular,
the fractional Fourier transtform is

cosA  —sinf
Usinf o cosh )T

it brings about a rotation of phase space by # around the
origin: for § = 47 it corresponds. but for normalization. to
(10).

8. Covariance of the smile function and hologram

te comnosed of

b COMPpOsCa

When the signal is a Schridinger-cat st
a reference and object beams. covariance relates the sepa-
rate transformations of the two. The hologram function
will follow only for point transtormations ¢'(¢). From
Eqs. (3). (4). (15) and (17), we find the relations

H(.7 (xov)ifo-filg) =

H(‘/ﬁ(“_ I;):f},./’l!q)
O

= [ ans{rr [ .
N ¢

H(fo.7( —x.~v)filg +x).
(18a)

71/) ) filag + bpoeg + dp) .

(18b)

H/ {fa 0\ £l

7 ¢

\ L l/u) i /)
{ {1/u 0\ i

=Hl+‘,, l 7 :_z‘,luq’ (18¢)

¢
C,. 2 ) gtatag that tha haloogram ot o tranclatad ohiact
' A7 LAl LiidL g ll\'l\'blulll UV d tndaiidhidalvy \lL'I\,\,l

with a slmllarly translated reference beam is simply the
translation of the original the hologram, and that a holo-
gram illuminated with a rotated reference beam will pro-
duce a similarly rotated object beam. Eq. (18b) tells us that
the linear transformation of phase space makes the smile
function of #{M ") f, with the reference beam f,, coin-
cident with the smile function of f, under the beam
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#(M)f,, obtained by transforming f, with a linear sys-
tem. When the reference beam is a plane wave

epla) = e*"”/*wsz(?

of wavelength A =27, and since canonical transforms
compose as their matrices multiply [6], its

‘)(/’o.c/)

- b -
=e” "/ N0 C(’/ _ff)(p(,,q)
! ¢/

1 b 1 ¢
“‘,—fﬂxpi(—tl’ﬁr j/’oq‘tq']- (19)
vd V- a -a

Its Wigner function is a Dirac razor-edge 6 on the plane
(g.p)="{aq + bpy.cq +dp,). g€ M. In particular, the
fractional Fourier transform rotates the phase space about
the origin carrying with it the Wigner function plot of the
states and reminding us of the Radon transform of a
density function that reconstitutes the object from its shad-
ows; in this case of the smile function, though. Eq. (18c)
covers the limit case of squeezing transformations ¢’ = ag
for @ > 0 and typically ¢« = —1 for imaging systems by
one lens. Because in (7) and (19) the plane-wave exponent
is really 2mipg/A, (18¢) also describes the change of
wavelength from 27 to A =2ma. Whereas in quantum
mechanics the scale between position and momentum co-
ordinates is fixed by nature to the Planck constant # =
h /2. in optics the reduced wavelength A/27 has no
such restriction.

We bring attention to the fact that the strong oscillation
region in the Wigner function of Schridinger cat states
bears information on the hologram between their constitu-

5. When the reference beam is a plane wave, its
Wigner function is a razor edge & in the phase plane and
some particularly simple relations ensue between the ob-
ject beam and its smile function. Covariance allows us to
translate and tilt this razor edge, thereby obtaining holo-
grams for linear canonical (paraxial optical) transforms of
the object beam. These are relations which may be useful
both for the interpretation or for the design of holograms.
AR o Tanera e sas AF ean My |

Yyo icave UPCH lllC bllUlLC Ut ICgillUlllg lllC \lglldl or lllC

hologram function as known by computation or by experi-

ment, and the other to be found. Having a standard refer-
ence signal, the smile function of a Schrddinger-cat state
D S S N e A I - UG 'S MG R PTT T ULE Al PO
PIosTinS llUlUEldplll\, Nnuoriratun vl uIc UUJCLL Statc. 1 HIS
is particularly transparent in the paraxial wave optical
model; it may clarify similar strategies tor close-to-Wigner
functions obtained in the time domain [5] and the quantum
optics of squeezed light [12].
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