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We construct a Wigner distribution function for finite data sets. It is based on a
finite optical system; a linear wave guide where the finite number of discrete sen-
sors is equal to the number of modes which the guide can carry. The dynamical
group for this model is SU~2! and the wave functions are sets ofN52l 11 data
points. The Wigner distribution function assigns classicalc-numbers to the opera-
tors of position, momentum, and wave guide mode. ©1998 American Institute of
Physics.@S0022-2488~98!00312-0#

I. CONTINUOUS AND FINITE SIGNAL ANALYSIS

The phase-space representation of data sets can be analyzed with the aid of the
distribution function. This was introduced originally in quantum mechanics, where the ‘‘signa
a wave functionc(q), and its Wigner function~for \51) is defined as1

Wc~q,p!5
1

2p E
R

dx@c~q2 1
2x!#* e2 ixpc~q1 1

2x!. ~1.1!

When (q,p) are understood as canonically conjugate coordinates of a phase-space plane, th
of Wc(q,p) mirrors closely the intuitive objects in the model. They can be ‘‘particles’’ in qu
tum mechanics, with positionq and canonically conjugate momentump; in quantum optics these
objects may be the coherent states of the radiation field; in monochromatic paraxial wave
they are often beams with Gaussian position and inclination distributions. The Heisenberg
tainty relation is built into the Wigner picture by the Fourier transform between the position
momentum representations.

The importance of the Wigner distribution function on finite data sets can be explain
terms of Lohmann’s rendering of the Wigner function in music,2 whereas the graphs of th
acoustic signal or the frequency spectrum of a performance are meaningless to visual insp
the Wigner function will exhibit peaks at positions that are the notes in a pentagram. In effec
Wigner function is a musical score—partitura of the data set$c(q)%, qPR, which also contains
the information of its Fourier transform function$c̃(p)%, pPR. Lohmann also presents optica
devices to produce essentially a photograph of the Wigner function of a line segment of dat
slide.3

In this paper we analyze specifically the phase-space representation of finite data sets.
interested in the features specific to finite systems. They include the discreteness of measu
and operator spectra, and the fact that these operators are realizations of a compact Lie alg
differenceoperators. Physicists using Lie-theoretical methods are much more familiar with
bras ofdifferential operators. We should stress that the domain of difference operators are
tions on the complex plane; in the same way as the difference equationG(x11)5xG(x) gener-
alizes the factorial product of the nonnegative integers to anyxPR, difference operators will
generally relate three neighboring points ofx separated by unity. Moreover, finite differenc
equations have a recognizedly richer structure of solutions than their limit differential equat4

When the interval and density of data points approach infinity, the results obtained will match
those of the standard formalism for continuous signals.

a!Electronic mails: natig@, sergey@, and bwolf@ce.ifisicam.unam.mx
b!Instituto de Matema´ticas, UNAM, Mexico.
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We consider 2l 11 complex data values

f5$ f mum52 l ,2 l 11,...,l %, f mPC, ~1.2a!

where 2l 11 is a non-negative integer. These can be thought of as complex light amplitude v
measured on an array of 2l 11 points on a screen, equidistant byl.0 and centered at the origin
i.e.,

f m5 f ~qm!, qm5ml, m52 l ,2 l 11,...,l . ~1.2b!

In ordinary finite Fourier analysis one asks for the exponential Fourier transform to provid
wave number contentf̃ of the signal f in the 2l 115N-dimensional orthonormal basi
N21/2 exp(2pnm/N), n51,...,N, consisting of Brillouin waves in a periodic lattice. This basis
adequate for a model of a finite system if the system is homogeneous under~dihedral! rotations of
the lattice, so the pointsq2 l andql are first neighbors. When the two pointsq2 l andql are poles
apart of an array where the middle portion carries the most significant part of the informat
different basis and transform are called for. Moreover, since the spectrum of the finite se
difference matrix is not equally spaced, the finite Fourier-exponential transform5 is a poor basis for
Lie-theoretical classification and evolution treatment of finite data in a system.

In Sec. II we present the finite wave guide model.6 This is a physical system which embodie
well the mathematical developments we present below; it is afinite oscillator. As will become
clear at the end of the paper, the wave guide model serves as a working definition offinite optics.
We start with Newton’s equation for the classical harmonic oscillator, and show that bot
usual infinite-spectrum quantum mechanical oscillator and the present finite-spectrum os
satisfy that equation; the former with the Heisenberg–Weyl algebra, the latter with the~2!
compact algebra. We stress that our approach uses the group of 232 unimodular unitary matrices
~twofold cover of the rotation group in three dimensions!, rather than the usual Heisenberg–We
group, as an arena for the Wigner function. In this way, we are assured of the existenc
positionoperator whose spectrum,m52 l ,2 l 11,...,l , is discrete and finite.

Section III defines the Wigner operator in the group ring,7 and the Wigner distribution func
tion as a bilinear form of the data values, which depend on the classical position, momentu
energy variables. Section IV examines the SU~2! covariance of the Wigner function and address
its computation by using group theoretical properties. It is clarified that for each fixed numb
sensorsN52l 11, the essential information can be plotted and inspected visually on the surfa
a two-sphere. Coherent SU~2! states are examined in Sec. V, where we also plot other intere
data sets, such as Schro¨dinger-cat states with their concomitant interference phenomenon.
concluding Sec. VI recapitulates our construction and indicates other finite systems with v
dynamical laws, which can be analyzed by the same mathematical tools and physical con

II. FINITE WAVE GUIDE MODEL AND THE SU „2… GROUP

Finite data sets and their parallel processing by optical means will be based on a
multimodal wave guide, such as would be part of photonic devices fabricated by doping a s
a transparent substratum.6 The finite wave guide model has a refractive index whose profile
parabolic~i.e., of the formn(q)5n02nq21¯ in a neighborhood of its axis!; it acts as a har-
monic oscillator on the input wave field~signal! produced by a linear array ofN coherent light
sources; the output is received by the same number of wave field sensors. We stress that o
guide model is capable of carrying only afinite number of modes, and corresponds to a quant
system with finite number of bound states equidistant in energy~see Fig. 1!.

A. Newton equation for the finite oscillator

A unit mass in the classical one-dimensional harmonic oscillator potentialV(q)5 1
2v

2q2

obeys Newton’s equationq̈52v2q ~the dots indicate time derivatives!; the same equation applie
in geometric optics to the transverse ray coordinate within a wave guide. As in the quantizati~or
wavization! of geometric to paraxial wave~Fourier! optics,8 we assume that there exists aposition
operatorQ, and time derivatives of the classical observables are replaced by Lie brackets~com-
mutators! of the corresponding operators with a Hamiltonian evolution operatorH ~times i!. For
the systems at hand, Newton’s equation thereby becomes theLie–Newton equation
011 to 132.248.33.126. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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@H, @H, Q##5v2Q. ~2.1a!

By definition, the commutator of the Hamiltonian and position operators yields themomentum
operator

P5 i @H, Q#, ~2.1b!

so the Lie–Newton equation~2.1a! becomes

@H, P#5 iv2Q. ~2.1c!

The three operatorsQ, P, andH satisfy two commutation relations,~2.1b! and ~2.1c!, which
embody theHamilton equations of oscillator/wave guide systems; their geometry and dynam
respectively. Notice that the third commutator,@P, Q#, is so far unspecified; for the three operato
to close into a Lie algebra, their Jacobi identity requires that@H, @P, Q##50. This implies that
@P, Q# is constant under evolution byH, and has the form

@P, Q#5 i ~sH1C!, ~2.2!

wheresP$11,0,21%, andC is any operator that commutes with the original three, i.e., is in
center of the Lie algebra.@We placed thei in ~2.2! to use self-adjoint operators below.# The values
of the coefficients determine thedynamicalLie algebra to be su~2!, iso~2! or su~1,1!, respec-
tively, and C may be a function of the Casimir invariant plus/or the generator of a ce
extension, plus/or a constant.@If a nonlinear function ofH is placed in~2.2!, other algebraic
structures may arise; we will not examine them here.#

In the familiar formulation of quantum phase space with operatorsQ andP, one setss50 and
C5\1; this defines the Heisenberg–Weyl–Lie algebra, and Eqs.~2.1! are satisfied whenH
5 1

2(P21v2Q2), in accordance with the classical Hamiltonian formulation.9 In Fourier polychro-
matic optics, the natural constant\ is replaced by the reduced wavelengthl/2p, lPR2$0%.7 In
Ref. 10 we examined the case when in~2.1a! and~2.1c! the oscillator frequencyv is zero, and in
~2.2! s521, C50; we have then a Euclidean dynamical Lie algebra, iso~2!. In this article we
shall examine the su~2! structure that fits the finite wave guide model.

B. Difference operators for finite systems

In finite systems, the position coordinate ranges over a finite~discrete! set of integer~or
half-integer! values,qm5m, m52 l ,2 l 11,...,l . This set of values we here interpret as thespec-
trum of the position operatorQ of the model, in a (2l 11)-dimensional vector spaceR2l 11 of
signals~1.2!.

Denoting byqPR the continuous coordinate whose integer~or half-integer! values are the
normalized sensor positionsm, and using the right- and left-shift operatorse6]qf (q)5 f (q61),
we recall from Refs. 6 and 11 thedifferenceoperators

J15Q5q, ~2.3a!

FIG. 1. Finite wave guide model. A shallow, planar wave guide doped into a transparent substrate, capable of c
only 2l 11 transverse modes, transmits in parallel at most that number of signals to the same number of sensors
011 to 132.248.33.126. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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J252P52 i 1
2@a l~2q!e]q2a l~q!e2]q#, a l~q!5A~ l 1q!~ l 2q11!, ~2.3b!

J35H2 l 2 1
252 1

2@a l~q!e2]q1a l~2q!e]q#. ~2.3c!

These operators satisfy the Lie–Hamilton commutation relations~2.1! and~2.2! with s511 and
C52( l 1 1

2)1, as generators of a Lie algebra su~2!,

@J1 , J2#5 iJ3 , @J2 , J3#5 iJ1 , @J3 , J1#5 iJ2 . ~2.4!

Since the Casimir operator in this realization isJ25J1
21J2

21J3
25 l ( l 11)1, it is equivalent to the

SU~2! unitary irreducible representation familiar from quantum angular momentum theory
with J1 identified as the position operator.

In this way the angular momentum algebra su~2! is woven into the foundation of finite
systems, i.e., systems with a finite number of independent states, and in particular of the
modal planar wave guide model. The spectra of positions, momenta, and energies are intrin
discrete, finite, and equally-spaced. When we change the basis~2.3!, so that the HamiltonianH
5J31 l 1 1

2 be diagonal, we find the eigenvalue equation

H~q!fn~q,2l !5~n1 1
2!fn~q,2l !, n50,1,...,2l , ~2.5!

that governs the wave field normal modes in the finite wave guide. The eigenfunctionsfn(q,2l )
can be written in terms of Kravchuk polynomials,12 which satisfy a discrete orthogonality relatio
with a binomial weight function. Multiplying the polynomials with the square root of the la
defines the Kravchukfunctions,6,13 which are continuously defined in the interval2 l 21<q< l
11 and satisfy the discrete orthogonality relation(m521

l fn8(m,2l )fn8(m,2l )5dn,n8 . In Ref. 13
we showed that whenl→` and the spacing between points vanishes asl 21, they become the
usual quantum harmonic oscillator wave functions.

C. Polar parametrization of SU „2…

Exponentiation of the Lie algebra of operators~2.3! yields the elements of the SU~2! group,
whose generic element can be parametrized by a three-vectory, whose unit direction vectorv
5y/uyu is the rotation axis, and whose lengthh5uyu is the rotation angle around that axis, name

g@y#5g@hv#5exp~2 iy•J!5exp@2 ih~v1J11v2J21v3J3!#. ~2.6!

y5hv~u,f!, v5S sin u sin f
sin u cosf

cosu
D , H 0<h,4p,

0<u<p,
0<f,2p.

~2.7!

This is the polar parametrization of the group, indicated hereafter by the square bracke
provides anR3 coordinate system where the unit element is at the origin,g@0#, for all directions
~u,f! and the SU~2! ‘‘minus unit,’’ also in the center~commutant! of the group, is the elemen
g@2pv(u,f)#, also for all directions. The vanishing of the Haar measure ath50,2p in Eq. ~2.10!
below, indicates that each of these element counts for a single point of the manifold. In
coordinates, thenth power is simply expressed as (g@y#)n5g@ny#; this defines fractional power
and yields the inverse element forn521. The angleh is counted modulo 4p and labels the
conjugation classes of the group; the group elements within each class are distinguished
axisv(u,f)PS2 on the two-sphere.~Relations with the more commonly used Euler angle para
etrizationg(f,u,c) ~Refs. 14, 15!, indicated by round brackets, will appear below.!

The three generatorsJ5(J1 ,J2 ,J3) transform under the action of the SU~2! group as the
components a row vector under theadjoint representationR by 333 orthogonal matrices

g@z#J~g@z# !215JR@z#. ~2.8!

The generic operator in the su~2! algebra has the formy–J5( i 51
3 yiJi ; therefore, from~2.6! and

writing y5hv(u,f), it follows that in polar parametrization,
011 to 132.248.33.126. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



el

n-
f

ted by

r

lar
ll
up; the

. We
ert
f
s by

6251J. Math. Phys., Vol. 39, No. 12, December 1998 Atakishiyev, Chumakov, and Wolf

Downloaded 27 Jun 2
g@z#g@y#~g@z# !215g@R@z#y#5g@hR@z#v#. ~2.9!

In these coordinates, the invariant measure@for which *SU(2) dg f(g)5*SU(2) dg f(gg0)
5*SU(2) dg f(g21)# is14,15

dg@y#5g~h!dy5 1
2 sin2 1

2hdhdv, dv~q,w!5sin qdqdw, ~2.10a!

wheredy5dy1 dy2 dy3 is the Cartesian measure inR3, the weight function is

g~h!5

1
2 sin2 1

2h

h2 5 1
8 sinc 1

2h, ~2.10b!

and sincx5x21 sinx is thesinus cardinalisfunction. Finally, we recall that the SU~2! manifold
is the three-sphereS3 and vol SU(2)5*SU(2)dg52p25vol S3 .

On the su~2! algebra, the Hamiltonian generates evolution throughg@z,k#5exp(2izH), i.e., a
rotation by the anglez around the unit vectork along the three-axis. In the finite wave guide mod
defined by~2.3!, it represents evolution of theR2l 11 wave fields along the opticalz-axis of the
wave guide~times a common phase exp@2iz(l11

2)#). Other useful optical elements are also co
tained in this su~2! model; a thinwedge~prism! of distinct refracting index in the wave guide, o
small anglev, multiplies the signal along the sensor array bye2 ivm; this is generated byQ and is
a rotation byv around the one-axis of the group. A tilted plate of such materialtranslatessignal
positions at the center of the guide; it is a rotation around the two-axis of the group genera
P.

III. WIGNER OPERATOR AND DISTRIBUTION FUNCTION

In this section we define the Wigner operator on a Lie group7 and examine the SU~2! Wigner
function associated with the finite wave guide model.

A. Wigner operator and its covariance

Consider ad-parameter Lie groupG with generatorsJ5$Ji% i 51
d , whose elements in pola

parametrization areg@y#5exp(2iy•J), wherey•Jª( j 51
D yjJj . We define theWigner operator

as the family of formal operators, function ofxPRd, given by

W~x!5E
G
dg@y#exp@ iy•~x2J!#5E

G
dg@y#exp~ ix•y!g@y#. ~3.1!

In the case of the unitary group SU~2!, d53 and the dot product is the rotation-invariant sca
product between three-vectors,x–y5( i 51

3 xiyi . The direct integral of group elements is we
defined when the operator acts on functions over a homogeneous space under the gro
SU~2!-invariant measure is~2.10!.

Note first that the Wigner operator at the coordinate origin,W(0)5I, is the unit element in
the SU~2! group ring of formal operatorsA5*G dg A(g)g ~i.e., IA5AI5A). Next, observe
that the range of the polar parametersy is the compact SU~2! manifold, while the spacex in the
argument of the Wigner operator isR3. Moreover, the function exp(ix•y) in ~3.1! is not periodic
over the group; for generalx it has different values atg@hv# and atg@(h14p)v#, which repre-
sent the same elementg@y#. We must therefore fix the definition of the Wigner operator~3.1! by
imposing an otherwise natural condition for operators in Lie group rings, self-adjointness
consider the group elementsg@y# in ~3.1! acting as unitary operators on an appropriate Hilb
space, so their operator adjoint is their inverse, (g@y#)†5g@2y#. Then, we obtain the adjoint o
W(x) through complex conjugation of the exponential function; changing integration variable
y°2y, we reproduce~3.1! only if *SU(2) dg@2y#¯5*SU(2) dg@y#¯ . The range ofy
5hv(u,f) will be the same as that of its inverse2y if we agree thath, naturally ranging in
@0,4p! in accordance with~2.6!–~2.7! and counted modulo 4p, will be integrated over~22p,2p#.
Only in this way the Wigner operator will be self-adjoint~in the same Hilbert space!: @W(x)#†

5W(x) for all xPR3.
The Wigner operator~3.1! satisfies the important property of SU~2!-covariance,
011 to 132.248.33.126. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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g@y#W~x!~g@y# !215W~R@y#x!. ~3.2a!

This is a consequence of the bilateral invariance ofdg@y# and the property~2.9! of the adjoint
representation; it follows from rewriting the left-hand side of~3.2a! as

E
SU~2!

dg@y#exp~ iy8•x!g@Ry8#5E
SU~2!

dg@y9#exp~ iy9•Rx!g@y9#, ~3.2b!

whereR5R@y# andy95Ry8, to obtain the right-hand side of the equation.

B. Wigner matrix

The action of the Wigner operator~3.1! on column vectorsfPR2l 11 @whose vector compo-
nents are the observed wave field values~1.2!#, is

W~x!f5E
SU~2!

dg@y#exp~ ix•y!Dl@y#f5W l~x!f, ~3.3!

whereDl@y# are the spin-l unitary irreducible representation matrices of SU~2! in polar coordi-
nates, well known as theWigner D-matricesin angular momentum theory.14,15We callW l(x) the
SU~2! Wigner W-matrices; they are thematrix representationof the SU~2! Wigner operator on
R2l 11.

The WignerD- andW-matrices are essentially Fourier conjugates of each other; the integ
Eq. ~3.3! can be inverted because it has the transform kernel exp(ix•y). Thus, the transform pai
is

W l~x!5E
SU~2!

g~ uyu!dy exp~ ix•y!Dl@y#, ~3.4a!

Dl@y#5
1

~2p3!g~ uyu! ER
3

dx exp~2 ix•y!W l~x!. ~3.4b!

From~3.4! we see that since the WignerD-matrices are unitary, (Dl@y#)†5Dl@2y#, and since
we have chosen the integration range to be invariant under inversions, it follows thatW l(x)†

5W l(x), i.e., the WignerW-matrices are self-adjoint. Therefore, their eigenvalues, determi
and trace, are real. Also from~3.4!, the known integral and a special value of theD-matrices imply

W l~0!5E
SU~2!

dg@y#Dl@y#52p2d l ,0 , ~3.5a!

E
R

3
dxW l~x!5~2p!3g~0!Dl@0#5p31. ~3.5b!

The unitarity of theD-matrices in~3.4a! further determines the integral

E
R

3
dx@W l~x!#†W l~x!5~2p!3E

SU~2!
@g~ uyu!#2dy15p4s41, ~3.6!

wheres45*0
2p sinc4 z dz51.0467... is a constant. Finally, notice that~3.4! is a transform pair

between functionsW of xPR3 and functionsD of g@y#PSU(2) with support inside a sphere o
radius 2p in R3. Payley–Wiener theorems should yield analiticity properties of the Wig
W-matrices that will be explored elsewhere.

C. Wigner function and its covariance

We define theWigner distribution functionof the finite signals f5$ f m%m52 l
l and g

5$gm%m52 l
l as the sesquilinear form
011 to 132.248.33.126. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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Wl~ f,gux!5f†W l~x!g5 (
m,m852 l

l

@ f m#* Wm,m8
l

~x!gm8 . ~3.7!

The Wigner matrix elements are, from~2.7!, ~2.10!, and~3.4a!,

Wm,m8
l

~xu!5E
22p

2p
1
2 sin2 1

2hdhE
S2

dv exp~ ixhu•v!Dm,m8
l

@hv#. ~3.8!

In Dirac’s notation one can usefully writeWm,m8
l (x)5^ l ,muW(x)u l ,m8&. Whenf5g, we indicate

the Wigner function simply byWl(fux); this is the expectation value of the Wigner operator in
statef.

From the SU~2!-covariance of the Wigner operator~3.2! follows the SU~2!-covariance of the
Wigner matrix and of the Wigner function,

Dl@y#W l~x!Dl@2y#5W l~R@y#x!, ~3.9!

Wl~Dl@2y#f,Dl@2y#gux!5Wl~ f,guR@y#x!. ~3.10!

One consequence is that a signal vectoram5$am
m%m52 l

l which is an eigenvector of any operato
Ja5a•J in the su~2! algebra and with the eigenvaluem, will have a Wigner function that will be
invariant under rotations ofx around the axisa. This is so because rotation by exp(2ivJa) will
multiply its eigenvectoram by exp(2ivm); but in ~3.3!–~3.7! we see that the Wigner function i
insensitive to common signal phase factors,Wl(eiffux)5Wl(fux). Such is the eigenbasis ofnor-
mal modesof the finite wave guide, which are the eigenfunctions of the HamiltonianH and given
by the Kravchuk functions~2.5!.

D. Meta-phase space

The definition, properties, and use of the common Wigner distribution function~1.1! were
briefly discussed in the Introduction. We propose~3.7! as the proper Wigner function for finite
signals f in a planar multimode wave guide. Equations~2.3!–~2.6! establish a correspondenc
between the~c-number! arguments ofWl(fux) and the physical observables of a wave field in
shallow waveguide, namely,

x5xm~q,w!5S q
2p

E2 l 2 1
2

D 5S position
2momentum

energy2 l 2 1
2

D . ~3.11!

Because the first two coordinates are of ordinary phase space, let us call the three-dime
space ofxPR3 the metaphase spaceof the finite wave guide model. Whenl is large andE is
small, in a neighborhood of the South pole we can approximate the sphereuxu25q21p21(e2 l
2 1

2)
2' l 2, by the osculating paraboloidE'(p21q2)/2l , which corresponds to the classical e

ergy in an oscillator. We should thus expect the values of the Wigner function to peakx
5uxu betweenl and l 11. This will be borne out below.

IV. WIGNER MATRIX AND PROJECTIONS

With the aim of computing the Wigner function of finite signals, we now find expressions
the D- and W-matrix elements and some of their main properties. To understand the resu
three-dimensional space, we examine spherical slices and projections.

A. Dl matrix elements in polar coordinates

For analytic and computational work it is convenient to use both polar and Euler a
coordinate systems in SU~2!. Their relation is

g@y#5g~f,u,0!g~0,0,h!@g~f,u,0!#21, y5hv~u,f!, ~4.1!
011 to 132.248.33.126. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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where~u,f! determine the direction of the unit vectorv. This also holds for any matrix represen
tation. TheD-matrix elements are commonly written in terms of Euler angles as

Dm,m8
l

~f,u,c!5eimfdm,m8
l

~u!eim8c, ~4.2!

wheref andc are rotations around the three-axis,eimf5^ lmueifJ3u lm&, and thelittle-d’s repre-
sent rotations around the one-axis,dm,m8

l (u)5^ lmueiuJ1u lm8&, noting that we follow the conven
tion of Vilenkin and Klymik14 in rotating the second Euler angle around the one-axis; this
form preferred for SO(N) systematics and is slightly different from that of Biedenharn and Lo
in Ref. 15, Sec. 3.6, who rotate around the two-axis. TheD-matrix elements in polar parametr
zation are thus bilinear in thed-functions,

Dm,m8
l

@hv~u,f!#5 (
n52 l

l

Dm,n
l ~f,u,0!e2 inh@Dm8,n

l
~f,u,0!#*

5ei ~m82m!f (
n52 l

l

dm,n
l ~u!e2 inh@dm8,n

l
~u!#* . ~4.3!

B. Wl matrix elements on the two-sphere

Any point x5xu(q,w)PR3 @cf. Eq. ~2.7!# can be obtained by rotatingxk5(0,0,x) from the
North pole to (q,w)PS2 , through

u~q,w!5R~w,q,0!k. ~4.4!

Because of SU~2!-covariance~3.2a!–~3.9!, we can write the WignerWl-matrix over the sphere in
terms of its values at the North pole, where it is diagonal,Wm,m8

l (xk)5dm,m8Wm
l (x). Thus we

have

Wm,m8
l

~xu~q,w!!5e2 i ~m2m8!w (
n52 l

l

dm,n
l ~q!Wn

l ~x!@dm8,n
l

~q!#* , ~4.5!

which separates the angular dependence from the radial coordinatex5uxuPR1, and

Wm
l ~x!52p (

n52 l

l E
21

1

d cosuudm,n
l ~u!u2E

22p

2p 1

2
sin2

1

2
cdc exp~ ic@x cosu2n# !

5~21!2l
p

4 (
n52 l

l E
21

1

dsudm,n
l ~arccoss!u2

3sin~2pxs!F 21

xs2n11
1

2

xs2n
1

21

xs2n21G , ~4.6!

where in the last expression we have usedsªcosu. Note that the integral we performed inc is the
second difference inn of sinc 2p(xs2n), and that the poles within the brackets cancel the ze
of the sine function. The eigenvalues of the self-adjoint Wigner matrixW l(xu) are
$Wm

l (x)%m52 l
l . The Wigner matrix elementsWm,m8

l (x) merit a deeper group-theoretical analys
this will be done elsewhere, but it suffices to point out here that by virtue of their covari
properties, they are thetransform kernelbetween functions of the continuous space coordina
xPR3 and functions of the discrete space of irreducible representation indices (l ,m,m8). They
intertwine the angular momentum operators in their well-known differential form with their f
~2.3! as difference operators.

C. Radial projection

The radial marginal distributionof the SU~2!-Wigner functionWl(f,gux), x5xu, is its pro-
jection on the radiusx by integration over the spherical coordinates ofu(q,w),
011 to 132.248.33.126. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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M radial
l ~ f,gux!5E

S2

duWl~ f,guxu!. ~4.7!

When we evaluate the integral~4.7! over uPS2 , the exponential factor exp(ixhu•v) yields
4p sinc xh. Next, theS2-integral over the group parametersv(u,f) is computed by using

E
S2

dvDm,m8
l

@hv#5
4p

2l 11
dm,m8

sin~ l 1 1
2!h

sin 1
2h

. ~4.8!

Substituting, we obtain the radial projection of the Wigner function in the form

M radial
l ~ f,gux!5~ f,g!Rl~x!, ~4.9!

where (f,g)5(m52 l
l f m* gm is the inner product of the two signals~or the squared normufu2 of one

signal whenf5g). All radial dependence is contained in the factor

Rl~x!5
8p2

2l 11 E
22p

2p

dh sin
1

2
h sinc xh sinS l 1

1

2Dh

5
4p2

~2l 11!x
@Si 2p~x1 l !1Si 2p~x2 l !2Si 2p~x1 l 11!2Si 2p~x2 l 21!#,

~4.10!

given in terms of the sine integral functions Six5*0
x sinc y dy ~Ref. 16, Eq. 3.7632!. Finally, the

integral of the Wigner function overxPR3 is proportional to the signal inner product~or squared
norm!,

Ml~ f,g!5E
R

3
dxWl~ f,gux!5p3~ f,g!. ~4.11!

In Fig. 2 we plotRl(x), the radial factor~4.10!; taking into account~4.11! it shows that the
Wigner function is concentrated in a spherical shell between radiix5 l andl 11. It is not difficult
to show that the functionxRl(x) has extremal points at every integer and half-integerx>0,
except for x5 l and x5 l 11; the largest maximum ofxRl(x) is at x5 l 1 1

2, and R0(0)
52(2p)3. We emphasize that inRl(x) or x2Rl(x) ~with the radial measurex2dx), the position
of this maximum shifts right or left~respectively! by small amounts but stays well within th
interval (l ,l 11).

The number of sensors in the wave guide is fixed, so the Wigner function correspond
single value ofl. In searching for convenient ways to plot this function ofxPR3, we have chosen
to show its level curves on aspherical sliceof R3, for the standard valuex5 l 1 1

2. We have
checked that similar plots at various radii nearl 1 1

2 produce very similar figures, only with smalle
maxima and curves somewhat more rounded.~Another graphing strategy for the Wigner functio
would be to project it by integration overx with the radial measurex2dx, or with any special or
convenient measure; we leave this possibility open for future work.!

V. COHERENT STATES, ELEMENTARY STATES, CAT STATES

In this section we present the Wigner function of some signals of interest suggested b
group-theoretical treatment; they are concepts taken from the quantum theory of angular m
tum. We direct our attention to coherent states and spherical harmonics.

A. Vacuum coherent state

Thevacuumcoherent state is the lowest-energy state~signal! of the system. For SU~2! and in
the eigenbasis ofJ3 it is the (2l 11)-dimensional column vector indicated

a~2k!5~0,...,0,1!T, ~5.1!
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whereT is the transpose and2k is a unit vector pointing to the South pole of the sphere.
In the basis where the position operatorQ5J1 is diagonal, the same state~5.1! represents the

(2l 11)-point signal

ã~2k!5exp~2 i 1
2pJ2!a~2k!5Dl~2 1

2p,2 1
2p,0!a~2k!, ~5.2a!

ãm~2k!5e2 ipm/2dm,2 l
l ~2 1

2p!5
e2 ipm/2

2l
AS 2l

l 2mD5e2 ipm/2f0~m,2l !. ~5.2b!

Here we recognize the Kravchuk function of order zero,f0(m,2l ) in ~2.5!.13 At the integersm,
this function is the square root of the binomial distribution. In the limit whenl→`, f0(q,2l )
becomes the Gaussian function of lowest oscillator state of quantum mechanics. In Fig.
Wigner function~3.7! of the signal~5.2! is plotted on the sphere of radiusuxu5 l 1 1

2,

Wsphere
l ~a~2k!!uq,w)5W2 l ,2 l

l ~xu~q,w!!ux5 l 11/25 (
m52 l

l

Wm
l @d2 l ,m

l ~q!#2, ~5.3!

FIG. 2. Radial factorRl(x) in Eq. ~4.10!. ~a! For l 50,1,2,...,10 in 0<x<10; the l 50 curve has its maximum value
2(2p)35496.10... atx50. ~b! Amplification of l 524 andl 525 in 20<x<30.
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whereWm
l 5Wm

l ( l 1 1
2) are constants obtained from~4.6! for the chosen value of the radiusx.

Figure 3 shows the signal, its mode~energy! content, and the level curves of the Wigner functi
on the sphere; it shows thepartitura of the vacuum coherent state, the ‘‘fundamental note’’ of
system. Evolution along thez-axis of the wave guide is generated by the HamiltonianH in ~2.3c!,
and appears as a rotation of the Wigner function around the three-axis of the sphere. Und
transformation, the vacuum state is simply multiplied by the phasee2 iz/2; hence its Wigner
function is invariant.

B. SU„2… coherent states

The Wigner function of the vacuum coherent state can be rotated to any new position
sphere~q,w! by means of SU~2!-optical transformations of the signal, i.e., by free propagat
along a waveguide, with refracting wedges and tilted plates. One thus generalizes the con
coherent states toa~a! for any and all directionsa(q,w)PS2 . If

a5eiqJ1eiwJ3k, then am~a~q,w!!5Dm,2 l
l ~2w,2q,0!5eimwd2 l ,m

l ~q! ~5.4!

are the components of the coherent state alonga. In Figs. 4 we show theantivacuum coheren
statea~k!, which is the highest energy mode in the finite planar wave guide. This is obtained
the vacuum statea~2k! by a rotation of the sphere around the one-axis; such rotation ca
physically produced with a refracting wedge that impresses a phaseeipm5(21)m on the input
signal values; the output signal for continuousq is the Kravchuk functionf2l(q,2l ). For integer
valuesm of q, this signal has the envelope of the vacuum coherent statef0(m,2l ), but with values
alternating in sign.

C. Elementary states

When the unit vectora is along the one-axisi, the coherent statea~i! is the signal~1,0,...,0!.
When this signal propagates along the wave guide, the vectora will move around the equator; th
signal will undergo the fractional Fourier–Kravchuk transformation cycle.6 We call elementary

FIG. 3. Faces of the vacuum coherent statea(2k) for l 53 and 7 ‘‘sensor’’ points:~a! Wigner function~5.3!. Positive
level contours are indicated with unbroken lines for function values 0.35, 0.7,...; zero and negative levels are indica
broken lines.~b! Energy ~mode! content.~c! The signal in the ‘‘position’’ (Q5J1) basis of sensors; it is a Kravchu
function of order zero which is also the root of the binomial distribution.
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states~in an array of 2l 11 sensors! to those signals with single 1 at some positionn ( l –n integer!
and zeros on the rest. They are the eigenfunctions ofJ1 with eigenvaluesnP$ l ,l 21,...,2 l % and
will be indicated byan( i).

The Wigner function~3.7! of elementary states can be then written in polar coordina
u1(q1 ,w1), referred to the one-axis@so u1(0,w1)5 i#,

Wsphere
l ~an~ i!uq1 ,w1!5Wn,n

l ~xu1~q1 ,w1!!ux5 l 11/25 (
m52 l

l

Wm
l @dn,m

l ~q1!#2. ~5.5!

@cf. Eq. ~5.3!.# The Wigner functions of elementary signals are independent ofw1 , and thus
invariant under rotations of the sphere around the one-axis. Conversely, when the Wigner fu
of a signalf is invariant under rotations around some axisa, f can be multiplied only by an overal
phase when acted upon by exp(iva•J); thereforef will be an eigenfunction ofa•J. From the plot
of the Wigner function one can determine readily whether or not an output signalf5$ f m%m52 l

l

derives from the input of an elementary signal~0,...,0,1,0,...,0! through an SU~2!-optical system.

D. Schrö dinger-cat signals and their smile function

The sum of two signals is aSchrödinger-cat signal. The original Schro¨dinger ‘‘paradox’’ of
coherently superposing one dead and one live cat states applies fruitfully to signal analysi

Consider two signalsf andg; the Wigner function of their linear combinationcf f1cgg is

W~cf f1cggux!5ucf u2W~ fux!1ucgu2W~gux!12 Recf* cgW~ f,gux!. ~5.6!

The Wigner functions of the two signals thus not only add, butinterfere. The cross term
S(f,gux)52 Ref†W(x)g has been called thesmile function of the Schro¨dinger-cat state; it is a
most prominent feature of the Wigner function of cat states that carries the holographic inf
tion of the object signalg with the reference signalf.17

In Fig. 5 we plot Schro¨dinger cat states composed of two normal modes of the wave guide
l 53 and 7 sensors. If we place the one-axis along the three-axes of the figures, the Schr¨dinger

FIG. 4. Antivacuum coherent statea~k! for l 53, with the parameters of the previous figure.~a! Wigner function.~b!
Energy~mode! content.~c! Signal at the sensors (Q5J1 basis! as in the previous figure but with alternating signs.
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cats are ‘‘bilocalized’’ states and the last is an elementary state. Compare Fig. 5~a! with Figs. 3
and 4, noticing the six oscillations~teeth! of the smile across the equator; Fig. 5~b! exhibits four,
Fig. 5~c! shows two, and Fig. 5~d! has axial symmetry.

VI. CONCLUDING REMARKS

We represented finite data sets by their Wigner function in an optical model of planar m
modal wave guides. Position, momentum, and energy~mode number! are c-number coordinates
which are associated to the generators of su~2! algebra; the latter are self-adjoint differenc
operators with discrete, equally-spaced, and finite spectra. Thepartitura of a signal is drawn on a
sphere. The vacuum coherent state is analogous to the ground harmonic oscillator wave fu
from it, all other coherent states can be produced by SU~2!-optical elements, wave guide, wedg
and slab. These transformations are the counterpart of rotation and translation of classica
space.

The applicability of our construction extends to other mechanical and optical systems
based on finite data sets but with different dynamics. For instance, the quantumpoint rotor ~a mass
point constrained to move onS2) has symmetry group SO~3!, which is covered twice by SU~2!.
This system is isomorphic to the mechanical vibrating sphere and, by stereographic projec
the two-dimensional Maxwell fisheye wave-optical medium.18 In both of these cases, wave fun
tions are on the sphere and generally containall spherical harmonics,

C~b,g!5(
l 50

`

(
m52 l

l

Cm
l Ym

l ~b,g!. ~6.1!

The data set is now infinite and given by the tower of coefficientsC5$Cl% l 50
` , Cl

5$Cm
l %m52 l

l .

FIG. 5. Schro¨dinger-cat states of two normal modes or elementary seven-point signals (l 53). ~a! (1/&, 0, 0, 0, 0, 0,
1/&), ~b! ~0, 1/&, 0, 0, 0, 1/&, 0!, ~c! ~0, 0, 1/&, 0, 1/&, 0, 0!, and~d! ~0,0,0,1,0,0,0!.
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The SU~2! Wigner function~3.7! was built for a single value ofl corresponding to a fixed
number of sensors of the model, and the radial factor~4.10! indicated that it is concentrated in
spherical shell of mean radiusl 1 1

2. If now the data vector is~6.1!, the Wigner operator~3.1! will
act irreducibly on each subvectorCl , and the Wigner function ofC will be the sum of the Wigner
functions in the irreducible subspaces, i.e.,

W~Cux!5(
l 50

`

Wl~Cl ux!5(
l 50

`

Cl†W l~x!Cl . ~6.2!

Such a function must be plotted inR3-spacex and will show the quasiprobability distribution o
the angular momentum vectorJ in the mechanical model, and of the beam parameters in
Maxwell fisheye. As drawn in elementary texts, the extreme spherical harmonic~coherent state!
Yl

l(b,g) has a minimal uncertainty cone around the three-axis,Yl 21
l (b,g) has a larger cone, etc

until Y0
l (b,g) opens the cone into the equator. Thus, while the wave function on the sp

Yl
l(b,g) have their square maximum on the equatorb5 1

2p ~where the classical particle is!, the
Wigner function is concentrated in the North polar cap aroundx5( l 1 1

2)k ~where the angular
momentum is!. On the other hand, strongly localized rotor wave functions, containing a w
spread ofl’s, will have Wigner functions~6.2! widely spread inuxu.

The dynamics of the rotor models~vibrating sphere and Maxwell fisheye! are different from
the wave guide, however; their Hamiltonian is proportional to the Casimir operato
so~3!5su~2!, rather than to one of its generators. Since under the corresponding ‘‘time’’ evol
t, each componentCl is multiplied by the phase exp@itl(l11)#, it follows that the Wigner function
~6.2! is invariant under rotor dynamics.

Nonlinear processes on discrete, finite systems, can also be analyzed with the SU~2! Wigner
function ~3.7! when the Hamiltonian belongs to the su~2! envelopingalgebra. This is the case o
the finite analog of the optical Kerr medium studied in Ref. 19, whose Hamiltonian is;J3

1aJ3
2. It also applies for Hamiltonians contrieved to have the form1

2J2
21V(J1), to mimic the

classical form of mechanics12p
21V(q), but restricted to a finite number of bound states. Natu

applications for SU~2!-Wigner functions will also include spin and pseudo-spin systems, as
appear, e.g., in quantum optics, when a collection of two-level atoms interact with the rad
field under small-volume approximation, as in the Dicke model.20,21Time evolution in these case
deforms the shape of the initial coherent state on the sphere; in the Kerr medium, the~2!
Wigner function gives a transparent picture of the nature of fractional-period resonances.19 Cova-
riance does not hold beyond SU~2!, so we can expect purely quantum effects~including squeez-
ing! to show up in the Wigner function on the sphere.
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