JOURNAL OF MATHEMATICAL PHYSICS VOLUME 39, NUMBER 12 DECEMBER 1998

Wigner distribution function for finite systems

Natig M. Atakishiyev,2"® Sergey M. Chumakov, and Kurt Bernardo Wolf
Instituto de Investigaciones en Mateticas Aplicadas y en Sistemas—Cuernavaca,
Universidad Nacional Auttoma de Mgico, Apartado Postal 48-3, 62251 Cuernavaca,
Morelos, Meico

(Received 9 May 1997; accepted for publication 11 August 1998

We construct a Wigner distribution function for finite data sets. It is based on a
finite optical system; a linear wave guide where the finite number of discrete sen-
sors is equal to the number of modes which the guide can carry. The dynamical
group for this model is S(2) and the wave functions are sets 2|+ 1 data
points. The Wigner distribution function assigns classtcsalmbers to the opera-
tors of position, momentum, and wave guide mode. 1898 American Institute of
Physics[S0022-24888)00312-0

I. CONTINUOUS AND FINITE SIGNAL ANALYSIS

The phase-space representation of data sets can be analyzed with the aid of the Wigner
distribution function. This was introduced originally in quantum mechanics, where the “signal” is
a wave functiony(q), and its Wigner functiorifor #=1) is defined as

1 )
Wy(@.p)= 5= | axuta-botte Pua+ b, 1D

When (g,p) are understood as canonically conjugate coordinates of a phase-space plane, the value
of W,(q,p) mirrors closely the intuitive objects in the model. They can be “particles” in quan-
tum mechanics, with positiog and canonically conjugate momentymin quantum optics these
objects may be the coherent states of the radiation field; in monochromatic paraxial wave optics
they are often beams with Gaussian position and inclination distributions. The Heisenberg uncer-
tainty relation is built into the Wigner picture by the Fourier transform between the position and
momentum representations.

The importance of the Wigner distribution function on finite data sets can be explained in
terms of Lohmann’s rendering of the Wigner function in mifsichereas the graphs of the
acoustic signal or the frequency spectrum of a performance are meaningless to visual inspection,
the Wigner function will exhibit peaks at positions that are the notes in a pentagram. In effect, the
Wigner function is a musical scorepartitura of the data sefy(q)}, ge R, which also contains
the information of its Fourier transform functidr/(p)}, pe ?%. Lohmann also presents optical
devicSes to produce essentially a photograph of the Wigner function of a line segment of data on a
slide:

In this paper we analyze specifically the phase-space representation of finite data sets. We are
interested in the features specific to finite systems. They include the discreteness of measurement
and operator spectra, and the fact that these operators are realizations of a compact Lie algebra of
differenceoperators. Physicists using Lie-theoretical methods are much more familiar with alge-
bras ofdifferential operators. We should stress that the domain of difference operators are func-
tions on the complex plane; in the same way as the difference equaioh1)=xI"(x) gener-
alizes the factorial product of the nonnegative integers toayr, difference operators will
generally relate three neighboring points ofseparated by unity. Moreover, finite difference
equations have a recognizedly richer structure of solutions than their limit differential equations.
When the interval and density of data points approach infinity, the results obtained will match with
those of the standard formalism for continuous signals.
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We consider P+1 complex data values
f={fum=—1,—1+1,...)}, fneC, (1.29

where 2+1 is a non-negative integer. These can be thought of as complex light amplitude values
measured on an array of 21 points on a screen, equidistant ¥ 0 and centered at the origin,
ie.,

fn=f(dm), gm=m\x, m=—1,—1+1,..]. (1.2b

In ordinary finite Fourier analysis one asks for the exponential Fourier transform to provide the
wave number contenf of the signalf in the 2+ 1=N-dimensional orthonormal basis
N2 exp(2mnm/N), n=1,...N, consisting of Brillouin waves in a periodic lattice. This basis is
adequate for a model of a finite system if the system is homogeneous (dittedra) rotations of
the lattice, so the pointg_, andq, are first neighbors. When the two poimis, andq, are poles
apart of an array where the middle portion carries the most significant part of the information, a
different basis and transform are called for. Moreover, since the spectrum of the finite second-
difference matrix is not equally spaced, the finite Fourier-exponential transfem@rpoor basis for
Lie-theoretical classification and evolution treatment of finite data in a system.

In Sec. Il we present the finite wave guide mofi@his is a physical system which embodies
well the mathematical developments we present below; it fimite oscillator As will become
clear at the end of the paper, the wave guide model serves as a working definffiimiteadptics
We start with Newton'’s equation for the classical harmonic oscillator, and show that both the
usual infinite-spectrum quantum mechanical oscillator and the present finite-spectrum oscillator
satisfy that equation; the former with the Heisenberg—Weyl algebra, the latter with tBe su
compact algebra. We stress that our approach uses the groupfiBimodular unitary matrices
(twofold cover of the rotation group in three dimensipmather than the usual Heisenberg—Weyl
group, as an arena for the Wigner function. In this way, we are assured of the existence of a
positionoperator whose spectrum=—1,—1+1,...], is discrete and finite.

Section Il defines the Wigner operator in the group rrand the Wigner distribution func-
tion as a bilinear form of the data values, which depend on the classical position, momentum, and
energy variables. Section IV examines the(3ltovariance of the Wigner function and addresses
its computation by using group theoretical properties. It is clarified that for each fixed number of
sensordN= 2| + 1, the essential information can be plotted and inspected visually on the surface of
a two-sphere. Coherent ) states are examined in Sec. V, where we also plot other interesting
data sets, such as ScHinger-cat states with their concomitant interference phenomenon. The
concluding Sec. VI recapitulates our construction and indicates other finite systems with various
dynamical laws, which can be analyzed by the same mathematical tools and physical concepts.

II. FINITE WAVE GUIDE MODEL AND THE SU (2) GROUP

Finite data sets and their parallel processing by optical means will be based on a planar
multimodal wave guide, such as would be part of photonic devices fabricated by doping a strip on
a transparent substratUhiThe finite wave guide model has a refractive index whose profile is
parabolic(i.e., of the formn(q)=ny— rg%+--- in a neighborhood of its axisit acts as a har-
monic oscillator on the input wave fielgigna) produced by a linear array & coherent light
sources; the output is received by the same number of wave field sensors. We stress that our wave
guide model is capable of carrying onlyfiaite number of modes, and corresponds to a quantum
system with finite number of bound states equidistant in en&sgg Fig. 1

A. Newton equation for the finite oscillator

A unit mass in the classical one-dimensional harmonic oscillator potevifia) = 3w2q?
obeys Newton’s equatiofj= — w?q (the dots indicate time derivativeshe same equation applies
in geometric optics to the transverse ray coordinate within a wave guide. As in the quantieation
wavization of geometric to paraxial wavdourien optics® we assume that there existgasition
operatorQ, and time derivatives of the classical observables are replaced by Lie bréochets
mutator$ of the corresponding operators with a Hamiltonian evolution opetat@imesi). For
the systems at hand, Newton’s equation thereby becomesdhblewton equation
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[H, [H, Ql]= Q. (2.13
By definition, the commutator of the Hamiltonian and position operators yieldsnttraentum
operator
P=i[H, Q], (2.1b

so the Lie—Newton equatiof2.13 becomes
[H, P]=i0?Q. (2.19

The three operator®, P, andH satisfy two commutation relation§2.1b and(2.1¢, which
embody theHamilton equations of oscillator/wave guide systems; their geometry and dynamics,
respectively. Notice that the third commutatd®?, Q|, is so far unspecified; for the three operators
to close into a Lie algebra, their Jacobi identity requires fibt[ P, Q]]=0. This implies that
[P, Q] is constant under evolution b, and has the form

[P, Q]=i(ocH+C), (2.2

whereo e {+1,0,— 1}, andC is any operator that commutes with the original three, i.e., is in the
center of the Lie algebréWe placed theé in (2.2) to use self-adjoint operators beldWwhe values

of the coefficiento determine thedynamicallLie algebra to be 9@), iso(2) or sul,1), respec-
tively, and C may be a function of the Casimir invariant plus/or the generator of a central
extension, plus/or a constartf a nonlinear function ofH is placed in(2.2), other algebraic
structures may arise; we will not examine them hkre.

In the familiar formulation of quantum phase space with oper&oaadP, one seter=0 and
C=11,; this defines the Heisenberg—Weyl-Lie algebra, and E24) are satisfied whemd
=1(P?+ w?Q?), in accordance with the classical Hamiltonian formulafidn.Fourier polychro-
matic optics, the natural constalnts replaced by the reduced wavelengiBr, A e R—{0}.” In
Ref. 10 we examined the case when(211g and(2.19 the oscillator frequencw is zero, and in
(2.2 o=—1, C=0; we have then a Euclidean dynamical Lie algebra(2sdn this article we
shall examine the $B) structure that fits the finite wave guide model.

B. Difference operators for finite systems

In finite systems, the position coordinate ranges over a fifliscrete set of integer(or

half-integey values,q,,=m, m=—1,—1+1,...]. This set of values we here interpret as tipec-
trum of the position operato€) of the model, in a (P+1)-dimensional vector spacg? ™! of
signals(1.2).

Denoting byq e R the continuous coordinate whose inteder half-integey values are the
normalized sensor positioms, and using the right- and left-shift operat@$’f(q)=f(q+1),
we recall from Refs. 6 and 11 th#fferenceoperators

J1=Q=q, (2.39

FIG. 1. Finite wave guide model. A shallow, planar wave guide doped into a transparent substrate, capable of confining
only 2l +1 transverse modes, transmits in parallel at most that number of signals to the same number of sensors.
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Jo=—P=—izla(-q)e’a—a(q)e "], a(q)=V(+aq)(l-q+1), (2.30
Ja=H—-1-1=—Y o (q)e %+ a/(—q)e’]. (2.30

These operators satisfy the Lie—Hamilton commutation relat{@ri$ and(2.2) with o= +1 and
C=—(1+3)1, as generators of a Lie algebra®y

[J1, J2]=1d3, [J2, J3]=1d1, [J3, J1]=1d5. (2.9

Since the Casimir operator in this realization)fs= J§+J§+J§= [(1+1)1, it is equivalent to the
SU(2) unitary irreducible representation familiar from quantum angular momentum theory, but
with J; identified as the position operator.

In this way the angular momentum algebraZuis woven into the foundation of finite
systems, i.e., systems with a finite number of independent states, and in particular of the multi-
modal planar wave guide model. The spectra of positions, momenta, and energies are intrinsically
discrete, finite, and equally-spaced. When we change the {a8)s so that the Hamiltoniaii
=J;+1+ 3 be diagonal, we find the eigenvalue equation

H(Q)¢n(9,2)=(n+2)¢n(a,2), n=0,1,..2, (2.9

that governs the wave field normal modes in the finite wave guide. The eigenfungiiégs)

can be written in terms of Kravchuk polynomidfswhich satisfy a discrete orthogonality relation
with a binomial weight function. Multiplying the polynomials with the square root of the latter
defines the Kravchukunctions®*® which are continuously defined in the interval —1<q<I
+1 and satisfy the discrete orthogonality relatﬁbh:_l én(m2)¢n (m2)=6, . In Ref. 13
we showed that wheh—o and the spacing between points vanishes ds they become the

usual quantum harmonic oscillator wave functions.

C. Polar parametrization of SU (2)

Exponentiation of the Lie algebra of operatdgs3) yields the elements of the $2) group,
whose generic element can be parametrized by a three-wectenose unit direction vectov
=vyl|y| is the rotation axis, and whose lengjt= |y| is the rotation angle around that axis, namely,

glyl=g[pvl=exp(—iy-J)=exd —in(v1J1+vyJstvgda)]. (2.6)
sin @ sin ¢ 0< <4,

y=nVv(6,¢), v=| sindcos¢ |, j0<b=m, 2.7)
cosd O=¢<27.

This is thepolar parametrization of the group, indicated hereafter by the square brackets; it
provides arR® coordinate system where the unit element is at the orii@], for all directions
(6,¢) and the SW) “minus unit,” also in the centefcommutank of the group, is the element
gl27v(6,¢)], also for all directions. The vanishing of the Haar measurg=a0,27 in Eq.(2.10
below, indicates that each of these element counts for a single point of the manifold. In polar
coordinates, thath power is simply expressed agl§])"=g[ny]; this defines fractional powers
and yields the inverse element fae=—1. The anglern is counted modulo # and labels the
conjugation classes of the group; the group elements within each class are distinguished by the
axisv(#0, ) € S, on the two-spherdRelations with the more commonly used Euler angle param-
etrizationg(¢, 0,¢) (Refs. 14, 15, indicated by round brackets, will appear belpw.

The three generatord=(J,,J,,J3) transform under the action of the &) group as the
components a row vector under thdjoint representatiofR by 3X 3 orthogonal matrices

g[z]3(g[z]) *=JIR[2]. (2.8

The generic operator in the @) algebra has the form-J:Ef’:lyiJi ; therefore, from(2.6) and
writing y= nv( 6, ¢), it follows that in polar parametrization,
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glzlglyl(glz])~*=g[RIzlyl=g[ 7R[Z]V]. (2.9

In these coordinates, the invariant measifer which [gyi)dg f(9)=/su) dg f(9go)
=Jsue) dg f(g~H1is***

dgly]=y(n)dy=73 sir? zpdndv, dv(§,¢)=sin 3ddde, (2.109

wheredy=dy; dy, dy; is the Cartesian measure ®°, the weight function is

1
27 .
y(n)= —F § sinc 37, (2.10n

and sincx=x"1 sinx is thesinus cardinalisfunction. Finally, we recall that the SB) manifold
is the three-spheré; and vol SU(2)= [ sy(2ydg=2m?=vol Ss.

On the s2) algebra, the Hamiltonian generates evolution throgighk ]=exp(—izH), i.e., a
rotation by the angle around the unit vectdr along the three-axis. In the finite wave guide model
defined by(2.3), it represents evolution of th#? ** wave fields along the opticataxis of the
wave guide(times a common phase dxpiz(I+3)]). Other useful optical elements are also con-
tained in this s(2) model; a thinwedge(prism) of distinct refracting index in the wave guide, of
small anglew, multiplies the signal along the sensor arrayeby®™; this is generated b@ and is
a rotation byw around the one-axis of the group. A tilted plate of such matédalslatessignal
positions at the center of the guide; it is a rotation around the two-axis of the group generated by
P.

lll. WIGNER OPERATOR AND DISTRIBUTION FUNCTION

In this section we define the Wigner operator on a Lie gfaml examine the S@) Wigner
function associated with the finite wave guide model.

A. Wigner operator and its covariance

Consider ad-parameter Lie grouf with generators]={Ji}id:1, whose elements in polar
parametrization arg[y]=exp(—iy-J), Wherey~\]==EjD=l y;jJ;. We define thewigner operator
as the family of formal operators, function »& R9, given by

W(X)=fgdg[y]exr{iy-(x—m:Ldg[y]exp(ixv)g[y]- (3.0

In the case of the unitary group &), d=3 and the dot product is the rotation-invariant scalar
product between three—vectorx;-,y:Ef’:1 X;y; . The direct integral of group elements is well
defined when the operator acts on functions over a homogeneous space under the group; the
SU(2)-invariant measure i€2.10).

Note first that the Wigner operator at the coordinate orig{0) =Z, is the unit element in
the SU2) group ring of formal operatorsi=[; dg A(g)g (i.e., ZA=AZ=A). Next, observe
that the range of the polar parametgrs the compact S(2) manifold, while the spacg in the
argument of the Wigner operator®>. Moreover, the function exp(-y) in (3.1) is not periodic
over the group; for general it has different values al[ »v] and atg[ (n+4)v], which repre-
sent the same elemegfty]. We must therefore fix the definition of the Wigner operatd) by
imposing an otherwise natural condition for operators in Lie group rings, self-adjointness. We
consider the group elemenggy] in (3.1) acting as unitary operators on an appropriate Hilbert
space, so their operator adjoint is their inversgy()'=g[ —y]. Then, we obtain the adjoint of
WI(x) through complex conjugation of the exponential function; changing integration variables by
y——y, we reproduce(3.1) only if [syp)dg[—Y]-=Jsywe) ddly]-:-. The range ofy
=nv(6,$) will be the same as that of its inversey if we agree thaty, naturally ranging in
[0,4m) in accordance witli2.6)—(2.7) and counted modulo# will be integrated ovef—2,27].
Only in this way the Wigner operator will be self-adjoifib the same Hilbert spage] W(x)]"
=W(x) for all xe R3.

The Wigner operato¢3.1) satisfies the important property of &)-covariance
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glyIW(x)(gly]) "= W(RIYIX). (3.29

This is a consequence of the bilateral invariancalgffy] and the property2.9) of the adjoint
representation; it follows from rewriting the left-hand side(8f2a as

f dg[y]exrl(iy"X)g[Ry’]=f daly"Texpiy”-Rx)g[y"], (3.2b
SU(2) SU(2)

whereR=R[y] andy”=Ry’, to obtain the right-hand side of the equation.

B. Wigner matrix

The action of the Wigner operat@8.1) on column vectorg e %% "1 [whose vector compo-
nents are the observed wave field val@g®)], is

W(X)f= Lw)dg[y]exmx y)D'[y]f=W!'(x)f, (3.3

whereD'[y] are the spir-unitary irreducible representation matrices of(3Uin polar coordi-
nates, well known as thé&/igner D-matricesn angular momentum theory:**We callW'(x) the
SU(2) Wigner W-matricesthey are thematrix representatiorof the SU2) Wigner operator on
iRZH—l.

The WignerD- andW-matrices are essentially Fourier conjugates of each other; the integral in
Eqg. (3.3 can be inverted because it has the transform kernebxexp( Thus, the transform pair
is

W(x)= f Y(lyDdy expix-y)DI[yl, (349
SU(2)

1
270y Ju dx exp(—ix-y)W'(x). (3.4b

From(3.4) we see that since the WignBrmatrices are unitary[y])'=D'[ —y], and since
we have chosen the integration range to be invariant under inversions, it followsvt(e)"
=W!'(x), i.e., the WigneM\-matrices are self-adjoint. Therefore, their eigenvalues, determinant
and trace, are real. Also frof8.4), the known integral and a special value of iranatrices imply

D'Tyl=

w'(0)= LU(Z) dglylD'[yl=273i,, (3.5

f , dxW'(x)=(27)3y(0)D'[0]= =°1. (3.5b
R

The unitarity of theD-matrices in(3.4a9 further determines the integral

J . dX[W'(X)]TW'(X)=(21T)3J [y(lyD12dyl=7"s,1, (3.9
et SU(2)

wheres4=f3” sind* z dz=1.0467... is a constant. Finally, notice ti{&t4) is a transform pair
between function§V of xe %3 and functionsD of g[y] e SU(2) with support inside a sphere of
radius 27 in R, Payley—Wiener theorems should yield analiticity properties of the Wigner
W-matrices that will be explored elsewhere.

C. Wigner function and its covariance
We define theWigner distribution functionof the finite signalsf={fm}'m=,| and g

={gm\ __, as the sesquilinear form
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|
W(gx)=fW(x)g= X [fn]* Wy m ()0 - 3.7

m,m’=—1

The Wigner matrix elements are, frof@.7), (2.10, and(3.44,

| _ 2m 1 1 ) |
Wm,m'(XU)—J 3 sir? annf dv explixnu-v)D . [ 7v]. (3.9

-2 2

In Dirac’s notation one can usefully Wrim/'m‘m,(x)=<l ,mW(x)|l,m"). Whenf=g, we indicate
the Wigner function simply byV'(f|x); this is the expectation value of the Wigner operator in the
statef.

From the SW2)-covariance of the Wigner operat(8.2) follows the SUW2)-covariance of the
Wigner matrix and of the Wigner function,

D'[yIW!(x)D'[ —y]=W'(R[y]x), (3.9

W/(D'[—y]f,D'[ —ylglx) =W (f,g|R[y]x). (3.10

One consequence is that a signal veczwr:{aﬁ}'m:,, which is an eigenvector of any operator
J,=a-J in the sy2) algebra and with the eigenvalye will have a Wigner function that will be
invariant under rotations of around the axis. This is so because rotation by expJ,) will
multiply its eigenvectoia* by exp(iww); but in (3.3—(3.7) we see that the Wigner function is
insensitive to common signal phase factaké(e'*f|x) =W!(f|x). Such is the eigenbasis abr-
mal modesf the finite wave guide, which are the eigenfunctions of the HamiltoRiamd given
by the Kravchuk function§2.5).

D. Meta-phase space

The definition, properties, and use of the common Wigner distribution funé¢fidh were
briefly discussed in the Introduction. We propd8e7) as the proper Wigner function for finite
signalsf in a planar multimode wave guide. Equatiof®&s3)—(2.6) establish a correspondence
between thgc-numbei arguments ofV (f|x) and the physical observables of a wave field in a
shallow waveguide, namely,

q position
X=xm( D, ¢)= —P | =| —momentum (3.11

E-1—3% energy-|—3
Because the first two coordinates are of ordinary phase space, let us call the three-dimensional
space ofxe %% the metaphase spacef the finite wave guide model. Whdnis large andE is
small, in a neighborhood of the South pole we can approximate the spféreq®+ p2+ (e—|
—1)2~12, by the osculating paraboloi~ (p?+q?)/2l, which corresponds to the classical en-
ergy in an oscillator. We should thus expect the values of the Wigner function to pegk in
=|x| betweenl andl+ 1. This will be borne out below.

IV. WIGNER MATRIX AND PROJECTIONS

With the aim of computing the Wigner function of finite signals, we now find expressions for
the D- and W-matrix elements and some of their main properties. To understand the results in
three-dimensional space, we examine spherical slices and projections.

A. D' matrix elements in polar coordinates

For analytic and computational work it is convenient to use both polar and Euler angle
coordinate systems in $B). Their relation is

alyl=9(¢,6,09(0,0m[g(¢, 6,017,  y=nv(6,4), (4.
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where(6,¢) determine the direction of the unit vecter This also holds for any matrix represen-
tation. TheD-matrix elements are commonly written in terms of Euler angles as

Dy (6,00 =€M4dy, - (6)E™ Y, 4.2

where ¢ and ¢ are rotations around the three-axé&"*=(Im|e' #J3|lm), and thelittle-d’s repre-
sent rotations around the one—a>d$n m,(49)=(Im|ei #1|lm’), noting that we follow the conven-
tion of Vilenkin and Klymik* in rotéting the second Euler angle around the one-axis; this is a
form preferred for SQY) systematics and is slightly different from that of Biedenharn and Louck
in Ref. 15, Sec. 3.6, who rotate around the two-axis. Dhmatrix elements in polar parametri-
zation are thus bilinear in the-functions,

|
D[ 7¥(6,8)1= 3 Diyo(6,6.0/¢ ™D}, ($,0.0)]*

I
=glm-m¢ Z_I dhn(@e Md, (6)]%. 4.3

B. W matrix elements on the two-sphere

Any pointx= yu(d,¢) € R [cf. Eq.(2.7)] can be obtained by rotatingk=(0,0,x) from the
North pole to (3,¢) € S,, through

u(d,¢)=R(¢,3,0k. (4.4

Because of S(2)-covariance3.23—(3.9), we can write the Wignew'-matrix over the sphere in
terms of its values at the North pole, where it is diagomym,(xk)= 5m,m’W|m(X)- Thus we
have

|
Wiy (XU(D,0)) =718 3 dly () Wh(x) [y (91, 4.5

which separates the angular dependence from the radial coorgindté < 3", and

2
-1 ' -2

|
W (x)=27 > fl dcosﬁld'mn(e)|2f %Sinz%{/fd(// expi ¢y cosf—n])
n= 1 =

|
1
=(-1)? % n;I jilds|d'm‘n(arccoss)|2

-1 N 2 N -1
xSs—n+1 xs—n yxs—n-—-1

X sin(2mwyxs) , (4.6)

where in the last expression we have usetcos 6. Note that the integral we performednis the
second difference in of sinc 2r(xs—n), and that the poles within the brackets cancel the zeros
of the sine function. The eigenvalues of the self-adjoint Wigner maii%(yu) are
{V\/'m(x)}%:_, . The Wigner matrix elemenl\s/'mym,(x) merit a deeper group-theoretical analysis;
this will be done elsewhere, but it suffices to point out here that by virtue of their covariance
properties, they are thigansform kernebetween functions of the continuous space coordinates
xe R and functions of the discrete space of irreducible representation indigag(’). They
intertwine the angular momentum operators in their well-known differential form with their form
(2.3 as difference operators.

C. Radial projection

The radial marginal distributionof the SU2)-Wigner functionW!'(f,g|x), x= yu, is its pro-
jection on the radiug by integration over the spherical coordinatesué¢ft, ¢),
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eradia(f1g|X):jS dqu(f,g|XU). 4.7

When we evaluate the integred.7) overue S,, the exponential factor exip{nu-v) yields
44 sinc y . Next, theS,-integral over the group parameter&d,¢) is computed by using

4ar sin(l+3) 7
[ _am 2P0
devavm,[nv]— ST o o - (4.8

Substituting, we obtain the radial projection of the Wigner function in the form

M haaial F,9l0) = (LR (x), (4.9

where §,0)=3! __| f*g., is the inner product of the two signalsr the squared nori|? of one

signal whenf=g). All radial dependence is contained in the factor

|+1
2

7

| w (27 1 ] )
RO)=517 . d7 sinz 7 sinc 7 sin

4 2
:—(ZHZTl)x [Si2m(x+1)+Si2m(x—1)—Si 2m(x+1+1)—Si 2n(x—1—1)],

(4.10

given in terms of the sine integral functions)8k [ sincy dy (Ref. 16, Eq. 3.763R Finally, the
integral of the Wigner function overe 9R2 is proportional to the signal inner produetr squared
norm),

M'(f,g)zf , dXW\(f,g)x)=7>(f,9). (4.11)
R

In Fig. 2 we plotR'(y), the radial factor(4.10); taking into account4.11) it shows that the
Wigner function is concentrated in a spherical shell between ga€li andl + 1. It is not difficult
to show that the functioryR'(x) has extremal points at every integer and half-integer0,
except for y=1 and y=1+1; the largest maximum ofR'(y) is at y=1+%, and R%(0)
=2(2m)%. We emphasize that iR'(x) or ¥°R'(x) (with the radial measurg®dy), the position
of this maximum shifts right or lef{respectively by small amounts but stays well within the
interval (1,1 +1).

The number of sensors in the wave guide is fixed, so the Wigner function corresponds to a
single value of. In searching for convenient ways to plot this functiorxef93, we have chosen
to show its level curves on spherical sliceof %3, for the standard valug=1+%. We have
checked that similar plots at various radii néar; produce very similar figures, only with smaller
maxima and curves somewhat more round@ahother graphing strategy for the Wigner function
would be to project it by integration overwith the radial measurg?dy, or with any special or
convenient measure; we leave this possibility open for future work.

V. COHERENT STATES, ELEMENTARY STATES, CAT STATES

In this section we present the Wigner function of some signals of interest suggested by our
group-theoretical treatment; they are concepts taken from the quantum theory of angular momen-
tum. We direct our attention to coherent states and spherical harmonics.

A. Vacuum coherent state

Thevacuumcoherent state is the lowest-energy staigna) of the system. For S(2) and in
the eigenbasis al; it is the (2 +1)-dimensional column vector indicated

o(—k)=(0,..,0,17, (5.1)
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FIG. 2. Radial factoiR'(x) in Eq. (4.10. (&) For 1=0,1,2,...,10 in 6 y=<10; thel=0 curve has its maximum value
2(27)%=496.10... aty=0. (b) Amplification of | =24 andl =25 in 20< y=<30.

whereT is the transpose andk is a unit vector pointing to the South pole of the sphere.
In the basis where the position operat@+ J, is diagonal, the same stai®.1) represents the
(21 +1)-point signal

o —k)=exp—iindy)a(—k)=D'(—im, — i7,00a(— k), (5.2a

=~ (k)= a—imm/24] _ 1 :eiiﬂ-mlz 2l — a—imm/2
an(—k)=e dm,—l( 27) ol [—m € $o(m,20). (5.2b

Here we recognize the Kravchuk function of order zepg(m,2!) in (2.5.1 At the integersm,

this function is the square root of the binomial distribution. In the limit whefre, ¢y(qg,2l)
becomes the Gaussian function of lowest oscillator state of quantum mechanics. In Fig. 3, the
Wigner function(3.7) of the signal(5.2) is plotted on the sphere of radilg =1+ 3,

|
Wepherk @ —k))|8,0) =WL, _ (xU(9, @)l y=1e20= 2 Waldl (9% (5.3
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FIG. 3. Faces of the vacuum coherent stafe-k) for |=3 and 7 “sensor” points{a) Wigner function(5.3). Positive

level contours are indicated with unbroken lines for function values 0.35, 0.7,...; zero and negative levels are indicated with
broken lines.(b) Energy (mode content.(c) The signal in the “position” Q=J,) basis of sensors; it is a Kravchuk
function of order zero which is also the root of the binomial distribution.

whereW'mzvv'm(I +3) are constants obtained frofd.6) for the chosen value of the radiys

Figure 3 shows the signal, its mo@energy content, and the level curves of the Wigner function

on the sphere; it shows thmartitura of the vacuum coherent state, the “fundamental note” of the
system. Evolution along theaxis of the wave guide is generated by the Hamiltortiaim (2.30),

and appears as a rotation of the Wigner function around the three-axis of the sphere. Under this
transformation, the vacuum state is simply multiplied by the phes&? hence its Wigner
function is invariant.

B. SU(2) coherent states

The Wigner function of the vacuum coherent state can be rotated to any new position on the
sphere(d,¢) by means of S(®)-optical transformations of the signal, i.e., by free propagation
along a waveguide, with refracting wedges and tilted plates. One thus generalizes the concept of
coherent states ta(a) for any and all directions(%,¢) e S,. If

a=e'M1e'¥%3k, then ay(a(d,¢))=Dp, _|(—¢,—3,0=€m¢d" | (9 (5.49)

are the components of the coherent state alanip Figs. 4 we show thantivacuum coherent
statea(k), which is the highest energy mode in the finite planar wave guide. This is obtained from
the vacuum statex(—k) by a rotation of the sphere around the one-axis; such rotation can be
physically produced with a refracting wedge that impresses a p#a%e=(—1)™ on the input
signal values; the output signal for continuayss the Kravchuk functionp,(q,2). For integer
valuesm of g, this signal has the envelope of the vacuum coherent ggtm,21), but with values
alternating in sign.

C. Elementary states

When the unit vectoa is along the one-axig the coherent stata(i) is the signal(1,0,...,0.
When this signal propagates along the wave guide, the vactdlt move around the equator; the
signal will undergo the fractional Fourier—Kravchuk transformation c§dlée call elementary
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-3 -2 -1 0 1 2 3

FIG. 4. Antivacuum coherent statek) for | =3, with the parameters of the previous figuta. Wigner function.(b)
Energy(mode content.(c) Signal at the sensor€)=J, basig as in the previous figure but with alternating signs.

states(in an array of 2+ 1 sensorsto those signals with single 1 at some positiofl —v intege)
and zeros on the rest. They are the eigenfunctions, afith eigenvalues e {l,1-1,...~1} and
will be indicated bya”(i).
The Wigner function(3.7) of elementary states can be then written in polar coordinates
ui(94,¢1), referred to the one-axiso u,(0,¢,) =i],

|
Wepherk @’ (D] 91, 020) =W, ,(xUa(91,@2))|y=1+02= 20 Wild, (9% (5.9

[cf. Eq. (5.3).] The Wigner functions of elementary signals are independenp,of and thus
invariant under rotations of the sphere around the one-axis. Conversely, when the Wigner function
of a signalf is invariant under rotations around some ai$ can be multiplied only by an overall
phase when acted upon by edqx- J); thereforef will be an eigenfunction o&-J. From the plot

of the Wigner function one can determine readily whether or not an output sﬁg:r{ah}'m:_l

derives from the input of an elementary sigi@J...,0,1,0,...,pthrough an SiR)-optical system.

D. Schro dinger-cat signals and their smile function

The sum of two signals is &chralinger-cat signal The original Schrdinger “paradox” of
coherently superposing one dead and one live cat states applies fruitfully to signal analysis.
Consider two signal§ andg; the Wigner function of their linear combinatianf+c,g is

W(cf+cyglx) =] cePW(F|x) +]cg|?W(glx) + 2 Re c c W(f,g|x). (5.6)

The Wigner functions of the two signals thus not only add, berfere The cross term
S(f,g/x) =2 Ref'W(x)g has been called thsmile function of the Schidinger-cat state; it is a
most prominent feature of the Wigner function of cat states that carries the holographic informa-
tion of the object signaf) with the reference signdl*’

In Fig. 5 we plot Schrdinger cat states composed of two normal modes of the wave guide, for
I=3 and 7 sensors. If we place the one-axis along the three-axes of the figures, thairgehro
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Pt
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;
——) g

(b)

FIG. 5. Schrdinger-cat states of two normal modes or elementary seven-point sigra®.((a) (172, 0, 0, 0, 0, 0,
1v2), (b) (0, 1¥2, 0, 0, 0, 142, 0), (c) (0, 0, 142, 0, 1#2, 0, 0, and(d) (0,0,0,1,0,0,p

cats are “bilocalized” states and the last is an elementary state. Compare(&igvith Figs. 3
and 4, noticing the six oscillation$eeth of the smile across the equator; Figbbexhibits four,
Fig. 5(c) shows two, and Fig. (@) has axial symmetry.

VI. CONCLUDING REMARKS

We represented finite data sets by their Wigner function in an optical model of planar multi-
modal wave guides. Position, momentum, and enénggde numberare c-number coordinates
which are associated to the generators of2swalgebra; the latter are self-adjoint difference
operators with discrete, equally-spaced, and finite spectrapatigura of a signal is drawn on a
sphere. The vacuum coherent state is analogous to the ground harmonic oscillator wave function;
from it, all other coherent states can be produced by2gptical elements, wave guide, wedge,
and slab. These transformations are the counterpart of rotation and translation of classical phase
space.

The applicability of our construction extends to other mechanical and optical systems, also
based on finite data sets but with different dynamics. For instance, the qupatnimotor (a mass
point constrained to move af,,) has symmetry group S@3), which is covered twice by S@).

This system is isomorphic to the mechanical vibrating sphere and, by stereographic projection, to
the two-dimensional Maxwell fisheye wave-optical meditfim both of these cases, wave func-
tions are on the sphere and generally contdirspherical harmonics,

o0 |
VE=2 2 YnYu(B.y). (6.1

The data set is now infinite and given by the tower of coefficiedts-{W'}" ,, W'
:{‘I’Im}lm:—r
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The SU2) Wigner function(3.7) was built for a single value df corresponding to a fixed
number of sensors of the model, and the radial fa@tatQ indicated that it is concentrated in a
spherical shell of mean radilis- 3. If now the data vector i$6.1), the Wigner operatof3.1) will
act irreducibly on each subvect®', and the Wigner function o will be the sum of the Wigner
functions in the irreducible subspaces, i.e.,

W(lIf|x)=|=EO vv'(\lf'|x)=|=20 viw! (x)Ww'. (6.2

Such a function must be plotted $&3-spacex and will show the quasiprobability distribution of
the angular momentum vectdrin the mechanical model, and of the beam parameters in the
Maxwell fisheye. As drawn in elementary texts, the extreme spherical harrtmotierent staje
Yl(,B,y) has a minimal uncertainty cone around the three-aé{isi(ﬁ,y) has a larger cone, etc.,
until Y{)(B,y) opens the cone into the equator. Thus, while the wave function on the sphere
Yl(,B,y) have their square maximum on the equaser 37 (Where the classical particle)jsthe
Wigner function is concentrated in the North polar cap aromrdl+ 3)k (where the angular
momentum is On the other hand, strongly localized rotor wave functions, containing a wide
spread ofi’s, will have Wigner functiong6.2) widely spread inx|.

The dynamics of the rotor mode(sibrating sphere and Maxwell fisheyare different from
the wave guide, however; their Hamiltonian is proportional to the Casimir operator of
sa3)=su2), rather than to one of its generators. Since under the corresponding “time” evolution
7, each componen¥' is multiplied by the phase efipi(I+1)], it follows that the Wigner function
(6.2) is invariant under rotor dynamics.

Nonlinear processes on discrete, finite systems, can also be analyzed with()@\8gher
function (3.7) when the Hamiltonian belongs to the(8uenvelopingalgebra. This is the case of
the finite analog of the optical Kerr medium studied in Ref. 19, whose HamiltonianJig
+aJ3. It also applies for Hamiltonians contrieved to have the fgd8+V(J;), to mimic the
classical form of mechanicp?+V(q), but restricted to a finite number of bound states. Natural
applications for SIR)-Wigner functions will also include spin and pseudo-spin systems, as they
appear, e.g., in quantum optics, when a collection of two-level atoms interact with the radiation
field under small-volume approximation, as in the Dicke m&8ét.Time evolution in these cases
deforms the shape of the initial coherent state on the sphere; in the Kerr medium, (Re SU
Wigner function gives a transparent picture of the nature of fractional-period resortgzmsa-
riance does not hold beyond &), so we can expect purely quantum effe@teluding squeez-
ing) to show up in the Wigner function on the sphere.
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