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Evolution under polynomial Hamiltonians in quantum and optical phase spaces
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We analyze the difference between classical and quantum nonlinear dynamics by computing the time
evolution of the Wigner functions for the simplest polynomial Hamiltonians of fourth degree in coordinate and
momentum. This class of Hamiltonians contains examples which are important in wave and quantum optics.
The Hamiltonians under study describe the third-order aberrations to the paraxial approximation and the
nonlinear Kerr medium. Special attention is given to the quantum analog of the conservation of the volume
element in classical phase space.@S1050-2947~97!05101-9#
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I. INTRODUCTION: CLASSICAL
AND QUANTUM DYNAMICS

Since the creation of quantum mechanics, efforts h
been made to visualize the quantum dynamical image an
put it in better correspondence with the classical evoluti
This goal can be partially achieved by using the phase-sp
picture in which the state of a quantum system may be r
resented by the quasiprobability distribution in the pha
space of the corresponding classical system@1,2#. Described
in this way, quantum dynamics resembles classical statis
mechanics. Clearly, this analogy is incomplete for at le
two reasons: first, quasiprobability distributions may ta
negative values~unlike a true probability distribution!, and
second, the classical distribution can be localized at a p
in phase space, whereas the quantum distribution mus
ways be spread in a finite phase-space volume, in agree
with uncertainty relations. Let us consider an initial distrib
tion which is consistent with the uncertainty relations a
describes a real quantum particle. Thus we can ask:what is
the difference between classical and quantum dynamic
phase space?

The classical dynamical law is very simple. Every e
ment of phase space moves along the classical trajec
while preserving its volume. If at timet50 the probability
to find a particle in a unit volume at the pointx0 ,p0 is
Wcl(x0 ,p0), then at timet the probability distribution is

Wcl~x,p;t !5Wcl„x0~x,p,t !,p0~x,p,t !…, ~1!

wherex(t), p(t) is the classical trajectory passing throu
the pointx0 ,p0 at time t50. Does this picture help us t
understand quantum dynamics? And if so, when can the q
siclassical approximation be efficiently used to describ
quantum system? This question is important in seve
551050-2947/97/55~2!/876~14!/$10.00
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branches of physics: particle quantum mechanics, quan
optics, and wave optics, because they share a common m
ematical structure.

These questions are formulated naturally in the we
known language of particle quantum mechanics. They a
appear in quantum optics, where a single mode of the e
tromagnetic field is described by the coordinate and mom
tum operators of the harmonic oscillator; this field oscilla
interacts with an atomic system or with other field modes
the case of a nonlinear optical process. Modern quan
optics uses extensively the quasiprobability distributio
@1,2#, various versions of the quasiclassical approximat
@3# and other quantum-mechanical tools.

Here we stress applications in wave optics. Indeed, i
well known that in the paraxial approximation, the optic
Helmholtz equation reduces to the Schro¨dinger equation.
The distance along the optical axis plays the role of the ti
t in mechanics and, in a two-dimensional optical mediu
we denote thescreencoordinate~perpendicular to the optica
axis! by x. The canonically conjugate momentump de-
scribes the direction of the ray at the pointx,t. The classical
limit is geometric optics. The theory of optical devices in t
paraxial approximation describes the propagation of li
beams as generated by Hamiltonian operators which
second-degree polynomials inx andp; they generate linea
canonical transformations of phase space. Polynom
Hamiltonians of higher degree describe the aberrations to
paraxial regime, leading to the visual deformations and
focusing of images in optical devices@4#. In wave optics the
above question can be formulated as follows: when can
optical device be well described by geometric optics, a
when is it necessary to use a specifically wave optical
scription?

The purpose of the present paper is to compare the c
sical and quantum dynamics generated by the simplest n
linear Hamiltonians. We consider Hamiltonians which a
fourth-degree polynomials in the coordinatex and momen-
876 © 1997 The American Physical Society



ng
a
th
ch
o
y
m
o
a

te
n
t
as
o
th

er

f
rm
on
ne
e

y
t
e
um
in
b
n
th
b
t
h
ro

th
on
n
m
f
ls
on
o
c
e
VI

ca
on

ime
ed
int

e
let-

a-
al

e

ree

The
.
or
e and
cil-
ve
a
f

n
. In
an-
cto-
e-
ribe

o-

vo-

ons,
s

nt

55 877EVOLUTION UNDER POLYNOMIAL HAMILTONIANS I N . . .
tum p. It is convenient to classify these Hamiltonians usi
the wave optics picture, where they describe third-order
errations. In quantum mechanics and quantum optics,
polynomial Hamiltonians of the fourth-degree include su
important examples as the anharmonic oscillator and the
tical Kerr medium@5,6#. We use the Wigner quasiprobabilit
distribution to provide a visual image of the quantum dyna
ics. As we shall see, it yields the closest possible comm
description of classical and quantum dynamics in the ph
plane with the standard coordinatesx andp @7#.

In order to find parameters which can be used to de
mine the similarity or difference between the classical a
quantum dynamics, we examine the quantum analogs of
conservation of the volume element of the classical ph
plane. We do not expect the corresponding invariants to h
for arbitrary quantum processes, though we shall see
they do exist in the case of linear quantum dynamics~i.e.,
described by linear transformations of the Heisenberg op
tors!. We show that themomentsof the Wigner function@i.e.,
the integrals of the powers ofW(x,p) over the phase plane#
have the desired properties@8#. The classical counterparts o
these moments are invariant under any canonical transfo
tion, as follows directly from the phase volume conservati
In quantum dynamics, these moments are preserved by li
canonical transformations but are changed by nonlin
transformations. For all the semiclassical states~described by
Gaussian wave functions! these moments~in a natural nor-
malization! are equal to unity. Their difference from unit
may serve as a measure of the ‘‘nonclassicality’’ of the sta
The change of these moments in the course of nonlin
quantum evolution reflects an extra growth of the quant
fluctuations over the corresponding classical level, provid
information on how closely the process can be described
the quasiclassical approximation. In particular, the mome
of the Wigner function can be used to detect and quantify
quantum superpositions of macroscopically distinguisha
states, i.e., the so-called Schro¨dinger-cat states. We restric
ourselves to the case of two-dimensional phase space, w
it is easy to plot and understand the graphs of the quasip
ability distributions. Only pure quantum states~i.e., those
described by wave functions! will be considered here.

The paper is organized as follows. In Sec. II we recall
properties of linear canonical transformations. Sec. III c
tains a discussion of nonlinear canonical transformatio
We review some of the previous definitions of phase volu
elements for quantum states and stress the usefulness o
moments of the Wigner function. For these moments we a
present an alternative formula in terms of the wave functi
Secs. IV and V are the central parts of the paper; they c
tain the results of numerical computation of the Wigner fun
tion for single optical aberrations and the optical Kerr m
dium. Final comments are given in the conclusion, Sec.

II. LINEAR TRANSFORMATIONS

Time evolution in classical mechanics is a canoni
transformation generated by the Hamiltonian functi
h(p,x),

ẋ5$x,h%, ṗ5$p,h%, ~2!
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where

$ f ,h%5
] f

]x

]h

]p
2

] f

]p

]h

]x

is the Poisson bracket and the overdot indicates total t
derivative. The quantum-mechanical evolution is describ
by the unitary transformation generated by the self-adjo
Hamilton operatorH through,

iẊ5@X,H#, i Ṗ5@P,H#, ~3!

where @A,B#5AB2BA is the commutator. We denote th
operators by capitals and the classical variables by small
ters. Note, that we use units where\51. The resulting uni-
tary transformation can be written~both in classical and in
quantum mechanics! in the exponential form
U(t)5exp(2itH), where time enters as a transformation p
rameter. Different Hamiltonians lead to different canonic
transformations.

The operatorsP andX generate rigid translations of phas
space. Linear homogeneous canonical transformations@9#
are generated by polynomial Hamiltonians of second deg
in P andX, i.e., linear combinations of the operators

P2,~PX1XP!/2,X2. ~4!

The harmonic-oscillator HamiltonianP2/21v2X2/2 gen-
erates rigid rotations of phase space around the origin.
rotation by the anglep/2 is just the Fourier transformation
The generator (PX1XP)/2 is called the squeezing operat
because it compresses phase space along one coordinat
expands it along the other; it transforms one harmonic os
lator into another with different frequency. In paraxial wa
optics, P2/2 generates free propagation of light rays in
homogeneous medium andX2/2 corresponds to the action o
a thin lens.

The Hamiltonians~4! lead to linear equations of motio
that are identical in classical and quantum mechanics
other words, the Heisenberg operator solutions to the qu
tum equations have the same form as the classical traje
ries p(t), x(t). In wave optics, linear transformations d
scribe paraxial systems; in quantum optics, they desc
beam splitters, interferometers, linear amplifiers, etc.

Among the various quasiprobability distributions pr
posed in the literature@10,11#, there is only one for which
every linear quantum evolution coincides with classical e
lution @given by Eq.~1!# @12#. This is the Wigner function,

W~x,p;t !52E
2`

1`

drC* ~x1r ;t !e2iprC~x2r ;t !

52E
2`

1`

drC̃* ~p1r ;t !e22ixrC̃~p2r ;t !, ~5!

whereC(x;t) and C̃(p;t) are solutions of the Schro¨dinger
equation in the coordinate and momentum representati
respectively, and\51. Note that another normalization i
often used, which differs from Eq.~5! by the factor 1/2p.
We include this factor into the phase volume eleme
dp dx/2p, so that the marginal distributions are
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878 55RIVERA, ATAKISHIYEV, CHUMAKOV, AND WOLF
uC~x!u25E W~x,p!
dp

2p
, uC̃~p!u25E W~x,p!

dx

2p
,

~6!

and the normalization condition is*Wdp dx/2p51 . In fact,
the covariancerequirement between the linear classical a
quantum canonical transformations can serve to define
Wigner function @13#. For instance, theQ function
Q(x,p)5u^auC&u2 @14#, whereua& is a coherent state with
the parametera5(x1 ip)/A2. This behaves as a classic
distribution~1! under shifts and rotations of phase space,
has a different transformation law under the action of
squeezing operator; see, e.g.,@15#.

In linear dynamics, the classical solution completely d
termines the quantum one, so one can reduce the solutio
the wave equation to the solution of the corresponding c
sical Hamilton equations. Indeed, one may take the Wig
function describing the initial state, find its evolution fro
Eq. ~1! and ~if necessary! reconstruct the marginal distribu
tion using Eq.~6!. We shall refer to the classical probabilit
distribution ~1! evolving from the initial conditions
W(p0 ,x0 ;t50) as the ‘‘classical’’ Wigner function. Becaus
the classical and quantum Wigner functions evolve ide
cally under linear dynamics, we understand that the Wig
function provides the closest common description of cla
cal and quantum dynamics.

III. NONLINEAR TRANSFORMATIONS

We consider now the nonlinear canonical transformati
generated by the fourth-degree polynomials inP and X.
Such Hamiltonians are linear combinations of the operat

P4,$P3X%,$P2X2%,$PX3%,X4, ~7!

where$ . . . % stands for the Weyl ordering of the operato
@16#. One particularly important example of polynomi
Hamiltonian of fourth degree in quantum optics isH
5 1

2(P
21v2X2)1(x/4v2)(P21v2X2)2, which describes

the optical Kerr medium in the variablesP andX of a single
mode of the electromagnetic field.

In the nonlinear case, the classical solution does not
termine the quantum dynamics, since products ofP’s and
X’s enter the Heisenberg equations of motion. The m
values of these products@e.g.,^$PX%(t)&# become additiona
variables which are absent in classical equations. There
the classical and quantum Wigner functions will evolve d
ferently.

We assume that the initial state of the system is given
a Gaussianwave function in the coordinate representatio
Then the wave function in momentum representation,
also the Wigner function, are Gaussians. These states
also calledgeneralized coherent states~GCS!. Under linear
evolution Gaussians remain Gaussians of possibly diffe
parameters. Since linear evolution is the same in the clas
and quantum cases, we may conclude that the GCS are
siclassical states@17#. It is known that the only states whic
have an everywhere positive Wigner function are the Gau
ian states@1#. Under quantumnonlinearevolution, the initial
Gaussian loses its shape and its Wigner function must th
fore take negative values in some regions of phase space
d
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may also expect that the quantum fluctuationsspread the
initial coherent state. In Sec. IV we consider several
amples which show how these dynamical features are r
ized in particular nonlinear transformations.

The general picture can be summarized as follows: T
initial Gaussian Wigner function is a ‘‘hill’’ in phase space
Linear evolution, both classical and quantum, moves, rota
and squeezes this hill preserving the area inside any g
level curve. Classical nonlinear evolution can alsodeform
the shape of the hill~with the area still kept constant!. But
quantum nonlinear evolution, although it moves the top
the hill in agreement with the classical picture, exhibits
new phenomenon: ‘‘quantum oscillations’’ appear at t
concavities of the level curves of the hill. This is a pure
quantum phenomenon and, as will be seen, is absent in
classical case. Under nonlinear evolution we may expect
the ‘‘area’’ of the hill is no longer preserved; however, it
not clear how to define this area~or phase-space volum
element!. As we stated in the introduction, it would be usef
to formulate a quantum counterpart to the concept of cla
cal phase volume conservation. The connected questio
quantum optics can be posed as follows:what is the most
natural way to describe quantum fluctuations?

As long as we work with linear transformations the a
swer is known: one may use the left-hand side of
Schrödinger-Robertson uncertainty relation~see, e.g.,@18#!,

d5sxxspp2sxp
2 > 1

4 , ~8!

where

sxx5~Dx!25^~X2X̄!2&,

spp5~Dp!25^~P2 P̄!2&,

sxp5
1
2 ^~XP1PX!&2X̄P̄.

The bracketŝ•••& denote the average over a given quantu
state,sxp describes correlations between coordinate and m
mentum fluctuations, andX̄,P̄ are the mean values of th
coordinate and momentum. The equality in Eq.~8! holds for
pure Gaussian states. Dodonov and Man’ko noticed that
valued in Eq. ~8! is invariant under linear canonical tran
formations both in classical and quantum mechanics@19#.
Hence, linear dynamics do not lead to any extra growth
quantum fluctuations over the classical ones.

Under nonlinear transformations however,d is not invari-
ant even in classical mechanics; hence,d cannot in general
describe an element of phase-space volume because the
must be conserved by any classical canonical transforma
linear or nonlinear. The Dodonov-Man’ko parameterd can
thus be used better to characterize the ‘‘degree of nonlin
ity’’ of the system, rather than its ‘‘degree of nonclassica
ity,’’ as was noted in Ref.@20#. This parameter is in fact very
useful to describe the short-time nonlinear behavior, eve
it does not feel global effects~such as those of Schro¨dinger-
cat states! which appear for longer times.

Let us recall some properties of Schro¨dinger-cat states
The quasiprobability distribution for a coherent state is
Gaussian centered at the point (x̄0 ,p̄0) of the phase plane
The quantum superposition of two coherent states with m
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FIG. 1. Evolution of the quantum and classical Wigner functions for the HamiltonianP4 ~spherical aberrations!. Observe that in all our
figures we use units where\51, and coordinates and momentum are dimensionless.~a!,~b! three-dimensional plots of the quantum Wign
functions for timest50.5 andt52.0; ~c!,~d! level plots of the same quantum Wigner functions;~e!,~f! level plots of the classical Wigne
functions for the same time instants.
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( x̄1 ,p̄1), (x̄2 ,p̄2) is an example of a state@21#. Any qua-
siprobability distribution is different then from zero in th
neighborhoods of the points (x̄1 ,p̄1) and (x̄2 ,p̄2); moreover,
the Wigner function also shows fast oscillations at the m
point (x̄11 x̄2)/2, (p̄11 p̄2)/2, which can be called thesmile
of the Schro¨dinger cat and reveals the coherent superposi
of the states. In a statistical mixture of the same states,
oscillations are absent. The uncertainties in coordinate
momenta for the cat state have values of the order
ux̄12 x̄2u and u p̄12 p̄2u. The parameterd in Eq. ~8! does not
take into account that the particle can only occur at
neighborhood of the points (x̄1 ,p̄1), (x̄2 ,p̄2), and never in
between.

The difficulty in describing quantum fluctuations fo
Schrödinger-cat states can be overcome through taking
vantage ofentropyas a measure of fluctuations@22#. Since
there is no true distribution in quantum phase space, W
@23# proposed to calculate the entropy using the nonnega
Q function instead of the probability distribution,

SQ52E QlnQ
dpdx

2p
. ~9!
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The Wehrl entropy carries more precise information ab
the phase-space volume occupied by the quantum state;
especially convenient for the description of the Schro¨dinger-
cat states@24#. In particular, if the cat state consists ofM
well-separated components, thenSQ5S01 lnM, whereS0 is
the entropy of a single component. The Wehrl entropy is th
a good candidate to describe the phase-space volume o
pied by the quantum state. Unfortunately,SQ is not invariant
under the squeezing transformation@25#. ~This follows di-
rectly from the ‘‘bad’’ behavior of theQ function under the
squeezing mentioned above; the Wehrl entropy overe
mates quantum fluctuations in squeezed states.!

We search for a quantity that can serve to separate
tween classical and quantum dynamics and, from the poin
view of applications, to determine if the semiclassical a
proximation is good or not. Recalling that linear transform
tions change the Wigner function covariantly in classical a
quantum dynamics, we conclude that the specifically qu
tum features of a system are due to the nonlinear part of
dynamics, which transform an initial semiclassical state t
‘‘highly quantum’’ one. Therefore, the parameter which d
tinguishes between classical and quantum dynamics also
to separate between the semiclassical and the ‘‘highly qu
tum’’ states@26#.
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880 55RIVERA, ATAKISHIYEV, CHUMAKOV, AND WOLF
We would have a measure of the classicality of the s
possessing all the desirable properties if we could calcu
the entropy using the Wigner function as a probability d
tribution. This is impossible however, since the Wigner fun
tion can take negative values~except for Gaussians!. More-
over, these negative values are known to be an impor
manifestation of the nonclassicality of the state.~The entropy
is determined as the mean value of the logarithm of the
tribution, which is not well defined for negative values.! We
can consider other monotonic functions beside the logari
studying the behavior of integrals of the type

I5E f ~W!
dp dx

2p
, ~10!

where f (W) is any monotonic function of the Wigner func
tion @27#. It is important to note that this integral is invaria
in the classical case under any canonical transformation,
ear or nonlinear. To verify this, we change variab
x,p°x0(x,p,t),p0(x,p,t), wherex0, p0 is the initial point
of the classical trajectory which passes through the p
x(t), p(t) at time t. Then the invariance of the integral~10!
follows from the conservation of the phase-space volu
under the canonical transformation@28#. In the quantum case
the integrals~10! are invariant under linear transformation

The simplest monotonic functions are the powersWk.
Then the integrals~10! are the moments of the Wigner func
tion

I k~ t !5
k

2k21E Wk~p,x;t !
dp dx

2p
, k51,2, . . . . ~11!

Corresponding quantities for true probability distributio
are known as ‘‘a entropies’’@29#. They obey some inequali
ties which reflect the uncertainty relations@30# ~cf. Ref.
@31#!. We use here the moments of the Wigner function
characterize the spread of the Wigner function in phase sp
and the ‘‘classicality’’ of the corresponding quantum stat

From the normalization condition it follows thatI 151. In
turn, I 251 holds for any pure state.~For mixed states de
scribed by the density matrixr, the second moment gives th

FIG. 2. Time evolution of the moments of the quantum Wign
functions for the HamiltonianP4. I 2 ~dotted line! is shown as a
quality test of our numerical computation. The decrease of the
ments I k for k>3 reveals the difference between classical a
quantum dynamics.
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purity of the state,I 25Tr(r2) @1,32#.! Therefore, only the
momentsI k ,k>3 contain nontrivial information. It is easy to
check that our normalization impliesI k51 for any pure
Gaussian state. Quantum linear evolution preserves the
tial values of the moments. However, quantum nonlin
evolution of the initial Gaussian state may lower the valu
of the momentsI k , for k>3.

The moments~11! can also be written directly in terms o
the wave functions in coordinate or momentum represe
tion ~without use of the Wigner function!. Indeed substitut-
ing Eq. ~5! into Eq. ~11! and integrating overp we have,

I k~ t !5kE dx dr1 . . .drk21)
j51

k21

C* ~x1r j !C~x2r j !

3C* ~x2r 12 . . .2r k21!C~x1r 11 . . .1r k21!.

This equation~and a similar one in terms of the wave fun
tion in the momentum representation! may be useful to study
the analytic properties of the moments.

In Secs. IV and V we shall calculate numerically the m
mentsk53,4,5,6 for several examples of nonlinear dynam
governed by Hamiltonians of the type~7! and show that
these moments indeed carry important information about
quantum state. Hence, they can be used to distinguish qu
classical dynamics from quantum dynamics, and semicla
cal states from quantum states. Moreover, they can be u
to detect Schro¨dinger cats.

IV. NUMERICAL RESULTS FOR MONOMIAL
HAMILTONIANS „OPTICAL ABERRATIONS …

In this section we use the wave optical terminology. T
Lie theory of geometrical image aberrations@4# identifies the
operators ~7! with the third-order aberrations in two
dimensional optical media. In geometric optics, moment
is p5nsinu, wheren denotes the refractive index andu is
the angle between the ray and the optical axis. The anal
of the aberration generators as separate Hamiltonians is
ranted because they represent the first nonlinear correctio
some interesting physical phenomena briefly indicated
low. The marginal distributionuC(x)u2 in Eq. ~6! is the light
intensity on the one-dimensional screen of coordin
xPRe. ~The common designation ofz for the optical axis
coordinate is replaced here byt, as if it were time.! We now
investigate the action of aberrations on the initialvacuum
coherent state, i.e., a Gaussian of unit width centered at
origin of phase space. The three-dimensional figures and
corresponding level plots of the Wigner function that evolv
under the quantum-mechanical Hamiltonians are prese
for two different time instants. The level plots of the classic
Wigner functions are also shown for those times.

A. Spherical aberration H5P4

The first metaxial correction to paraxial free propagati
is called spherical aberration. The same Hamiltonian a
describes the first relativistic correction to the Schro¨dinger
equation for a particle of nonzero mass. In Figs. 1~a!–1~f! we
show the classical and quantum evolution of an init
vacuum coherent state for the time instantst50.5 and
t52.0. The resulting states are no longer Gaussians, bu

r

o-
d
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FIG. 3. The same as in Fig. 1 for the HamiltonianP3X ~coma!.
in
n,

d
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W
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ef.
represented by hills that rapidly spread inx. The difference
between the classical and quantum cases can be seen
additional oscillations of the quantum Wigner functio
which appear in Figs. 1~a!–1~d! and are absent in Figs. 1~e!
and 1~f!. They are seen in the level plots as small islan
forming in the concave part of the main hill; their area
considerably smaller than the area of the vacuum state.
are therefore led to call this phenomenon ‘‘quantum osci
tion.’’

The behavior of the moments, shown in Fig. 2, is qu
flat. There is a proportional drop in all moments beyond
second. The constancy ofI 2 provides a reliable numerica
check on the computation. The figure indicates that semic
the

s

e
-

e

s-

sical states remain a good approximation to quantum sta
Note that this aberration has been analytically treated in R
@33#.

B. ComaH5P3X

The generator of this transformation is

H5$P3X%5P3X1 i 32P
2.

This Hamiltonian is also the first approximation to therela-
tivistic comaphenomenon after squeezing@34#. The corre-
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FIG. 4. Evolution of the quantum and classical Wigner functions for the HamiltonianP2X2 ~astigmatism!. ~a!,~b! three-dimensional plots
of the quantum Wigner functions for timest50.1 andt50.5; ~c!,~d! level plots of the same quantum Wigner functions;~e!,~f! level plots of
the classical Wigner functions for the same time instants.
on
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sponding Schro¨dinger equation in momentum representati
is the first-order differential equation

i ] tC̃~p,t !5 i ~p3]p1
3
2p

2!C̃~p,t !.

The exact solution to this equation reads

C̃~p,t !5
1

~122p2t !3/4
C̃S p

A122p2t
,0D ,
where C̃(p,0)5p21/4exp@2p2/2# is the initial condition.
The Wigner function has been calculated numerically fro
Eq. ~5! to produce Figs. 3~a!–3~f!. Acting in coordinate rep-
resentation, i.e., on the optical screen, coma produces im
caustics~which are comet shaped only in two-dimension
optical images!. The signature of an image caustic in pha
space is thatx05constant lines cross the level plots at fo
points. This is seen in the wings of Figs. 3~c!–3~f!. In the
quantum case, ‘‘quantum oscillations’’ again occur in t
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concavities of the main hill. The values of the moments dr
proportionately more than in the previous aberration.

The solutions of the classical equations of motion are

x05x~122p2t !3/2, p05
p

A122p2t
,

where the trajectoryx5x(t), p5p~ t ! begins at the point
x0 ,p0. We notice that the whole initial momentum rang
2`,p0,` is mapped into the intervalup(t)u,1/A2t; no
points map beyond this interval. At the quantum level, t
Wigner function at time t is zero outside the strip
upu,1/A2t and the normalization condition involves the in
tegration only over this strip. This squeezing in the mome
tum variable corresponds to the forward compression of
directions under relativistic boost of the screen in geome
optics @34#.

C. Astigmatism H5P2X2

Astigmatism can be characterized classically as a hyp
bolic torsion of phase space stemming from a radiu
dependent differential hyperbolic rotation.~For two-
dimensional images there is also thecurvature of field
aberration; in our one-dimensional case it coalesces w
astigmatism.!

The Weyl-ordered Hamiltonian in the coordinate repr
sentation has the form

H5$P2X2%52x2]x
222x]x2

1
2 .

~Other quantization schemes will differ only in the additiv
constant.! The Green function for this Hamiltonian can b
found exactly, both in coordinate or momentum represen
tion. However, it is more convenient to solve numerically th
differential equation for the wave function and then to fin
the Wigner function by integration.

In Figs. 4~a!–4~f! we see a cross-symmetric hill develop
ing out of the initial vacuum coherent state for timest50.1
and t50.5. The quantum case again shows ‘‘quantum os
lations’’ that are much stronger now. In Figs. 4~c! and 4~d!
we show, among others, the zero-level curves which, due
the shape of the ‘‘quantum oscillations,’’ appear as if th

FIG. 5. The same as in Fig. 2 for the HamiltonianP2X2 ~astig-
matism!.
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were hyperbolas. The behavior of the moments is shown
Fig. 5; they decrease much faster than in the other abe
tions. ~Note also that these figures are computed for sho
times than those of the other aberrations.!

D. Distortion H5PX3

The Hamiltonian in the coordinate representation is

H5$PX3%5X3P2 i 32X
252 i ~x3]x1

3
2x

2!.

The differential equation for distortion in the coordinate re
resentation has the same form as that for coma in the
mentum representation, with a change in the sign of ti
t→2t. Distortion and coma are Fourier conjugate of ea
other @36# and, thus, the evolution under distortion corr
sponds to backward comatic dynamics.

The classical and quantum Wigner functions are shown
Figs. 6~a!–6~f!. As we saw above, coma compresses ph
space along the momentum axis. Correspondingly, distor
will expand phase space along the coordinate axis, as ca
seen from the classical trajectories,

x5
x0

A122x0
2t
, p5p~122x0

2t !3/2.

These trajectories reach infinity in finite time: at timet, the
points which initially have coordinatesux0u,1/A2t will still
be in the finite plane, while the pointsx0561/A2t map to
infinity. The pointsux0u.1/A2t will disappear from the clas-
sical phase space and so do not contribute to the quan
solution. As a result, the normalization of the wave functi
is not preserved. This unpleasant property of the distort
Hamiltonian has been pointed out by Klauder@35#. Corre-
spondingly, the momentsI 1 and I 2 are not constant in this
case, as we see in Fig. 7.

E. PocusH5X4

This aberration has received its playful name@36# because
of its p-unfocusing effect. It is the Fourier transform o
spherical aberration: it spreads rays in momentum and lea
the position coordinate invariant~so it does not affect the
geometric image quality and is not included in the tradition
Seidel classification@37#!, but multiplies the wave function
by a phaseeitx

4
.

The evolution of the Wigner function can be found fro
spherical aberration by the Fourier rotation of the pha
plane plus time inversion. It is shown in Figs. 8~a!–8~f! for
the time instantst50.5 andt52. The momentsI k are invari-
ant under this transformation and are the same as in Fig
The effect of pocus on classical phase space and on the q
tum Wigner function is on par with all other nonlinear tran
formations.

V. OPTICAL KERR MEDIUM

A successful model of active optical media in which se
interaction of the field takes place is the Kerr mediu
@5,6,38–40#. Its Hamiltonian is a harmonic oscillator de
scribing a single quantized mode of the electromagnetic fi
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FIG. 6. The same as in Fig. 1 for the HamiltonianPX3 ~distortion!.
g e
er

l-
of frequencyv, plus a self-interaction term with a couplin
constantx, @6#. It has the form

H5
1

2
~P21v2X2!1

1

v2x~P21v2X2!2, ~12!
in units where \51. In quantum electrodynamics, th
Hamiltonian is usually written in terms of the photon numb
operatorn̂5a†a asH5vn̂1xn̂2 @herev is shifted related
to Eq. ~12!#. It is clear that the harmonic-oscillator Hami
tonian and the total Kerr Hamiltonian~12! have the same
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eigenvectors. The photon number is conserved but there
nontrivial evolution of the field phase.

The time evolution of the Wigner function under the Ke
Hamiltonian is shown in Figs. 9~a!–9~f! and the correspond
ing evolution of the moments is shown in Figs. 10. In the
figures we choosex51. The first term in the Hamiltonian
~12! leads to the ‘‘fast’’ rotation of the graphs with angul
frequencyv; we work in the interaction picture, which sub
tracts this rotation.

FIG. 7. The same as in Fig. 2 for the HamiltonianPX3 ~distor-
tion!.
a

e

The Wigner function of the initial Gaussian state is sho
in Fig. 9~a!. It is centered at the pointx̄5A2n̄.5.7, indi-
cated by the radial distance to the origin andp̄50 ~it is thus
not the vacuum state! corresponding the Glauber cohere
state of photon numbern̄516. For small timet50.02, the
Gaussian is first stretched and rotated in the phase plan
shown in Fig. 9~b!; all the moments, shown in Figs. 10, a
still close to unity and so the state is still nearly semiclas
cal. It is squeezed in a definite direction in phase plane, h
ever. This squeezing can be seen clearly in Fig. 9~b!. ~Note
that in the graphs of theQ function it would be more difficult
to visually notice squeezing since the hills would be ‘‘fa
ter.’’! We can use the propagation in a linear medium by
bare harmonic-oscillator Hamiltonian to achieve the b
squeezing in the field coordinate or momentum@39#.

As time advances, Fig. 9~c! shows that the hill is stretche
along a circle~notalong a straight line!; the angular range o
the hill spreads and we see a crescent. The deformatio
the top of the hill is still semiclassical. However, the shape
the hill is already sufficiently bent for the ‘‘quantum oscilla
tions’’ to appear. As long as the momentsI k are still;1 in
Figs. 10, these ‘‘quantum oscillations’’ are weak and th
contribution to the phase-space volume is small. The are
the hill increases slowly while the angular spread gro
faster, so we may expect a radial~amplitude! squeezing. It
actually occurs slightly away from the radial direction, b
FIG. 8. The same as in Fig. 1 for the HamiltonianX4 ~pocus!.
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FIG. 9. Evolution of the quantum Wigner function for the Hamiltonianx(P2/v1X2v)2 ~Kerr media!. The initial state is a coherent on
described by a Poisson distribution withn̄516. ~a! t50; ~b! t50.02;~c! t50.05;~d! t50.2; ~e! t5p/3; and~f! t5p/2; we see Schro¨dinger
cats for timest5p/3 andt5p/2.
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can be transformed into amplitude squeezing if we shift
origin of phase plane, so as to put it at the center of curva
of the crescent. Physically, this can be realized by plac
the nonlinear Kerr medium inside one arm of a Mac
Zehnder interferometer, as was proposed by Kitagawa
Yamamoto@6#. In this way strong squeezing in the photo
number fluctuations can be achieved. The Kerr amplitu
squeezing can be further enhanced by electing as initial s
e
re
g
-
nd

e
te

an already squeezed state@40#. ~Note that the ‘‘quantum os-
cillations’’ are invisible in the graphs of theQ function used
in Ref. @6#.!

As time evolves further@see Fig. 9~d!# the angular spread
reaches 2p and the ‘‘quantum oscillations’’ become comp
rable to what remains of the original crescent~the classical
hill ! and occupy the whole interior. It becomes clear th
these ‘‘quantum oscillations’’ are due to self-interference
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phase space: different parts of the hill create interferenc
fringes when meeting each other.

At some definite time instants, the self-interference lead
to standing wavesalong the circle. These waves are formed
in the Kerr medium at timesxt5Lp/M , whereL,M are
mutually prime integers,L,M,An̄. These are the Schro¨-
dinger cats@21#; see Figs. 9~e! and 9~f!. The cat state in the
Kerr medium at timext5Lp/M has M very well pro-
nounced components. This is a consequence of the integ
spectrum of the Kerr interaction Hamiltoniann̂2. The self-
interference phenomenon appears also in the Jayne
Cummings@41# and Dicke models@42#. It has been shown
that the field in both models, for special initial conditions,
can be described by the effective Hamiltonian
HDicke;An̂11/2 @42#, i.e., the square root of the harmonic-
oscillator Hamiltonian. The Dicke Hamiltonian thus gener-
ates evolution which is in a sense similar to the Kerr one~cf.,
@43#!; however, the effective Hamiltonian does not have an
integer spectrum and Schro¨dinger cats are not so well pro-
nounced. We emphasize that the sharp interference fringes
the smiles between the cat components of Figs. 9~e! and 9~f!

FIG. 10. Time evolution of the moments of the quantum Wigne
functions for the Kerr Hamiltonian.~a! Even momentsI 2 ~dotted
line!, I 4, and I 6. ~b! Odd momentsI 1 ~dotted line!, I 3, and I 5.
Dashed vertical lines correspond to time instantsp/6,p/5,p/4,p/3,
2p/5, p/2, and 3p/5, when Schro¨dinger cats appear.
e
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would be absent if the state were a statistical mixture of
same components. TheQ function does not show any struc
ture between the states and, hence, will not distinguish
tween coherent superposition and statistical mixture of co
ponents.

Most of the information contained in the Wigner functio
plots can be restored from the graphs of the momentsI 3 to
I 6 shown in Fig. 10. The time instants at which we c
expect amplitude squeezing are those where the initial p
still conserves its identity and the moments are still close
unity. When the Wigner function shows complicated ‘‘qua
tum oscillations,’’ moments are kept in their lowest, stea
values. The times when Schro¨dinger cats appear correspon
to the well-pronounced peaks of the moments. One can e
mate the maximum values of the moments at these peak
well-separated cat components.

When a cat state consists of two separate compon
centered at pointsx1 ,p1 andx2 ,p2, so that the wave function
in the coordinate representation has the form

C~x!5aC1~x!1bC2~x!,

wherea and b are the amplitudes of the components a
āb5uabue2 if, then the Wigner function has the form

W5uau2W~1!1ubu2W~2!1uabuW~12!, ~13!

whereW(1) andW(2) are the Wigner functions of the sepa
rate components andW(12) is the contribution of the ‘‘smile’’
region. Let us suppose for simplicity that the cat compone
are Glauber coherent states and thatp15p250. Then we
have

W~12!54exp@2~x2xc!
22p2#cos@p~x12x2!1f#,

with xc5
1
2(x11x2). The Wigner function~13! is exponen-

tially small everywhere except for the neighborhoods of
points (x1,0), (x2,0), and the midpointxc . When these
neighborhoods do not significantly overlap, the integralsI k
will consist of the contributions for these three points, a
we have

I k5uau2kI k
~1!1ubu2kI k

~2!1uabukI k
~12! ,

whereI k
(1) andI k

(2) are the moments corresponding to the fi
and the second components and

I k
~12!'Ck/2

k 1O„exp@2~x12x2!
2/4#…, k even

I k
~12!'O„exp@2~x12x2!

2/16#…, k odd.

The binomial coefficientCk/2
k 5k!/ @(k/2)!#2 can be approxi-

mated byCk/2
k ;2k(2/pk)1/2 for large k. Neglecting the ex-

ponentially small terms and taking into account that for
single coherent stateI k is unity, we have

I k'uau2k1ubu2k1uabu2Ck/2
k , k even,

I k'uau2k1ubu2k, k odd. ~14!

If the cat state hasM well-separated components and a
the M (M21)/2 ‘‘smile’’ regions are also well separate
from each other and from the components, then the sum

r
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the above equations haveM terms corresponding to the com
ponents and the even-k moments will haveM (M21)/2 ad-
ditional terms. In Fig. 9, only two- and three-component
states can be considered to be well separated. Corresp
ingly, Eqs.~14! give the correct numerical values of the m
mentsI k at the peaks for timesp/2 andp/3; see Fig. 10.

VI. CONCLUSIONS

The difference between classical and quantum dynam
is connected with the phenomenon of self-interference
phase space. For quasiperiodic motion the latter leads to
Schrödinger-cat states. Such states can be produced whe
quantized electromagnetic field propagates inside the op
Kerr medium@5,21#. It is a ‘‘global phenomenon’’ since the
quantum state spreads over all the phase volume allowe
conservation laws, and occurs usually at times longer t
the period of fast oscillation of the system.
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We have shown here that quantum nonlinear dynam
also differs from its classical counterpart for shorter tim
i.e., when the state is still well localized in phase space. T
nonclassicality is manifest in the ‘‘quantum oscillations
The higher moments of the Wigner function can be used
numerical parameters to measure this difference.
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