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Evolution under polynomial Hamiltonians in quantum and optical phase spaces
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We analyze the difference between classical and quantum nonlinear dynamics by computing the time
evolution of the Wigner functions for the simplest polynomial Hamiltonians of fourth degree in coordinate and
momentum. This class of Hamiltonians contains examples which are important in wave and quantum optics.
The Hamiltonians under study describe the third-order aberrations to the paraxial approximation and the
nonlinear Kerr medium. Special attention is given to the quantum analog of the conservation of the volume
element in classical phase spac®1050-294®7)05101-9

PACS numbd(s): 03.65.Bz, 42.50.Dv, 42.25.Bs

I. INTRODUCTION: CLASSICAL branches of physics: particle quantum mechanics, quantum
AND QUANTUM DYNAMICS optics, and wave optics, because they share a common math-
ematical structure.

Since the creation of quantum mechanics, efforts have These questions are formulated naturally in the well-
been made to visualize the quantum dynamical image and tknown language of particle quantum mechanics. They also
put it in better correspondence with the classical evolutionappear in quantum optics, where a single mode of the elec-
This goal can be partially achieved by using the phase-spageomagnetic field is described by the coordinate and momen-
picture in which the state of a quantum system may be reptum operators of the harmonic oscillator; this field oscillator
resented by the quasiprobability distribution in the phasénteracts with an atomic system or with other field modes in
space of the corresponding classical sysfé(8]. Described the case of a nonlinear optical process. Modern quantum
in this way, quantum dynamics resembles classical statisticaptics uses extensively the quasiprobability distributions
mechanics. Clearly, this analogy is incomplete for at leasf1,2], various versions of the quasiclassical approximation
two reasons: first, quasiprobability distributions may take[3] and other quantum-mechanical tools.
negative valuegunlike a true probability distribution and Here we stress applications in wave optics. Indeed, it is
second, the classical distribution can be localized at a poingell known that in the paraxial approximation, the optical
in phase space, whereas the quantum distribution must aHelmholtz equation reduces to the Satirmer equation.
ways be spread in a finite phase-space volume, in agreemehe distance along the optical axis plays the role of the time
with uncertainty relations. Let us consider an initial distribu-t in mechanics and, in a two-dimensional optical medium,
tion which is consistent with the uncertainty relations andwe denote thecreencoordinate(perpendicular to the optical
describes a real quantum particle. Thus we cana$lat is  axis) by x. The canonically conjugate momentum de-
the difference between classical and quantum dynamics igcribes the direction of the ray at the point. The classical
phase space? limit is geometric optics. The theory of optical devices in the

The classical dynamical law is very simple. Every ele-paraxial approximation describes the propagation of light
ment of phase space moves along the classical trajectolfeams as generated by Hamiltonian operators which are
while preserving its volume. If at time=0 the probability = second-degree polynomials inand p; they generate linear
to find a particle in a unit volume at the poisth,py iS  canonical transformations of phase space. Polynomial
Wei(Xo,Po), then at timet the probability distribution is Hamiltonians of higher degree describe the aberrations to the

paraxial regime, leading to the visual deformations and un-
focusing of images in optical devicg4]. In wave optics the
Wei(X,p;t) =W (Xo(X, p, 1), Po(X, p,1)), (1)  above question can be formulated as follows: when can the
optical device be well described by geometric optics, and
when is it necessary to use a specifically wave optical de-
wherex(t), p(t) is the classical trajectory passing through scription?
the pointxg,pg at timet=0. Does this picture help us to The purpose of the present paper is to compare the clas-
understand quantum dynamics? And if so, when can the quaical and quantum dynamics generated by the simplest non-
siclassical approximation be efficiently used to describe dinear Hamiltonians. We consider Hamiltonians which are
guantum system? This question is important in severalourth-degree polynomials in the coordinateand momen-
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tum p. It is convenient to classify these Hamiltonians usingwhere
the wave optics picture, where they describe third-order ab-
errations. In quantum mechanics and quantum optics, the of oh ot oh
polynomial Hamiltonians of the fourth-degree include such if.h}= X dp  Ip IX
important examples as the anharmonic oscillator and the op-
tical Kerr medium[5,6]. We use the Wigner quasiprobability is the Poisson bracket and the overdot indicates total time
distribution to provide a visual image of the quantum dynam-derivative. The quantum-mechanical evolution is described
ics. As we shall see, it yields the closest possible commolby the unitary transformation generated by the self-adjoint
description of classical and quantum dynamics in the phaskamilton operatoH through,
plane with the standard coordinatesndp [7].

In order to find parameters which can be used to deter- iX=[X,H], iP=[P,H], 3)
mine the similarity or difference between the classical and
guantum dynamics, we examine the quantum analogs of thehere[ A,B]=AB—BA is the commutator. We denote the
conservation of the volume element of the classical phaseperators by capitals and the classical variables by small let-
plane. We do not expect the corresponding invariants to holters. Note, that we use units whefie=1. The resulting uni-
for arbitrary quantum processes, though we shall see thaary transformation can be writtefiboth in classical and in
they do exist in the case of linear quantum dynaniies, quantum mechanigs in the exponential form
described by linear transformations of the Heisenberg operad(t) = exp(—itH), where time enters as a transformation pa-
tors). We show that thenoment®f the Wigner functioi.e.,  rameter. Different Hamiltonians lead to different canonical
the integrals of the powers &/(x,p) over the phase plafie transformations.
have the desired propertig8]. The classical counterparts of ~ The operator® andX generate rigid translations of phase
these moments are invariant under any canonical transformapace. Linear homogeneous canonical transformatiéhs
tion, as follows directly from the phase volume conservationare generated by polynomial Hamiltonians of second degree
In quantum dynamics, these moments are preserved by linear P and X, i.e., linear combinations of the operators
canonical transformations but are changed by nonlinear
transformations. For all the semiclassical stétEscribed by P2,(PX+XP)/2,X2. (4
Gaussian wave functionshese moment§in a natural nor-
malization are equal to unity. Their difference from unity ~ The harmonic-oscillator HamiltoniaR?/2+ w?X?/2 gen-
may serve as a measure of the “nonclassicality” of the stateerates rigid rotations of phase space around the origin. The
The change of these moments in the course of nonlineaptation by the angler/2 is just the Fourier transformation.
quantum evolution reflects an extra growth of the quantumrhe generator® X+ XP)/2 is called the squeezing operator
fluctuations over the corresponding classical level, providingecause it compresses phase space along one coordinate and
information on how closely the process can be described bgxpands it along the other; it transforms one harmonic oscil-
the quasiclassical approximation. In particular, the momentfator into another with different frequency. In paraxial wave
of the Wigner function can be used to detect and quantify th@ptics, P?/2 generates free propagation of light rays in a
quantum superpositions of macroscopically distinguishablélomogeneous medium ax#/2 corresponds to the action of
states, i.e., the so-called ScHioger-cat states. We restrict a thin lens.
ourselves to the case of two-dimensional phase space, where The Hamiltoniang4) lead to linear equations of motion
it is easy to plot and understand the graphs of the quasiprolthat are identical in classical and quantum mechanics. In
ability distributions. Only pure quantum statéise., those other words, the Heisenberg operator solutions to the quan-
described by wave functiopsvill be considered here. tum equations have the same form as the classical trajecto-

The paper is organized as follows. In Sec. Il we recall theries p(t), x(t). In wave optics, linear transformations de-
properties of linear canonical transformations. Sec. Ill conscribe paraxial systems; in quantum optics, they describe
tains a discussion of nonlinear canonical transformationsheam splitters, interferometers, linear amplifiers, etc.
We review some of the previous definitions of phase volume Among the various quasiprobability distributions pro-
elements for quantum states and stress the usefulness of thesed in the literaturgl0,11], there is only one for which
moments of the Wigner function. For these moments we alsevery linear quantum evolution coincides with classical evo-
present an alternative formula in terms of the wave functionlution [given by Eq.(1)] [12]. This is the Wigner function,
Secs. IV and V are the central parts of the paper; they con-
tain the results of numerical computation of the Wigner func-
tion for single optical aberrations and the optical Kerr me-
dium. Final comments are given in the conclusion, Sec. VI.

+ o0 X
W(x,p;t)=2J dri* (x+r;t)e?P" W (x—r;t)

+ o0 —_ o~
=2J dr¥* (p+r;t)e 2" W(p—r:t), (5
Il. LINEAR TRANSFORMATIONS o

Time evolution in classical mechanics is a canonicawhereW(x;t) and W(p;t) are solutions of the Schdinger
transformation generated by the Hamiltonian functionequation in the coordinate and momentum representations,
h(p,x), respectively, andi=1. Note that another normalization is

often used, which differs from Ed5) by the factor 1/2.
. _ We include this factor into the phase volume element
x={x,h}, p={p,h}, (2)  dpdx2m, so that the marginal distributions are
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d - dx may also expect that the quantum fluctuati@psead the
2 P 2 L ,
[W)1°= | Wx,p)5=, [W(p)|*= | W(X,p)5=, initial coherent state. In Sec. IV we consider several ex-
27 27 . .
6) amples which show how these dynamical features are real-
ized in particular nonlinear transformations.

and the normalization condition Vdp d¥27=1. Infact, __1he general picture can be summarized as follows: The
the covariancerequirement between the linear classical andnitial Gaussian Wigner function is a “hill” in phase space.
quantum canonical transformations can serve to define theinéar evolution, both classical and quantum, moves, rotates

Wigner function [13]. For instance, theQ function and squeezes thi; hill pregerving the area inside any given
Q(x,p)=|(a|¥)|? [14], where|) is a coherent state with level curve. Classical nonlinear evolution can atseform

the parameterr=(x+ip)/+2. This behaves as a classical the shape of t.he hilwith the area still kgpt constantBut
distribution (1) under shifts and rotations of phase space, bufiudntum nonlinear evolution, although it moves the top of

has a different transformation law under the action of the"€ Nill in agreement with the classical picture, exhibits a

squeezing operator; see, e 5] new phenomenon: “quantum oscillations” appear at the
In linear dynamics, the classical solution completely de-concavities of the level curves of the hill. This is a purely

termines the quantum one, so one can reduce the solution 8 anFurrI1 phenoumznon anlq' as W'Hlbe_" seen, is absent in ;he
the wave equation to the solution of the corresponding clast'@ssical case. Under nonlinear evolution we may expect that

sical Hamilton equations. Indeed, one may take the Wigne{€ “aréa” of the hill is no longer preserved; however, it is
function describing the initial state, find its evolution from not clear how to define this are@r phase-space volume

Eq. (1) and (if necessary reconstruct the marginal distribu- elefmenl.lAs we stated in the introduction, it would be useful_
tion using Eq.(6). We shall refer to the classical probability {0 formulate a quantum counterpart to the concept of classi-
distribution (1) evolving from the initial conditions cal phase volume conservation. The connected question in

W(po,Xo:t=0) as the “classical” Wigner function. Because guantum optics can be posed as followshat is the most

the classical and quantum Wigner functions evolve identi—rlatural way to describe ql_Jant.um fluctuatlons?.
As long as we work with linear transformations the an-

cally under linear dynamics, we understand that the Wigner

function provides the closest common description of classiSWe', iS known: one may use the left-hand side of the

cal and quantum dynamics. Schralinger-Robertson uncertainty relati¢see, e.g.[18]),

2
5= Uxxo'pp_O'po%, )
I1I. NONLINEAR TRANSFORMATIONS

We consider now the nonlinear canonical transformationéNhere
generated _by .the fourth-degree polynomials Rnand X. o :(Ax)2:<(x—x_)2)
Such Hamiltonians are linear combinations of the operators XX ’

P4 {P3X},{P2X2} {PX3},X*, 7) Top=(AP)2=((P—P)?),

where{ ...} stands for the Weyl ordering of the operators oxp=2{((XP+PX))—XP.
[16]. One particularly important example of polynomial
Hamiltonian of fourth degree in quantum optics i  The brackets- - -) denote the average over a given quantum
= 3(P2+ 02X?) + (x/40?) (P?+ »?X?)2, which describes state,oy, describes correlations between coordinate and mo-
the optical Kerr medium in the variabl&andX of a single  mentum fluctuations, anX,P are the mean values of the
mode of the electromagnetic field. coordinate and momentum. The equality in Eg). holds for

In the nonlinear case, the classical solution does not degpure Gaussian states. Dodonov and Man’ko noticed that the
termine the quantum dynamics, since productsPaf and  value § in Eq. (8) is invariant under linear canonical trans-
X’s enter the Heisenberg equations of motion. The meaformations both in classical and quantum mechahi$.
values of these producfs.g.,({PX}(t))] become additional Hence, linear dynamics do not lead to any extra growth of
variables which are absent in classical equations. Thereforguantum fluctuations over the classical ones.
the classical and quantum Wigner functions will evolve dif- Under nonlinear transformations howevéris not invari-
ferently. ant even in classical mechanics; henéezannot in general

We assume that the initial state of the system is given bylescribe an element of phase-space volume because the latter
a Gaussianwave function in the coordinate representation.must be conserved by any classical canonical transformation,
Then the wave function in momentum representation, andinear or nonlinear. The Dodonov-Man’ko parametecan
also the Wigner function, are Gaussians. These states atleus be used better to characterize the “degree of nonlinear-
also calledgeneralized coherent staté6CS. Under linear ity” of the system, rather than its “degree of nonclassical-
evolution Gaussians remain Gaussians of possibly differerity,” as was noted in Ref{20]. This parameter is in fact very
parameters. Since linear evolution is the same in the classicabeful to describe the short-time nonlinear behavior, even if
and quantum cases, we may conclude that the GCS are qu&does not feel global effectsuch as those of Schiimger-
siclassical statesl7]. It is known that the only states which cat stateswhich appear for longer times.
have an everywhere positive Wigner function are the Gauss- Let us recall some properties of ScHinger-cat states.
ian stateg1]. Under quantunmonlinearevolution, the initial  The quasiprobability distribution for a coherent state is a
Gaussian loses its shape and its Wigner function must theré&saussian centered at the poing(py) of the phase plane.
fore take negative values in some regions of phase space. Wédie quantum superposition of two coherent states with mac-
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FIG. 1. Evolution of the quantum and classical Wigner functions for the Hamiltdfagspherical aberratiopnsObserve that in all our
figures we use units where=1, and coordinates and momentum are dimension{es&) three-dimensional plots of the quantum Wigner
functions for times=0.5 andt=2.0; (c),(d) level plots of the same quantum Wigner functiofe;(f) level plots of the classical Wigner
functions for the same time instants.

roscopically distinguishable coordinates and momentd&he Wehrl entropy carries more precise information about
(X1,p1), (X5,p,) is an example of a statg21]. Any qua- the phase-space volume occupied by the quantum state; it is
siprobability distribution is different then from zero in the especially convenient for the description of the Sclimger-
neighborhoods of the pointx{,p;) and (x,,p,); moreover, cat state§24]. In particular, if the cat state consists bf
the Wigner function also shows fast oscillations at the mid-well-separated components, thEg=S,+InM, whereS, is
point (x;+X,)/2, (p1+p,)/2, which can be called themile  the entropy of a single component. The Wehrl entropy is thus
of the Schrdinger cat and reveals the coherent superpositiom good candidate to describe the phase-space volume occu-
of the states. In a statistical mixture of the same states, thgied by the quantum state. UnfortunateBy, is not invariant
oscillations are absent. The uncertainties in coordinate andnder the squeezing transformatifi@b]. (This follows di-
momenta for the cat state have values of the order ofectly from the “bad” behavior of the& function under the
[X;—X,| and|p;— p,|. The parametes in Eq. (8) does not squeezing mentioned above; the Wehrl entropy overesti-
take into account that the particle can only occur at themates quantum fluctuations in squeezed states.
neighborhood of the pointsx(,p;), (X2,p,), and never in We search for a quantity that can serve to separate be-
between. tween classical and quantum dynamics and, from the point of
The difficulty in describing quantum fluctuations for view of applications, to determine if the semiclassical ap-
Schralinger-cat states can be overcome through taking aderoximation is good or not. Recalling that linear transforma-
vantage ofentropyas a measure of fluctuatiof2]. Since tions change the Wigner function covariantly in classical and
there is no true distribution in quantum phase space, Wehduantum dynamics, we conclude that the specifically quan-
[23] proposed to calculate the entropy using the nonnegativium features of a system are due to the nonlinear part of the
Q function instead of the probability distribution, dynamics, which transform an initial semiclassical state to a
“highly quantum™ one. Therefore, the parameter which dis-
tinguishes between classical and quantum dynamics also has
So= _f QIndedX o) to separate between the semiclassical and the “highly quan-
27 tum” states[26].
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S - purity of the state),=Tr(p?) [1,32].) Therefore, only the
8 |'5 momentd k=3 contain nontrivial information. It is easy to
Iy * check that our normalization implieg=1 for any pure

Gaussian state. Quantum linear evolution preserves the ini-
tial values of the moments. However, quantum nonlinear
evolution of the initial Gaussian state may lower the values
of the momentd,, for k=3.

The momentg11) can also be written directly in terms of
the wave functions in coordinate or momentum representa-
tion (without use of the Wigner functionindeed substitut-
ing Eq. (5) into Eqg.(11) and integrating ovep we have,

(W)

k—1

. . ; . , . . . . . = - *(x+r; =TI
2055 o5 o=k dxdr T e e

FIG. 2. Time evolution of the moments of the quantum Wigner XW*(X—T1— ...~ ) WX+ + . ).
functions for the HamiltoniarP*. 1, (dotted ling is shown as a
quality test of our numerical computation. The decrease of the moThis equation(and a similar one in terms of the wave func-
ments |, for k=3 reveals the difference between classical andtion in the momentum representatjanay be useful to study
guantum dynamics. the analytic properties of the moments.

o In Secs. IV and V we shall calculate numerically the mo-

We would have a measure of the classicality of the statenentsk=3,4,5,6 for several examples of nonlinear dynamics
possessing all the desirable properties if we could calculatgoyerned by Hamiltonians of the typ@) and show that
the entropy using the Wigner function as a probability dis-these moments indeed carry important information about the
tribution. This is imppssible however, since thg Wigner func-quantum state. Hence, they can be used to distinguish quasi-
tion can take negative valuéexcept for GaussiaisMore-  ¢jassical dynamics from quantum dynamics, and semiclassi-

over, these negative values are known to be an importandy| states from quantum states. Moreover, they can be used
manifestation of the nonclassicality of the stdfthe entropy o detect Schidinger cats.

is determined as the mean value of the logarithm of the dis-
tribution, which is not well defined for negative valueg/e IV. NUMERICAL RESULTS FOR MONOMIAL
can consider other monotonic functions beside the logarithm HAMILTONIANS (OPTICAL ABERRATIONS )
studying the behavior of integrals of the type
In this section we use the wave optical terminology. The
| :J' FOW) dpdx (10 Lie theory of geqmetrical image aberratiddg i_dentifi_es the
27’ operators (7) with the third-order aberrations in two-
dimensional optical media. In geometric optics, momentum
wheref(W) is any monotonic function of the Wigner func- is p=nsing, wheren denotes the refractive index amtis
tion [27] Itis important to note that this integral is invariant the ang|e between the ray and the optica| axis. The ana|ysis
in the classical case under any canonical transformation, linof the aberration generators as separate Hamiltonians is war-
ear or nonlinear. To verify this, we change variablesranted because they represent the first nonlinear correction to
X, p—=>Xo(X,P,t),Po(X,P,t), Wherexo, po is the initial point  some interesting physical phenomena briefly indicated be-
of the classical trajectory which passes through the poinfow. The marginal distributioh® (x)|2 in Eq. (6) is the light
x(t), p(t) at timet. Then the invariance of the integrdl0)  intensity on the one-dimensional screen of coordinate
follows from the conservation of the phase-space volumee Re. (The common designation af for the optical axis
under the canonical transformatif28]. In the quantum case ¢oordinate is replaced here byas if it were time). We now
the integralq10) are invariant under linear transformations. investigate the action of aberrations on the initi@cuum
The simplest monotonic functions are the pows¥s.  coherent state, i.e., a Gaussian of unit width centered at the
Then the integral§10) are the moments of the Wigner func- origin of phase space. The three-dimensional figures and the

tion corresponding level plots of the Wigner function that evolves
K dnd under the quantum-mechanical Hamiltonians are presented
(1) = —mf Wi(poxet) DX 12, ... (a1 fortwo different ime instants. The level plots of the classical
2 2m Wigner functions are also shown for those times.

Corresponding quantities for true probability distributions
are known as ‘& entropies”[29]. They obey some inequali-
ties which reflect the uncertainty relation80] (cf. Ref. The first metaxial correction to paraxial free propagation
[31]). We use here the moments of the Wigner function tois called spherical aberration. The same Hamiltonian also
characterize the spread of the Wigner function in phase spaaescribes the first relativistic correction to the Schinger
and the “classicality” of the corresponding quantum state. equation for a particle of nonzero mass. In Figs)+1(f) we
From the normalization condition it follows thhf=1.In  show the classical and quantum evolution of an initial
turn, 1,=1 holds for any pure statéFor mixed states de- vacuum coherent state for the time instamts0.5 and
scribed by the density matrjx, the second moment gives the t=2.0. The resulting states are no longer Gaussians, but are

A. Spherical aberration H=P*
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FIG. 3. The same as in Fig. 1 for the HamiltoniBAX (coma.

represented by hills that rapidly spreadxinThe difference sical states remain a good approximation to quantum states.
between the classical and quantum cases can be seen in thete that this aberration has been analytically treated in Ref.
additional oscillations of the quantum Wigner function, [33].
which appear in Figs.(&)—1(d) and are absent in Figs(e)
and if). They are seen in the level plots as small islands B. Coma H = P3X
forming in the concave part of the main hill; their area is . o
considerably smaller than the area of the vacuum state. We The generator of this transformation is
are therefore led to call this phenomenon “quantum oscilla- )
tion.” H={P3X}=P3X+i3P2
The behavior of the moments, shown in Fig. 2, is quite
flat. There is a proportional drop in all moments beyond the
second. The constancy ¢f provides a reliable numerical This Hamiltonian is also the first approximation to tleda-
check on the computation. The figure indicates that semiclagivistic comaphenomenon after squeezifig4]. The corre-
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FIG. 4. Evolution of the quantum and classical Wigner functions for the Hamiltdat (astigmatism (a),(b) three-dimensional plots
of the quantum Wigner functions for timés: 0.1 andt= 0.5; (c),(d) level plots of the same quantum Wigner functiota;(f) level plots of
the classical Wigner functions for the same time instants.

sponding Schidinger equation in momentum representationwhere xfx(p,o)zwflmexp:_pz/z] is the initial condition.

is the first-order differential equation The Wigner function has been calculated numerically from
o~ - 5 o Eq. (5) to produce Figs. @)—3(f). Acting in coordinate rep-
1 (p,t)=i(p°dp+3p)W(p,t). resentation, i.e., on the optical screen, coma produces image

caustics(which are comet shaped only in two-dimensional

optical images The signature of an image caustic in phase

space is thaky=constant lines cross the level plots at four
0)

The exact solution to this equation reads

~ 1 ~
\P(pyt) = (1_ 2p2t)3/4q,(

p
Ji-2p%t’

points. This is seen in the wings of Figs.cB-3(f). In the
quantum case, “quantum oscillations” again occur in the
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were hyperbolas. The behavior of the moments is shown in
Fig. 5; they decrease much faster than in the other aberra-
tions. (Note also that these figures are computed for shorter
times than those of the other aberratigns.

D. Distortion H=PX?

1(W)

The Hamiltonian in the coordinate representation is
H={PX%}=X3P—i3X?=—i(x%d+3x?).

The differential equation for distortion in the coordinate rep-
resentation has the same form as that for coma in the mo-
0.0 . . . . . mentum representation, with a change in the sign of time
0.0 0.1 0.2 4 0.3 0.4 0.5 t— —t. Distortion and coma are Fourier conjugate of each

other [36] and, thus, the evolution under distortion corre-

FIG. 5. The same as in Fig. 2 for the HamiltoniBAX? (astig- sponds to backward comatic dynamics.

matism). The classical and quantum Wigner functions are shown in
Figs. 6a)—6(f). As we saw above, coma compresses phase
concavities of the main hill. The values of the moments dro%pace a|ong the momentum axis. Corresponding'y, distortion

proportionately more than in the previous aberration. will expand phase space along the coordinate axis, as can be
The solutions of the classical equations of motion are  seen from the classical trajectories,

p X
Xo=X(1—2p%)%? pg=—r—, =0 p=p(1-2x2)3°
1_2p2t X 1—2X2t’ p p( XO ) .
V 0

where the trajectorik=x(t), p=p(t) begins at the point

Xg,Po- We notice that the whole initial momentum range " SO . o
_Ooopi Do is mapped into the intervab(t)|<1A2t: no g points which initially have coordinateo| < 1/y2t will stil
points map beyond this interval. At the quantum level, theP® in the finite plane, while the poinig == 1/y2t map to
Wigner function at timet is zero outside the strip infinity. The points|x|> 1/y/2t will disappear from the clas-

|p|<1/V2t and the normalization condition involves the in- Si¢@ phase space and so do not contribute to the quantum
solution. As a result, the normalization of the wave function

tegration only over this strip. This squeezing in the momen- _ X X
tum variable corresponds to the forward compression of ray no_t pr(_aserved. This unpleasant property of the distortion
amiltonian has been pointed out by Klaud8s]. Corre-

directions under relativistic boost of the screen in geometri 3 ) .
optics[34]. spondingly, the moments, andl, are not constant in this

case, as we see in Fig. 7.

These trajectories reach infinity in finite time: at timethe

C. Astigmatism H =P2X?
_ ) ) _ E. PocusH =X*
Astigmatism can be characterized classically as a hyper-

bolic torsion of phase space stemming from a radius- This aberration has received its playful naf8é] because
dependent differential hyperbo"c rotation(For two- of ItS_p-unfOCUSI_ng Qﬁect. It is the Fourier transform of
dimensional images there is also tmervature of field SPherical aberration: it spreads rays in momentum and leaves
aberration; in our one-dimensional case it coalesces witfhe position coordinate invariariso it does not affect the

astigmatism). geometric image quality and is not included in the traditional
The Weyl-ordered Hamiltonian in the coordinate repre-Seidel cIassifig:atiorﬁS?]), but multiplies the wave function
sentation has the form by a phasee™ .
The evolution of the Wigner function can be found from
H={P?X?} = —x?9;— 2Xdy— 3. spherical aberration by the Fourier rotation of the phase

o o ] _ plane plus time inversion. It is shown in Figdag-8(f) for
(Other quantization schemes will differ only in the additive the time instants=0.5 andt=2. The moments, are invari-
constanp. The Green function for this Hamiltonian can be ant ynder this transformation and are the same as in Fig. 2.
found exactly, both in coordinate or momentum representarhe effect of pocus on classical phase space and on the quan-

tion. However, it is more convenient to solve numerically they,m wigner function is on par with all other nonlinear trans-
differential equation for the wave function and then to find g mations.

the Wigner function by integration.

In Figs. 4a)—4(f) we see a cross-symmetric hill develop-
ing out of the initial vacuum coherent state for tintes0.1
andt=0.5. The quantum case again shows “quantum oscil- A successful model of active optical media in which self-
lations” that are much stronger now. In Figgctand 4d) interaction of the field takes place is the Kerr medium
we show, among others, the zero-level curves which, due t{5,6,38—40Q. Its Hamiltonian is a harmonic oscillator de-
the shape of the “quantum oscillations,” appear as if theyscribing a single quantized mode of the electromagnetic field

V. OPTICAL KERR MEDIUM
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In quantum electrodynamics, the
wh+ yn? [herew is shifted related

(distortion).
1.

a'a asH

Hamiltonian is usually written in terms of the photon number

to Eq. (12)]. It is clear that the harmonic-oscillator Hamil-
tonian and the total Kerr Hamiltonia(12) have the same

operatorn

(e)

12

FIG. 6. The same as in Fig. 1 for the Hamiltonigix®
X(P?+w?X%)?,

1

002

(P?+w?X?) +

qol
"2

of frequencyw, plus a self-interaction term with a coupling in units where #

constanty, [6]. It has the form
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The Wigner function of the initial Gaussian state is shown
in Fig. 9a). It is centered at the point=2n=5.7, indi-
cated by the radial distance to the origin gnd O (it is thus
not the vacuum stajecorresponding the Glauber coherent
state of photon number=16. For small timet=0.02, the
Gaussian is first stretched and rotated in the phase plane as
shown in Fig. %b); all the moments, shown in Figs. 10, are
still close to unity and so the state is still nearly semiclassi-
cal. It is squeezed in a definite direction in phase plane, how-
ever. This squeezing can be seen clearly in Fig).9Note
that in the graphs of th® function it would be more difficult
to visually notice squeezing since the hills would be “fat-

(W)

%%5 0.1 0.2 0.3 0.4 0.5 ter.”) We can use the propagation in a linear medium by the
ot o ) bare harmonic-oscillator Hamiltonian to achieve the best
FIG. 7. The same as in Fig. 2 for the HamiltoniBix® (distor- squeezing in the field coordinate or momenti88].
tion). As time advances, Fig.(6) shows that the hill is stretched

along a circle(notalong a straight ling the angular range of
eigenvectors. The photon number is conserved but there isthe hill spreads and we see a crescent. The deformation of
nontrivial evolution of the field phase. the top of the hill is still semiclassical. However, the shape of

The time evolution of the Wigner function under the Kerr the hill is already sufficiently bent for the “quantum oscilla-

Hamiltonian is shown in Figs.(8)—9(f) and the correspond- tions” to appear. As long as the momeiisare still ~1 in
ing evolution of the moments is shown in Figs. 10. In theseFigs. 10, these “quantum oscillations” are weak and their
figures we choosg=1. The first term in the Hamiltonian contribution to the phase-space volume is small. The area of
(12) leads to the “fast” rotation of the graphs with angular the hill increases slowly while the angular spread grows
frequencyw; we work in the interaction picture, which sub- faster, so we may expect a radi@mplitude squeezing. It
tracts this rotation. actually occurs slightly away from the radial direction, but

=1 (5 11 T2 ‘
FIG. 8. The same as in Fig. 1 for the Hamiltoni%f (pocus.
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FIG. 9. Evolution of the quantum Wigner function for the HamiltonjaiP?/ w + X?w)? (Kerr media. The initial state is a coherent one
described by a Poisson distribution witk= 16. (a) t=0; (b) t=0.02;(c) t=0.05;(d) t=0.2;(e) t=n/3; and(f) t= 7/2; we see Schutinger
cats for times = #/3 andt=#/2.

can be transformed into amplitude squeezing if we shift thean already squeezed stqt]. (Note that the “quantum os-
origin of phase plane, so as to put it at the center of curvatureillations™ are invisible in the graphs of th@ function used

of the crescent. Physically, this can be realized by placingn Ref.[6].)

the nonlinear Kerr medium inside one arm of a Mach- As time evolves furthefsee Fig. )] the angular spread
Zehnder interferometer, as was proposed by Kitagawa angaches 2 and the “quantum oscillations” become compa-
Yamamoto[6]. In this way strong squeezing in the photon- rable to what remains of the original crescéthte classical
number fluctuations can be achieved. The Kerr amplituddill) and occupy the whole interior. It becomes clear that
squeezing can be further enhanced by electing as initial stateese “quantum oscillations” are due to self-interference in
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would be absent if the state were a statistical mixture of the
same components. THg function does not show any struc-
ture between the states and, hence, will not distinguish be-
tween coherent superposition and statistical mixture of com-
ponents.

Most of the information contained in the Wigner function
plots can be restored from the graphs of the momépnts
lg shown in Fig. 10. The time instants at which we can
expect amplitude squeezing are those where the initial peak
still conserves its identity and the moments are still close to
unity. When the Wigner function shows complicated “quan-
tum oscillations,” moments are kept in their lowest, steady
values. The times when Schilioger cats appear correspond
to the well-pronounced peaks of the moments. One can esti-
mate the maximum values of the moments at these peaks for
well-separated cat components.

When a cat state consists of two separate components
centered at points; ,p; andx,,p»,, so that the wave function
in the coordinate representation has the form

W(x)=a¥(x)+ BYy(X),

where « and 8 are the amplitudes of the components and
aB=|aple ', then the Wigner function has the form

W=a W+ B2WE + | a g W12, (13

whereW® and W) are the Wigner functions of the sepa-
rate components and¥(*? is the contribution of the “smile”
region. Let us suppose for simplicity that the cat components
are Glauber coherent states and thatp,=0. Then we
have

0.0

W12 =4exg — (x—Xc)2— p?]cog p(X; — X,) + ¢,

FIG. 10. Time evolution of the moments of the quantum Wignerwith x.= 3(X;+X,). The Wigner function(13) is exponen-
functions for the Kerr Hamiltonian(a) Even momentd, (dotted  tially small everywhere except for the neighborhoods of the
line), 14, andlg. (b) Odd moments; (dotted ling, 13, andls. points (x1,0), (x,,0), and the midpointx.. When these
Dashed vertical lines correspond to time instan, /5, 7/4, 7/3,  neighborhoods do not significantly overlap, the integigals
27l5, wl2, and 3r/5, when Schrdinger cats appear. will consist of the contributions for these three points, and

we have

phase space: different parts of the hill create interference
fringes when meeting each other.

At some definite time instants, the self-interference lead
to standing waveglong the circle. These waves are formed
in the Kerr medium at timegt=L#/M, whereL,M are

= a1+ B2 + a2

Wherel (M and1 (?) are the moments corresponding to the first
and the second components and

mutually prime integersL. <M <\/n. These are the Schro 1112~ CK+ O(exd — (x;—X)%/4]), k even
dinger catd21]; see Figs. &) and 9f). The cat state in the
Kerr medium at timext=L#«/M has M very well pro- I(k12)~0(exr.[—(xl—x2)2/16]), K odd.

nounced components. This is a consequence of the integer
spectrum of the Kerr interaction Hamiltoniarf. The self-  The binomial coefficienCf,,=k!/[ (k/2)!]? can be approxi-
interference phenomenon appears also in the Jaynegjated byC'lj,2~2"(2/7rk)1’2 for large k. Neglecting the ex-

Cummings[41] and Dicke model$42]. It has been shown ,qhentially small terms and taking into account that for a
that the field in both models, for special initial conditions, single coherent statl is unity, we have

can be described by the effective Hamiltonian

Hpicke~ YN+ 1/2 [42), i.e., the square root of the harmonic- |k%|a|2k+|,g|2k+|a3|2c'l§/2, k even,

oscillator Hamiltonian. The Dicke Hamiltonian thus gener-

ates evolution which is in a sense similar to the Kerr @ie Le=|a|®+|B]%, k odd. (14
[43]); however, the effective Hamiltonian does not have an

integer spectrum and Scltinger cats are not so well pro- If the cat state had well-separated components and all

nounced. We emphasize that the sharp interference fringes the M(M —1)/2 “smile” regions are also well separated
the smiles between the cat components of Figs. &d 9f)  from each other and from the components, then the sums in
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the above equations hat# terms corresponding to the com-  We have shown here that quantum nonlinear dynamics
ponents and the evénmoments will haveM (M —1)/2 ad-  also differs from its classical counterpart for shorter times,
ditional terms. In Fig. 9, only two- and three-component cati.e., when the state is still well localized in phase space. The
states can be considered to be well separated. Correspombnclassicality is manifest in the “quantum oscillations.”
ingly, Egs.(14) give the correct numerical values of the mo- The higher moments of the Wigner function can be used as
mentsl at the peaks for times/2 and7/3; see Fig. 10. numerical parameters to measure this difference.

VI. CONCLUSIONS
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