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Abstract  

Polychromatic paraxial wavefields and their color images on a screen are provided here with a Wigner distribution 
function of position, momentum and wavelength. The definition is based on the Heisenberg-Weyl group. In the 
monochromatic limit we return to the common Wigner function and phase-space formalism. We examine one- and 
two-Gaussian polychromatic wavefields. 

1. Introduction 

The Wigner distribution function and phase-space 
formalism was developed by L. Szilard and 
E.P. Wigner [1]. It has been applied extensively in 
quantum mechanics [2,3], quantum optics [4] and 
signal analysis [5]. In the latter, when used for 
paraxial images, light must be assumed monochro- 
matic for the current formalism to apply. Our objec- 
tive here is to include the wavelength among the 
classical variables of a generalized Wigner function 
which we propose based on harmonic analysis on the 
full Heisenberg-Weyl group. 

In quantum mechanics, the fundamental constant 
which provides the scale between the canonically 
conjugate coordinates of position and momentum in 
the Planck constant h; in optics, it is the wavelength 
a. The former is evidentry fixed, but the latter is not. 
For two wavefunctions f and g, we recall the defini- 

tOn sabbatical leave from Instituto de lnvestigaciones en 
Matemfiticas Aplicadas y en Sistemas, Universidad Nacional 
Aut6noma de Mtxico, Cuemavaca, Mexico. 

tion of their Wigner distribution function (of classi- 
cal 'c-number' coordinates of position and momen- 
tum) given by 

w,h 1 I "  * 
Ff., (q, p)= 2'n'h dxf(q ½x) e -ix'/~ 

×g(q+ Cla) 
l ~ , 

=~: dyf(p-½y) e +'#~'/~ 

× g ( p + ½ y ) ,  ( l b )  

where h = h/2cr is the reduced Planck constant, 
and 

l 
:( p) = S,-q. ,/j= dq f (  q ) e  -iqp / ~ 

(Ic) 

is the Fourier transform wavefunction of momentum. 
Most commonly it is used for f f g  as the phase- 
space quasiprobability distribution of the quantum 
system in the state f .  For brevity we shall refer to 
this and to our ensuing generalization simply as the 
Wigner function. 
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In Section 2 we evince that paraxial polychro- 
matic wavefields carry at least two signals in juxta- 
position. In Section 3 we use the Heisenberg-Weyl 
group and operator ring [6] to define a general 
Wigner function; its application to such wavefields 
occupies Section 4. Section 5 examines the form of 
the Wigner function for color images on a screen and 
Section 6 for wavefunctions of color and momentum, 
where the juxtaposition problem is clarified. Section 
7 analyzes the three marginal distributions (projec- 
tions) which are extreme cases of the three local 
spectra of position, momentum (space frequency) 
and color. Section 8 examines the Wigner function 
for Gaussian-chromatic wavefields of Gaussian waist. 
Finally, Section 9 presents some conclusions and a 
wider context for application of the Wigner function 
in optical models. 

2. Paraxiai  po lychromat i c  wave f i e l~ s  

We use the common optical coordinates (x, z) 
,..~2, where x is the coordinate up the screen and the 
optical (or 'evolution') axis z extends to the right. 
Paraxial plane waves of real reduced wavelength 

= A/2cr ~ 0 and of momentum p ~..~ are 

I¢ 0,:.~( x, Z) ~- ( 2 ~ ' ) - ' e  '( '-x")/x. (2) 

The set of plane waves ( p, g)  is Dirac-orthonormal 
and complete with respect to the measures d x d z 
and d ( - p / g )  d ( I / g ) =  g-3 dp  dg. (Units of 
length are assumed for ~, z and x, while p has no 
units.) In geometric optics, momentum p in a 
medium of refractive index n is related to ray incli- 
nation 0 by p = n sin 0. To use the Fourier trans- 
form and canonical phase space for linear optical 
maps, the paraxial model assumes p E,9/. 

A paraxial wavefield f (x ,  z) is a generalized 
linear superposition of all paraxial plane waves. See 
Fig. 1. Fourier analysis shows that at least two 
distinct signals can be encoded in such a wavefield: 

(1) Z(z) on the optical axis z~.9~'(x=0), by 
superposition of wavenumbers K -- 1 / g  ¢.9; through 
the Fourier transform Z(K) ffi ~ ,  ,, Z. Wavenumber 
t~ and coordinate z are momentum and position 
coordinates for a phase space where the constant 
in Eq. (1) is unity. There applies the standard Wigner 
function treatment of signals in the ( z, /~- ~ ) plane. 

Fig. I. A paraxial wavefield is a linear combination of plane 
waves in all paraxial directions p and with all (nonzero) wave- 
lengths A = 2~,~. At least two signals are encoded: one along the 
optical axis z due to superposition of wavenumbers l/A, and one 
on ihe screen x due to superposition of p/A. The first signal 
juxtaposes on the second. The task is to separate them. 

(2) X(x) on the screen xE~/ '  (z = 0), by super- 
position of plane waves of ratio r = p /g  E~'. through 
the Fourier transform ?~(r)=-sr~,rX. This is the 
subject of paraxial imaging devices. In monochro- 
matic wavefields, the Wigner function (1) applies 
and so does the associated phase-space formalism 
with /'t replaced by ,~. 

The two signals, Z(z) and X(x), are not on the 
same footing: the first is impervious to the paraxial 
angular spread of the beam, while the second is 
conditioned by spreading of the first; i.e. the two 
signals are juxtaposed. Rather than solve the problem 
in ad hoc manner, we base our considerations on the 
mother symmetry of the paraxial polychromatic 
model of wavefields [7] to propose a proper Wigner 
function of position, momentum, and wavelength. 
The gained generality permits the analysis of further 
optical and acoustical models that will be presented 
elsewhere. Technically, Fourier analysis suffices to 
separate them and obtain results; the reader inter- 
ested only in applications may skip the following 
text up to Eq. (19), which defines the Wigner func- 
tion on a color screen, and then to Section 8, where 
Gaussian beams and the so-called Schr~dinger cat 
phenomenon are examined. 
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3. Wigner function on the Heisenberg-Weyi group 

A homogeneous and isotropic two-dimensional 
optical medium has manifest invariance under trans- 
lations and rotations, i.e. under the group of 
Euclidean rigid motions [7]. Indeed, the invariance 
defines such a medium. The limit of small angles 
contracts the Euclidean group to the Heisenberg- 
Weyl group, which is the foundation of quantum 
mechanics [6]. 

The Heisenberg-Weyl group has three Lie gener- 
ators: Q is the contracted rotation, P generates 
translations in the screen coordinate x, and A is the 
contracted translation along the optical axis. Inde- 
pendently of their realization, the commutation rela- 
tions of the generators are 

[ Q , P ] = i A ,  [A ,Q]=O,  [ A , P ] = O .  (3) 

The irreducible representations of the group are clas- 
sified by the central generator A and labelled 
uniquely by its real eigenvalues g. 

The elements of the Heisenberg-Weyl group W 
are the formal exponentials 

to( ~, 7,  ~ ) = exp(i(  ~Q + v/P + ~'A)) 

= ei~Oei,Pei( ~+ ½~)A 

= ei~Pei~Qei( ~- ~'~)A. (4) 

This polar form provides coordinates ( ~, 7, ~" ) ~..q~ 3 
for the group elements; the group product law ob- 
tained from Eq. (3) is 

to( l, 71, 72, 

= to( 'l + 71 + 72, 

~"1 "[" ~'2 "{" } [ 1'~l ~2 -- ~Jl72 ] ) "  (5) 

The group identity is too = to(0, 0, 0) and the in- 
verse of to(~:, 7, ~') is to-1(~, 7/, ~')= to(-~, 
-7,-~'). The invariant (Haar) measure on W is 
dto=d~ d~t d~" and the natural Hilbert space is 
..~2(,.~3), with the inner product (f, g)w = 
./w dto f(to)* g(to) for functions on the group f(to) 
=f(~, 7, ~')- There applies right group action to': 
f(to)~f(toto'). These maps can be extended lin- 
early to integral operators .~ = ]w d~o A(to)~o, sub- 
ject to linear combination and product, but do not 
necessarily have an inverse; such operators belong to 
a structure called the 'Heisenberg-Weyl ring' [6]. A 

ring element is characterized by its (generalized) 
function on the group, A(to). 

We now consider ring elements ~ : ( v )  whose 
function on the group is 

W( v; to) : W( q, p, 1; s ¢, 7, ~ ) 
=exp[- i (  idq + 7p + /~l)], (6) 

where v = (q, p, l ) ~ , 3  are three classical vari- 
ables (real 'c-numbers'). (Note that ~: and ~" are 
implied to have units of inverse length and r /has  no 
units.) With Eq. (6) we build the formal operator 

~ ' ( q ,  p ,  l) 

×exp{i[ ~(Q - q) + 7/(P - p )  + ~'( A - / ) ] } .  
(7) 

(The operator is formal because we have not yet 
specified its domain of functions.) In this way we set 
q, p and 1 in correspondence with the generators Q, 
P and A of the Heisenberg-Weyl group. 

There is always the natural Hilbert space .~2(.Y~ 3) 
of functions on the group. On this function domain 
we define the Wigner function (on the group W) as 
the sesquilinear form of Eq. (7), 

wf .W(v)=( f ,  7//'(v) : g)w 

=ffwdtodto':(to)" 
x w ( v ;  to-'to') g(to') 

=ff dtodto '  f (  to,to- ,/2)" 
w 

x w ( . ,  to)g(to,to,/2). (8) 

The form is Hermitian because WfW.g(v)* = wRW.f(v). 
In the polar parametrization (4), group elements have 
well-defined and unique square roots to(~, 7, ~" )1/2 
= to(½~:, ½~/, ½~'). Specifically for the Heisen- 
berg-Weyl case, 

w/.W( q, p, !) 

- ~ f ~  d~ drl d~' d7' d~' 3 

' ' ' 

~ -  ½ [ ~:' * ½(,~:' - ~7')1)* 



346 K.B. Wolf/Optics Communications 132 (1996) 343-352 

X e x p [ -  i( ~'q + ~'p + ~"/)] 

' ' ' ~ : ,  -O + ~rl ,  

/j' + ½ [ ~" + ½('r/~' - ~')7')] ). (9) 

Because of the properties of the multiple Fourier 
transform under linear maps of space, the vector of 
c-numbers r -- (q, p, )~) ~,9~ 'a and the vector of op- 
erators (Q, P, A) will have the ~ame transformation 
properties under the action of any linear transforma- 
tion that preserves the commutation relations (3) (i.e. 
the automorphisms of its Lie algebra). They are of 
course invariant under W itself, but also under the 
larger group of linear (properly, symplectic) transfor- 
mations [8,9]. In other words, as shown by Garda- 
Calder6n and Moshinsky [10], when the fields f and 
g undergo the linear (integral canonical) transforms 
of paraxial optics, the effect on the Wigner function 
is a corresponding linear (classical canonical) trans- 
formation of its arguments q and p. 

4, The Heisenberg-Weyl mother group of wave- 
fields 

The group W mothers a linear field model with 
symmetry W, when [7] 
(A) There is a standard field f0 --f(too) from which 
all wavefields can be generated through group ac- 
tion, f(to) ffi to: f0, to~ W, and (generalized) linear 
combination. 
(B) The standard field is invariant, tu~: f0 fifo,  under 
elements to, e W~ c W. 

The standard field choosen for the paraxial wave 
optical model is a plane pulse along the z-axis; its 
symmetry are all translations in the x-plane of the 
screen, /(oJ 0) =f( t%)  for to,~ = to(0, rl, O) e W x c 
W. Since f (  to,T to ) = /( to ), paraxial wavefields f(tu) 
ate constant over equivalence classes of group ele- 
ments Wxto, called '(left) cosets'. Paraxial wave- 
fields axe thus functions on the space of left cosets 
W ~ \ W .  In the polar coordinates, Eq. (5), 
to( , 7), ) = to(o, 71, o)  o ,  - and 
hence [6] 

f(to) =f(~:, vl, ~ ' ) = f (  ~', O, ~ ' ) = f c ( ~ ,  T), 

"r = ~'-- ½~')'/ (10) 

leads to the (transitive and effective) group action 

tu, : f c  ( tj , T ) ~_~ f c  ( ~ + ~j , , T + ;~ , - I ~ , , 
(ll) 

(Both ~ and T have units of inverse length. We 
indicate by primes those group elements whose coor- 
dinates are primed. Below we interpret the coset 
coordinates ( ~:, T) E,gP2.) 

On the domain of (generalized) functions on the 
coset space Wx\W,  the Wigner function is obtained 
replacing Eq. (l 1) in the six-fold integral (9). We 
may extract the empty integration factor Vol W x = 
J~ d~/ and retain the five-fold integral that we call 
the Wigner function on the space of cosets Wx\W. 
We denote it simply by W/,~(q, p, i), understanding 
that it applies to the paraxial polychromatic model 
of this paper. Various changes of variable such 

l - * ' t  t as v - -T - - i ~ ;~ /  allow us to collect a factor 
J~v d~7' e -i(p+~°'f = 2~8(p  + #/) and eliminate an- 
other integral. The result is the Wigner function in 
the form 

l 
Wf, , (  q,  p ,  1) ffi ~ f ~ ,  d1" d[ j '  d~" 

X f c ( _ p / l _  ~l ,, T-- {Tt) * 

X e x p [ - i (  ~'q + r ' l )  
I r X g C ( - p / l  + " ~ ,  T+ ½~")]. 

(12) 

Comparing with Eq. (lb). we identify the eoset 
coordinate ~: with - p / l .  

A wavefield is monochromatic (cf. Eq. (2)) when 
the dependence on T is ~ e i r x ° =  e i : / x , ,  times an 
arbitrary function of ~, 

1 
f~Co( ~, "r) = ; (  - ~: ) 2-~--exp(i,r~o) 

1 
= f ( p / * o )  2"=~= exp(i"°). (13) 

Between two monochromatic wavefields f and g, of 
wavelengths gf and g~ respectively, the Wigner 
function (12) has two Dirac 8 factors, 

W~'S*( q, p, l ) =  6 ( / -  g f ) 8 ( l - -  ]{g) 

X l.-Lf2~.l ~ d ~ f ( p / l - ½ ~ )  

X ei'ff(~( p / l  + ½~ ). (14) 
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The integral is precisely the common Wigner func- 
tion _FLWg'l(q, p) in Eq. (!)  (afte. replacement f ( p / l )  

1/-[fl(p), tj ~ y/l ,  and i ,--} h,  and understanding 
that the tilde means that there is a function f ( x )  on 
the screen whose Fourier transform is the momentum 
wavefunction f i (p/ l ) ) .  

We have thus reduced the Wigner function on the 
group to the Wigner function on the coset space of 
the polychromatic paraxial model, and shown that in 
the monochromatic case it reduces to the common 
phase-space Wigner function. 

5. Polychromatic functions on the screen 

For functions on manifold (~F, ¢) ~,9/'2 of cosets 
we consider the natural Hilbert space S"2(~ '2) with 
measure d ~ dT inherited from the invariant measure 
on the group. The group action (11) now leads to the 
realization of the Heisenberg-Weyl generators by 
(essentially self-adjoint) operators: 

0 0 0 
Q C = - i - ~ ,  PC--i~--~z, A C = - i ~ r .  (15) 

Eigenfunctions of the operators Q, P or A, are 
wavefields which can be conveniently labelled by 
their eigenvalues; the eigenvalues are real and pro- 
vide the physical coordinates of position, momen- 
tum, or wavelength, respectively. We may choose 
for this purpose at most two commuting operators. 
Let them first be the screen coordinate q of Q and 
reduced wavelength /~ of A (color), obtained by the 
double Fourier transformation 

i f ( x ,  S)=,~'~,., x,.qrr ... ~f  c 

= ~---~ f m~ dr d tT fc( t7, ") 

X exp[ - i( x~F+/~')] ,  (16) 

and call these '(polychromatic) screen functions'. On 
this space (x,  /[)~,9~ 2, the group action on func- 
tions is 

to' : fS (x ,  X) --:f~,(X, /[) 

--exp{i[ x~:'+ ~( ~"+ ½/j'~')] } 

X f f ( x  +/f 'q, /[). (17) 

(Mathematically this is known as a ray representa- 
tion of the Heisenberg-Weyl group, and called the 

SchrSdinger irreducible representation for ~ = h.) 
Here, the generators of W are the operators 

0 
QS=x. ,  t ' s = - i X  - ,  A s = X  . .  (18) 

Ox 
On the space of color screen functions f~(x, ~), the 
common SchrSdinger formalism is thus valid for 
variable wavelength. Note that translations in x are 
generated by P, but ~ cannot be translated within 
W. The three coordinates (q, p, 1) in the Wigner 
function are by no means those of an ordinary 
Euclidean vector space; the first two are of phase 
space and the third is their fundamental scale 'con- 
stant'. (Group theoretically, q and p are row labels 
and 1 labels the irreducible representation; the set is 
complete.) 

The paraxial polychromatic Wigner function (12) 
can be written with screen functions, (16), as 

1 l)" Wf, g(q, p, l )=  ~-~i~l dx fS (q  - '  

×e-i*p/IgS(q+ '-~x, 1), (19) 

cf. Eq. (la). The wavelength of fs  and gS is not 
convolved, as are q and p. Again, monochromaticity 
leads to two 8, times the Wigner function (1). We 
believe that Eq. (19) is the form best suited for its 
application, because usually the spectral distribution 
of the light source is known independently, and /or  
the color of the image can be sensed spectrographi- 
cally. 

6. Polychromatic momentum functions 

Paraxial plane waves, Eq. (2), were labelled by 
momentum and wavelength, (p ,  ~) ~OP 2, ~ ~ 0. 
The Fourier transform of the coset functions, or 
inverse Fourier transform of the color screen func- 
tions yields 

fm(~, g) = 9z- ,.. xfc(~:) 

I 
= " - ~  f ~ dr f f  ( ~s, r)e -i^" 

= ..~-..~ x fs (/[ ) 

I 
= - - ~  foq dx fS( x" ]{ )eix¢" (20) 
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that we call '(polychromatic) momentum functions' 
on (s c, X) ~.92 2, g ~ 0. Recall from Eq. (12) that we 
identify p = - ~:~. 

In the momentum realization, the group action 
(11)-(17) on functions is 

to ' : fm(~ :, A) 

x) 
= exp(iX(~" - ½~:'v/'))fm( g + s~', g ) ,  (21) 

and its generators are 

0 
Q m = _ i . ~ ,  p m = _ , ~ ,  d m = x . .  (22) 

The Wigner function in momentum form is obtained 
from Eqs. (12), (19) and (20), 

1 f d~' f m ( - p / l -  ½~', l)" wf.A q, p, l) -- ~ j~¢. 

+ t). 
(23) 

(The minus sign of p = -~/~ is ugly, but a conse- 
quence of using consistently the definition in Eq. ( I t )  
of momentum function; in the literature, the opposite 
sign is sometimes used.) 

It is important to note that in the coset coordinates 
({~,/{) the invariant measure is Cartesian: d {~ d/~, 
whereas in the color-momentum coordinates (p , /{)  
it is skew: d~ d/{ =/{- td / i  dp ffi d In J{ dp. This is 
shown in Fig, 2. If by external means we can change 
the wavelength, as by Doppler blue or red shift [9], 
the momentum coordinate p and the phase space 
measure dq dp  will shrink or expand. 

A wavefield F on the (x, z) optical plane is built 
of paraxial plane waves, Eq. (2), as 

F ( x , z )  f d dSfm( , = x, z), 

(24a) 

I 
= d x d z F ( x ,  w 

(24b) 

The problem of separation of the two juxtaposed 
signals in the (x, z) optical plane, addressed in 
Section 2, is thus solved by any function fm(~, ~) 
such that FA(r,)=(2rt)-t/2/s e d~:fm(~,  r -~) be 

2 

o ~ 
10 

I I}1'. 

. ~ 
0 IO 

Fig. 2. Area elements and contour plots of a beam in the {~-/{ 
plane (above) and its corresponding image in the p-$ plane 
(below). The area element is d~ d~; reducing the wavelength 
will shrink momentum accordingly. 

the Fourier transform of the signal along the 
optical axis Z(z), and F = ( ~ ) ~ - ( 2 ' n ' )  -1/2 
×/'~ dg fm(~:, /~) be the Fourier transform of the 
field at the screen X(x). In particular, it is solved by 
their product fro( ~, X) -- F~( ~ )FA( t{- t). 

7. Marginal distributions 

The Wigner function (Eq. (1) for f =  g) gives an 
attractive interpretation of quantum mechanics 
through its marginal distributions [2,3], or projec- 
tions 

F~.g (q, p ) = f ( q ) * g ( q ) ,  (25a) f ~c dp w.~ 

f dq F/W~( q, p) f h - t f (  p /h)* ~( p / h ) .  

(25b) 

The polychromatic Wigner function has the follow- 
ing marginal distributions for functions on the screen, 
Eq.. (19), on momentum, Eq. (23), and on phase 
space, Eq. (12): 

M],g( q, i) = --f dp Wf.g( q, p, !) 

~ fS( q, l)* gS( q, l), (26a) 
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M/me( p, 1) = f ~, dq W/,e( q, p, l) 

= 1-,fro( _pill  , 1)* gm( - p / l .  1). 
(26b) 

M~.g( q, p) 

f,~, f ~ F;.. ( q. p ) = di Wf.,(q, p, l ) =  dl wa 

i f  dl f d x f ' ( q -  ' = -fx, !)* 

' t )  X e - i x p l t g S ( q  + -~x, 

1 dl 
=- f ff, S ~  ~ : ,  1)" 2'rr -7- d~ f m ( _ p / l -  ' 

×e- lq~gm(-p / i  + ½~, l). (26c) 

For f= -g ,  Eq. (26a) represents the intensity at 
each screen point and color, and Eq. (26b) its mo- 
mentum and color content; as before, wavelength is 
unconvolved. Eq. (26c) is the simple color integral 
of the common monochromatic Wigner function 

W./i F~g (q, p) on phase space. The total intensity of the 
field f on the screen, as seen by a color-blind 
observer, is !~(q) = S,~ dp M~.y(q, p ) =  
]..~ dl M,~.y(q, I). The energy density in wavelength 
is l~(l) = f~: dq dp W/.y(q, p, l). Finally, the inte- 
gral over all arguments ( 'volume' of the Wigner 
function) is 

". ". ". f dqf c dpf 92 dl W/.g(q, p, l) 

d.S  S'(., , ' (x,  

= ( f ,  g )Ws\W.  (27) 

For f=-g it is interpreted as the total energy in 
the field. 

Gaussians on the phase-space plane. Now we pro- 
pose beams also Gaussian in color. We consider 
Gaussian functions of u, with (complex) width w = 
w I + iw 2 and center c = c I + ic 2, defined by 

1 Re 1 )114 
r . . < ( u ) =  ~ ~ i  

×es~p( (u7c')2 + i%(u- lc l )  ). 

(28) 

The waist is w 1 > 0 and w 2 is the chirp (in units of 
u2); c~ is the center of the signal peak (of units u) 
and c 2 the center of the frequency peak (of units 
u - l ) ;  the standard deviation is 2VI2"~. Normalization 
has been chosen such that f.~ du I F,,.c(u) 12 = 1 and 
so lim,._. 0+ I F,.c(u) 12 = 3(u - c). The properties 
of a Gaussian function (28) include: the Fourier 
transform of a Gaussian of width w is a Gaussian of 
width w- 1 ; the product of two Gaussians is a Gauss- 
ian whose width is the harmonic sum of the widths; 
the Wigner function of a Gaussian of width w is a 

i product of two Gaussians of widths iw  and 2h2/w 
in the two conjugate coordinates. 

We call a beam 'Gauss-chromatic' when its 
screen function has the simple factored form 
~f(x)F,~.t,(X), with color (reduced wavelength) /x 
and width a ;  both can be complex. When the image 
f ( x )  on the screen is also a Gaussian (of center c 
and width w), we call it a 'polychromatic Gaussian 
beam', 

r j . , . : : . , (  x )  = r,..<(x) (29a) 

(Alternatively, this function may serve to model 
color Gaussian filters, used as by Lohmann in Re(. 
[5] to smooth out by convolution the measurements 
of the Wigner function by an extended sensor.) The 
coset and momentum forms of these beams are (from 
Eqs. (16) and (20)), 

8. Gaussian polychromatic beams and cat states 

It is well known that between monochromatic 
Gaussian beams, the Wigner function is a product of 

= r,/,,..,<( ) r, /o., ,( ,) .  (29b) 

rw%.J -pl , x) 

- -  # i "  I/2F'. - - , . . X , / w , , i c 2 _ i e , / ~ (  p)Fo, a,(X ) ( 2 9 c )  
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The Wigner function for two different polychro- 
matic Gaussians is found from Eqs. (12)-(29c), 
(19)-(29a), or (23)-(29b). It is 

Wr. .... ( q, p,  t) 

1 
= 1 * F a. , .( l)  27rlF~a,( ) . 

x f~¢ dx r~.c(q- ' -~*--sx'/1'-" i_ 

(30) 

where B is independent of (q, p• l), and the widths 
and complex centers• obtained as coefficients of the 
quadratic and linear terms of the three variables, are 

1 
wffi + w'), 

Ct 2 
- -  + i C 2 f f i  W* ( (C l  + C'l) 
W + w' 

+ i( c'2w' - c2w* ) ), 

12[ 1 

d I 2 w*w' ( 
"~ + iC2 ffi -i w r-+-w ' ( c2 + c'2) 

W *  • 

I 1 1 

A a *  + a '  

-~- + iM 2 = - ~ -  + -~- + i(/~'2 - g2) .  (31) 

The linear dependence of C(q) vanishes when w'= 
w °. When w ' =  w is real, Eqs. (31) yield the simple 
results 

I I 
='~(CldC'Ctl) C 2 - c2 -'1- cW2 Wffi ~w, C I , = , 

v ffitV2w• +el, 
a=½ • 

(32) 

In Fig. 3 we show the Wigner function 
Wr.r(q• p, !) of a polychromatic Gaussian beam of 
real width as a stack of level plots. Each i = (constant 
slice) is a Gaussian, familiar from the common 

? 

l 0  

0 
2 5  . 

~q 

~ ~  I0 "0 ,0 

I 
P 

Fig. 3. Wigner function of position, momentum, and wavelength 
(p ,  q, I) for a polychromatic Gaussian beam F~c:o,~(x, ~) on 
the screen. The beam has waist w = 2 and (complex) center at 
c -- 5 + 5i -- q + ip; its color content is a real Gaussian centered at 
wavelength tt = 5 -- I and width (line spread) a = 1. The contours 
follow the function values 0.1.0.2 . . . . .  

Wigner function of monochromatic optics [ 11 ], whose 
center is at (c I, c 2,/.t I) asexpected, and real be- 
cause the frequencies C2• C 2 and M 2 vanish. The 
stack tilts in the p-I  plane. (In the coordinates 
(q, p/ i ,  l) however, the level surfaces are ellip- 
soids.) 

In quantum optics there has been recent inti:rest 
on the Wigner function for fields made up of two or 
mo~'e coherent Gaussian states [11]. SchrSdinger•s 
famous paradox on the quantum superposition of 
living and dead states of a cat has prompted these to 
be called 'cat states'. In the polychromatic paraxial 
model, cat states of the form G(q, I) ffi aF(q• l) + 
dF'(q,  l) have a Wigner function of the structure 

Wa.a = l a l2Wr . r  + [ d l 2Wr,,r , +2 Re a " d W r . r , .  

(33) 

As in the monochromatic case, there are two 'classi- 
cal' Gaussian peaks at the centers of phase space and 
color of the two constituent beams. There is also a 
peculiar cross term whose general form is also 
Gaussian, and appears as a region of superoscillation 
between the classical peaks. The superoscillation 
region has acquired the name of 'smile' of the cat 
state; its exact nature as a quantum state of light, 
detectability and possible applications are still under 
debate [ll], because the smile region smoothens 
when other distribution functions are used, such as 
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the Q- or Husimi function [3] (see below); but it 
does not, apparently, disappear. The evolution of 
Gaussian coherent states in the nonlinear Kerr 
medium also produces resonant cat-like states at 
fractions and multiples of the system's cycle. The 
smile phenomenon is present also in the polychro- 
matic optical model. 

In Fig. 4 we show the Wigner function for color 
cat states with w' = w real. There is a more complex 
three-dimensional smile region in these figures, 
whose oscillation frequency is contained in Eqs. 
(32), i.e., C 2 in q, C z in p, and M 2 in I. In this 
model it appears that the smile of cat states in 
(q, p, l) is related to the symmetry in the interfer- 
ence pattern in the (x, z) optical space, whose inten- 
sity fades out quickly as a Gaussian function of the 
separation between the classical states. Another im- 
plication is that if the source or sensor is not strictly 
monochromatic (i.e. a Lohmann Gaussian color til- 
teD, the superoscillations of the cat's smile will 
convolute and quickly die out. 

If a Gaussian color beam is sent through a 
'harmonic oscillator' optical fiber, the stack of Fig. 3 
will rotate in the (q, p)  plane as usual; if the refrac- 
tive index of the fiber depends on wavelength how- 
ever, each plane will rotate at its own frequency and 
the stack will shear. As the shear becomes large and 
parts of the beam differ by near-2~r rotation, Fig. 4 
indicates that there will form cat-like smile regions 
between them where resonances can be expected 
[12]. 

9. Conclusions 

We have proposed a correspondence, through the 
Wigner function, between classical observables and 
operators of position, momentum and wavelength, 
for the wavefields of paraxial polychromatic optics. 
Another model of interest where our methods and 
results apply is that of paraxial acoustics. The corre- 
spondence generalizes the phase space picture pro- 
vided by the (monochromatic) Wigner function of 
quantum optics to variable wavelength. In particular, 
we treated Gaussian beams and Schr'~linger cat 
states. 

The Lie-theoretical scaffold for this construction 
selects the polar parametrization of the group; this is 
associated with the Weyl operator-ordering rule of 

L=4.5 

L=5 5 I 

L=6 

L©6.5 

i- 
i L=7 

-~ ' ~0 ' :o ' °" - 

Fig. 4. Level plots of the Wigner function of a polychromatic 
two-Gaussian cat state for several values of  the reduced wave- 
length X = A/2~r  (marked L at right) 2.5, 3.0 . . . . .  7.5. The two 
beams ate polycl~omatic Gaussians of  color (wavelength) centers 
p = 4 and ~ = 6, and real widths (line spread) ot = a '  = I. On 
(q ,  p )  phase space, the Ganssian centers axe at c =  3+2 .5 i  and 
c' = 7 + 7.5i and have equal waist w = w' = 2. The region o f  rapid 
oscillation in their middle is the cat smile. The lowest contour 
follows the value 10 -4  o f  the function; the next ones indicate 

values 0. l ,  0.2 . . . . .  

quantum mechanics [6]. Group parametrizations dif- 
ferent from the polar form will lead to different 
distribution functions, such as the standard-, antistan- 
dard-, symmetrized, Born-Jordan, P-, Q-, and 
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Husimi functions [3]. The polar parametrization (and 
the Weyl ordering rule) is distinguished because the 
correspondence between c-numbers and wave opera- 
tors under linear transformation is mantained [10,13]. 

The correspondence we propose between c-num- 
bers and operators can be extended naturally beyond 
the Heisenberg-Weyl group of three parameters. On 
any N-parameter Lie group G we may establish a 
correspondence between v~ ~ and the N genera- 
tors X i. The analogue of the formal operator (7) is 

~f'°(v)= ftdg(y) expiY'.~'~t(~k--vk), (33) 

where y~ are the polar coordinates of the group and a 
Hilben space of wavefunctions (on coset spaces of 
G) is defined with each model. The mother construc- 
tion was applied to the Euclidean group for the 
'wavefront' and Helmholtz models of optics in Ref. 
[7]; the Wigner function could be useful also for 
wide-angle acoustics. 
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