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Fractional Fourier–Kravchuk transform
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We introduce a model of multimodal waveguides with a finite number of sensor points. This is a finite oscil-
lator whose eigenstates are Kravchuk functions, which are orthonormal on a finite set of points and satisfy a
physically important difference equation. The fractional finite Fourier–Kravchuk transform is defined to self-
reproduce these functions. The analysis of finite signal processing uses the representations of the ordinary
rotation group SO(3). This leads naturally to a phase space for finite optics such that the continuum limit
(N → `) reproduces Fourier paraxial optics. © 1997 Optical Society of America [S0740-3232(97)01807-3]
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1. INTRODUCTION: FINITE WAVEGUIDE
MODEL
We analyze the mathematical model of a planar multimo-
dal optical waveguide carrying in parallel a finite number
of amplitude signals of some color, sampled at the same
number of discrete sensor points. Such waveguides may
be communication channels in photonic devices (a band of
higher refractive index produced by doping a transparent
substratum) that could replace several thinner parallel
but separate monomodal waveguides. Our model is
based on Kravchuk functions—finite analogues of the
harmonic oscillator wave functions—and it defines natu-
rally a fractional Fourier transform along the waveguide,
modeled as a finite harmonic oscillator. This transform
acts on the position and momentum coordinates, which
take a finite number of values, and transforms the Krav-
chuk wave functions into themselves. To distinguish
this particular transform from the more common finite
Fourier exponential transform, we call ours the Fourier–
Kravchuk transform. As the number and density of sen-
sor points increases, both the Fourier–Kravchuk and the
Fourier exponential matrices become the common expo-
nential Fourier integral kernel.
The finite oscillator model that we present in this paper

pays attention to the following considerations:

• Waveforms used for parallel signal communication
by waveguides will carry a finite number of (real or com-
plex) data values:

k0 , k1 , ..., kN . (1.1)

• Since waveguides are likely to be produced in strati-
fied chips with two-dimensional layered design, they will
be planar. We assume the y dimension of the guide to be
such that it admits only the fundamental solution in this
direction.
• Waveforms will be produced and sampled at a finite

number of sensors, located at equidistant discrete points
on the (dimensionless) j axis separated by h 5 A2/N,

jn 5 ~n 2 N/2!h, n 5 0, 1, ..., N. (1.2)

(The actual distance xk 2 xk21 is thus given in units of |.)
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• We assume that we observe the values of the wave-
form f(j) at these points only, i.e., that we measure the
quantities

f0 5 f ~j0!, f1 5 f ~j1!, ..., fN 5 f ~jN!. (1.3)

The optimal situation is, of course, when the number of
sensors equals the number of data values.
• When N → ` the points j j become dense in a grow-

ing interval, and we recover the well-known quantum
harmonic oscillator wave functions and the fractional
Fourier integral transform.

In an isotropic optical medium of smooth refractive in-
dex, approximated by

n~j, h! 5 no 2 ~n1
2j2 1 n2

2h2! 1 ••• , (1.4)

which is independent of the optical axis coordinate z and
close to the forward (1z) direction, the electric field in a
transverse direction satisfies a limit form of the Maxwell
equations. These are formally identical with the
z-evolution Schrödinger equation for a scalar, dimension-
less field f (j, h, z),1 namely,

Ĥf :5
1

2 S 2
]2

]j2
2

]2

]h2 1 n1
2j2 1 n2

2h2Df 5 i
]

]z
f.

(1.5)

We use Cartesian coordinates (x, y, z) 5 |(j, h, z),
where the latter are dimensionless with the natural scale
of the reduced wavelength, | 5 l/2p 5 1/k, which corre-
sponds to a quantum harmonic oscillator with angular
frequencies n1 and n2 in the x and y directions (see Fig.
1).
The Hamiltonian operator Ĥ in Eq. (1.5) satisfies the

quantum Newton equations for the harmonic oscillator

@Ĥ, @Ĥ, j## 5 n1
2j, @Ĥ, @Ĥ, h## 5 n2

2h, (1.6)

where @Â, B̂# 5 ÂB̂ 2 B̂Â is the commutator Lie
bracket. [Classically, Newton’s equation for a unit mass
in the potential V(x) 5

1
2v

2x2 is ẍ 5 2v2x, where dots
indicate derivatives with respect to time; upon quantiza-
tion, time derivatives are replaced by i times the commu-
tator with the Hamiltonian operator.]
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We must now explicitly stress that the finite oscillator
model, satisfying the above considerations and the New-
ton equations (1.6), is distinct from the common approxi-
mation of the physical waveguide by a quantum continu-
ous harmonic oscillator with wave functions f (j, h, z).
Whereas the common treatment disregards the nonphysi-
cal region (j, h) P R2, where the refractive index [Eq.
(1.4)] is less than its vacuum value, the finite oscillator
model addresses the values of the field only at a finite
number of discrete sensor points inside the physical
waveguide. Planar waveguides are as thin as possible
but still three dimensional; all their sensor points [Eq.
(1.2)] are on the x axis. We regard the Newton equations
(1.6) as the fundamental dynamical definition of a wave-
guide; they are satisfied (of course) by the Schrödinger
differential operator (1.5) but also by a difference operator
[see Eq. (3.8) below]. The latter describes an intrinsi-
cally discrete and finite optical system, where the (Krav-
chuk) eigenfunctions are orthogonal and complete over
that finite sensor set, rather than a continuous system
(the common oscillator) with just a finite set of sampling
points and (Hermite) eigenfunctions that are not orthogo-
nal on the finite set of points and are overcomplete.
In Section 2 we use the common harmonic oscillator

wave functions2 to extract the data of Eq. (1.1) from the
data of Eq. (1.3) and to show why the Hermite function
basis is not the most adequate in this case. Section 3 in-
troduces a proper orthonormal finite basis for the vector
space of sensor points: that of the Kravchuk functions.
These are the wave functions of the finite harmonic oscil-
lator because they satisfy Newton’s equation (1.6) but
with a second-order difference operator for the Hamil-
tonian. It is a finite analog of the usual second-order dif-
ferential Schrödinger operator. The main properties of
these wave functions, based on the Kravchuk
polynomials,3–6 are assembled in Appendix A.
Fractionalization of an idempotent integral transform

on a Hilbert space can be based on the orthonormal, com-
plete eigenbasis of a self-adjoint operator H with equally
spaced spectrum. The exponential exp(2ipH/2) of such
an operator multiplies the eigenfunctions by phases
(2i)n, n 5 0, 1, ..., N. Section 4 places the fractional
Fourier integral transform as a closed subgroup of the
group Sp(2, R) of 2 3 2 matrices of unit determinant,
called canonical transforms.7,8 Just as for the oscillator
wave functions—but for finite N—Section 4 fractionalizes
the Fourier–Kravchuk transform to power a P R

(modulo 4), assuming the phase factor exp(2inap/2) on
the basis of eigenvectors of H.

Fig. 1. Planar multimodal waveguide model with sensor points.
The guide can carry only a finite number of modes; the wave-
forms are sampled at the same number of equidistant sensor
points (five in this figure).
The fractional Fourier–Kravchuk transform kernel is
again a Kravchuk function and is also a Wigner D matrix
for an irreducible representation of the ordinary three-
dimensional rotation group SO(3).5,6,9 The symmetry
thus uncovered in Section 5 is, post factum, not surpris-
ing. It interprets the fractional finite Fourier–Kravchuk
transform as a rotation around a circle, element of
SO(2),SO(3). The rotation around the other two axes,
generated by position and momentum operators with a
discrete, finite, equally spaced spectra is analyzed in Sec-
tion 6. It embeds the fractional finite Fourier–Kravchuk
transform into the higher group SU(2) of 2 3 2 unitary
matrices [twofold cover of the rotation group SO(3)], a
true counterpart of (continuous) optical phase space that
is the arena of finite signal theory. The concluding Sec-
tion 7 compares our transform with the more generally
known Fourier exponential finite transform.

2. HARMONIC OSCILLATOR WAVE
FUNCTIONS AND SAMPLING POINTS
The quantum harmonic oscillator wave functions are well
known to be

cn~j! 5
1

AAp2nn!
Hn~j!exp~2j2/2!,

j 5 Amv

\
x, n 5 0, 1, 2, ...,

(2.1)

where Hn(j) are the Hermite polynomials in the dimen-
sionless variable j. This is an orthonormal set of func-
tions in the Hilbert space L 2(R) defined by closure with
respect to the sesquilinear inner product

~cn , cm!R 5 E
2`

`

djcn~j!*cm~j! 5 dn,m , (2.2)

which integrates over the full real line j P R.
The basis of functions $cn%n50

` is dense in
L 2(R): any function f (j) P L 2(R) can be approxi-
mated (in the norm) by the expansion

f~j! 5 (
n50

`

cncn~j!. (2.3)

The expansion coefficients $cn%n50
` can be determined by

performing the integrals cn 5 (cn , f )R for n
5 0, 1, 2, ... .
When the function f(j) in Eq. (2.3) is known only

through its values fn 5 f (jn), n 5 0, 1, ..., N, at N
1 1 discrete sampling points j0 , j1 , ..., jN , then any
set of N 1 1 continuous, linearly independent functions
can be used to expand f (j). If we write

f ~j j! 5 (
n50

N

cn
~N !cn~j j!, (2.4)

or in the matrix form
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S f ~j0!

f ~j1!

A
f ~jN!

D 5 F c0~j0!

c0~j1!

A
c0~jN!

c1~j0!

c1~j1!

A
c1~jN!

•••
•••
�

•••

cN~j0!

cN~j1!

A
cN~jN!

G S c0
~N !

c1
~N !

A
cN

~N !

D ,

(2.5)

we see that to determine the N 1 1 coefficients
$cn

(N)%n50
N we must invert an (N 1 1) 3 (N 1 1) matrix

and then apply it to the column of data values fn
5 f (jn).
This algorithm is inefficient because we are using only

the linear independence of the wave function set. The
only trade-off is the freedom of choosing the sampling
points j j , which need not be equally spaced. A more ef-
ficient algorithm, however, should sidetrack the matrix
inversion by choosing a diagonal transformation matrix
corresponding to an orthonormal set of functions on the
sampling points. These should be functions of the con-
tinuous coordinate j rather than, say, the canonical basis
of Kronecker d ’s, Dj(jk) 5 d j, k , because they are wave-
forms and the environment is that of a harmonic oscilla-
tor. Moreover, in the limit N → `, with the interpoint
separation decreasing as h ; N21/2, the basis functions
should become the harmonic oscillator wave functions.

3. FINITE OSCILLATOR KRAVCHUK WAVE
FUNCTIONS
We remind the reader that the binomial process of ran-
dom walk on the line is described in probability theory by
the Kravchuk polynomials kn

(p)(s, N).10 When the pro-
cess is right–left symmetric, then the p 5 1/2 case ap-
plies and the polynomials are said to be symmetric.
Symmetric Kravchuk functions $fn(s, N)%n50

N are func-
tions of a continuous variable s in the interval 21
2 N/2 < s < 1 1 N/2 and orthonormal with respect to
the inner product over the set of N 1 1 discrete points in-
side that interval:

(
j50

N

fn8~sj , N !fn~sj , N ! 5 dn8,n , (3.1a)

sj 5 j 2 N/2, j 5 0, 1, ..., N. (3.1b)

The symmetric Kravchuk functions are given in terms of
symmetric Kravchuk polynomials kn(s, N) of degrees n,
0 < n < N in the variable s, normalized and multiplied
by the root of the binomial distribution,11,12 i.e.,

fn~s, N ! 5 2n 2 N/2kn~s 1 N/2, N !

3 F n!~N 2 n !!
G~N/2 1 s 1 1 !G~N/2 2 s 1 1 !G

1/2

.

(3.2)

Their most important properties are given in Appendix A,
and they are plotted in Fig. 2. Below we emphasize fur-
ther the reasons for considering the symmetric Kravchuk
functions to be the best finite counterpart of the harmonic
oscillator.
A wave field sensed on a section transversal to the op-

tical axis of a physical waveguide will contain only a finite
number of oscillator modes, because the refractive index
has finite range, bounded from below by the vacuum
value 1. A function whose harmonic oscillator expansion
is physically meaningful, and of which we know only the
values on a set of N 1 1 points j j equidistant by h
5 A2/N [cf. Eqs. (1.2) and (3.1b)], is expanded in terms of
Kravchuk functions (3.2) of the variable s 5 j/h as

f~j j! 5 ~N/2!1/4(
n50

N

kn
~N !fn~AN/2j j , N !,

j 5 0, 1, ..., N. (3.3)

The Kravchuk basis is orthonormal with respect to the
discrete orthogonality relation (3.1a), and hence finding
the coefficients with the N 1 1 data values of Eq. (1.1) re-
quires multiplying the N 1 1 equations (3.3) by the (pre-
sumably tabulated) numbers fn(AN/2j j , N) and sum-
ming over the N 1 1 sample points j j , to obtain

kn
~N ! 5 ~N/2!21/4(

j50

N

fn~AN/2j j , N !f ~j j!. (3.4)

Having found the data coefficients kn
(N) , we may want

to interpolate the data points by a smooth function be-
tween them by writing

fA~j, N ! 5 ~N/2!1/4(
n50

N

kn
~N !fn~AN/2j, N !. (3.5)

This function on the line segment @s0 , sN# can be called
the finite-N approximation to the original function f (j)
whose values were known on the set of N 1 1 equidistant
sample points j j 5 hsj . From the limit relation (A10),
when N increases and the separation h 5 A2/N between
samples decreases, we recover the usual harmonic oscil-
lator wave function expansion.
As shown in Appendix A, Kravchuk functions satisfy a

three-term recurrence relation and lead to an eigenequa-
tion (A12) with a real, equally spaced spectrum character-
istic of the harmonic oscillator,

H~N !~s !fn~s, N ! 5 ~n 1
1
2 !fn~s, N !,

n 5 0, 1, ..., N, (3.6)

with a finite-difference operator H(N)(s) (see below).
This suggests that we may identify the operator H(N)(s)
as the Hamiltonian of the finite system. This operator
turns out also to satisfy the harmonic oscillator Newton
equation (1.3), viz.,

@s, H~N !~s !# 5
1
2

@a~2s !exp~]s! 2 a~s !exp~2]s!#

5 iPs
~N ! , (3.7a)

@H~N !~s !, Ps
~N !# 5 is. (3.7b)

Moreover, we know that as N → ` the finite-dimensional
eigenvectors become the usual oscillator eigenfunctions
[see Eq. (A10)].
For these reasons we consider physically meaningful

the one-dimensional finite oscillator described by the dif-
ference Hamiltonian,
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Fig. 2. Kravchuk functions h21/2fn(j, N) for n 5 0, 1, 2, 3, 4, and 8, for the sensor spacing h 5 A2/N. Each figure plots the values of
N P $1, 2, 4, 8, 16, ..., `% compatible with n. There are N 1 1 sensor points, spaced by h 5 A2/N between 2AN/2 and AN/2. The
end-point zeros occur one h outside this interval. The figures show that the N → ` limit of the Kravchuk functions as the number and
density of sensors increases is the (infinite) set of harmonic oscillator wave functions.
H~N !~s ! 5 2
1
2

@a~s !exp~2]s! 1 a~2s !exp~]s!#

1
1
2

~N 1 1 !, (3.8a)
where exp(6]s) f (s) 5 f (s 6 1) are the basic shift opera-
tors and

a~s ! 5 @~N/2 1 s !~N/2 2 s 1 1 !#1/2. (3.8b)
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This Hamiltonian also has the property of factorization
and participation in a spectrum-generating algebra,
which turns out to be the Lie algebra of the rotation group
SO(3) (for details, see Ref. 11). We propose thus the fi-
nite analog of the Schrödinger equation

@H~N1!~s1! 1 H~N2!~s2!#f ~s1 , s2!

5 ~n1 1 n2 1 1 !f~s1 , s2! (3.9)

for the N1 3 N2 two-dimensional waveguide model (1.4)
in the coordinates

x 5 |j, j 5 h1s1 5 A2/N1s1 , (3.10a)

y 5 |h, h 5 h2s2 5 A2/N2s2 . (3.10b)

The N1 3 N2 eigenstates are the products of Kravchuk
functions fn1

(s1 , N1)fn2
(s2 , N2), n1 P $0, 1, ..., N1%,

and n2 P $0, 1, ..., N2%, with eigenvalues n1 1 n2 1 1
P $1, 2, ..., N1 1 N2 1 1%.
With the preceding equations we describe finite

waveguides of two-dimensional x–y section. As stated
among the considerations of Section 1, we are particularly
interested in planar waveguides, i.e., those in which only
the fundamental mode is present in the y direction and
the sensors are placed on a linear array of N1 1 1 equi-
distant points along the x axis. Because these may be
the first ones used in flat photonic technology, and also
because their mathematical treatment is somewhat sim-
pler, Sections 4 and 5 will present the one-dimensional
mathematical treatment, and the closing paragraph of
each will detail the results for the two-dimensional planar
case.
When we set n2 5 N2 5 0, the eigenmodes of the

discrete, planar waveguide are the functions
fn(s1 , N)f0(s2 , 0) given by

fn~s1 , s2 ; N !

5 2n2N/2kn~s1 1 N/2, N !

3 F n!~N 2 n !! sin ps2
ps2G~N/2 1 s1 1 1 !G~N/2 2 s1 1 1 !G

1/2

.

(3.11)
These wave functions fn(s1 , s2 ; N) in the planar dis-
crete waveguide are eigenfunctions of the finite Hamil-
tonian difference operator,

H~N !~s1 , s2! 5 H~N !~s1! 1 H~0 !~s2!, (3.12)

with a linear spectrum [Eq. (3.9)]. This spectrum is the
same as that of the ordinary plane harmonic oscillator
with wave functions cn(s1)c0(s2), n 5 0, 1, ..., N, but
governed by the finite-difference operator (3.8a). Hence
evolution along the optical axis z of the (N 1 1)-point dis-
crete waveguide is

exp@iz H~N !~s1 , s2!#fn~s1 , s2 ; N !

5 exp@iz~n 1 1 !#fn~s1 , s2 ; N !, (3.13)

exactly as in the corresponding continuous model.
Therefore, if a continuous wave function is approximated
by a sum of Kravchuk functions on N 1 1 points, the ac-
curacy of the approximation will be maintained indepen-
dently of z. In this sense we regard the Kravchuk-
function expansion as the best finite-N approximation to
a waveform in a quantum harmonic oscillator environ-
ment, such as that of an optical waveguide in the common
paraxial treatment.

4. FRACTIONAL FOURIER TRANSFORM
The ordinary Fourier transform of Lebesgue square-
integrable functions on the real line R is the unitary map
of the Hilbert space L 2(R) given by

f~x ! ° f̃~x ! 5 ~F f !~x ! 5
1

A2p
E

R

dx8 exp~2ixx8!f~x8!.

(4.1)

Among its many well-known properties is that of being a
fourth root of the unit operator, F 4 5 1 and that it trans-
forms the quantum harmonic oscillator wave functions
(2.1) into themselves, up to a phase (2i)n:

F cn~x ! 5 exp~2ipn/2!cn~x !. (4.2)

To define fractional powers of F it is sufficient to em-
bed (4.1) in a continuous Lie group of integral transforms.
In 1971, Moshinsky and Quesne studied the two-
dimensional symplectic group Sp(2, R) of linear canonical
transformations in quantum mechanics7; this includes
the harmonic oscillator evolution cycle. The correspond-
ing infinitesimal Lie algebra was recognized to be that of
second-order differential operators, and Hilbert spaces
were constructed that made their complexification uni-
tary. Using a notation based on Ref. 8, this one-
parameter group of integral transforms is

HC F cos t2sin t
sin t
cos t GfJ ~x ! 5 expF2

it
2 S 2

d2

dx2
1 x2D G f~x !

5 E
2`

`

dx8CF~x, x8; t !f~x8!,

(4.3a)

with the integral kernel family

CF~x, x8; t ! 5

expS 2
i
4

p sgn sin t D
A2pusin tu

3 expF i
2 sin t

~x2 cos t 2 2xx8

1 x82 cos t !G
5 (

n50

`

cn~x !exp@2i~n 1 1/2!t#cn~x8!.

(4.3b)

The last line in Eq. (4.3b) displays the integral kernel as a
bilinear generating function for the orthonormal family of
Hermite functions [cf. Eq. (4.2)]. For the value t 5 p/2
we have the Fourier transform (4.1), but for a phase we
have



1472 J. Opt. Soc. Am. A/Vol. 14, No. 7 /July 1997 N. M. Atakishiyev and K. B. Wolf
C F 021
1
0 G 5 exp~2ip/4!F . (4.4)

The square root of the Fourier transform was used in Ref.
8, pp. 328 and 392, to bind the repulsive oscillator and
Mellin power functions. The property (4.2) led to the re-
discovery of fractional Fourier and Hankel transforms by
Namias in 1980.13 The waveguide realization was pro-
posed and tested recently by Lohmann et al.14 The ker-
nel has the key property of group composition,

E
2`

`

dx8CF~x, x8; t1!CF~x8, x9; t2!

5 s~t1 , t2 ; t1 1 t2!CF~x, x9; t1 1 t2!, (4.5a)

with the sign defined as

s~t1, t2 ; t1 1 t2!

5 H 1
21, sgn sin~t1 1 t2! 1 sgn sin t1 1 sgn sin t2

5 H positivenegative. (4.5b)

In the limit when t → 01, the kernel CF (x, x8; t) coin-
cides with d (x 2 x8), associativity holds, and the inverse
is CF (x, x8; 2t) 5 CF (x8, x; t)* . This one-parameter
group of integral transforms in L 2(R) reduces, however,
with respect to parity. Odd and even functions consti-
tute the irreducible components, which in Bargmann’s no-
tation are D1/4

1 and D3/4
1 (Ref. 15).

The phase in relation (4.4) between harmonic oscillator
evolution and Fourier transforms is important: The
fourth power of the Fourier integral transform F 4 5 I is
the identity operator. But note that four quarter cycles
of oscillation in the one-dimensional optical waveguide
change the sign of the functions, i.e., C F

4 5 2I [see Eq.
(4.5b)]; only C F

8 5 I . The minus sign after t undergoes
one cycle, [0, 2p), indicates that the canonical transform
operators C in Eqs. (4.3) follow the double cover of the
symplectic group (isomorphic to the group of 2 3 2 real,
unimodular matrices), and form a faithful representation
of the metaplectic group, indicated by Mp(2, R); there, the
parameter t ranges in [0, 4p). This metaplectic sign is a
characteristic of the oscillator representation. This mi-
nus sign squares to a plus sign when we work in two di-
mensions and consider the usual, axially symmetric Fou-
rier integral transform with the kernel exp@2i(xx8
1 yy8)]. Finally, on cue from one of the referees, we
should stress that the metaplectic phase described above
is distinct from the Berry phase of the rotation group.

5. FRACTIONAL FOURIER–KRAVCHUK
TRANSFORMATIONS
We are concerned with waveforms in waveguides where a
finite number of sensors will give N 1 1 analogic data
values f (jn), jn 5 (n 2 N/2)h. The signal is thus a vec-
tor in RN11 . We define the a th power of the one-
dimensional finite Fourier–Kravchuk transform F̂ by a
linear operator that maps the Kravchuk basis functions
onto themselves:
F̂afn~s, N ! 5 exp~iap/4!expF2
ip
2

aH~N !~s !Gfn~s, N !

5 exp~2iapn/2!fn~s, N !, (5.1)

where n 5 0, 1, ..., N. This operator can be repre-
sented in the Kravchuk basis by a matrix F that is diag-
onal. In the basis of discrete sensor points jn 5 hsn ,
however [cf. Eqs. (3.3) and (3.4)], F̂a will be represented
by the nondiagonal matrix Fa 5 iFn,n8

a i in

F̂af ~jn! 5 (
n850

N

Fn,n8
a f ~jn8!

5 ~N/2!1/4 (
n850

N

kn8
~N !F̂afn8~hjn , N !

5 (
n850

N F(
j50

N

fn8~hj j , N !f ~j j!G
3 exp~2iapn8/2!fn8~hjn , N !, (5.2)

where

Fn, n8
a

5 (
j50

N

f j~hjn8 , N !exp~2ijap/2!f j~hjn , N ! (5.3a)

5 exp@i~p/2!~n 1 n8 2 Na/2!#

3 ACN
n CN

n8 cosN~pa/4!tann1n8

3 ~pa/4!2F1@2n, 2n8; 2N; sin22~pa/4!#

(5.3b)

5 exp@i~p/2!~n8 2 n 2 Na/2!#

3 A n!~N 2 n !!
n8!~N 2 n8!!

sinn82n~pa/4!

3 cosN2n82n~pa/4!kn
@sin2~pa/4!#~n8, N !. (5.3c)

The bilinear generating function for Kravchuk polynomi-
als used in Eq. (5.2) can be found in Eqs. (21)–(23) of Ref.
16. We call it the finite Fourier–Kravchuk kernel in the
(N 1 1)-dimensional position space of functions f(jn), n
5 0, 1, ..., N.
The finite Fourier–Kravchuk matrix F 5 iFn, n8

1 i in Eq.
(5.3) has the following properties:

• It is a fourth root of unity: F4 5 1.
• Its square is the inversion matrix: F2 5 I, In, n8

5 dn, N2n8 .
• The matrices satisfy

Fa1Fa2f~j j! 5 Fa2 (
n850

N

F
j, n8

a1 f~jn8!

5 (
n850

N

F
j, n8

a1 (
n50

N

F
n8, n
a2 f~jn!

5 (
n8, n50

N

F
j, n8

a1 F
n8, n
a2 f ~jn!

5 Fa11a2f~j j!. (5.4)
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Hence Fa qualifies as the ath power of F, with F0 5 1,
and the finite Fourier–Kravchuk transform is thus ex-
tended for fractional a.

• The matrices Fa are unitary: (Fa)† 5 F2a.
• Finally, we check that for a 5 1 we obtain the ex-

plicit form of the reproducing kernel for the symmetric
Kravchuk functions16:

Fn,n8
a51

5 exp@i~p/2!~n 1 n8 2 N/2!#

3 A22NCN
n CN

n8
2F1~2n, 2n8; 2N; 2 !

5 exp@i~p/2!~n8 2 n 2 N/2!#fn~jn8 , N !. (5.5)

The fractional finite Fourier–Kravchuk matrices Fa

have a natural embedding as irreducible representations
of rotations for vectors and spinors; the Lie group is the
rotation group SO(3) [more properly, its twofold cover
SU(2)], as we now proceed to show. From the theory of
general Kravchuk polynomials kn

(p)(s, N)4–6 and of angu-
lar momentum,9 we refer to the following relation be-
tween them (see Appendix A) and the Wigner little-d ma-
trix elements for rotations around the y axis (here the 2
axis) generated by Ĵ2 in the standard notation:

dm, m8
l

~b! 5 ^lmuexp~2ibĴ2!ulm8&

5 Dm, m8
l

~0, b, 0!

5 ~21 !m2m8dn
21A%~s !kn

~p !~s, N !, (5.6a)

where n 5 l 2 m, s 5 l 2 m8, N 5 2l, and p
5 sin2 b/2, while dn and %(s) are given in Eqs. (A1). In
the specific case of our interest we take b 5 p/2, then p
5

1
2 and thus

dm, m8
l

~p/2! 5
~21 !m2m8

2m
A ~l 1 m !!~l 2 m !!

~l 1 m8!!~l 2 m8!!

3 kl2m~l 2 m8, N !

5 dm8, m
l

~2p/2!

5 ~21 ! j2m8f j2m~m8, N !

5 ~21 !m2m8f j2m~2m8, N !. (5.6b)

Finally, we use the big-D notation for Euler angle rota-
tions to write

Dm, m8
l

~a, b, g! 5 ^lmuexp~2iaĴ3!exp~2ibĴ2!

3 exp~2ig Ĵ3!ulm8&

5 exp~2ima!dm, m8
l

~b!exp~2im8g!

(5.7a)

and the particular case

Dm, m8
l

~a, 0, 0! 5 ^lmuexp~2iaĴ3!ulm8&

5 exp~2ima!dm, m8 . (5.7b)

Thus the finite Fourier–Kravchuk transform (3.3)–
(3.4) is related to the Wigner rotation functions and, as
Eq. (3.6) shows, it is diagonal in the Kravchuk basis asso-
ciated with the Hamiltonian difference operator (5.1).
The manipulations in Eq. (5.3) have thus a simple group-
theoretical meaning for angular momentum l 5 N/2,
namely,

exp~ilap/2!Fn, n8
a

5 (
m, m852l

l

Dl2n, m
l ~0, p/2, 0!Dm, m8

l

3 ~2ap/2, 0, 0!Dm8, l2n8
l

~0, 2p/2, 0!

5 ^l, l 2 nuexp@2i~p/2!Ĵ2#exp@i~p/2!aĴ3#

3 exp@i~p/2!Ĵ2#ul, l 2 n8& (5.8a)

5 ^l, l 2 nuexp@i~p/2 !aĴ1#ul, l 2 n8& (5.8b)

5 (
k50

N

fk~sn!exp@i~l 2 k !ap/2#fk~sn8!,

sn 5 n 2 l. (5.8c)

In Eq. (5.8c) we display the kernel as a bilinear generat-
ing function.
The properties that we expect of a proper fractional

power of the finite Fourier transform Fa listed above are
easily checked to hold. When N → ` we keep fixed in
view the origin F0,0

a and let the matrix grow down and
right. In this limit, the Kravchuk functions
fn(hjn8, N) in Eq. (5.2) tend to the Hermite functions
cn(j) in Eq. (2.1), and the bilinear generating functions
(summed thereafter) have the limit

lim
N→`

AN/2Fn, n8
a

5 exp~ipa/4!C~j, j8, pa/2!. (5.9)

A mathematically precise formulation of this limit in
terms of Hilbert spaces should be made, but we leave this
rather technical matter for further research.
Returning finally to the physical flat waveguide with

the small but nonzero thickness of Fig. 1, we define the
corresponding planar fractional Fourier–Kravchuk trans-
form as Eq. (5.1) in the 1 coordinate s1 multiplied by the
same transform in the 2 coordinate s2 , but for N2 5 0.
Thus we are led to

F̂afn~s1 , s2 ; N !

5 exp~iap/2!expF2
ip
2

aH~N !~s1 , s2!Gfn~s1 , s2 ; N !

5 exp~2iapn/2!fn~s1 , s2 ; N !, (5.10)

where n 5 0, 1, ..., N. This is formally the same as Eq.
(5.1) and validates the previous discussion for thin
waveguides.

6. THE FOURIER–KRAVCHUK ROTATIONS
The placement of the one parameter group of fractional fi-
nite Fourier–Kravchuk transformations within the three-
dimensional rotation group will reveal the role of Krav-
chuk functions in finite signal analysis. First note that
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the commutator of the position s and the difference opera-
tor Ps

(N) defined in Eq. (3.7a) is

@s, iPs
~N !# 5 2

1
2

@a~s !exp~2]s! 1 a~2s !exp~]s!#

5 H~N !~s ! 2
1
2

~N 1 1 !. (6.1)

Let us now define the following operators:

J1 5 s • ,

J2 5 2Ps
~N ! ,

J3 5 H~N !~s ! 2
1
2

~N 1 1 !. (6.2)

Then the commutation relations (3.7) and (6.1) are those
of self-adjoint generators of the rotation Lie algebra
SO(3),

@J1 , J2# 5 iJ3 , @J2 , J3# 5 iJ1 , @J3 J1# 5 iJ2 ,
(6.3a)

and the Casimir operator is a number,

J2 5 J1
2 1 J2

2 1 J3
2 5 l~l 1 1 !, l 5 N/2.

(6.3b)

This indicates that we are in the irreducible representa-
tion of spin l 5 N/2: integer or half-integer. The spec-
trum $m% of J1 , J2 , J3 (or any v̂ • J with v̂ a unit norm
vector) is therefore discrete and finite: m 5 2l,2l
1 1, ..., l.
When J1 is chosen as the diagonal operator, we classify

the eigenfunctions in the reduction SO(3) . SO1(2). The
equally spaced eigenvalues are sn 5 n 2 N/2, corre-
sponding to the discrete sensor positions. The eigenfunc-
tions of J1 are a Kronecker basis for the discrete sensor
points, i.e., functions Lk(j, N) such that Lk(j j , N)
5 dk, j ; these have been studied in Ref. 12. On the other
hand, when J3 is chosen as the diagonal operator, we
have the usual reduction SO(3) . SO3(2); the measured
quantities (eigenvalues) are the indices n of the functions
and are directly related to their oscillation frequency in
the waveguide. The eigenfunctions are the Kravchuk
functions valued on the sensor set.
The fractional finite Fourier–Kravchuk transform F̂a is

a rotation around the 3 axis as shown by Eqs. (4.3) and
(6.2). By definition, it multiplies the Kravchuk eigen-
functions of J3 only by phases. The input signal vector
f P RN11 is measured in the position eigenbasis (of J1) by
the analogic values of the coefficients fj5 f (j j). The
fractional finite Fourier–Kravchuk transform is a rota-
tion by pa/2 generated by J3 . According to Eq. (5.8), it
will mix the data as

~F̂a f !j 5 (
j850

2l

^l, l 2 juexp@i~p/2!aĴ1#ul, l 2 j8&fj8 ,

l 5 N/2. (6.4)

For a 5 1 we have a quarter rotation of p/2, as shown
in Fig. 3. The J1 position eigenfunctions (Kronecker d ’s)
become eigenfunctions of J2 . The latter we may identify
as eigenfunctions of definite momentum, in analogy with
the Heisenberg–Weyl commutation relations (3.7) of the
ordinary quantum mechanical operators of position j, mo-
mentum p̂j , and oscillator Hamiltonian H(j)
5 H(x)/\v, which satisfy the commutation relations
@j, H(j)# 5 ip̂j and @H(j), p̂j# 5 ij. In the third com-
mutator there is a striking difference: While @j, p̂j#
5 i in the continuous case, Eq. (6.1) holds in the finite
case instead. This variant commutator indicates that we
have a deformation of the original Heisenberg–Weyl alge-
bra to the Lie algebra of rotations. From Eqs. (5.5) and
(6.4) we see that these discrete, finite-momentum eigen-
functions are also given by Kravchuk polynomials. The
function that is the finite Fourier–Kravchuk transform of
a position eigenfunction at j j will be a momentum eigen-
function of the same eigenvalue pj 5 xj , and, sensed at
the points $xk%, it will have values ;kjk

( pj).
Rotations around the 1 axis by an angle u, generated by

the position operator J1 5 s • , may have an interesting
physical realization. Their effect on the waveform
samples f (sj), j 5 0, 1, ..., N is to multiply them by a
phase exp(i ju), as if a wedge of higher refractive index
were placed in the waveguide.
When the number of sensor points N 1 1 is odd, the

values transform as components of integer-spin irreduc-
ible representations: Four applications of F̂ return the
data to their original values. When N 1 1 is even, how-
ever, four applications will change the sign of all fj ’s, and
only the eighth power will bring the one-dimensional frac-
tional finite Fourier–Kravchuk transform back to unity.
The role of SU(2) as double cover of SO(3) thus echoes the
double cover of metaplectic group Mp(2, R) over the linear
symplectic group Sp(2, R) in ordinary paraxial Fourier
optics.

7. FOURIER–KRAVCHUK VERSUS
FOURIER EXPONENTIAL TRANSFORMS
The fractionalization of an idempotent operator is a
rather straightforward mathematical problem that we il-
lustrate with the common finite exponential Fourier

Fig. 3. The Fourier transform is a rotation by 1
2p generated by

the oscillator Hamiltonian. It transforms the position operator j
into the momentum operator p̂j 5 2i]j in the quantum me-
chanical case (plane, top); both operators have spectrum R, and
each generates (noncommuting) translations of phase space in
L 2(R). The finite Fourier–Kravchuk transform similarly ro-
tates the position s onto the momentum Ps

(N) operators, whose
spectrum is finite and equally spaced. The latter two close with
the Hamiltonian into the Lie algebra of the rotation group.
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transform (see, for example, Ref. 17). This transform is
defined through the unitary M 3 M matrix E 5 iEj, ki of
elements

Ej,k 5
1

AM
exp~22pijk/M !. (7.1)

This matrix is a fourth root of the M 3 M unit matrix:
E4 5 1. Therefore functions f (E) can be produced in the
space spanned by the matrices 1, E, E2, and E3 5 E21.
When M → `, this finite Fourier–exponential transform
becomes, after appropriate rescaling of the row and col-
umn indices and taking limits for Hilbert spaces in the
weak sense, the Fourier integral transform (4.1).
For real a, the property (5.4) of fractional Fourier

transforms yields the following solution:

Ea 5
1
4 (

j51

4

exp@5ip~a 2 j !/4#
sin p~a 2 j !
sin p~a 2 j !/4

E j.

(7.2)

Indeed, we can even find its logarithm: The Fourier ma-
trix generator is a finite Hamiltonian matrix H,

E 5 exp~ipH/2!,

H 5
5
2
1 1

1
2

~1 1 i !E 1
1
2
E2 1

1
2

~1 2 i !E3.

(7.3)

The finite Fourier exponential transform (7.1) is (one of
a manifold of 18) matrices that diagonalize the M 3 M
second-difference matrix D of elements D j, k 5 d j, k11
2 2d j, k 1 d j, k21 ( j and k counted modulo M). The
complex form of the matrix diagonalizes also the left- and
right-cyclic shift matrices and thus any circulating ma-
trix. This is widely used in finite signal analysis because
the M eigenfunctions of D are the normal modes wk( j)
5 Ej, k , k 5 1, 2, ..., M of a finite Brillouin lattice, i.e., a
collar of equal masses and springs. Time evolution of
such a system is generated by the Hamiltonian 1/2D de-
scribing a medium that is invariant—homogeneous—
under dihedral transformations (finite translations and
inversions). There is no reason to expect prima facie that
the normal modes of a finite homogeneous medium will
approximate the modes of a waveguide properly. In a
waveguide, lower modes are concentrated around the cen-
ter of the guide; in contrast, the Brillouin modes have the
same evolvement everywhere (they are thus very useful
for time-series analysis of signals), so we can expect
them to be poor approximations of stable modes in
waveguides. Finally, note that the spectrum of D is lk
5 24 sin2(pk/M), k 5 1, 2, ..., M (Ref. 8), and it is not
equally spaced. This precludes placing D as generator in
a (n undeformed) Lie algebra.
Difference equations are known to have a richer solu-

tion structure than differential equations. When the lat-
ter are N → ` limits of the former, solution classes may
coalesce. This occurs with the fractional Fourier–
Kravchuk and Fourier exponential transforms, both of
which yield the Fourier integral transform. If the physi-
cal model is a waveguide, the fractional Fourier–
Kravchuk transform that we introduced represents the
optical medium better. One decisively important prop-
erty of the Fourier exponential transform is the existence
of the fast-Fourier-transform algorithm, discovered by
Cooley and Tukey.19 We are confident that a fast-
Kravchuk-transform algorithm exists.

APPENDIX A: PROPERTIES OF KRAVCHUK
FUNCTIONS
For N 5 1, 2, ..., the N 1 1 symmetric Kravchuk poly-
nomials $kn(j, N)%n50

N are an orthogonal set with respect
to the binomial distribution over the first N 1 1 nonne-
gative integers,4,5 i.e.,

(
j50

N

%~ j !km~ j, N !kn~ j, N ! 5 dn
2dm, n , (A1a)

where, for continuous j, the weight function is

%~j! 5
1

2N
SNj D 5

N!

2NG~j 1 1 !G~N 2 j 1 1 !
,

(A1b)

and these polynomials have normalization constants

dn
2 5

1

22n
SNn D 5

N!

22nn!~N 2 n !!
. (A1c)

These polynomials satisfy the three-term recurrence
relation

@j 2 n 2
1
2 ~N 2 2n !#kn~j, N !

5 ~n 1 1 !kn11~j, N ! 1
1
4 ~N 2 n 1 1 !kn21~j, N !

(A2)
and are simply related to the Gauss hypergeometric func-
tion by

kn~j, N ! 5
~21 !n

2n SNn DFS 2n, 2j
2N ;2 D . (A3)

From Eq. (A3) it is evident that kn(j, N) is indeed a poly-
nomial of degree n in j and that the index n and the in-
teger argument j can be exchanged, so that

~21 !n

2n SNn Dkn~j, N ! 5
~21 !j

2j SNj Dkj~n, N !. (A4)

The Kravchuk polynomials and the binomial weight
function have the appropriate limits,

lim
N→`

~
1
2N !2n/2kn~

1
2N 1 A 1

2Nj, N ! 5
1

2nn!
Hn~j!, (A5a)

lim
N→`

A1
2N%~

1
2N 1 A 1

2Nj! 5
1

Ap
exp~2j2!,

(A5b)

to the Hermite polynomials and the Gaussian weight
function, respectively.
Kravchuk functions $fm(j j)%m50

N are defined as an or-
thonormal set

(
j50

N

fm~j j , N !fn~j j , N ! 5 dm,n , (A6)

with respect to the unit distribution over the symmetric
set of N 1 1 integers or half-integers j j .

11 The Krav-
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chuk functions are obtained from the Kravchuk polynomi-
als by multiplying the polynomials by the square root of
the weight function and of the normalization constant [cf.
Eq. (3.1)] and translating the argument

fn~j, N ! 5 dn
21kn~

1
2N 1 j, N !A%~

1
2N 1 j!,

0 < n < N, 2
1
2N < j < 1

2N. (A7)

Notice carefully the domain of the Kravchuk functions.
Although Eq. (A6) sums only over the N 1 1 discrete
points j j between 2

1
2N and 1

2N, the functions fn(j, N)

are well defined in the slightly larger interval,

21 2
1
2N < j < 1

2N 1 1, (A8)

and are zero at these end points. Finally, note that in
the limit N → `, the Kravchuk functions coincide with
the harmonic oscillator functions (2.1),

lim
N→`

~
1
2N !1/4fn~A1

2Nj, N! 5 cn~j!. (A9)

Kravchuk functions obey the following difference equa-
tion in the variable j, in consequence of Eqs. (A2)–(A4):

~
1
2N 2 n !fn~j, N ! 5

1
2 @a~j!fn~j 2 1, N !

1 a~j 1 1 !fn~j 1 1, N !#,

(A10a)

where

a~j! 5 @~
1
2N 1 j!~

1
2N 2 j 1 1 !#1/2. (A10b)

This can be written in the form of an eigenvalue equation:

$2
1
2 @a~j!exp~2]j! 1 a~j 1 1 !exp~]j!#

1
1
2 ~N 1 1 !%fn~j, N ! 5 ~n 1

1
2 !fn~j, N !, (A11)

with the finite-shift operators exp(a]j)f (j) 5 f (j 1 a). In
Section 3 the term in brackets is interpreted as the finite
quantum harmonic oscillator Hamiltonian H(N)(j).
The computation of numerical values of the Kravchuk

functions for the figures in this paper was done in MATH-

EMATICA. We found it convenient to calculate separately
the factors of Eq. (3.2): the square root of gamma func-
tions from that package, multiplied by the tabulated val-
ues of the symmetric Kravchuk polynomial. The sym-
metric Kravchuk polynomials k̃n(j, N) 5 kn(j
1 1/2N, N) were generated with the three-term recur-
rence relation

~n 1 1 !k̃n 1 1~j, N !

5 jk̃n~j, N ! 2
1
4 ~N 2 n 1 1 !k̃n 2 1~j, N !. (A12)
The first eleven polynomials are the following:

k̃0~j, N ! 5 1, k̃1~j, N ! 5 j,

k̃2~j, N ! 5
1
2 @j2 2

1
4N#,

k̃3~j, N ! 5
1
3! @j3 2

1
4 ~3N 2 2 !j#,

k̃4~j,N ! 5
1
4! @j4 2

1
2 ~3N 2 4 !j2 1

3
16N~N 2 2 !#,

k̃5~j, N ! 5
1
5! @j5 2

5
2 ~N 2 2 !j3 1

1
16 ~15N2 2 50N

1 24!j#,

k̃6~j, N ! 5
1
6! @j6 2

5
4 ~3N 2 8 !j4 1

1
16 ~45N2 2 210N

1 184!j2 2
15
64N~N2 2 6N 1 8 !#,

k̃7~j, N ! 5
1
7! @j7 2

7
4 ~3N 2 10!j5 1

7
16 ~15N2 2 90N

1 112!j3 2
3
64 ~35N3 2 280N2 1 588N

2 240!j#,

k̃8~j, N ! 5
1
8! @j8 2 7~N 2 4 !j6 1

7
8 ~15N2 2 110N

1 176!j4 2
1
16 ~105N3 2 1050N2 1 2968N

2 2112!j2 1
105
256N~N3 2 12N2 1 44N

2 48!#,

k̃9~j, N ! 5
1
9! @j9 2 3~3N 2 14!j7 1

21
8 ~9N2 2 78N

1 152!j5 2
1
16 ~315N3 2 3780N2

1 13356N 2 13088!j3 1
9

256 ~105N4

2 1540N3 1 7308N2 2 12176N

1 4480!j#,

k̃10~j, N ! 5
1
10! @j10 2

15
4 ~3N 2 16!j8 1

21
8 ~15N2

2 150N 1 344!j6 2
5
32 ~315N3 2 4410N2

1 18648N 2 22976!j4 1
9

256 ~525N4

2 9100N3 1 52780N2 2 115600N

1 72064!j2 2
945
1024N~N4 2 20N3

1 140N2 2 400N 1 384!#.
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tónoma de México–Cuernavaca, with Cátedra
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México.

†On sabatical leave at Centro Internacional de Cien-
cias, Cuernavaca, México.
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d’Hermite,’’ C. R. Acad. Sci. Paris 189, 620–622 (1929).
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