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Abstract 

We analyze the difference between classical dynamics (geometric optics) and quantum dynamics (wave optics) by 
calculating the time history of the Wigner function for the simplest nonlinear Hamiltonians which are fourth-degree 
polynomials in p and q. It is shown that the moments of the Wigner function carty important information about the state 
of a system and can be used to distinguish between quasiclassical and quantum evolution. 

1. Introduction 

The standard formulation of quantum mechanics 

in either the Schrodinger or the Heisenberg pictures 
may create the impression that quantum and classi- 
cal dynamics are completely different. However, there 
are representations [ 1] in which quantum dynamics 

seems to resemble classical statistical mechanics, and 
where the state of a quantum system may be repre- 

sented by the quasiprobability distribution in the phase 
space of the corresponding classical system. Of course, 
there are at least two important differences. Firstly, 

quasiprobability distributions may take negative val- 

ues (unlike the true probability distributions). Sec- 

ondly, the classical distribution can be localized at a 
point in phase space, whereas the quantum distribu- 
tion must always be spread in a finite phase volume, 
in agreement with uncertainty relations. Let us take 
an initial distribution which is consistent with the un- 

certainty relations and describes a real quantum par- 
ticle. Then, what is the difference between classical 
and quantum dynamics in phase space? 

The classical dynamical law is very simple. Every 

element of the phase space moves along the classical 

trajectory while preserving its volume. If at time t = 0 
the probability to find a particle in a unit volume at 

the point qo,po was WCl(qo,po), then at time t the 
probability distribution is 

Wcl(4,P;t) = WC1 (qo(q~P~t)~Po(4,P,~)) 7 (1) 

where q(t) ,p( t) is the classical trajectory passing 
through the point qo,po at time t = 0. How much 
can this image help us to understand quantum dynam- 
ics? This question is important also for optical appli- 

cations, since the optical Helmholtz equation in the 

paraxial approximation is reduced to the Schrodinger 

one. Then the distance along the optical axis plays 
the role of the time t in mechanics. For simplicity, we 
consider here the two-dimensional case and denote a 
coordinate perpendicular to the optical axis by q. Then 
the canonically conjugate momentum p describes the 
direction of the ray at the point q, t. The classical limit 
corresponds to geometric optics. 
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2. Linear transformations 

Linear homogeneous canonical transformations 
[ 21 are generated by Hamiltonians which are second- 

degree polynomials in p and 9. They lead to linear 
equations of motion which are identical in classi- 
cal and quantum mechanics. Therefore the solutions 

to the quantum equations (the Heisenberg opera- 
tors) have a form similar to the classical trajectories 

I’( t), y(t). In optics, linear transformations describe 
Gaussian systems. 

Among the various quasiprobability distributions, 
there is only one for which the linear quantum evolu- 

tion law coincides with the classical one in Eq. (1 ) 
[ 3 1, This is the Wigner function, 

fcX 

w(9.f’; f) = 2 
.I’ 

dre”“‘ly*(q+r;t)~(q-r;t). 

-X 

(2) 

Here, the wave function q( 9; t) is a solution of the 

Schrodinger equation in the coordinate representation. 
WC shall refer to the classical probability dis- 

tribution ( I ) evolving from the initial conditions 
W( po,qo: t = 0) as the “classical Wigner function”. 

Therefore, the classical and quantum Wigner functions 
evolve identically in linear dynamics. The Wigner 

function provides the closest possible description of 

quantum and classical dynamics. 

3. Nonlinear dynamics 

We consider here two examples of nonlineardynam- 
its generated by the simplest nonlinear Hamiltonians 

which are the fourth-degree polynomials in p and 9. 
Such operators describe in wave optics the third-order 

approximation to the paraxial regime; i.e., they lead to 
the aberrations of images in optical devices [4]. In the 
nonlinear case, the classical solution does not deter- 
mine the quantum dynamics, since higher moments of 
p and 9 enter into the Heisenberg equations of motion. 

The mean values of these products (e.g., ({p9}(t))) 
become additional variables which are absent in the 

classical case. 
We start with the Hamiltonian 

H = p', 

which corresponds in wave optics to the first correction 
to paraxial free propagation (spherical aberration ) ; it 
also describes the first relativistic correction to the 
Schrodinger equation. 

We show in Fig. 1 the classical and quantum evo- 

lution of the Wigner function for the Hamiltonian p’ 
when the initial state is a vacuum coherent state (a 

Gaussian centered at the origin of the phase plane). 
After pJ evolution, the resulting state is no longer 
a Gaussian, but is represented by a hill that rapidly 
spreads in 9. The difference between the classical (Fig. 
Ic) and quantum (Figs. la, lb) cases lies in the os- 
cillations of the Wigner function which appear in the 

latter. They are seen in the level plots as small islands 
forming in the concave part of the main hill; their area 

is considerably smaller than the area of the vacuum 

state. The presence of these “quantum oscillations” in 
phase space clearly indicates the quantum character 
of the evolution (in a comparison with the quasiclas- 

sical evolution discussed in Section 2). The stronger 
the oscillations, the “more quantum” state we have. 
These oscillations are absent for generalized coher- 
ent Wigner functions described by a Gaussian (which, 

therefore. are quasiclassical states). 
However, it is inconvenient to plot many graphs of 

the Wigner function for different time instants, to con- 

clude how nonclassical (or how quasiclassical) the 
evolution is. We would like to have a numeric pa- 
rameter which would allow us to distinguish between 

classical and quantum dynamics. There are, at least, 
two candidates to play this role. Firstly, it is the left- 

hand side of the Schrodinger-Robertson uncertainty 

relation [ 51, 

where 9 and p are the mean values of the coordi- 

nate and momentum; cqq = (Aq)’ and Us,,, = (Ap)’ 
are the variances; oq,, = (9~ + p9)/2 - 9p describes 

correlations between coordinate and momentum fluc- 
tuations. Here the brackets ( ) denote the average 

over a given quantum state. The equality in Eq. (3) 
holds for pure Gaussian states. Dodonov and Man’ko 
noticed that 6 in Eq. (3) is invariant under linear 
canonical transformations both in quantum and classi- 
cal mechanics [ 61. For nonclassical states 6 describes 
the growth of quantum fluctuations. Under nonlinear 
transformations, however, S is not an invariant even 
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Fig. 1. Evolution of the quantum and classical Wigner functions for the Hamiltonian p4. (a) Three-dimensional plots of the quantum 
Wigner functions for times r = 0.5 and I = 2.0; (b) level plots of the same quantum Wigner functions; (c) level plots of the classical 

Wigner functions for the same time instants. 

in classical mechanics. The Dodonov-Man’ko param- 
eter 6 can thus be used to characterize the degree of 
nonlinearity of the system, rather than the degree of 
nonclassical behavior of the system, as was noted in 

Ref. [ 7 J. This parameter is in fact very useful to de- 
scribe the short time nonlinear behavior even if it does 
not feel global effects, such as SchrGdinger cat states, 
which appear for longer times. 
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The difficulty in describing quantum fluctuations 

for Schradinger cat states can be overcome by taking 
advantage of the entropy as a measure of the fluctu- 
ations. Since we have no true distribution in phase 

space, Wehrl [ 81 proposed to calculate the entropy 

using the nonnegative Q-function Q< 9, p), 

SQ = -- s dpdq 
QlogQT, 

instead of a real distribution. The Wehrl entropy car- 
ries more precise information about the phase vol- 

ume occupied by the quantum state and is especially 

convenient for the description of the Schrijdinger cat 

states [9]. Unfortunately, S, is not invariant under 
the squeezing transformation. The reason is that the 
Q-function behaves nonclassically under squeezing 

transformation, generated by the quadratic generator 

pq + qp C see, e.g., Ref. [ 101) . 
We would have an appropriate measure of the quan- 

tum nature of the state if we could calculate the en- 
tropy using the Wigner function as a probability dis- 
tribution. Unfortunately, this is impossible, since the 

Wigner function can have negative values. (Moreover, 

these negative values are known to be an important 

manifestation of the nonclassicality of the state.) How- 

ever, we note that the moments of the Wigner function, 

k= 1,2,..., (5) 

have the desired properties. The classical counterparts 
of these moments are invariant under any canonical 

transformation, as follows directly from the phase vol- 

ume conservation. In quantum dynamics, these mo- 
ments are preserved by any linear canonical transfor- 

mation but are changed by nonlinear transformations. 
For all the quasiclassical states described by Gauss- 
ian wave functions, these moments (in our normal- 

ization) are equal to unity. The difference from unity 
may serve as a measure for the nonclassical nature of 
the state. On the other hand, the change in these mo- 
ments in the course of nonlinear evolution reflects an 
extra growth of the quantum fluctuations in compari- 
son with the corresponding classical dynamics; it also 
provides information about how closely the process 
can be described by the quasiclassical approximation. 

go.5 
_ 1 

Fig. 2. Time evolution of the moments of the quantum Wiper 

function for the Hamiltonian p4. 

We show in Fig. 2 the time evolution of the moments 
of the Wigner function under the Hamiltonian p4. It is 
clear that the normalization condition always implies 

II = 1. Furthermore, 12 = 1 for any pure state. (For 
mixed states described by the density matrix p, the 
second moment is equal to the purity of the state, 
Z2 = tr(p*) [ I] .) 12 is shown in Fig. 2 to test the 
quality of our numerical calculations. The decrease 

of the moments Ik for k 2 3 reveals the difference 

between classical and quantum dynamics. We note that 

the behavior of the moments for the Hamiltonian p4 

is quite flat. This indicates that quasiclassical states 
remain a good approximation for quantum states. 

4. Kerr medium 

A successful model of active optical media in 
which self-interaction of the field takes place is the 
Kerr medium. Its Hamiltonian is a harmonic oscil- 

lator which describes a single quantized mode of an 
electromagnetic field with frequency w, plus a self- 
interaction term with a coupling constant x [ I I- 131. 

In quantum electrodynamics, the Hamiltonian is usu- 
ally written in terms of the photon number operator 
iz = u+u = p2/2w + wq2/2 as 

H=wA-t,#, (6) 

where h, = 1. It is clear that the harmonic oscillator 
Hamiltonian and the total Kerr Hamiltonian have com- 
mon eigenvectors. The photon number is conserved, 
but there is a nontrivial evolution of the phase of the 

field. 
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Fig. 3. Evolution of the quantum Wiper function for the Kerr medium with an initial coherent state described by a Poisson distribution 

with 17 = 30. We see Schriidinger cats for times I = 7r/3 and t = v/2. 
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The time evolution of the Wigner function under 

the Kerr Hamiltonian (6) is shown in Fig. 3. The 
corresponding evolution of the moments is shown in 

Fig. 4. In these figures we choose x = 1. The first term 
in the Kerr Hamiltonian leads to a “fast” rotation of 
the graphs with angular frequency w; we work in the 
interaction picture, which subtracts this rotation. 

The initial Gaussian Wigner function is shown in 

Fig. 3a. For a small time t = 0.02, the Gaussian is 

stretched and rotated in the phase plane as shown in 
Fig. 3b; the moments - shown in Fig. 4 - are still N 1, 

so the state is still close to the semiclassical one. It is 
now squeezed in a definite direction in phase plane. 

This squeezing can clearly be seen in Fig. 3b. Note that 

in the graphs of the Q-function it is more difficult to 
visually notice squeezing, since the hills are “fatter”. 
The Q-function overestimates the fluctuations in the 
squeezed states. Evolution by free propagation in a 

linear medium rotates the phase plane of the field by 

the bare harmonic oscillator Hamiltonian. One can use 
this additional rotation to achieve the best squeezing 

in the field coordinate or momentum [ 121. 
As time advances - see Fig. 3c - it becomes clear 

that the hill is stretched along a circle (not along a 
straight line). As the phase spreads, the hill forms a 

crescent. The deformation of the top of the hill is still 

quasiclassical. However, the shape of the hill is al- 
ready sufficiently bent for the “quantum oscillations” 
to appear. When the moments Ik are still of the order 
I in Fig. 4. these oscillations are weak and their con- 

tribution to the state volume is still small. The area 

of the hill increases slowly while the spread in phase 
grows faster, so we may expect an amplitude squeez- 
ing. This squeezing occurs slightly away from the ra- 

dial direction, but it can be transformed into a radial 
(amplitude) squeezing if we shift the origin of the 

phase plane, so as to put it at the center of curvature of 

the crescent. Physically, this can be realized by plac- 
ing the nonlinear Kerr medium inside of one arm of 
a Mach-Zehnder interferometer, as was proposed by 
Kitagawa and Yamamoto [ 111. Strong squeezing in 
the photon number fluctuations can be achieved in this 
way. The Kerr amplitude squeezing can be further en- 
hanced by taking as initial state an already squeezed 
state [ 14 1. Note finally that the quantum oscillations 
are not visible in the graphs of the Q-function used in 

Ref. [ I 1 1. 
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Fig. 4. Time evolution of the moments of the quantum Wigner 

functions for the Kerr Hamiltonian. (a) Even moments Is (dotted 

line), 1~ and le. (b) Odd moments /I (dotted line). 13 and Is. 

Dashed vertical lines correspond to time instants ~/6. n/S. r/4. 

5-13, 27~1.5, p/2 and 3~~15, when SchCdinger cats appear. 

As time evolves further, Fig. 3d, the phase spread 
reaches 277 and the “quantum oscillations” become 

really strong. It also becomes clear that the rea- 
son for these oscillations is the self-interference in 

the phase space. One can say that different parts of 

the quasiprobability distribution create interference 
fringes when meeting each other. At some time in- 
stants the self-interference leads to standing waves 
along the circle. These waves are formed in the Kerr 
medium at times xt = in/m, where 1,m are integer 
numbers, 1 < m ci &. These are just the Schrodinger 
cats [ 151; see Figs. 3e, 3f. 

Most of the information contained in the Wigner 

function plots can be restored from the graphs of the 
moments 13-h. Fig. 4. The time instants when we can 
expect squeezing or amplitude squeezing belong to 
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the initial peak, when the moments are still close to 
unity. When the Wigner function shows complicated 

interference fringes, moments are kept in their lowest 
steady values. The “Schriidinger cat” times correspond 

to the well pronounced peaks of the moments. One can 
easily estimate the maximum values of the moments in 
these peaks for small numbers of the cat components. 

5. Conclusions 

The well-known difference between classical and 
quantum dynamics is connected with the phenomenon 

of self-interference in phase space for a quasi-periodic 
motion, which leads to the SchrSdinger cat states 

[ 13,151. It is a “global phenomenon” since the 
quantum state spreads over the whole phase volume 
allowed by the conservation laws. It reveals itself 

usually at times longer than the fundamental period 
of the oscillation of the system. 

We have shown here that quantum nonlinear dy- 

namics also differs from its classical counterpart for 
short times, when the state is still well localized in 
phase space. The higher moments of the Wigner func- 

tion can be used as numerical measure of this differ- 

ence, since the moments change in the quantum case 
but are constants in the classical picture. 
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