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Abstract. The projection of optical images on warped screens is a canonical transformation of
phase space between flat and warped evolution-parameter surfaces. In mechanics, the evolution
parameter is time; in geometric optics it is the optical axis of coordinate space. We consider the
specific problem of bringing to focus an axis-symmetric aberrating optical system by warping
the output screen. The solution for the surface curvature coefficients is given in terms of the
Lie aberration coefficients of the system; a linear optimization strategy applies.

1. Introduction

The dynamical evolution of a Hamiltonian system is a canonical transformation of its phase
space generated by its Hamiltonian function. The evolution parameter in classical mechanics
is normally timet , while in geometrical optics its counterpart is the coordinate along the
optical z-axis. The ‘final’ phase space is a deformed image of the ‘initial’ phase space,
where volume is preserved as in the flow of an incompressible fluid, and the Poisson
bracket structure conserved. The evolution of the initial phase-space points can be pictured
by snapshots for every time instantti 6 t 6 tf in classical mechanics. In geometric optics,
‘final’ and ‘initial’ refer to ideal plane screens placed perpendicular to the opticalz-axis, and
zi 6 z 6 zf , where position and momentum (local index of refraction times ray direction)
can be measured at any planez [1].

Symplectic geometry has been recognized as a very appropriate language to describe
both mechanics and optics [2]. Geometrical and wave optics, the latter particularly in the
paraxial regime, have been addressed through symplectic techniques because they allow
for coherency and other fundamental properties of light in a very natural way, as in the
programs of Mukunda, Simon and Sudarshan (see [3]). In classical mechanics, the prevailing
paradigm of Newtonian time has discouraged applied studies of canonical transformations to
non-flat space-time surfaces. Geometrical optics on the other hand, fundamentally considers
transformations due to non-flat surfaces of discontinuity between two different optical media,
and the projection of images on screens that may be warped. In section 2 we show that
the root transformation [4] is the canonical map between rays from a reference to a warped
screen. Two root transformations, composed to and from a warped mirror or interface,
compose to the reflection and refraction maps of optical rays in phase space.

We apply the root map to examine the general problem of minimizing the focusing error
of an optical apparatus by warping the output screen. To this end we use Lie theoretical
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methods, fully analytic in all the parameters of the system. In section 3 we recall the linear
(paraxial) and Lie aberration coefficients of such systems in the metaxial régime. To third-
order aberration, we confirm in section 4 the known result that only third-order curvature
of field can be corrected on a paraboloidal screen [5].

Section 5 distinguishes non-correctable aberrations from the three controllable ones at
each aberration order, and the two (distortion andp-unfocus or pocus) which are immaterial
to image formation, in fifth and higher orders. The induced selection rules were verified
to hold to ninth-order aberration. The generic and optimized solutions to problems of
image correction can thus be handled by symbolic computer programs [6]. In section 6 we
highlight the pattern of selection rules that arise in warping the screen in the context of the
geometric optical realization of canonical maps.

2. Optical phase space and root transformation

The phase space of geometric optics is the manifold of directed lines (rays) in three-
dimensional optical space. It is a four-dimensional symplectic manifold conveniently (but
not globally) parametrized by a 2-vector ofpositionq ∈ <2 (the intersection of the line with
thestandard screenS0: thez = 0 plane), and a canonically conjugate 2-vector ofmomentum
p [1]. When the optical medium is homogeneous, the lines are straight. Momentum is the
projection onS0 of a 3-vector along the ray, whose length is the local refractive indexn;
if θ is the angle between the ray and the optical axis,|p| = n| sinθ | 6 n. (There are
actually two disks|p| 6 n distinguished by a signσ indicating that the ray heads in the
±z-direction.) However, in themetaxial régime, and for the purpose of aberration (Taylor)
expansions, one considersp ∈ <2, as in two-dimensional mechanics (and only the chart
σ = + of ‘forward’ rays). Evolution thus occurs in the+z-direction, corresponding to time
in mechanics. In figure 1 we show the deformation of a phase-space patch due to free flight
in two-dimensional optical space; it is easier to plot since phase space is<2.

Consider now a surfaceSζ given byz = ζ(q) in three-dimensional optical space(q, z).
One must assumeζ is at least twice differentiable and single-valued [4]; in this paper we
work with polynomial revolution surfaces, the primary purpose being algorithmic. The ray
(p, q) ∈ <4 will intersect Sζ , as shown in the two-dimensional figure 2, at the pointq̄,
namely

Rn;ζ ; q 7→ q̄(p, q) = q + ζ(q̄)p/
√
n2− p2. (2.1a)

This is only half of the phase-space transformation. The optical momentump̄, canonically

Figure 1. Optical phase space parametrizes rays by theirposition q and momentump, with
respect to the opticalz-axis and at the standard screen. Free flight is described by a flat screen
advancing in the direction of the optical axis; it deforms phase space preserving its volume
elements.
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Figure 2. The root transformation maps the optical phase space of rays at the standard screen
onto a phase space on the surfaceSζ given byz = ζ(q). The point of impact of the ray(p, q)
on Sζ is q̄. The canonically conjugate map yields momentump̄ (not shown) on the warped
surfaceSζ .

conjugated to the intersection pointq̄ on the surfaceSζ , can be found from geometric
considerations [4]. The result is

Rn;ζ : p 7→ p̄(p, q) = p+∇ζ(q̄)
√
n2− p2 (2.1b)

where∇ζ(q̄) is the normal toSζ at the point of intersection. Together, equations (2.1)
defineRn;ζ as theroot transformationof the chart of phase space that contains the ray of
interest, due to the surfaceSζ in the mediumn. The boundary of the chart is the set of rays
tangent to the surface at any point. Again, since our approach here is that of aberration
expansions, we do not treat the global properties of the transformation in this paper.

The root transformation is the factor to reflection and refraction; this was its first
interpretation. Indeed, reflection by the surfaceSζ isRn;ζR−1

n;−ζ . (Changing the sign of the
z-component ofEp is equivalent to changing the sign ofζ , or the sign of the square roots in
(2.1).) Refraction between median andn′ separated by the same surfaceSζ is Rn;ζR−1

n′;ζ .
For flat ζ(q) = ζ0, Rn;ζ0 is free flight by a distanceζ0, i.e. p̄ = p, q̄ = q + ζ0 tanθ (see
figure 1). An important property is that free flight between planes can be factored to the
left of the root transformation, because forζ(q) = ζ0 + ζ1(q), Rn;ζ = Rn;ζ0Rn;ζ1. It is
important to note that in equation (2.1b), |∇ζ | is unconstrained, and therefore|p̄| is not
bound byn or any number; hence(p̄, q̄) is not optical phase space. Nevertheless, because
we shall work in the metaxial régime, where polynomial expansions are of interest in the
local neighbourhood around the chosen optical axis, here we can gloss over the important
issues of the global domain and range of the root transformation.

From the computational point of view, the root transformation (2.1a) provides an implicit
equation of partially reduced form̄q = q+F(p, q, q̄) to find the impact point̄q(p, q); this
is amenable to algorithmic recursion and solution by aberration series. Onceq̄ is known,
the solutionp̄(p, q) of (2.1b) is explicit. If the surfaceSζ is tangent to the screenS0 and
is of revolution, with the polynomial expansion

z = ζ(q2) = ζ2q
2+ ζ4(q

2)2+ ζ6(q
2)3+ ζ8(q

2)4+ · · · (2.2)

then, to third-order aberration (i.e. keeping terms of degree up to three in the phase-space
variables), the root map in vector/matrix form is

Rn;ζ :

(
p
q

)
7→
(
p̄(p, q)
q(p, q)

)
=
(

1 2nζ2

0 1

)(
p
q

)
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+
(

2ζ 2
2q

2p− ζ2
1
n
p2q + 4nζ4q

2q

ζ2
1
n
q2p

)
+O5(p, q). (2.3)

The root transformation (2.1) is canonical. This can be proven directly for the aberration
series approximants: for (2.3) the Poisson brackets are{q̄(p, q), p̄(p, q)} = 1+ O5(p, q).
The straightforward proof for the closed forms (2.1) is surprisingly difficult because of the
implicit equation forq̄. In [4, appendix A] we used differential-form techniques to prove
that the two-form is preserved: dp dq = dp̄ dq̄ (cf Arnold [2], p 239). A constructive proof
due to Delgado [7] writes (2.1) as

q = ∂Dn;ζ (q̄,p)
∂p

p̄ = ∂Dn;ζ (q̄,p)
∂q̄

. (2.4)

The Hamiltonian characteristic functionDn;ζ (q̄,p) which generates this (therefore
canonical) transformation [8] is obtained from the identity characteristic function in three
dimensions,I (Ēq, Ep) = Ēq Ep = q̄ · p + q̄zpz, constrained to the optical momentum sphere
| Ep|2 = p2

z + |p|2 = n2, and to the surfacēqz = ζ(q). This is

Dn;ζ (q̄,p) = q̄ · p+ ζ(q̄)
√
n2− |p|2. (2.5)

Placed in (2.4), this reproduces (2.1).
It follows thus that both reflection and refraction are canonical transformations: the

presence of a surfaceSζ provides a map between two phase spaces, unprimed or ‘initial’
(p, q), and primed or ‘final’(p′, q′), such that

Rn;ζ
(
p
q

)
=
(
p̄
q̄

)
= Rn′;ζ

(
p′

q′

)
. (2.6)

The laws of refraction are contained in the statement that(p̄, q̄) are conserved. The
position q̄ is the point of intersection: the initial and final rays meet atSζ . Its canonically
conjugate momentum̄p at the point of impact, in cross product with the surface normal
∇ζ leads to the law of sines and coplanarity of refraction [4, 7]. For reflection we set
(n′, ζ ) 7→ (n,−ζ ) ∼ (−n, ζ ).

We take this opportunity to stress that the root transformation and its composition to
reflection and refraction have not been as exhaustively studied as their purported importance,
both physical and mathematical, would require. In particular, it would be desirable to
understand fully its global aspects and caustic problems which do not appear in the present
aberration–expansion treatment.

3. Imaging and aberrating systems

We pose the concrete problem of this article in the following way: assume an optical
instrument with axial and reflection symmetry is built to focus in first order,q′ =
µq+O3(p, q), µ 6= 0, with third- and higher-order aberrations; can we correct the focusing
ability of the instrument by warping the screen? To articulate the answer, we recall the
definitions of the paraxial and Lie aberration parts of a general (optical) system.

An imaging systemA is a canonical map of phase space written in the generic form

A = G{A,M} = G{A, 1}G{0,M} whereM =
(
µ λ

0 µ−1

)
(3.1)

is theparaxial part of the transformation, whose action on phase space is linear,

G{0,M}
(
p
q

)
= M−1

(
p
q

)
=
(
µ−1 −λ

0 µ

)(
p
q

)
=
(
µ−1p− λq

µq

)
=
(
p′(p, q)
q′(q)

)
(3.2)
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and A labels theaberration part. The unit system isG{0, 1} and the composition rule
between two systems holds asG{A,M}G{B,N} = G{A]D(M)B,MN}, with ] a Baker–
Campbell–Hausdorff-type product andD(M) a representation of the 2× 2 matrix M [9].
(The specific formulae are not needed here.) The aberration part is further factorized into
a product of Lie–Poisson exponential operators corresponding to aberrations of increasing
order [9, 10]

G{A, 1} = · · · × exp{A4, ◦} exp{A3◦} exp{A2, ◦} (3.3a)

exp{Ak, ◦} = 1+ {Ak, ◦} + 1

2!
{Ak, {Ak, ◦}} + · · · (3.3b)

{Ak, ◦} = ∂Ak(p, q)

∂q
· ∂
∂p
− ∂Ak(p, q)

∂p
· ∂
∂q

(3.3c)

where{f, ◦}g(p, q) = {f, g}(p, q) is the Poisson Lie operator and bracket, andAk(p, q) are
aberration polynomialsof homogeneous degree 2k in the phase-space coordinates(pi, qj ).
We call k > 2 the rank of the aberration.

The aberration polynomials of axis-symmetric systems can only contain the axis-
symmetric coordinates of phase space: the three quadratic variablesp2 = ∑i p

2
i ,p · q =∑

i piqi , andq2 =∑i q
2
i . Their generic form is

Ak(p
2,p · q, q2) =

∑
k++k0+k−=k

Ak+,k0,k−(p
2)k+(p · q)k0(q2)k− (3.4)

where{Ak+,k0,k−}k++k0+k−=k are the1
2(k + 1)(k + 2) aberration coefficientsof that rank in

the monomial basisthat we label by the triplet(k+, k0, k−). Below, we represent them by
points in a hexagonal array in a triangle. (Thesymplecticbasis, which is block diagonal with
respect to the action of the paraxial Sp(2,<) group, is preferred for symbolic computation
because composition is faster [6, 11].)

If the aberration partA is not zero—as it generally is not in actual optical devices—the
system will produce images on the flat screen that are not independent of the object ray
momentump but, from (3.2),

A
(
p
q

)
= G{A, 1}G{0,M}

(
p
q

)
= G{A, 1}

(
p′(p, q)
q′(q)

)
=
(
p′(pA(p, q), qA(p, q))

q′(qA(p, q))

)
(3.5)

where the generic aberrated coordinates are, by (3.3),

G{A, 1}
(
p
q

)
= · · · × (1+ {A4, ◦} + · · ·)(1+ {A3, ◦} + · · ·)× (1+ {A2, ◦}

+ 1

2!
{A2, {A2, ◦}} + 1

3!
{A2, {A2, {A2, ◦}}} + · · ·)

(
p
q

)
= (1+ {A2, ◦} + {A3, ◦} + 1

2!
{A2, {A2, ◦}} + {A4, ◦} + {A3, {A2, ◦}}

+ 1

3!
{A2, {A2, {A2, ◦}}} + · · ·)

(
p
q

)
=
(
pA(p, q)
qA(p, q)

)
. (3.6)

Since the Poisson bracket{Ak,Ak′ } of two homogeneous polynomials of degreesk, k′ > 2
(in the quadratic variables), is of degreek + k′ − 1 > k, k′, terms beyond the ellipses can
be disregarded consistently. To third order explicitly,

G{A, 1}|k=2 = 1+ {A2, ◦} (3.7a)

A2(p, q) = A2,0,0(p
2)2+ A1,1,0p

2p · q + A1,0,1p
2q2+ A0,2,0(p · q)2

+A0,1,1p · qq2+ A0,0,2(q
2)2. (3.7b)
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There are six independentLie aberrations to third order,{Ak+,k0,k−}k++k0+k−=2 (cf [5, 10]):
200, spherical aberration; 110, coma; 101, curvature of field; 020, astigmatism; 011,
distortion; 002, pocus (defocus) [9].

The third order, the aberrated phase-space coordinates (3.6) are then

p[3]
A (p, q) = G{A, 1}p = p+ (A1,1,0p

2+ 2A0,2,0p · q + A0,1,1q
2)p+ (2A1,0,1p

2

+2A0,1,1p · q + 4A0,0,2q
2)q (3.8a)

q[3]
A (p, q) = G{A, 1}q = q − (4A2,0,0p

2+ 2A1,1,0p · q + 2A1,0,1q
2)p− (A1,1,0p

2

+2A0,2,0p · q + A0,1,1q
2)q. (3.8b)

In particular, forq[3]
A (p, q) to be independent ofp to third-order aberration, it is sufficient

that the first four aberration coefficients be zero:A2,0,0 = A1,1,0 = A1,0,1 = A0,2,0 = 0.
It is not necessary that thedistortion coefficientA0,1,1 vanish, because such a systemwill
produce a (third-order) imageq[3]

A (q) = q − A0,1,1q
2q that is in focus, albeit distorted.

Finally, thepocuscoefficientA0,0,2 does not affect image formation at all; it only changes
thep-focus of the rays forming the image at the screen,p[3]

A (p, q). (Pocus acts as a spherical
aberration in the conjugate momentum variable.)

4. Third-order correction by warped screens

We first characterize the root transformation (2.1) as a paraxial imaging system with the
Lie aberrations defined in the last section. Using the matrix in the paraxial part of (2.3),
equations (3.5) and (3.6) are written to third-order aberration as

Rn,ζ :

(
p
q

)
= G

{
R,
(

1 −2nζ2

0 1

)}(
p
q

)
= G{R, 1}

(
p+ 2nζ2q

q

)
=
(
(1+ {R, ◦})(p+ 2nζ2q)

(1+ {R, ◦})q
)
. (4.1a)

Comparison with the aberration part of (2.3) finds the third-order aberration polynomial of
the root transformation:

R2(p, q) = − ζ2

2n
p2q2+ nζ4(q

2)2. (4.1b)

The third-order aberration coefficients of the root transformation are therefore

R1,0,1 = −ζ2/2n R0,0,2 = nζ4 (4.1c)

and the four others vanish:R2,0,0 = R1,1,0 = R0,2,0 = R0,1,1 = 0.
We can now restate the concrete problem to which we address this paper. Assume a

general imaging systemA : (p, q) 7→ (p′, q′) in paraxial focus, but with aberrationsA.
We use the root transformationRn,ζ : (p′, q′) 7→ (p̄, q̄) as abona fideoptical element
performing free flight to the warped surfaceSζ . The purpose of the correction is to sharpen
the point images̄q(p, q) on Sζ by eliminating some aberrations. The compound optical
system that projects images on the warped screen is shown in figure 3. It isC = ARn;ζ ,
and its action on phase spacew = (p, q) is

C : w 7→ w̄ = AR : w = A : w̄(w) = w̄(A : w) = w̄(w′(w)). (4.2)

The third-order approximation can be found from (2.3) and (3.5)–(3.8) kept to the third
degree. For the position coordinate we find

q̄[3](p, q) = q′(p, q)+ ζ2

n
q
′2(p, q)p′(p, q)
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Figure 3. The imaging, aberrating systemA maps the object phase space(p, q) on the flat
image space(p′, q′). The screen is warped to a surfacez = ζ(q2) in a homogeneous medium
n; the root transformation maps(p′, q′) to (q̄, p̄).

= µ
(
q −

(
4A2,0,0p

2+ 2A1,1,0p · q + 2

[
A1,0,1− ζ2

2n

]
q2

)
× p−

(
A1,1,0p

2+ 2A0,2,0p · q +
[
A0,1,1+ ζ2

n
λµ

]
q2

)
q

)
. (4.3)

The ‘corrected system’ (4.2) is thus characterized as the canonical mapC = G{C,N}
where, from (2.3) and (3.1), the paraxial part is

N = MP =
(
µ λ− 2nζ2µ

0 µ−1

)
(4.4)

and the third-order aberration coefficientsC = {Ck+,k0,k−}k++k0+k−=2 of C are found to be

C0,2,0 = A0,2,0 C1,1,0 = A1,1,0 C2,0,0 = A2,0,0 (4.5a)

C0,1,1 = A0,1,1+ ζ2

n
λµ C1,0,1 = A1,0,1− ζ2

2n
(4.5b)

C0,0,2 undetermined. (4.5c)

Let us examine the possible aberration corrections. The first row (4.5a) informs us
(from left to right) that the astigmatism (020), coma (110), and spherical aberration (200)
of the paraxial-imaging-but-aberrating systemA cannotbe corrected by warping the screen
because they do not contain any of its parametersζ2k in (2.2). The second row (4.5b)
identifies two aberrations thatcan be controlled: third-order distortion (011) and curvature
of field (101). As we argued before, the correction of distortion is unimportant for imaging.
Thus, the curvature of field aberration coefficientC1,0,1 can be set to zero on a paraboloidal
screen with the value

ζ2 = 2nA1,0,1. (4.6)

The coefficient of distortion on the warped screen will then beC0,1,1 = A0,1,1+ 2λµA1,0,1,
but this does not affect focusing. The last coefficient,C0,0,2, is irrelevant for image formation
and cannot be found from (4.3). To determine it we must also expandp̄[3] in (p, q) and
compare it with (3.8a). It is

C0,0,2 = A0,0,2− ζ2
λ2µ2

2n
+ ζ4nµ

4. (4.7)
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On the paraboloidal warped screen (4.6), this aberration isA0,0,2 − λ2µ2A1,0,1 + ζ4nµ
4; it

could be made to vanish by fixing the quartic parameterζ4 of the surface (2.2). Alternatively,
since the value ofC0,0,2 is unimportant for imaging, the quartic shape of the surface may
be used to eliminate somefifth-order aberration, as we proceed to analyse below.

5. Fifth- and higher-order corrections

Higher-order aberration expansions follow (2.7). The aberration polynomialsAk, k =
2, 3, 4, . . . (for aberration orders 3, 5, 7, . . . ,2k − 1; cf (2.8b) for k = 2) have
6, 10, 15, . . . , 1

2(k + 1)(k + 2), independent aberration coefficients. In fact, in [12] we
showed that for surfaces tangent to the standard screen at the optical axis, in every rankk

there holdk + 2 selection rules on the coefficients of the root transformation:Rk−κ,κ,0 = 0
for κ = 0, 1, . . . , k, andR0,k−1,1 = 0. The root transformation (2.1) for a surface (2.2) with
warp parametersζ2, ζ4, . . . , ζ2k, composed to the same order, will yield results corresponding
to (4.5)–(4.7) for all the aberration coefficients. We find that onlythree coefficients at each
order (up to nine) can be set to zero individually by warping the screen, as detailed below.

Performing the steps indicated for rankk = 3, the aberration polynomial of the root
transformation is found to be

R3(p, q) = − ζ2

8n3
(p2)2q2− ζ 2

2

2n2
p2p · qq2− ζ4

2n
p2(q2)2+ 2ζ2ζ4p · q(q2)2+ ζ6n(q

2)3.

(5.1)

Among the 10 fifth-order aberration coefficients ofC = AR, we find thatC3,0,0, C2,1,0, C1,2,0

andC0,3,0 are independent of the quartic warp coefficientζ4. They cannot be adjusted by
quartic warping. Next, there are three coefficients which depend linearly onζ4; they are

C1,1,1 = [−2λµA1,1,0/n+ λ/2µn3+ 4λ2µ2A2,0,0/n]ζ2− ζ 2
2/2n

2− 8µ4nζ4A2,0,0+ A1,1,1

(5.2a)

C1,0,2 = [λ2µ2A1,1,0/n− λ2/4n3]ζ2− [µ2/2n+ 2µ4nA1,1,0]ζ4+ λµζ 2
2/2n

2+ A1,0,2

(5.2b)

C0,2,1 = [−2λµA0,2,0/n− 2λµA1,0,1/n+ 2λ2µ2A1,1,0/n− λ2/2n3− A0,1,1/n]ζ2

+λµζ 2
2/n

2− 4µ4nζ4A1,1,0+ A0,2,1. (5.2c)

As argued before, distortionC0,1,2 and pocusC0,0,3 containζ4 (and the latter also contains
the sextic surface parameterζ6), but are of no importance for image formation.

In figure 4 we show the pattern of corrections for third-, fifth- and seventh-order
aberrations, displaying them in triangular arrays. For rankk (aberration order 2k − 1)
we indicate by a dot every aberration whichcannot be corrected by surface warping at
that order (becauseζ2k−2 is absent in its expression); we indicate by a full circle those
aberrations whichcan be corrected to that order becauseζ2k−2 is present (as alinear factor
in one summand); and by an open circle those aberrations whose correction is immaterial
for focusing: distortion(0, 1, k − 1) and pocus(00k). The last is the only equation that
contains the highest warping parameterζ2k; this can be used for correction at the next higher
order.

Figure 4(a) organizes equations (4.5). The top row (astigmatism, coma, spherical
aberration) cannot be corrected. The full circle marks the curvature of the field, which
fixes ζ2. For the fifth-order aberration, shown in figure 4(b), the top row of aberrations
cannot be corrected, and neither can the aberration 201. The three coefficients (5.2) thatdo
depend onζ4 can be individually put to zero: the 021, 111, or 102 boxes marked by full
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Figure 4. Aberrations that are non-correctable(·), controllable (•), and immaterial(◦)
for focusing on warped screens. Data forCk+,k0,k− are arranged on the three-axis plane
k+ + k0 + k− = k. (a) Third-order aberration (rankk = 2), (b) fifth-order aberration(k = 3),
and (c) seventh-order aberration(k = 4). In each box we show the warp parametersζ2k on
which the coefficient depends.

circles. The latter is the fifth-order curvature of the field. Finally, 012 and 003 (fifth-order
distortion and pocus) do not unfocus the image.

A corresponding procedure for seventh-order aberrations requires symbolic computer
algorithms such as have been developed by the authors [6]. We find a set of equations
for the coefficients whose content is summarized in figure 4(c). We see there are again
only three aberrations that can be controlled by fixing the surface polynomial coefficientζ6:
022, 112, and 103. All aberrations ‘above’ these cannot be altered, and those ‘below’ do
not matter. The computation work has been pushed to ninth order by EJA, confirming the
triangular pattern of controllable aberrations. We surmise that for generic aberration order
2k − 1, the surface polynomial coefficientζ2k−2 will appear linearly in the curvature of the
field (1, 0, k−1), in (1, 1, k−2) and(0, 2, k−2) aberrations. Three coefficients depending
linearly on a warp parameter allow a simple optimization algorithm if one provides a cost
function (which can be the size and/or shape of the spot diagram for each aberration).
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6. Conclusions

The study of images on warped screens can be made in phase space through the root
transformation of reflection and refraction. It is a canonical transformation where the image
space is warped in the direction of the evolution parameter. Such transformations have a
clear meaning in geometric optics; insight into its properties may be important for classical
mechanics, where the parameter is time.

The root map was previously used only as a computationally convenient intermediate
step to find the refraction map. It now acquires reality as abona fide optical element
representing propagation to a warped screen. The problem addressed here is a prototype of
a fully parametric design. The computational task is in fact simplified when we work only
with the aberration coefficients, composing the generic aberrating system in paraxial focus
with the root transformation whose coefficients are known. Our new results are that there
are three correctable aberrations at orders 5, 7 and 9. There are more aberrations of order
up to 2k − 1 than available surface coefficientsζ2, ζ4, . . . , ζ2k−2, but we are lead to a well
defined linear optimization strategy for the three correctable aberrations at each order.

The correcting element here was propagation to a warped screen in a homogeneous
medium. Other media may be of interest, such as axially symmetric graded-index elements
with polynomial index profile. The Taylor-expanded refractive indexn(q2) will take the
place of the constantn in equations (3.2)–(3.4) thus providing more parameters for possible
aberration correction. The case of elliptic index-profile ‘fibres’ was studied in [13] and the
aberration polynomials of the root map in such media were given explicitly to seventh-order
aberration.
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Wolf K B and Krötzsch G 1995 Geometry and dynamics in refracting systemsEur. J. Phys.16 14–20
[5] Buchdahl H A 1970 An Introduction to Hamiltonian Optics(Cambridge: Cambridge University Press)

Born M and Wolf E 1984Principles of Optics6th edn (Oxford: Pergamon)
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