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Abstract

A planar waveguide with a specific refractive index profile admits supersymmetry. Physically, optical supersymmetry de-
scribes two light beams of different colors that form a standing periodic interference pattern along the waveguide axis. The
supersymmetry is exact in the paraxial approximation and broken beyond.

1. Introduction

There exists a correspondence between mechanics
and optics (classical or quantum, geometric or wave),
in the paraxial regime [1] and in the global one [2].
Consequently, many notions can be transported from
one to the other, such as coherent and squeezed states
(see, e.g., Refs. [3,4]). Here we describe an optical
system that exhibits supersymmetry in the sense of
supersymmetrical quantum mechanics (SUSY QM).

Supersymmetry in quantum mechanics connects
two Hamiltonians with the same spectrum except for
the ground state (unbroken supersymmetry [5], see
Ref. [6], and references therein.) SUSY has been
successfully applied in atomic [7] and nuclear phys-
ics [8]. The supersymmetric form of the Dirac equa-
tion in an external field [9-11] presents the Dirac
equation as the square root of the Klein-Gordon
equation; the kind of supersymmetry we have here is
analogous and finds the square root of the Helmholtz
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equation. The supersymmetric structure of Helm-
holtz optics describes light propagation in a wave-
guide and admits a very clear physical interpretation.

We consider optical waveguides along the z-axis,
i.e., media that are inhomogeneous only in the x-di-
rection. From the wave equation in 2+ 1 dimensions
for solutions of time frequency » we have the Helm-
holtz equation

[024032+v2n%(x)/c*]f(x, z)=0. (1)

In Section 2 we present the supersymmetric structure
of (1), in Section 3 a physical reinterpretation, and
some concluding remarks in Section 4. Note that un-
til Section 3 we do not use the paraxial
approximation.

2. Supersymmetric structure

We write a system of two first-order equations for
a two-component wave function of the x- and z-
coordinates,
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v\ (ik v, \(%
az(%)_(v_ —ik)(%)’ (2)

where k is a constant and
ve=1d,+W(x),

with an arbitrary function W(x). The second z-de-
rivative involves the square of this 2 X 2 matrix,

az(?’,)_(—k2+v+v_ 0 )('1’1>
Y/ 0 —kKP+v_v. J\¥, /)

Therefore we have two different Helmholtz equa-
tions for the components,

(02+92+k*—W,—W?)¥, =0,
(32402+k*+ W, - W) ¥, =0, (3)

where W,=dW/dx. Now, for a given wavenumber
in the z direction that is common to both wavefunc-
tions, we write

l1(/1,2()C,Z)=¢1,2(«’5)e_i"z~ (4)

Egs. (3) then become the eigenvalue equations for
the components,

(=03-W + WO =(k*-x*) D, ,

(=0:—W+ WD, =(k*—K*)D, . (5)
Now we introduce the supersymmetric structure by
considering the component @, as representing the
“boson” and @, the “fermion” sectors of the super-

symmetric Hamiltonian eigenfunctions. The super-
charge operators are

0 0 0 v_
Q‘z(v+ 0>’ Q*:(o 0 )
The supersymmetric Hamiltonian, defined as the an-

ticommutator of the two supercharges, is

V_Vg 0
0 VyU_

Hs={Q—7 Q+}=( ), [Hsij]=O-

The eigenvalue equations for H, are then
V_V4 djl = (kz_Kz)(pl )
viv_D,=(k*—k*)D,.

These forms coincide with Egs. (5) and have the
same spectrum except for the ground state, which has

to be a normalizable solution of one of the two equa-
tions v, ¢, =0 or v_¢,=0. Therefore, SUSY connects
solutions of Helmholtz equations of two different
waveguides with index profiles

v2n?(x)/c2=k*FT W, -W?2, (6)

3. Physical reinterpretation

We now reinterpret these formulas in a second way
to describe two different beams in the same wave-
guide. We choose

W(x)=wx. (7)

The eigenvalue equations (5) are then two Schrodin-
ger equations for harmonic oscillators with displaced
energy levels,

(—03+wix?) P, =(K*Fw—-k*)D,,. (8)

Meanwhile, seen as Helmholtz equations, Egs. (8)
correspond to

v2n2(x)/ct=k>FTw—w2x?, (9)

with the same #(x). In the absence of material dis-
persion, # is independent of ». This is an e//iptic in-
dex-profile waveguide; it approximates the usual par-
abolic index-profile waveguide in the paraxial regime
[12]. The eigenvalues of the operator on the left of
(8) are well known to be

E,=w(2m+1), m=0,1,2,.... (10)

We now find conditions for a supersymmetric pair
of Helmholtz solutions in the same waveguide. Into
this waveguide n2(x) =n3 —n?x? we inject two light
beams with slightly different time frequencies

vi,=vi(lte),

and will call k, , the correspondingly slightly differ-
ent space frequencies along the z-axis. To fulfill Egs.
(9) we substitute k=nyvy/c, w=n,vy/c and find the
conditions
n w o vi—v3

Sk Tk w3 T (1)
This determines the frequency shift in terms of the
transverse index profile of the waveguide.
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From the standard quantum harmonic oscillator
solution we know that the Gaussian beam width in
the x-direction is Ax= (2w)~!/2. Therefore, the pa-
rameter e=[2k?(Ax)?]~ '~ (wavelength/beam
width)? should be small. The two light beams with
the frequencies v, , obey the Helmholtz equations
with

vin?(x)/2=k>*Fw—wix2(1Fe€) .

When €0, these two Helmholtz equations become
a supersymmetric pair that is slightly broken by the
term ew?x?2.

It is easy to see that SUSY has the same accuracy
as the paraxial approximation: examination of Egs.
(8) and (10) shows that the z-propagation wave-
numbers of the two beams are

ki,(m)=k>—w[(1te)(2m+1)£1],

m:O, 1,

or

B2 L | _e(mt ) —deX(m+iE1)?
Fe2(m+i)+...

The term of order e=w/k? exhibits exact SUSY; ex-
cept for the ground state x,(0) =k, the z-wavenum-
bers of the two beams coincide,

Ki(m—1)=K,(m)+0(e?), m=1,2,..., (12)

The two terms of order € respectively give a nonlin-
ear correction to the paraxial approximation and
break supersymmetry. Therefore, SUSY is exact in
the paraxial approximation and is broken beyond this
regime.

Thus, supersymmetry (12) connects light beams
of different frequencies v}, in the same waveguide
(Eq. (11)), but having the same wavelength 27/x in
the propagation direction z (Eq. (4)). These two
beams form a stable interference pattern along the
waveguide axis.

4. Conclusions
We have considered the propagation of light in a

planar waveguide ruled by the two-dimensional
Helmholtz equation. Two Helmholtz equations with

different refractive indices (3) form a supersymmet-
ric pair in the sense of SUSY QM.

Supersymmetry also describes the propagation of
light beams of different colors in the same waveguide
when the transversal index profile is elliptic. This
profile determines the difference of light frequencies.
SUSY is exact in the paraxial approximation, and
broken beyond. In the paraxial regime, supersym-
metric light beams of different colors have the same
wavelength along the axis of the waveguide, giving
rise to a stable interference pattern.
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