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VVe find a procedure whereby the matrix elements of the finite SO,..l transformations (principal 
series) can be expressed as a single integral, over a compact domain, of two matrix elements of the SO,. 
subgroup and a multiplier. In this way we automatically obtain their classification by the canonical 
chain SO'" 1 :::> SO,. :::> ••• :::> SO •. Analytic continuation yields the SO"+l matrix elements in a recursive 
form. VVe obtain the asymptotic behavior of the boost matrix elements. The Inonti-VVigner contraction 
yields the ISO,. representation matrix elements classified by the chain ISO,. :::> SO,. :::> ••• :::> SO •. 

1. INTRODUCTION 

The unitary irreducible representation (UIR) 
matrix elements of the unimodular orthogonal (San), 
pseudo-orthogonal (SOn.I) and inhomogeneous or­
thogonal (ISO n) groups have been a fertile field of 
research due to their repeated appearance in mathe­
matical physics: For S02' they are the partial waves 
of a periodic function; for S03' they are the 
D~m'(I1., fl, y) functions. These and the Wigner 
d~m.(fl) functions l have been so extensively used in 
angular momentum theory that no further remark is 
needed. 

Bargmann's d~m.a) functions for2 SOu have 
been used in Toller's cross-channel partial wave 
expansion.3., The SO, d matrices5 were used by 
Freedman and Wang in order to find the quantum 
numbers of the daughter Regge poles which belong 
to a given Toller pole. This, plus the important high­
energy behavior of the corresponding scattering 
amplitude, were found by Sciarrino and Toller' 
using the S03.I boost matrix elements d!1.(t).6.7 

Going further, the SO'.I UIR matrix elements have 
also been calculated.8- lo In particular, Strom9 per­
formed the contractionll SOu -+ IS03.1' whereby 
the D-matrix elements classified by the canonical 
chain become the matrix elements of Poincare trans­
formations lO •12 in the chain of subgroups which 
includes the homogeneous Lorentz group. The matrix 
elements 0[13 SOs representations have found 
applications in nuclear physics,14 and the theory of 
master analytic representationsI5 has given a method 
of reaching higher groups. 

The importance of the matrix elements of the 
general San, SOn.I, and ISOn UIR's lies presently in 
mathematical physics: As group representations, 
they constitute an orthogonal and complete set of 
functionsI8 on the group manifold, and any well­
behaved, square-integrable function on the group 
can be expanded in terms of them.16- I8 

Thus far, however, they have remained as "certain" 
functions, some of whose relevant properties were 
known, but for which one could not write explicit 
expressions. The reason for this is not difficult to see: 
The straightforward procedure of obtaining them 
as eigenfunctions of the set of Casimir operators of 
the group and its subgroups involves setting up a set 
of simultaneous differential equations which, together 
with difference and recursion relations,1.9·19 gives rise 
to rather involved expressions which are still under 
investigation20 for San and SOn_I.I, n > 5. 

Bargmann's2 and Toller's' work, however, did not 
involve the solution of differential equations, but 
rather an integration over the compact subgroup. 
This was reduced further to a single integral, which has 
been successfully performed. In this article we set up 
a procedure which generalizes the above two cases. 
We shall work, however, only with the component 
of the group connected to the identity. We thus 
disregard the parity indices in the UIR labels. 

In Sec. 2 we remind the reader how a complete and 
orthogonal set of functions on a homogeneous space 
X can be used to set up a multiplier representation of 
a group G whose action on X is known. The space X 
is here the San group manifold. The properties and 
labels of a complete and orthogonal set of functions, 
the UIR matrix elements for San classified by the 
canonical21 chain, are reviewed in Sec. 3. The group 
G which acts on this space may be, however, larger 
then San' 

In Sec. 4, using a generalization of what is known 
in the literature as the Gell-Mann operator,22 we can 
apply G = SOn.1 in such a way that, while the trans­
formations in the San subgroup give rise to "rigid" 
mappings of the X manifold, the boosts in SOn.1 
generated by the Gell-Mann operator "deform" X. 

In Sec. 5, the complete and orthogonal set of 
functions over San introduced in Sec. 3 is used to set 
up a multiplier representation. The matrix elements 
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198 KURT BERNARDO WOLF 

of the Gell-Mann operator, proportional to the gener­
alized Wigner di~l1L'( ') functions for SO n.1' are 
thus expressed as an integral over the SOn subgroup 
(which is reduced to a single integral over one angle) 
of two UIR matrix elements of SOn (simplified to 
the Wigner d functions for SOn) and a multiplier. 

The asymptotic behavior of the SOn.1 d functions 
as' ->- 00 and the contractionll SOn.1 ->- ISO n can be 
seen already from the integral form. In fact, from the 
contraction of SOn.1 we obtain the UIR matrix 
elements of ISO n classified by the chain ISOn:::J 
SOn:::J '" :::J S02' 

The geometrical meaning of the deformation effected 
on SOn by the generators built through the Gell-Mann 
operator is shown, in Appendix A, to be but the 
natural action of the group SOn.1 (in its Iwasawa 
decomposition G = KAN) on itself, modulo AN. 
A useful integral is calculated in Appendix B. 

We want to emphasize that in our procedure 
(a) the UIR matrix elements are classified by the 

canonical chain, 
(b) several key properties are apparent from the 

integral form, 
(c) the integration is performed over a compact 

domain and can be expressed in terms of a sum of 
products of trigonometric and hypergeometric func­
tions. 

We can point also to the possibilities of extending 
this method, taking a complete and orthogonal setof 
functions over other groups or homogeneous spaces­
noncompact ones, for instance-and considering 
multiplier representations of a larger group of 
deformations of it, thus obtaining expressions for the 
representation matrix elements of noncom pact groups 
classified by chains which can thus include noncom­
pact subgroups.4.23 

2. MULTIPLIER REPRESENTATIONS 

In order to fix our notation, we shall make some 
well-known definitions. 

Let X be a homogeneous space under the group 
of transformations G, and put Xl, X2' ••• E X. A set 
of functions {tPn(X)} , n E N, discrete, is orthogonal 
on Xif t .. dft(x)tPn(x)tPn'(x) = b,v(n, n'), (2.1) 

where dft(x) is an appropriate measure on X and 
bx(n, n') = 0 for n :F n' and will be detailed below. 

Furthermore, the set {tPn(x)} is complete on X if 

L w(n)tPn(x1)tPn(X2) = bX(Xl' x 2), (2.2) 
neJ..V 

where wen) is the Plancherel weight on N; b~dx1' x 2) = 
o for Xl :F X2 and is normalized in such a way that the 
integral (2.1) (which is a sum, if X is discrete) 
fulfills 

L dft(x1)f(x1)o .\:(x1, x2) = f(x2), (2.3) 

for any continuous test function lover X. The 
normalization of (2.1) and (2.2) can be arranged to 
be such that17 

.L w(n)f~ON(n, n') = frl" (2.4) 
neX 

and hence oxen, n') = [w(n)]-l(jn.n" 
Any well-behaved function I over X can be ex­

panded in the complete and orthogonal set {tP,,(x)} as 

f(x) = 2 w(n)/ntP"(x), (2.5) 
nelY 

wherein = (tPn ,!h is the scalar product between two 
functions on X, defined as 

(f,f'h: = l/ft(X)f(X)f'(X) 

= 2 w(n)/,,/~ = (J~f"b· (2.6) 
11 ElY 

The action of G on X, x ~ x'(x, g), is assumed to 
be defined such that 

x'(x"(x, gl), g2) = x'(x, glg2) and x'(x, e) = x 

for the unit e of the group. When X = G, this is 
satisfied if either x'(x, g) = xg or x'(x, g) = g-lx, 
but may be of a more general nature when X :F G. 

The action of G on I(x) is defined through 

f(x) ~ UW(g)f(x) = M().)(x, g)f(x'(x, g», (2.7) 

where the multiplier2 MW(x, g) satisfies 

M().)(x, gl)M().)(x'(x, gl), g2) = M().)(x, glg2) 

and MW(x, e) = I and does not vanish over X x G. 
A multiplier can be written in the form2•16 

M().)(x, g) = [p(x)j p{x'(x, g»ll., (2.8) 

where p(x) is some function over X. 
The requirement of unitarily of the representation 

(UCA-l(g)f, U().)(g)f) = (J,f') 

implies, through (2.6) and (2.7), 

dft(x'(x, g» = IM().)(x )1 2 (2.9) 
dft(x) ,g , 

if we restrict the form of the multiplier and the 
possible values of ;. in (2.8). In particular, if X = G 
and dft(x) is the Haar measure, the ratio (2.9) is 
unity and the multiplier may only be a phase. 

Downloaded 29 Jun 2011 to 132.248.33.126. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



A RECURSIVE METHOD 199 

We can construct a matrix representation of G as 

D~n,(g) = [w(n)(V(n')]~(4>n' UW (g)4>n')' (2.10) 

where the rows and columns are labeled by the 
(discrete) index n EN. We can check through (2.2) 
that (2.10) follows the group multiplication law and 
that 

D~n·(e) = t5 n.n· 

while, if (2.9) is satisfied, the representation (2.10) is 
unitary, i.e., 

D~n,(g-I) = D~'n(g). 

At this stage, however, we cannot make any state­
ment as to the irreducibility of (2.10) nor as to 
whether we can find all unitary representations in 
this way. 

Next, we want to express the transformation (2.7) 
as generated by a Lie algebra of operators. 2 Assume 
ga) belongs to a I-dimensional subgroup of G 
parametrized by a variable ~, whose generator is 
NW,i.e., 

UW(g(mf(x) = exp aNw)f(x). (2.11) 

The differential form of N W is thus 

NWf(x) = ~ [Mw(x, g(ml(x'[x, gW])],~o. (2.12) 
d~ . . , 

When the multiplier MW(x, g) is taken in its form 
(2.8), it is straightforward to see that N W can be 
written as 

(2.13) 

where N(O) is the generator of the vector representation 

exp aN(O»f(x) = f(x'[x, gWD (2.14) 
and 

Q = [N(O) p(x)]/ p(x). (2.15) 

3. THE ORTHOGONAL GROUP 

The n-dimensional (unimodular) orthogonal group 
SOn has been extensively studied.21 We need, however, 
a brief survey of its properties in order to define the 
problem. 

We introduce the "Euler-angle" parametersI7 ,18.24 

in SOn (enclosing collective variables in braces) by 

Rn({o}(n» = R n_I({0}(n-1»Hn({0(n)}), 

Hn({o(n)}) = Vn-I,n(O~~l,n) X ' , . X V23(0~~»V12(0~~», 
(3.1) 

where Rk E SDk and r piO) is a rotation by 0 in the 
(p, q) plane; the ranges are 0 :::;; 012 < 27T and 0:::;; 
0k-l.k ~ 7T, k = 3,4, . , . , n. In this way, we express 
the SOn manifold as the product of the SOn_I mani­
fold with [the (n - I)-dimensional surface of] the 
n-dimensional sphere Sn. Notice that RaCrt., {3, y) = 
r12(IX)r23({3)r12(Y) differs from the more general usage 

which writes rI3({J) as the middle factor. This will 
cause no inconvenience, however. 

The Haar measure can now be split according to 
(3.1) as dR n = dRn_ 1 dHn , where 

dH n = sin n-2 071- 1 ,71 dO n-1,n dH 71-1, dH 2 = d012 . 

(3.2) 

From (3.2) and the ranges specified above, it can 
be seen that the volume of SOn is vol SO" = 

vol SOn_IS", where Sn = 27Tl"/rnn), and vol S02 = 
27T. 

The basis vectors for the unitary irreducible 
representations of SOn, classified by the canonical 
chain of subgroups SOn:::> SO 71-1 :::> ••• :::> S02' are 
labeled with the Gel'fand-Tsetlin21 kets 

1".1 1".2 1",[nI2] 

I n- 1 ,1 1,,-1,2 1,,-1,[(n-1)/2] 

1 4,1 '4,2 
(3.3) 

'3,1 

'2,1 

where [kI2] is the largest integer smaller or equal to 
k/2. This ket transforms as the lk == {Jk.1' l k ,2' ••• , 

''',[k/2]} VIR of SO"' k = 2, ... , n, while the repre­

sentation row is labeled 'k-1 == {'''-I, 1,,_2, ... ,12}. 
For the single-valued VIR's of SOn, all lab are integers 
constrained by the "zigzag" inequalities 

'k,l 
VI 

'''-1,1 ~ 'k,2 
VI 

'''-1,2 ~ 'k,3 
VI 

'k-1,3 ~ 

, k = 3,'" ,n, 
(3.4a) 

which end, to the right of (3.3), as 

VI 

'k-1,[(k-1)/2]-I ~ 'k,[kI2] 
VI 

11k- I .[(k-1)/2]1, k odd, 
(3.4b) 
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200 KURT BERNARDO WOLF 

or 

Jk.[kI2]-1 

VI 

Jk- 1.[(k-l)/2] 2 IJk .[k/2]1, k even. (3.4c) 

In order to economize subindices, we will agree on 
the following notation: Let J (resp. Land M) stand 
for I n (resp. I n- 1 and I n- 2) , the UIR label of G = SOn 
(resp. H = SOn_1 and K = SOn_2)' The row labels 
are I = I n_ 1 (resp. M = I n- 2 and N = I n- a), and 
hence L = {L, M} and M = {M, N}; dim n J (resp. 
dimn_l Land dim,,_2 M) denote the dimension of the 
VIR. The scalar representation of SOk' k = 2, ... , 11, 

is J. = 0 = {O, ... , O}. 
The representation D-matrices for SO n are defined 

as 

where we have written the ket and bra (3.3) hori­
zontally. The generalized Wigner d matrices (to be 
calculated in Sec. 5) are defined through 

diMv(O) = (J LM N/l'n-l.iO) IJ I.; M N) (3.6a) 

and are seen to be diagonal in M, the representation 
label of K, and independent of its row-label N, since 
r n-1.n(O) commutes with all transformations in K. 
Similarly, 

D'Lf!.L'.fr(R n_1) = Ih.L' D§}..,il'(R n_1) (3.7) 

is independent of J, the VIR label of G, and diagonal 
in that of H. 

In particular, for S02 the di.lIIAO) are dJ (0) = eiJ8 

i.e., the indices L, M, and L' are absent; for SOa, the 
d matrices are div(O), the usual Wigner d matrices1 

for rotations around the x axis. For SOn, n 2 4; we 
have the general expression (3.6). 

Equations (3.1), (3.5), (3.6a), and (3.7) allow us to 
write (omitting arguments in an obvious way) 

(3.8) 

where 

Ei.il".L'.i"r(Hn) = dfwL'(O~~1.n)Ef;"s·,.ll'S'(Hn_1) 
(3.9) 

and EL(H2(O» = dL(O). Thus we see that the D­
matrix elements (3.8) can be expressed in terms of 

the Wigner d-matrix elements (3.6). Only the latter 
need therefore be calculated explicitly. 

Most of the interesting properties of the D and 
d matrices can be found before their explicit calcula­
tion. Chief among them are the orthogonality and 
completeness relations (2.1) and (2.2), which read18•17 

,dimnJ, J J I 

~ -- ~ D L.T:(Rn)D ".L'(R n} = t5a(Rn, R",), 
J vol G ".'" 

(3.11) 

where 15 L ,," etc., stand for a product of Kronecker 
t5's in the' individual indices. The Plancherel weight is 
seen to be w(J) = dim n J/vol G, while the role of the 
index n in (2.1) is taken by the triad of collective 
indices (J, I, L'). 

From (3.8) and the splitting of the Haar measure, 
we can find the "orthogonality" relations for the E 
matrices as 

r dH n 2 Ei,J\.L • .lI.(H n)ELJI"L;,fI;(H n) 
j.". .f!, 

vol G dim n_l (L1) 
= t5L L ,t5.f! .f! ,t5J J' -- (3.12) 

•.• •.• . vol H dim" (J) , 

while (3.2), (3.9), and (3.12) yield, for the d matrices, 

l u • n-2 0 dO ' dim n _ 2 M J J' 
SIn £., IK dL,.lIL.(O)dL,.lIL.«(}) 

o .11 vo 

_ 15 dim n _ 1 II dim n _ 2 I2 vol G 
- J.J' d' . 2' (3.13) 

Imn J (vol H) 

Thus, while for S02 we have in {dJ (O)} a complete 
and orthogonal set of functions, for SOa the Wigner 
{div(O)} constitute an orthogonal set in the index J. 
The set is complete for L = L' = 0.17 •18 For SOn, 
n 2 4, the general result is (3.13), and this includes 
the sum over M-Iabels. Indeed, it is not difficult to 
show that {Eoo,JU.l(Hn)} is an orthogonal and com­
plete set of functions on SO n-1 \SO n and the same 
result holds for {d~o«(})} on SOn_1\SOn/SOn_1Y 

We shall use (3.10), (3.11), and (3.13) in order to 
build the D matrices (2.10) after we have defined, in 
the next section, the group of transformations we 
wish to represent. 

The parametrization of R:; E SO 71-1.1 follows the 
definitions (3.1), (3.8), and (3.9) with 

(3.14) 
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where bn- 1 •nm is a boost in the (n - I)th direction 
through a hyperbolic angle ~, 0::;; ~ < 00. The 
metric tensor has nonzero components gll = ... = 
gn-l.n-l = -gnn = 1, and the SOn-l.l manifold is 
expressed as the product of the SO n-l manifold and 
[the (n - I)-dimensional surface of] the n-dimen­
sional hyperboloid. The Haar measure is dR; = 
dRn_ 1 dH; , where 

(3.15) 

The Gel'fand-Tsetlin kets for SO n-l.l' classified 
by the canonical chain25 SOn-l.1 ::::> San_I::::> ... ::::> 

S02' can also be written in the form (3.3), where, for 
one-valued representations, all indices (except J n.l) are 
integer and follow the "zigzag" inequalities (3.4). The 
domain of the index I n •1 == A is the complex plane. 
We are at present interested in the principal series25 •26 

of VIR's which corresponds to A = -Hn - 1) + 
iT, T real, and the finite-dimensional (nonunitary) 
representations which lie at A = 0, 1, 2, ... and for 
which the rest of the inequalities (3.4) hold. 

The symbol P diML'm will be used for the boost 
matrix elements of the pseudo-orthogonal group 
defined, in analogy to (3.6a), as 

The orthogonality and completeness relations 
(3.10) and (3.11) must be carefully justified, as both 
dimn J and vol G are infinite, and an integral with the 
Plancherel measure dw(J) takes the place of the sum 
in (3.11). However, we shall not come to need them. 

The 1S0n_ 1 group is the semidirect product of 
Tn-I, the translation group in n - 1 dimensions, and 
San_I' Its elements are commonly written as 
(x, Rn_ l ), x E Tn- 1 and R n- 1 E San_I, with the usual 
semidirect product law. The group manifold of 
ISO n-l is thus the product of the (n - I)-dimensional 
Euclidean space and the SOn_l manifold. 

We shall parametrize the former in spherical 
coordinates, expressing R~ E ISOn_1 as 

(3.16) 

where tn-l(~) is the translation along the (n - I)th 
direction, 0 ~ ~ < 00. In terms of the more usual 
notation, 

R~ = (0, R n- 1)(tn-lm, 1)(0, H n-l) 

= (Rn-1tn-1(~)' R n_1H n_1). 

The Haar meaSure is dR~ = dRn_ 1 dH~, where 

(3.17) 

Again, we can use the Gel'fand-Tsetlin kets24 (3.3) 
where, for the one-valued representations, all indices 
(but I n •1) are integer and follow (3.4). The index 
J n-l == r is real. 

The symbol IdiJl.w(~) will be used for the radial 
translation matrix elements written, in analogy with 
(3.6a) and (3.6b), as 

IdiMLm = (JLMNJ tn- 1m JJI:MN). (3.6c) 

The remarks following Eq. (3.6b) apply to ISOn_1 • 

4. DEFORMATION OF THE GROUP 
MANIFOLD 

Let Mp.v be the generator of a rotation rp.v(O) in 
the (fl, v) plane, fl, v = 1,2, ... ,n, of the n­

dimensional Euclidean space (gp.v = <51'.)' i.e., 

exp (OMp.v) = rp.v(O). 

In terms of the Cartesian coordinates xp.' they may 
be represented as 

o 0 
Mp.v = xp.- - Xv-, (4.1) 

oXv oXI' 

and can be checked to obey the commutation relations 
of the generators of an SOn algebra: 

[Mp.v, Mpu] = g"uMvp + gvpMl'u 

+ guvMpl' + gpl'M" v , (4.2a) 
while 

[Mp.v' xp] = gvpxp. - g"pxv ' (4.2b) 

Finally, we build the second-order Casimir opera­
tor of SOn as 

<1>(n) - 1. "'" M M - 2.r:.. "V "V' (4.3) 

Now we construct22 
p..v 

M".n+1 == l[x", <1>(n)] = t I (Ml'vxv + XVMp.v) (4.4) 
v 

and check that the operators (4.4) together with (4.1) 
satisfy (4.2a) when we enlarge the range of the 
indicesfl, v,etc., to 1,2,"', n, n + 1, withg".n+1 = 
-x2<5".n+l' where X2 = I xp.x,.. Thus we have built, 
for x2 = 1, an sOn.l algebra (4.2a) out of the ison 
enveloping algebra. 

Furthermore, we define the operators 

M (u) -M + ".n+1 = ".n+l axp" (4.5) 

and check that (4.5) too, together with (4.1), generates 
an SOn.l algebra whose second-order Casimir opera­
tor is 

<1>(n.l)(a) = <1>(n) _ "'" M(u) M(u) 
, .r:.. ".n+l ".n+l 

I' 

= <1>(n.l)(o) _ a2x2 • (4.6) 
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We assume that we already know the representation 
D-matrices of the san group, and now we want to 
construct a representation (2.10) for the SOn.1 group. 
As we need only the P d matrices for SOn.1, we consider 
the boost generator 

M (a) '" a 2 a [~( 1) ] n.n+1 = Xn £.., Xil - - X - + 2 n - + a XIl ' 
Il aXil aXil 

(4.7) 

which we have written explicitly in terms of the 
Cartesian coordinates through (4.1) and (4.4). 

We introduce the spherical coordinate system24 

in the n-dimensional space which is best suited for 
the description of the san group manifold, as 

(4.8a) 

where x({O}) = (0, ... ,0, x), i.e., Xn = x cos 0n_1, 
and 

Xn_p = x sin 0n-1 ... sin 0n_p cos On_p_1, 

p=I,''',n-l, (4.8b) 

where we have put Oq == 0~~~+1 for economy. 
When acting on functions f({O}) of the angular 

coordinates, the operator (4.7) can be written as 

M~~~+1 = sin 0 :0 + [ten - 1) + a] cos 0, (4.9) 

where we have put 0 == 0n-1 for short. (In this connec­
tion, see Appendix A.) 

In order to identify (4.9) as the generator N(;J of a 
multiplier representation (2.11) in its form (2.13), we 
set 

-A = Hn - I) + a, (4.10) 

N(O) = sin 0 1. = ~ ao am' (4.11) 

where w = In tan (!O) and Q = cos 0, whereby 

p(O) = sin 0 (4.12) 

provides an appropriate construction of the multi­
plier (2.7). 

The transformation in the parameter w brought 
about by the operator exp ('N(O) is a translation by 
" i.e., w __ w' = w + ,. Hence, in the parameter27 0 

(4.13) 

Therefore, we can state that, while the operators 
(4.1) generate rigid rotations of the space (4.8b) and 
therefore on the group manifold of San through 
(4.8a), the operator (4.9) is the generator of a deforma­
tion of the group manifold which affects only the 

parameter 0 == O~~1.n through (4.13). (See Appendix 
A.) 

We shall work with functions on the san manifold, 
rather than on the n-sphere (the homogeneous space 
SO n-1 \SO n), since not all representations of the former 
can be realized on the latter.18 

5. THE d-MATRIX ELEMENTS 

As was stated in Sec. 3, we can use the set of 
Di.L

2
(Rn) functions which is orthogonal and com­

plete, in order to build a representation of the group 
of transformations on san through the general 
procedure (2.10). The specific transformation we are 
interested in is the deformation (4.13) with the 
multiplier (2.8) built out of (4.12). Thus, we shall 
build the D matrices of SOn.1 with rows and columns 
specified by the UIR labels of its canonical chain. 

We choose the action on the group to be g"(g', g) = 
g'g. [See text around Eq. (2.9).] Then, for Rn E san, 

(Di~.L", U
W

(R n)Di:.L2') 

vol G J, 
= C'JL,.L/JJ,·J2 -d-' -- DL,'.L2'(R n), (5.1) 

Imn J 

because of (2.7), (2.9), and (3.10), 
Hence, we can write, for any (fixed, allowed) L, 

J dimnJ J W J 
DL .L2(Rn) = -- (Dt.L" U (R n)DL,L2), (5.2) 

, vol G 

incorporating the requirements of (2.10) and the in­
dependence of A and L, as in (3.7).28 

Using the operator (4.9) and Eqs. (4.10)-(4.13), 
we have 

(U . n-2 J, (Sin O)A J 2 ' 
X Jo SIn 0 dOd E,lIn,·(O) sin 0' d L,lIIL,·«() ), 

(5.3) 

where we have used (3.8) and (3.9), as well as (3.10) 
and (3.12), for SOn_1' 

In line with (5.2) and (3.6b), we set 

P {.I..L} r (dimn J . dimn J')! 
d JL' J'( "') = "---"-----"----'­

vol G 

X [D:b, exp aN().)DiL,], (5.4) 
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and we can check that 
(a) the representation property is fulfilled, i.e., 

~ l'd~;};,lJ"al) l'd~.!{J'('2) = l'd~Z!J'al + '2), 
J" 

(b) due to (3.13), 

l'd~i!J'(O) = bJ.J" 

Hence (5.4) indeed provides a representation of 

SOn.l· 
Our method of construction gives automatically 

the Gel'fand-Tsetlin classification of the representa­
tion D matrices. Indeed, from (3.4) (recall J",q == Jq, 
In-I.r == Lr), 

Jq ;;::: Lq ;;::: Jq+l' q = 1, ... , [11/2] - I, 
and ° ~ L[(n-l)/2] ;;::: IJ[n/2]l, 11 even, (5.5) 
or 

° ~ J[nI2] ;;::: IL[(n-l)/2]I, n odd, 

and similar relations between Land J', L' and J, and 
L' and J'. 

Thus, the SOn.l VIR labels in (5.4), 

I = {II' ... ,I[(n+1)/2]J == {A, L] 

= {A, L1 , ••• , L[(n-l)/2]}' (5.6) 

also fulfill (5.5) with respect to its row indices (J, J') 
through the replacements 11 -+ n + 1, J -+ I, and 
L -+J, except for the index II = A which is, so far, 
allowed to be complex and unrestricted. This we shall 
now investigate. 

In order to fulfill the unitarity condition (2,9), we 
notice that (4.13) yields 

si.nn-2 ()' d()' = (s~n (),)n-l, (5.7) 
smn-

2 
() d() sm () 

and thus, if we demand that -A - X = n - 1, we 
shall satisfy (4.10) when 

-A = Hn - 1) + iT, neal. (5.8) 

This provides the principal series of UIR's of 
SOn.l. 20 As the rest of the labels (i.e., 12 ,"', 

I[(n+1)/2]) satisfy (3.4)-(5.5), they are, indeed, VIR 
labels of the SOn.l representation matrices. 

We are also interested in the finite-dimensional 
nonunitary irreducible representations of SOn.l since, 
when we perform the Weyl continuation [i.e., when 
we consider the parameter , in (4.13) as ,= i()n, ° ~ ()n ~ rrl, we obtain the UIR matrices of SOn+1' 

It is known that the sOn+1 second-order Casimir 
operator (4.3) has eigenvalues 

cP(n+1) = -/(l + 11 - 1) + integer, / = 0, 1,2,···. 

(5.9) 

Under the substitution -/ = Hn - 1) + (J, Eq. (5.9) 
takes the form 

cP(nLl) = [~(11 - 1)]2 - (J2 + integer, 

(J = -Hn - I), -HI1 - I) - I,"', (5.10) 

which has the same dependence on (J as (4.6). 
The values of (J in (5.10) give the VIR's of SO"+1' 

and we can now identify I in (5.9) with A in (5.6) and 
see that (5.4), with ), = 0, 1,2, ... , will provide the 
V I R representations of SO ,,+1 . 

The explicit form of the d matrices (5.4) is, from 
(5.3), 

l'd().·Ll (Y) 
JJ/J' ., 

(dim" J . dim" J')! (vol H)2 " . 
"'- dlmn_o!vI 

dim,,_1 L dim"_'1 1.: vol G vol K Jl -

{or . n-2 J (·sin ())). J' , 
X Jo sm 0 dOdLJ1L,«() sin ()' dLJlL'(O). 

(5.11) 

The expressions for dimn J, dim n_1 L, and dim n _ 2 M 
can be found from the branching relations (3.4), but 
are, in general, rather cumbersome to express in 
closed form [for S02' dim2 J = 1; for S03' dim3 J = 
2J + 1; for S04, dim4 (1, 0) = 12]. Therefore, we 
shall leave them thus indicated. The second factor in 
(5.11) is 

(vol H)2 S,,_1 r(tn) 
---'----'--- - - - (5.12) 
vol G . vol K - Sn - rrtrO(n - 1)) . 

Equation (5.11) provides thus, when' = j()n and 
A = 0, 1, 2, ... , an inductive procedure whereby the 
d matrices of SO ,,+1 can be found in terms of those 
of SOn. 

The first step of the procedure is S02' where we 
have 

dJ(O) = eiJ8 using f" since ° ~ () < 2rr; 

(5.13a) 

but it can also be taken to be S04 (since the d matrices 
for SOu, S03 , and SOu are well known), since, due 
to the local isomorphism S04 "-' S03 X S03, we have 
the simple form5 

m 

i(L + m), teL - m), L) 

X C0(11 + 12),1(11 - 12), J'; 

i(L + m), t(L - m), L)eim8
, (5.13b) 
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where q ... ) are the S03 Clebsch-Gordan coeffi­
cients. 

The general form of the dhJ'(O) functions for SOn 
and SO n.1 will not be attempted here beyond the 
recursion formula (5.11), which may be of more 
practical use. 

The simplest cases, S02' S02,l ,2 S03,1 SOu ,4.6 

and5 S04 have been calculated as finite sums of 
trigonometric (and hypergeometric) functions. The 
expression (5.13b) for S04 is noteworthy for its 
simplicity. The appearance of 3-J symbols in the 
coefficient in (5.13b) and Holman's resu1t13 for S05' 
which involves 9-J symbols, suggests that a relatively 
compact expression for the general d matrices may yet 
be found. 

The recursion formula (5.11) can be used to deter­
mine the asymptotic behavior ofPd~LJ,m as' -+ 00. 

Indeed, from (4.13), we have 

sin O/sin 0' = cosh, - sinh, cos 0, 

and hence 

(5.14a) 

where 

A),£ _ (dimnJdimnJ')! rein) 
I.J.JL'J' - ! 

dim n_ 1 L dim n_ 1 r: 7T r(!(n - 1» 

X I dimn_2 Mdi~1L'(7T) 
,11 

X fSinn-2 0 dOd'Ll1L'(O) sin
2
" iO. (5.14b) 

In Appendix B we perform an integral which may 
be helpful in the evaluation of (5.11) and (5.14). 

The Id matrices for the ISOn groups are found as 
the matrix elements (3.6c) of the transformation 
generated by Xn = , cos 0, 0 == O~~1.n' In its form 
(2.7), 

U(Y1mf({On = exp (j~y cos O)f({O}) (5.15) 

is unitary [i.e., satisfies (2.9)] for, real. Notice, how­
ever, that it produces no deformation of the group and 
thus cannot be put in the form (2.8). 

The second-order Casimir operator R2 = L x pX p has 
the eigenvalue ,2, whence we can write, as for (5.11), 

I {y,LJ (dimn J dim" J')! (vol H)2 
d JLJ'(~) = -'---"'---"---'-- ---'----"­

dimn _ 1 L dim n _ 1 1.: vol G . vol K 

X L dim,,_2 M f"sin,,-2 0 dOdiML'(O) 
M Jo 

J' 
X exp (iy~ cos O)dLML,(O). (5.16) 

Furthermore, we can check that (5.15) and (5.16) 
are indeed contractionsll of the corresponding ex­
pressions (4.13) and (5.11), i.e., that 

l'd{j·,~-l ,(r) _ I iY.l;) ,(~) 
JLJ '" .<-+icr> JLJ , 

(iA~=)'sl 

since 

(sin O/sin 0')" ~ exp (i~y cos 0). 
.I.-1r:t:-

(i;.~=;·.n 
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APPENDIX A 

The Iwasawa decomposition29 of8(' G = SOn.1 can 
be written uniquely as g = k({O}) . a('YJ) • n(~), that is, 

g = (k({On ~) (~ 
001 0 

o 
cosh 'YJ 

sinh 'YJ 
sin~ 'YJ) 
cosh 'YJ 

where k({O}) E K = SOn, the maximal compact 
subgroup of G parametrized as in (3.1),whereby we 
have k nn = cos 0 (using 0 == O~~1.n)' a('YJ) E A, the 
Abelian subgroup of G which corresponds to the 
boost in the nth direction in (3.14), na) EN, the nil­
potent subgroup of G, where ~ is the column vector 
(~1' ~2"" , ~n-1)' i its transpose, and 

8 = H ~~ + ... + ~~-1)' 

Consider now the transformation induced by 

Direct calculation yields 

cos 0 ~ cos 0' = (cosh' cos 0 - sinh ') 

X (cosh' - sinh' cos Ort, (A2a) 

exp 'YJ ~ exp 'YJ' = exp 'YJ( cosh, - sinh' cos 0). 

(A2b) 
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Notice that (A2a) is the same transformation as 
(4.13). The infinitesimal generator [as in (2.1) and 
(2.2») of the transformation (A2) on the space of 
functions on G/N is thus 

N = sin f) ~ - cos f) ~ . (A3) 
of) O'fj 

The parameter 'fj of the Abelian subgroup A c G 
does not appear as such in (A3) and thus30 o/O'fj 
commutes with (A3) as well as with all the generators 
of K and of N [whose action can be written in terms 
of those of K and A through (3.1»). Hence, we can 
choose that subspace of functions on G/AN ~ K 
which corresponds to an eigenvalue A under O/O'fj 
and now the operator (A3) takes exactly the form 
(4.9)-(4.10),which was obtained from the Gell-Mann 
formula (4.4)-(4.5) on the space K. The deformation 
which the latter produces on K is thus seen to be the 
same as the natural action of G = KAN on itself 
(modulo AN). [Notice, however, that this is not true, 
modulo H n , had we taken the decomposition (3.1).) 

Through a suitable choice of A, the operator (A3) 
can be made anti·Hermitian,31 and we know a com­
plete and orthogonal set of functions on K: the D 
matrices for san' Although it is suggestive to con­
sider a similar set on G/AN "" K as a subset of those 
on G, the theory of complete sets of functions on 
homogeneous spaces with noncom pact stabilizers is 
lacking. Some of the difficulties have been pointed out 
in Ref. 18. 

APPENDIX B 

Before solving the integrals in (5.11), (5.14b), and 
(5.16), we have to decide in which form we expect the 
integrand to appear and try to put the solution in the 
same form. The cases which are known suggest that 
dhJ,(f) will appear as a sum of powers of sin f) and 
ei9 for the compact cases and sinh, and e~ for the 
noncompact ones. 

We will therefore perform the integral 

where p, q, p', and q' are integers and where 0 and 
0' are related by (4.13). There , is real and A, in 
general, complex. If we want to be able to make the 
analytic continuation from SOn.1 to San+! easily, we 
need a form where we can replace , by iOn, 0 ~ 
On ~ TT, and then let A be a nonnegative integer. 

We express (Bl), expanding the exponentials by 

the binomial theorem, as 

I::q\·,q·m 
= 2n+q+q'-22II2~1(2IPI) (21~'1) 

y~O y'~O y Y 

x (1;1 ir (1;:1 ifJ(A + n - 2 + q + y, 

-A + q' + y', A + n - 2 + 21pI - y, 

where 
-A + 21p'l - y'; '), (B2) 

J(a, b, c, d; 0 = f df) sina tf) sin b to' cosc tf) cosG if)'· 

(B3) 
In order to solve (B3), substitute4 

x == sin f)lsin f)', dx = sinh, sin () dO, 

and the limits of the integral [0, TT) become [r~, e~), 
and 

sinm if) sinm
' tf)' 
= [e~m'(x - e-~)m+m'x-m'(2 sinh ,rm-m')i, 

cosn if) cosn' tf)' 

= [e-~n'(e~ - xr+n'x- n '(2 sinh 'rn-ni. 

Thus, when a + band c + d are odd and positive, 
we can expand 

J(a, b, c, d; n 
= (2 sinh ,ri<a+b+c+d)ei<b-d){ 

J.
ee 

X dx X-i<b+d)(X - e-')i<aH-U(e{ _ X)i<C+d-U, 
e-' 

using the binomial theorem, into a finite number of 
summands. This is the case in passing from S03 t04 

SOu, but it does not seem to be a general property. 
Thus, we have to effect the further transformation 

y = (x - e-')(2 sinh ')-I, 

in order to bring it to a form where it can be found32 

to be 

J(a, b, c, d; 0 
= (2 sinh ,ri<aH+c+d)eb{ 

rU(a + b + 1»fO(c + d + 1» 
X 

rO(a + b + c + d) + 1) 

x F(tCb + d); tCa + b + 1); 

tCa + b + c + d) + 1; 1 - e2
,). (B4) 

When we use (Bl)-(B4) in order to find the d­
matrix elements for SOn+1, we obtain them in terms 
of trigonometric (and hypergeometric) functions, 
i.e., in the same form as we assumed them to be when 
we choose to construct the form (Bl). 
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The concept of iterated integral-transform trial functions is introduced. Its formal correspondence 
with the iterative solution of integral equations is established. Extensions and generalizations are 
indicated, and some of the advantages of the approach are discussed. Ways are suggested to make 
tractable the multidimensional integrals that arise in the method. 

1. INTRODUCTION 

Recently I proposed! the use of integral-transform 
(IT) trial functions in quantum-mechanical calcula­
tions. The conceptual simplicity of the basic idea 
enhances the computational successes that we achieved 
with IT trial functions. 2- 6 This simplicity makes 
possible extensions and generalizations quite natural. 
The systematic construction of special, correlated 
many-particle wavefunctions,7 various generalizations 
of the conventional scaling procedure and their 
natural relation to correlation,S and the construction 
of new mo7ecular functions from atomic bases9 are the 
most important examples of such extensions. In this 

work, a further generalization will be introduced, the 
concept of iterated IT trial functions. 

2. INTEGRAL TRANSFORM FUNCTIONS 

Integral-transform trial functions may be con­
structed by the prescription 

Fb) = r So(t)Fo(tx) dp.(t). (2.1) 
JDo 

In Eq. (2.1) Fl(x) is an approximation to F(x) , the 
exact solution to the eigenvalue equation HF(x) = 
EF(x), Fo(x) i's the known exact solution of a model 
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