
Investigación Revista Mexicana de Física 40, No. 3 (1994) 366-377

Approximation on a finite set of points through
Kravchuk functions

NATIG M. ATAKISlIIYEV* AND KURT BERNARDO WOLF

Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas -Cuernavaca
Universidad Nacional Autónoma de México

Apartado postal 139-B; 62191 Cuernavaca, Morelos, México
Recibido el 27 de octubre de 1993; aceptado el 2 de febrero de 1994

ABSTRAeT. In a harmonic oscillator environment, such as Fourier optics in a multimodal parabolic
index-profile tiber, data on a finite set of discrete observation points can be used to reconstruct
the sampled wavefunction through partial wave synthesis of harmonic oscillator eigenfunctions.
This procedure is generally far from optimal because a nondiagonal matrix must be inverted. Here
it is shown that Kravchuk orthogonal functions (those obtained from Kravchuk polynomials by
multiplication with the square root ofthe weight function) not only simplify the inversion algorithm
for the coeflicients, but also have a well-defined analytical structure inside the measurement
interva1. They can be regarded as the best set of approximants because, as the number of sampling
points increases, these expansions become the standard oscillator expansiono

RESUMEN. Es un ambiente de o~cilador armónico, tal como la óptica de Fourier en una fibra
multimodal de perfil de Índice de refracción parabólico, los datos sobre un conjunto finito de puntos
de observación pueden ser usados para reconstruir la función de onda que se está muestreando,
desarrollándola en eigenfunciones de oscilador armónico. Este procedimiento es generalmente lejano
al óptimo porque es necesario invertir matrices no diagonales. Aquí mostramos que las funciones
ortogonales de Kravchuk (aquellas obtenidas de polinomios de Kravchuk multiplicados por la raíz
de su función de peso) no sólo simplifican el algoritmo de inversión para obtener sus coeficientes,
sino que también proveen una estructura analítica bien definida dentro del intervalo de medición.
Pueden considerarse como el mejor conjunto aproximante porque, conforme crece el número de
puntos muestreados, este desarrollo se vuelve el desarrollo estándar en funciones de oscilador
armónico.

PACS: 02.20.+b, 03.65.Fd, 03.65.Ge

l. INTRODUCTION

Harmonic oscillator wavefunctions are widely used as a convenient basis for the expansion
of square-integrable functions. \Vhen the "function" is the result of a finite number of
measurements on a line segment, it is common to continue to use this set of functions even
though the interpolation between measured points is thereby fixed by mathematics rather
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than physics, and its extrapolation to the real line outside the interval of measurement
will bear the Gaussian decrease factor of this seto
In this article we discuss the approximation of a function given by its values on a finite

number of points by means of the Kravchuk functions, which are the discrete analogues of
harmonic oscillator functions [1,21. \Ve find that the use of Kravchuk funclions not only
simplifies the inversion algorithm for obtaining the linear combination coeflicients, but
also has a well-defined analytical slructure inside lhe measurement interva!. Lastly, when
the number of sampling points increases, the Kravchnk funclion expansion becomes the
standard harmonic oscillator expansiono
The physical problem to which we direct this development is the following: consider a

plane, multimode optical waveguide whose refractive index profile is parabolic. Optical
fibers present such a profile in the paraxial approximation; a scalar wavefield travelling
along the fiber behaves as a quantum harmonic oscillalor wavefunction in time. That
is, we expect the harmonic oscillator wavefunctions lo be a "good" physical basis of
functions to describe mode propagation, as well as mixing by imperfections, accidental
or designed. A finite line array of point sensors across the fiber yields a finite number of
complex field values (amplitude and phase), whose mode content we want to delermine
-efliciently. Clearly, it is hardly optimal to use the standard "continuous" harmonic
oscillalor wavefunctions because lhey are not orthogonal over the set of sensors, and
because they allow the presence of more modes than observation points. Rather, we require
a finite system of functions, orthogonal on the same finite number of points, having a
definite and close relation with the oscillator system, such that in the limit of a continuous
measurement device become the standard harmonic oscillalor wavefunctions.
In Sect. 2 we review the standard harmonic oscillator expansion series and its discrete

version over a set of sampling points. In Sect. 3 we describe the properties of the Kravchuk
functions; by analogy with the Hermite ¡unctions [31, the Kravehuk ¡unetions are the
product of the Kravchuk polynomials times the square root of the weight fnnction. Sect. 4
is devoted to the construction of the finile approximation lo a square-integrable function
in terms of the symmetric Kravchuk functions. In Sec\. 5 we discuss discrete position
and momentum functions, that correspond to localized states. Finally, we give in the
Appendix the three-term recurrence relations for the symmetric Kravchuk polynomials
k~1/2)(x + !N, N) and their explicit forms for u up to 10.

2. HARMONIC OSCILLATOR EXPANSJONS OVER A LATTICE OF SAMPLING POINTS

The harmonic oscillalor eigenfuctions are

where Hn(O are the Hermite polynomials and

(u = 0,1,2, ... ), (2.1 )

(2.2)
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is a dimensionless variable expressed in terms of the oscillator mass m, the oscillation fre-
quency w, the reduced Planck constant h, and the position coordinate x. These functions
are orthonormal under the £20 inner product, integration over the full real line:

when m = n,
(2.3)

when m rf n.

Thus, an arbitrary function J(O E C2(1R) can be approximated in the norm by the
expansion

00

J(O = :L Cn 7/Jn(O,
0=0

(2.4 )

where the expansion coefficients {en };;";o are determined by performing the integrals in

(2.5)

When the N + 1 values {j(~j)}j~o of function J(O are known only at a set of N + 1
discrete "sampling" points ~o,~I... ~N, that are equidistant by h = ~j+J - ~j, and form
an array that is symmetric around the origin,

~o= -!Nh, ... ,~j = (-!N + j)h, ... ,~N = !Nh, (2.6)

then we can build an expansion that uses the first N + 1 harmonic oscillator eigenfunc-
tions (2.1) in the following way:

N

0=0

(j =O,l, ... ,N). (2.7)

The task to determine the N + 1 coefficients {c(N)}~;O is simplified when we write these
equations in matrix form

(2.8)

abbreviating by (N + l)-component vectors the observed values at the points and the
coefficients,

(N)Co
(N)cI (2.9)
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and the (N + 1) x (N + 1) transformation matrix between the two,

",(N) = (2.10)

that depends only on the separation h > Oand the number N. The traditional method to
solve for the coefficients of the expansion (2.7) needs the inversion of the matrix (2.10).
Therefore, a more efficient algorithm should sidetrack this matrix inversion.

3. KRAVCHUK FUNCTIONS AS DIFFERENCE ANALOGS OF THE OSCILLATOR

EIGENFUNCTIONS

Kravchuk polynomials k!l')(x, N) of degree O ~ n ~ N, in the variable x E [O,N]' and
of the parameter O < p < 1, are related to the binomial distribution of probability
theory [4,5]. They satisfy the three-term recurrence relation

[x - n - p(N - 2n)]k!l') (x, N) = (n + 1)k~ll (x, N) +p(1 - p)(N - n + 1)k~~1(x, N), (3.1)

and are related to the Gauss hypergeometric function through k!l')(x,N) = (-1t x
C'NpnF(-n,-x,-N;p-I). For each N = 1,2, ... , the N + 1 Kravchuk polynomials
{k!l') (x, N)}~=o are an orthogonal set with respect to a discrete weight function with
finite support, namely

N

~ I!(j) k!::)(j, N) k!l')(j, N) = d~bm.n,
j=O

(3.2)

with d~ = C'N[P(1- p)]n, where c'N = (~) = N!/r(n + 1)r(N - n + 1) is the binomial
coefficient, and the weight function is

(3.3)

Kravchuk functions can be defined [1] as

,¡,!I')(x, N) = d;;l k!l'\Np + x, N) I!I/2(x + Np),

O ~ n ~ N, -Np ~ x ~ (1 - p)N.
(3.4)

They obey the following difference equation in the variable x:

[(1 - 2p)x - n + 2p(1 - p)NI<i>~)(x, N)

= vp(1 - p) [a(x)<i>!I')(x - 1, N) + a(x + 1)<i>!I')(x+ 1, N)] , (3.5)
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where a(x) = {(x+pN)[(I-p)N _X+l)}I/2. From (3.2) follows the discrete orthogonality
relalion

NL1>!!:)(Xj,N) 1>!r)(Xj, N) = óm,n
j;O

(3.6)

for the Kravchuk functions at the points Xj = (j - pN). Notice carefully the domain of the
Kravchuk functions in the variable x. Although the sum in (3.6) is only over the N + 1
discrete points Xj, extending between -pN and (1 - p)N, 1>!r)(x,N) is a well-defined
function of x in the slightly larger interval

-1 - pN S x S (1- p)N + 1, (3.7)

and is zero at the endpoints.
The Kravchuk polynomials and their weight function satisfy the following limit relations

(3.8a)

h-1 = V2p(1 - p)N, (3.8b)

with the Hermite polynomials Hn(O and their weight function. Therefore, the Kravchuk
functions coincide with the harmonic oscillator functions (2.1) in the limit as N ...• 00,
namely

lim h-1/21>!r)(h-1C N) = 1/Jn(O.
N-oo

lf one writes the Eq. (3.5) in the form

with the difference "Hamiltonian"

(3.9)

(3.10)

H(N)(X) = (1 - 2p)x + 2p(1 - p)N + t - vp(1 - p) [a(x) e-o. + a(x + 1) eO.], (3.11)

then, with the aid of the factorization of H(N)(x) (for details, see Refs. [1] and [6]) it is
not difficult to construct a spectrum-gellerating algebra for this Hamiltonian, which turns
out to be the Lie algebra of the 50(3) group [or its homomorphic group 5U(2)].
We recall that the generators of the 50(3) group satisfy the commutation relations

[13, JI] = :J:h and [1+,1-1 = 2J, (see, for example Re£. [7]). In the space of an irreducible
representation of 50(3), the Casimir operator J2 = f; + J; + f¡ = J+1- + J,(J, - 1) is
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an l(l + 1) multiple of the identity operator. This irreducible space is of dime nsio n 2l + 1
and the action of the generators is given by the well-known formulas

J,fm = mfm, (3.12a)

o:~= J(l +m)(l- m+ 1), -l:::; m:::; l. (3.12b)

Thus, the Kravchuk functions <P~)(x, N), 11 = 0, 1, ... ,N form bases for irreducible repre-
sentations of the group SO(3), eorresponding to the eigenvalues l = ~N of the invariant
Casimir operator; the eigenvalues of J, are m = 11 - ~N= 11 - l. Moreover, the repre-
sentations eorresponding to different values of the parameter p turn out to be unitarily
equivalent [11, and therefore it is in fact sufficient to eonsider a set of funetions <P~)(x, N)
with sorne fixed value of this parameter. It is eonvenient to choose the value p = ~,since
in this case the Kravehuk functions have definite parity with respect to the change of sign
of x, i.e.,

(3.13)

Also, in the p = ~ case the double commutator of the corresponding Hamiltonian with
the variable x is [11

(3.14)

\Ve reeall in this conneetion that the quantum-mechanieal analogue of Newton's equa-
tion is mv = -au fax, where m is the mass, v = j; = ih-1[H, xl is the velocity operator,
and H(x) = p2f2m+U(x) is the Hamiltonian (see, for example, Re£. [8]). For the harmonic
oscillator, i.e., when we have U(x) = ~mw2x2, this equation takes the form [H, [H,xll =
(hw)2x. Therefore, Eq. (3.14) can be regarded as the difference analogue of the equation
of motion of the linear harmonic oscillator in the Schriidinger representation, H(N)(x)
being the analogue of H(x)fhw.
Thus, in the subsequent diseussion we shall use the symmetrie Kravehuk funetions

11' (N - 11)!

r(~N+x+l)r(~N-x+l)'
(3.15)

implying that they are the p = ~ case of the definition (3.4). The symmetric Kravchuk
polynomials are given in the Appendix for 11 = 0,1, ... , 10. In Figs. 1 we plot the first few
Kravchuk functions, comparing them with the eorresponding harmonic oscillator funetions
over the interval (3.7).
Indeed, Kravehuk polynomials have many remarkable mathematieal properties: they

are related to the \Vigner D-functions, the unitary irreducible matrix elements of the
SU(2) group. These and other classieal orthogonal polynomials of discrete variable have
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FIGURE L Kravchuk functions h-l/21>n(~, N) for n = 0,1,2,3,4, and 8, where h = J2IN. For
each n we show the functions with compatible values of N E {l, 2, 4, 8, l6}, and the N ~ 00 ¡¡mit
that corresponds to the harmonic oscillator wavefunctions. The Kravchuk functions oC parameter
N have endpoint zeros at ~ = :J:.( JN 12 + ,j2jN) which are beyond the orthogonality interval

I~I:$ JNI2.
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been recently of much interest (see Ref. [9]). In this paper we do not need properties
beyond those given in this section.

4. FINITE APPROXl~IATION TIIIIOUGlI TIIE SYM~IETRlC KRAVClIUK FUNCTIONS

Let us returo finally to the expansion of a function 1(0 that "lives in a harmonic os-
cillator environment", i.e., a function whose harmonic oscillator expansion is physically
meaningful, but of which we know only the values on a set of N + 1 equidistant points ~j

seen aboye. For such a function one can write the expansion in terms of the symmetric
Kravchuk functions (3.15) as

(j =O,I, ... ,N). (4.1 )

The advantage of the Kravchuk basis is the orthonormality property (3.6):
multiply (4.1) by 9m(~j/h,N) and sum over the sample points ~j, we obtain

when we

(4.2)

Thus, instead of inverting the matrix (2.10) with h = J2/N, we have only the task
of multiplying, for each n = 0,1, ... ,N, the sampled valnes f(~j) by the numerically
calculated values of the Kra\'chuk functions at the points x j = ~j / h.

Moreover, having found coefficients ,,~), it is possible to interpolate the function on
discrete points in (4.1) to the whole line segment [~o,~N) by writing

N

r _ 1 ""' .(N)f(C 1\) - ..¡¡; ~ "" <!>"(Uh, N),
n;;:;:O

(j =O,I, ... ,N). (4.3)

The function f(C N) defined by (4.3) and (4.2) can be called a finite approximation to
the square-integrable function f(O with given values on a set of N + 1 equidistant points
~j. This approximant f(C N) is finite beca use, as a linear combination of the symmetric
Kravchuk functions (3.15), for every finite N it has a finite support (-h - h-I, h + h-I),
with h = J2/N. The function f(~, N) is an approximation to 1(0 because its values at
the points ~j coincide with f(~j) by definition and, therefore,

N N N

h ¿f2(~j,N) = h ¿f2(~j) = ¿(,,~\')(
j;:;Q j-::O n=O

(4.4)
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When N grows, the approximation to 1(0 becomes better since in the ¡¡mit N -> 00, the
formulas (4.3), (4.2), and (4.4) coincide with (2.4), (2.5), and the Parseval formula

(4.5)

respectively, with en = K~oo).
To follow the time evolution of the approximating function, one should multiply each

summand <Pn((j ,N) by the usual time dependence exp( -iEntln), with the energy eigen-
values En = nw(n + t).

5. POSITIO:-I A:-ID MO~lENTUM FUNCTIONS

The set of values {f((j)};'=o were placed in a N + 1 dimensional column vector in the
matrix Eqs. (2.8)-(2.10). In this notation, the simplest vector basis are the position basis
functions

(5.1 )

namely, functions of discrete variable (j = "Xj with the values given by

(5.2)

It is evident that any other discrete function f((j) can be expressed through these basis
functions, i.e.,

(j = 0,1, ... ,N). (5.3)

Therefore, we can expand the basis functions (5.2) in terms of the Kravchuk func-
tions (3.15) as

where the coefficients are

(j = 0,1, ... ,N), (5.4)

(5.5)
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From (3.13) and (N-j = -(j, it follows that AN-k(C N) = Ak( -(, N). In Figs. 2 we show
the interpolation of the values of

N

Ak(C N) =¿<Pn((k/h, N) <Pn((/h, N),
n=O

(5.6)

for k = 0,1, ... , [N/2J and continuous (. These functions represent the most localized
states of the discrete oscillator.
Momentum basis functions are defined exactly in the same way, beca use Kravchuk

functions are self-reproducing under the discrete Fourier transformation [2]. Thus,
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ApPENDlX

The symmetric Kravchuk polynomials kn(x, N) = k~1/2)(x+ !N, N) satisfy the three-term
recurren ce relations:

- - ¡ -(n + l)kn+1 (x, N) = xkn(x, N) - ¡(N - n + l)kn_¡ (x, N).

The first eleven polynomials are:

ko(x, N) = 1, k¡(x,N)=x,

kJ(x, N) = MxJ - !(3N - 2)x], k4(x, N) = Mx4 - !(3N - 4)x2 + ¡J6N(N - 2)],

k5(X, N) = ~ [x5 - ~(N - 2)xJ + 1~(15N2 - 50N + 24)x],

k6(x,N) = t!r[x6 - ~(3N -8)x4 + i6(45N2 - 210N + 184)x2 - ¿~N(N2 -6N +8)],

k7(x, N) = ir [x7 - h3N - lO)x5 + ,76(15N2 - 90N + 112)xJ

- ~4(35NJ - 280N2 + 588N - 240)x],
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FIGURE 2. The funclions Ak(~, N) for N = lO, in lhe inleryal I~I:$ VNJ2 + y2jN '" 2.68 ... ,
for k = O,... , [N/2) = 5. The resl of lhe funclions are oblained from Ak(~, N) = AN-k( -O. Each
funclion Ak(C N) is equal lo 1 (indicaled by lhe bullel) al lhe poinl ~k and zero al all olher poinls
of discrele orlhogonalily ~ E {O,:f:h, :f:2h, :f:3h, :f:4h, :f:5h}.
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k8(X,N) = Mx8 - 7(N - 4)x6 + ~(15N2 - 1ION + 176)x4

- i6(l05N3 - 1050N2 + 2968N - 2112)x2

+ ~~~N(N3 - 12N2 + 44N - 48)J,

k9(x, N) = ~ [x9 - 3(3N - 14)x7 + 281 (9N
2 - 78N + 152)x5

- i6 (315N3 - 3780N2 + 13356N - 13088)x3

+ 2;6(105N4 - 1540N3 + 7308N2 - 12176N + 4480)x],

klO(x, N) = ¡fu [xlO - 145 (3N - 16)x8 + 2i (15N2 - 150N + 344)x6

- 352(315N3 - 4410N2 + 18648N - 22976)x4

+ 2;6 (525N4
- 9100N3 + 52780N2 - 115600N + 72064)x2

- 9.15 N(N4 _ 20N3 + 140N2 - 400N + 384)]1024 .

\Ve note that the generic value for the coefficient of the highest power of x" is l/n!.
The coefficient of the next-to-highest power, namely x"-2, is -[3N - 2(n - 2)J/24(n - 2)!.
Finally, the x-free ter m of the polynomials of even degree n = 2m is (_l)m O)m (~N+
1 - m)m = (-1)"2-2"(2n - 1)!! rr;~¿(N - 2j), where (a)m = r(m + a)/r(a) is the
Pochhammer symbol and (2n - 1)!! = 1 .3.5 ... (2n - 1).
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