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Relativistic aberration of optical phase space
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When an optical imaging system is boosted to relativistic velocities, the directions of the incoming light rays
converge toward the pole of motion and the images are amplified in that direction and suffer a global comatic
aberration. Our analysis uses succinctly the Hamilton-Lie formulation of optics to find the invariants in opti-

cal phase space of all Lorentz transformations.

1. INTRODUCTION

One favorite Gedankenexperiment in special relativity
mounts an observer on a spaceship. Among other effects
at higher velocities, photons will rain on him with increas-
ingly forward-slanted trajectories so that the field of vis-
ible stars will shrink toward his direction of motion; the
Doppler effect turns the light blue at the center and red at
the periphery. Terrell' has studied the apparent images
in a snapshot camera: differences in the time of photon
flight will make three-dimensional objects near the ob-
server’s path appear to be rotated. Stereoscopic cameras
with continuously open shutters, on the other hand, will
produce shear in the images; these have been analyzed nu-
merically and within approximations.> The controversy
over the two interpretations has revived recently.’®

The purpose of this paper is to discuss the relativistic
aberrations of optical images from the point of view of
geometric optics in phase space. Lorentz transforma-
tions of the sphere of ray directions entail a canonically
conjugate transformation of the images on the screen of
an imaging device. We find that when the direction of
motion coincides with the optical axis, there is magnifica-
tion and circular comatic aberration; when the axes do not
coincide, the resulting spot diagrams present other inter-
esting geometric properties.

In 1947 Bargmann® studied the representations of the
two-dimensional relativistic group SO(2,1) as ray trans-
formations of the circle (with no reference to optics).
Along the same lines, Boyer and the present author studied
groups of deformations of N-dimensional spheres,” real,
complex, and quaternionic.® Later work on the group-
theoretical foundations of geometric and Helmholtz op-
tics” found the natural action of the Lorentz group on
spaces of optical rays and wave fronts. In Refs. 8 and 9
the Bargmann deformation algorithm was applied to geo-
metric and wave-optical coset spaces of the Euclidean
group of rigid translations and rotations. Here the basic
premises are stated in phase-space language, and the con-
clusions follow succinctly from the complete set of invari-
ants that we find.

In geometric optics, light rays in a homogeneous medium
are idealized as lines in three space g(s), with a coordinate
s € R (the real line) along the ray. This is the path of a
classical photon in time ¢ = sn/c, where n is the refractive
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index and ¢ the velocity of light in vacuum. The manifold
of all such lines is optical phase space; it has two position
and two momentum coordinates that satisfy Hamilton’s
equations of evolution referred to the standard z = 0
plane screen.’® In Section 2 we recall these facts, simpli-
fying the proofs of Ref. 11. Our basic premise is that all
optical transformations are canonical®: a deformation of
the sphere of ray directions necessarily entails a conjugate
transformation of ray positions.

The relativistic addition of velocities deforms the sphere
of ray directions toward the axis of motion. In Section 3
we present the well-known ray-direction transformation
and in Section 4 the new canonically conjugate position
transformation. If an imaging device is set to focus on a
nearby point light source at rest, we deduce its image when
it is in motion. It is important to distinguish between a
near source and a star. To form the image of a near
source, a system will collect rays from a pencil of rays that
range over a finite angle; from stars, a telescopic imaging
system will receive only a pencil of parallel rays, where the
comatic phenomenon is not apparent.

Section 5 typifies telescopic, identity, and general linear
systems. In Section 6 we analyze the relativistic boost
transformation on screens perpendicular to the direction
of motion. We show that the image will magnify and
aberrate, suffering a series of circular comatic aberrations
of increasing order that we have termed relativistic coma.®
The global method of invariants is valid for all angles
(4 sr) and is used in Section 7 to find the transformations
for any screen orientation. The concluding Section 8
adds some remarks on the scope of this analysis.

2. OPTICAL PHASE SPACE

Consider the lines §(s), s € R, § € R?, their tangents
P(s) € R, and vanishing intervals ds, in continuous, dif-
ferentiable media. On purely geometric grounds we write

2.1

The first term is a unit vector because ds = |dg|, and the
last term proposes a function %(g,p) that will generate
evolution along 5. Performing partial integration with
respect to p, up to an undetermined function n of ¢ and
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additive constant, we obtain
# =18 - n@. 2.2)

The dynamic characterization of light in inhomoge-
neous optical media is the local form of Snell’s law: the
differential change of the line direction dj is ds times the
space gradient of the refractive index:

B _mq)_ o @.3)

The generating function ¥ is the same as in Eq. (2.2)
when the arbitrary function rn(g) is indentified with the
refractive index of physical optics, and it is the evolution
Hamiltonian in the parameter s.

The Hamiltonian flow in s preserves the surfaces
*(G,p) = 0; ie,

|8l = n(@) (2.4)

holds, for all points of three space and any ray direction.
In this way, the ray direction three vector 3 is constrained
to range over a sphere %,, whose radius is the local refrac-
tive index. For image-forming devices we use Cartesian
coordinates, defining the z = 0 plane as the stardard
screen and the +z direction as the optical axis. Since the
Hamiltonian flow is constrained to % = constant sur-
faces, six coordinates (g, ) are redundant for the system.
We will parameterize (almost all) rays by four coordinates
(4,p), 4 = (g:,9y), P = (ps,py), and a chart index o =
sign p., so p, = o(n® — p,* — p,» . This index distin-
guishes between rays in the hemisphere along the optical
axis (o = +) from those counter to it (¢ = —). Only for
p. = 0 rays, i.e., those parallel to the screen, does this
parameterization of the ray-vector bundle fail'®; being a
lower-dimensional manifold, this fact need not concern us
overly. In the azimuth and collatitude coordinates (6, ¢)
of the ray direction sphere,

Ip| = n sin 6, (2.53)
G,

bz = ncos 6. (2.5b)

We have used the length s along the ray as evolution pa-
rameter in the Hamilton equations (2.1)-(2.3); now we re-
duce these to equations in the evolution parameter ¢, = z,
the distance along the optical axis.!*'® The differentials
ds, dq, and dz form a right triangle in 8-space® that is
similar and has the same orientation as the triangle of
sides n, p, and p, = o(n® — p?'?, where we indicate that
p® = |p|>. Hence ds = dzn/p. (p. # 0). Replacing the
differentials reduces the Hamilton equations in 3-space to
Hamilton equations on the two-dimensional plane of the
screen [q(2), p(2), ],

da_p_2kh_ .} g4, (2.6a)
dz p. op

dp non oh

— IS e e IS — T —h 2.
2 " pq" e {-h,cp, (2.6b)

where the screen Hamiltonian function that generates z
evolution is

h(q,0,p; 2) = —0'Vn(q,2)? — p* 2.7
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and we have used the Lie-Poisson operator notation

{folg = {f & 3a p  p 99 2.8)
applicable also for 2-vector functions.

Because they appear in a pair of Hamilton equations, q
and p in each o chart are canonically conjugate coordi-
nates of the ray.”* Position (or configuration) space q is
the %* plane of the screen. The conjugate coordinates p
are the optical momentum-vector components on the
screen; it is the projection (p.,p,) of the ray direction
3-vector § and has bounded length |n sin §| < n. Notice
carefully the momentum domains: the projection of the
> surface onto its equatorial plane is composed of two
open disks @, = =+ of radius n and of the connecting circle
of o0 = 0 rays that are parallel to the screen. Optical
phase space is then a symplectic manifold p = R? X &F, =
REX (Dy + D + D).

For example, in a homogeneous optical medium, with
n = constant, the Hamilton equations may be readily in-
tegrated to

q(z) = q(0) + z— p(z) = p(0),

N
(n? — p2)1/2’
o(z) = 0. 2.9

The momentum of the ray p remains constant, while q
increases along p by z tan 6 [cf. Eq. (2.5)]; q(z) is the
intersection of the straight ray line with a screen that is
translated along the optical axis by z. In this case the
o charts do not mix.

We recall that a system governed by a pair of integrable
Hamilton equations evolves in such a way that the flow
of its phase-space points q - q' = q'(q,p,0;2), p> p' =
p'(q,p,0; 2) preserves the basic Poisson brackets:
{ai, 9} = 0,{gi, p;} = 8., and {p;, p;} = 0, and the value of
h'(q’ p,o) = h(q'(q) P, U),P'((Iap, 0),0') = h(q) P, o) for all
2.2 Liouville’s theorem states that the flow of the phase
space under Hamiltonian evolution is divergenceless, like
that of an incompressible fluid. The flow is along the
lines & = constant, so the Hamiltonian function is an
invariant of the flow. Free flight (or displacement of
the standard screen in the z direction) given by Eq. (2.9)
is shown in Fig. 1 for two-dimensional phase space

q, q 1@

7

j2 3' by

V4

Fig. 1. Free flight and/or translation of the screen in homoge-
neous media. Points in a patch of (two-dimensional) optical
phase space (left-hand screen) represent rays crossing the (one-
dimensional) screen (middle panel). Free flight by generic z to a
second (right-hand) screen deforms this patch of phase space
(left-hand side of screen) carrying the rays. This transformation
changes the position coordinate of the ray but maintains the ray
directions invariant. Area elements are preserved, because the
transformation is canonical.
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(i.e., two-dimensional optics on one-dimensional screens).
In this case, the incompressibility of the flow is equiva-
lent to the preservation of Poisson brackets, because
dg’' A\ dp’ = {¢’,p'}dg /\ dp.* In four or more dimensions,
the conservation of Poisson brackets is a stronger state-
ment than the incompressibility of the flow. - Phase-space
maps that preserve Poisson brackets are called canonical
transformations.'?

The basic assumption in Hamilton-Lie optics is canon-
icity: all optical transformations are canonical. (This
principle is local; on the other hand, Fermat’s minimum-
action principle,' leading naturally to the Euler-Lagrange
formulation of optics, is global) Translations along the
chosen optical z axis in an inhomogeneous medium are
canonical, and so are x and y translations and screen rota-
tions.” That optical transformations besides Euclidean
ones are also canonical is what makes the canonical prin-
ciple interesting. Refraction or reflection by a smooth ar-
bitrary surface separating two media with indices n # n’
is not a Hamiltonian evolution process (in any obvious
way, yet see Ref. 10); it is a finite, sudden transformation
that is, nevertheless, canonical.’®® Our hypothesis is that
velocity boosts of optical systems are also canonical trans-
formations of optical phase space.

3. RELATIVISTIC DEFORMATION OF
MOMENTUM SPACE '

Consider now 4-vectors in the common notation of spe-
cial relativity, [ = ([,1p) = (., 1,1, 1), and boost B in the
z direction to a velocity v = (¢/n) tanh B, B € R, in a ho-
mogeneous medium of refractive index n, which we set
henceforth equal to unity. This boost acts on the compo-
nents of [ through

B>l =1, Bl =1, (3.1a)
Rg:L,' > L' =1, cosh B + [ sinh B, (3.1b)
RBg:lo > Iy’ = [, sinh B + [; cosh B. (3.1¢)

Now let I be a lightlike vector, so that | = |lol. The
sphere &; of ray directions j is a homogeneous coordinate
set of the %3 space of 3-vectors [:

; _(b5k
pP= (pxrpy;pz) = (IO’IO’IO) 4 (3.2)

Transformation (3.1) thus becomes the following transfor-
mation of optical momentum space and Hamiltonian:

P
cosh B + p, sinh B’

, Dp-cosh B + sinh 8
PP = . 4
Ba:p: > P cosh B + p,sinh B

RBg:p>p = (3.3a)

(3.3b)

where p = (p.,p,) as in Section 2. We see that R, is
a nonlinear, 1:1 deformation of phase space p. It mixes
the o charts; they are tracked by the sign of p. and p.’
in Eq. (3.3b). We note the vector form p'(p,o; B) =
P(|p|%,o; B)p of this momentum transformation.

In terms of the polar angles (6,¢) of the ray-direction
sphere, the z boost leaves the azimuth ¢ invariant, and the
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colatitude 8 transforms by

%3:

> l:_ 1= Rpitan %0 > tan %0 = exp(—p)tan %6.
3.4

This realization of the map %, is known to group theorists
as the Bargmann deformation of the circle! and is shown
in Fig. 2. The projection of this transformation onto the
screen is Eq. (3.3a). In ca. 1725 Bradley' observed the
linear part of this action on star images for §' — 6 =~ 20",
recognized that it originated from the orbital motion of
the Earth, and named it stellar aberration—a misnomer,
since images remain pointlike, even though the star field
is distorted.

The Bargmann Lorentz map %, does not conserve length
elements on the circle of Fig. 2; instead d’p/p’® = d’p/p>
The conserved quantity is, by Liouville’s theorem, the
four-dimensional volume element of p, dg A\ dp. Thus
transformations of momentum p are bound to canonically
conjugate transformations of the position coordinates q.
The boost transformation of ray directions thus must
entail a corresponding transformation of optical images.

4. RELATIVISTIC ABERRATION OF
RAY POSITIONS

Now let us find the transformation of the image positions
that is canonically conjugate to Eq. (3.3a) by building the
invariants of the boost. We look at transformations in a
neighborhood of B around zero. There we can expand
Eq. (3.3a) to first order in dB and, for some function
B(q,p, o) to be found, write

~p — dBp.p = ($ + dB{B,°Np.
4.1)

’ . —= __p .
p(p,o;dp) 1+ dap.

This has the form of a second Hamilton evolution equation
for dp = p'(dp) — p(0),

dp oB

— = —p,p = —— = {B,o}p. 4.2

- PP 2 {B,olp 4.2)
‘We should now find the boost generator function B(q,p,o);
its action on position space q'(q,p,o; B) will be conjugate
to that of p above.

Y

Fig. 2. Bargmann Lorentz transformation of the circle. This
is the deformation of the colatitude circle of light-ray directions
under a boost toward the right. Its projection on a vertical line
is the action of boosts on optical momentum.
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Since Poisson brackets involve derivatives, the degree of
homogeneity of B in the components of q must be 1 or 0.
Since the momentum transformation has a vector form,
B must be a scalar function of phase space, i.e., invariant
under rotations around the optical axis (in the x~y planes
of p and q) and under reflections across planes that
contain that axis (say, x <> —x). The latter requirement
excludes additive terms with a factor q X p from being
present in B. The first two then allow only the forms
q - pb(p|% o) + a(lp|? o), where b can be found from
Eq. (4.2). (Since dB/aq = bp, it follows that b = p,) and
a is arbitrary. The effect of an a(|p|®) on ¢'(q,p) is to
introduce an additional spherical aberrationlike term Ba'p
(such as z translation when a = p,); on momentum space,
the presence of an a has no effect. Spherical aberration
always can be factored off from the boost transformation
(spherical aberration and coma generate a solvable sub-
group of aberrations'®), and for this reason we set a = 0.
We can thus write the boost generator function

B(q,p,0) = —q - pp.= —q - poV1 - p?. 4.3)

Therefore the first Hamilton-type equation generated by
the boost in the parameter g will be

— = —p, + CP— = — = B,O . (44)
ag =~ TPt e =o=1{Boq .

Since B(q,p,0) is independent of B, the infinitesimal
transformation (4.1) may be integrated to a finite one-as
an exponential Lie-Poisson operator %, = exp(B{B, o}).
The boost B thus defined has a natural canonical ac-
tion on optical phase space p and in particular on the
screen position coordinates of optical rays on the screen:
q(q,p; B) = exp(B{B,o)q. We now shall find q'(q,p;B)
explicitly without need of integration.

Since evidently {B, B} = 0, it follows that B(q,p, o) is an
invariant under the transformation %, that it generates.
Moreover, in three-dimensional optics, because '(dB) and
p'(dp) are vector functions of q and p, we can find a sec-
ond quantity that is invariant under z boosts: the cross
product (the square root of the Petzval'®):

L=qXp=gq.py— qp, 4.5)

because {B, L} = 0, as we may easily verify. [In fact, it is
a skew invariant because it changes sign, L +> — L, under
reflections (gx, gy, P+, py) = (= 4z, @y, = Px, py), as we al-
ready have seen.] ’
Finally, note that the repeated Poisson bracket of a
scalar quantity (such as B) of the form q - pb(|p|®) + a(|p]|®
with a vector quantity of the form c¢(p?)q + q : pd(p?p is
again of the latter form (for different functions ¢ and d).
Therefore the exponential map that integrates the evolu-
tion equations (4.2) and (4.4) leads to the generic form

q'(q,p; B) = R(p%; B)a + q - pS(p% B)p. 4.8)

The invariance of ¢ X p=L =L = Rq X p’ and the
known momentum transformation (3.3a) then imply that

R(p%B)™ = cosh B + VI — p? sinh 8. @7
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We use this information in the boost invariant B’ = B
to write

q-pp.=dq - pp.
= [R(p* B)a + q - pS(p% P)p] - [R(p% B)'plp.’
= q - pll + p*S(p% B)R(p% B 1p.’ 4.8
and solve algebraically for the function S. It is
R(p% .
S(p% B) = %(}% - 1)

z

cosh B + p, sinh B,
p; cosh B + sinh 8

= —sinh B 4.9
We have thus extended the boost transformation from
ray directions to the full optical phase space p. The com-

plete form of the boost transformation along the optical
z axis is therefore

RBp:q > = (cosh B + p, sinh B)

% _ q - psinh g
Pp.cosh B + sinh 8

p) ,  (4.10a)

P
cosh B8 + p,sinh B8

RBeg:p>p = (4.10b)

To picture this transformation we draw the results
for two-dimensional optics, where screens are one-
dimensional (position ¢ € ®). There the boost trans-

formation may be put in terms of the position and the
azimuth angle as

(cosh B + cos @ sinh B)?
cosh B + sec 6 sinh B

9@6;8) =q (4.11a)

sin .
cosh B + cos 0 sinh B8

sin 6'(q,0; B) = (4.11b)

This is shown in Fig. 3 for p € (~1,1). The (single)
quantity invariant under boosts is —B = ¢ sin 6 cos § =

(1/2)q sin 26; the lines of flow of phase space in the figure
are B = constant.

q q'
S
N
q
—_— e N
// '\0\\
TN
q
|| N
& P aRARNN
= O
7é // _:ﬁ\\\\l
\\\\\
— - »
] e
p T

Fig. 3. Relativistic transformation by a hoost perpendicular to
the screen. Asin Fig. 1, a patch of phase space (left-hand screen)
is followed under the boost (right-hand screen). Three ray pencils
that at rest converge to image points on the screen magnify and
aberrate after the boost, no longer forming point images. The
rays along the optical axis remain as such and define the tip of the
comatic image; those that form a nonzero angle map 2:1 and fall
below. A pencil of rays represented by a region of phase will yield
its image on the screen when projected on the vertical g axis.
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5. TELESCOPIC, IDENTITY, AND LINEAR
IMAGING SYSTEMS

We now analyze the performance of optical systems
moving at relativistic velocities, their objects, and their
corresponding images, to highlight the central role of the
identity system.

A system focused at infinity is telescopic®®: it forms
images of the incoming ray directions on its screen, thus
measuring the momentum p of the rays. The points of
phase space of Figs. 1 and 3 are projected on the p abscis-
sas while integrated over the g ordinates of all rays that
enter its front lens. If this system is aligned with its +z
axis along the direction of motion, the colatitude angle
[Eq. (3.4)] will change as shown in Fig. 2. With increasing
speed, the star images (ray directions) will crowd the opti-
cal center (q = 0) of the screen and remain point images.

The identity system is a simple screen onto which rays
fall. This screen senses the position g of the rays but
not their direction of arrival. In Figs. 1 and 3 (for two-
dimensional optics), the identity system registers the ordi-
nate of the points of phase space, projecting them on the
vertical g axis, integrating over the abscissa of ray angles.

Paraxial, axis-symmetric imaging optical systems are
well known and often used as a class of ideal devices.
They transform object rays (p°,q°) into image rays P, q)

linearly:
P 1y c djlp

The canonicity of the transformation requires that the
matrix M be unimodular, i.e., det M = ad — bc = 1. The
use of linear systems explicitly assumes that the rays are
paraxial: |gq| << 1 and 8 = p/n << 1. Classically, the
generators of such systems are free flights and thin lenses.
From these elements one produces compound systems by
multiplying their matrices. When the system matrix is
lower triangular, it is an imaging system,?’ since the image
position will depend only on the object position:

qi _ |~ 0 q’ _ na’ ’
[p»'] - [1/f l/u] [po] [1/”0 1 /fqo] 5.2)

where f is the focal length of the system and p its
magnification.

If a projector produces a pencil of rays (o, Ppep, Where
D is a range of ray directions, that focuses at rest on the
screen point ¢’, then, when boosted to relativistic motion,
the pencil will become [q'(q’, p; B),P'(P; Blpen, producing
an image q'(¢’, p; Bpep that is given by Egs. (4.10). For
later analysis, let us Taylor expand this formula by powers
of the phase-space variables as high as degree 5:

o = exp(B)q — n”? sinh B[%p’q + q * PPl
— n~*sinh Bl¥%p'q + % exp(—2B)p’q - ppl — ...,

(5.3)
p' = exp(—B)p + %n~? sinh B exp(—2B)p°p
+ Y4n~* sinh B exp(—2p)
X (1 — Y2 exp(—28)p'p + .... (5.4)
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The first term in each of these series is linear, so the first-
order approximation of the boost is thus that of a pure
magnifying system:

s3] =[5 L)

Within the paraxial regime thus, a camera with the ob-
server or a projector at the roadside will, after boosting in
the optical axis direction, produce the same, expanded im-
age: (@) = ¢'lq(@’,p7)] = rq'(q’,p’) = pexp(B)q’ in
the first case and (q°)' = q'(d’,p?) = q'[pnq’,p(q’,p°] =
exp(B)uq’ in the second case. This is still a focused point
image, since it is independent of the issuing ray direc-
tions p°. For general nonimaging systems [Eq. (5.1)], the
boost matrix [Eq. (5.5)] multiplies the system matrix by
the right-hand side in the first case (the relativistic boost
affects the object rays) and by the left-hand side in the
second (the boost acts on image rays).

Linear optical systems are the first-order approximation
to a true optical transformation by refracting surfaces.
The latter may be expanded in powers of the components
of q and p, as in Egs. (5.3)-(5.4), and calculated up to some
degree, the aberration order. The composition of systems
and boosts of the last paragraph may be extended (with
the aid of symbolic computation) for third, fifth, etc.,
aberration order. This process highlights the role of the
identity system to separate the relativistic aberration
phenomenon from the rest of the transformations of the
system. Our paradigmal setup is thus a simple screen
carried by the observer.

q,p 1. (5.5)

6. SPOT DIAGRAM OF RELATIVISTIC COMA

The spot diagram at q of an optical transformation
(q,p) ~ (q,p") is the map from a region p € D of the
sphere of object-ray directions onto a regionq' € D' € R2
on the screen for fixed q. Quite universally, the region D
is chosen to be a polar coordinate cap of the sphere of ray
directions, with the colatitude 0 ranging in steps from 0 to
some maximal angle 6., that, in the present case, is
bounded only by 7. As we shall see, relativistic boosts
give rise to spot diagrams that yield to simple geometrical
analysis and deserve the name comatie.

We consider a fixed object point q = (q.,q,) =
(q cos k,q sin k), and we let the ray p = (px,py) =
(p cos ¢,p sin ¢), p = n sin 6, trace out a cone in ¢, at a
fixed colatitude angle 6. Then the vector q'(q,k, p, ¢, ; B)
in Eq. (5.3) will trace out a closed curve on the boosted
screen. The curve may be computed easily in Cartesian
components and is of the form

q'lq(g, ), p(p, )]
= {[R + %p®Slq + (%)gp*Sr(9)}, (6.1a)

where

(@) = [cos(2¢v - K)

Sin(2¢ - K)] ’ -7 < ¢ =, (6.1b)

with R = R(p% B) and S = S(p? B) as in Egs. (4.6) ef seq.
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Fig. 4. The spot diagram of the relativistic boost transformation
is the map p > q(p), where p ranges over a polar coordinate grid
(left-hand diagram) and a corresponding region on the screen ¢
(right-hand diagram). The optical center is down, and, since the
spot grows linearly in the direction of q, this spot diagram is
generic for all q € R%  (Compare with Fig. 3 for two-dimen-
sional optics.)

To fifth-order aberration, we may write

q’' = {exp(B) — p?sinh B — Yp*
X [1 + exp(—2B)]sinh g — ...}q
— [%p®q sinh B + Yip*q exp(—2B)sinh B + ...Ir(¢).
6.2)

In Fig. 4 we draw the spot diagram of the boost transfor-
mation at point g = (q,0) for a range of directions up to
Omax = 45°  Since the spot grows linearly with g and
rotates with the orientation of q, this shape is generic.

The sets {q'[q(q, ), P(p, §)]} - r<y=r are circles on the
screen, drawn out twice by the vector r(¢), with

center at qcenter
= [R + %Sp*lq = exp(B)q — p?sinh Bq ~ ..., (6.3)

of radius p
= Y%qp®S = —VYogp?sinh B — .... (6.3b)

In this way we represent

ql(q7 p; B) = qcenter(q, pz; B) + P(q, Pz; B)r(K, d)) . (630)

For fixed q and letting the ray p roam on a polar coordi-
nate grid of the forward-momentum disk (o0 = +), the im-
age on the boosted screen (Fig. 4) has the shape of a comet
(coma). The apex of this coma is the map of the ray along
the optical axis (p = 0), which is affected only by the
scale factor exp(B8) of paraxial transformation (5.5). The
circles p = constant have their centers on the line be-
tween this apex and the optical center of the screen. As
p grows, their centers move from the apex by 6 =
|Qcenter — exp(B)q| = gp? sinh B, while their radii increase
as p = %qp® sinh B. The opening angle of the comet at
the apex is 60° as shown in Fig. 4, because 8p = % =
sin 30° is the half-angle. For growing p in Eq. (6.2), the
p* and higher terms open the coma in the manner of
a funnel.?

For B >0, all rays with o = + fall onto the boosted
screen with the same ¢/ = —. For 0 =0 < 1/27 (0 <
p <1,1= p, > 0), the centers of the ¢ circles move from
the apex toward the optical center, while their radii in-
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crease from p(f = 0) = 0 to p[§ = Yaw] = Y2q cosh B.
When B < 0 the apex of the coma is at q'(p = 0) =
exp(—|B|)q, nearer than q from the optical center, so the
comet opens outward. Neither the denominator in
Eq. (4.10b) nor the factor in Eq. (4.10a) vanishes, because
cosh B > [cos @ sinh g for all (8| < . However, the de-
nominator in Eq. (4.10a) does have a simple zero at a finite
critical angle 6, such that cos 6, = tanh|g)|, or tan %6, =
exp(—|B|), whose image is = Y%m in Eq. (4.11b), i.e., rays
that after boosting fall on directions parallel to the screen.
It is a mathematical singularity of the screen and chart
coordinates. Beyond this critical colatitude value, o = +
rays focused on the receding screen will appear to
come from the backward hemisphere: in Eq. (3.3b),
o’ =sign p, = —. Since our screen also records rays
from the backward hemisphere, the coma figure gener-
ated by colatitude circles continues uneventfully in the in-
terval 6, < 6 =< 7 through the value § = %a. The circles
shrink with further-increasing 6, and for the ray 6 = =
(from the backward pole) one obtains g = exp(|8))q, i.e.,
the image of the forward pole when 8 > 0.
Figure 5 shows, as a function of §,

The image of meridional rays (q|p)
g = (R + SpPq, (6.4a)
The center of the circles
Qeenter = [R + %2Sp%q, (6.4b)
The image of sagittal rays (q L p)
q.' = Rp7g. (6.4c)

From Egs. (4.10) we see that inverting the observer’s veloc-
ity B<> —Bis equivalent to p, < —p,; i.e., ¢ <> -0 The
spot around the backward pole is shown on the right-hand
side of Fig. 5. When the region D is the full sphere of ray
directions, we have a global coma spot diagram. It is a
map of the sphere on the plane; it is 2:1, the two poles are
mapped on the distinct apices q .+ = exp(£B)q that open
with 60° angles; and it is singular at the critical colatitude
value 6.. We thus characterize the relativistic boost be-
yond aberration-order expansions as a global aberration,
i.e., valid for the full ray-direction sphere.’”

In geometric optics, caustics appear when a spot dia-
gram folds over itself, so rays accumulate at the fold

W """ \‘& e,W_

6=0 ql Oc T

Fig. 5. Circles and caustics of relativistic coma. The middle
portion shows the behavior of the center, upper, and lower edges
of the circles in the spot diagram as functions of colatitude angle.
To the left, the spot and the caustic around the forward (+2) ray;
to the right, the same around the backward (-2) ray.
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edge. For fixed g, an area element of momentum space
dp. N\ dp, = ¥%dp® N\ d¢ vanishes with the Hessian of the
two components of ¢ with respect to the two components
of p. From Eq. (6.2) we obtain'**

dg,’ N dg,’ = 2p(deenter cOS 2¢ + P)dp> A dp,  (6.5)

where the overdots indicate derivatives with respect to p®.
The Hessian vanishes when p = 0 (i.e., at the coma’s
apices) and also when the factor in parentheses van-
ishes: there are four lines ®¢,(p?), x[m—d,(p»)] that map
on the caustic edges. The caustics of the global relativis-
tic coma spot diagram form a diamond shape, with two
60°-angle tips at q +pe = exp(*p)q, and two pairs of edges
asymptotically tangent to a line perpendicular to q
through qesymp = sech Bq. This is read in Fig. 5.

7. LORENTZ MAPS OF OPTICAL
PHASE SPACE

Imaging systems boosted along the optical axis are but a
special situation of Lorentz (rotation and boost) aberration
phenomena. The use that we have made of optical invari-
ants to analyze z boosts extends easily to all Lorentz
transformations, supported by the structure of Lie alge-
bras and groups on optical phase space p.

Under rotations by « around the y axis, the transfor-
mation of the components of the lightlike vector [ of Sec-
tion 3 is

g’y,aZIo >l = Io, Jyya:Iy - Iy' b Iy, (7.1a)
Sl I =1L cos a + I, sin a, (7.1b)
Sk )= —L sina + [, cos a. (7.1¢)

The transformation of optical momentum p is therefore

ps =pzcosa + ol — p.2 — p,H%sin a
= ¢ sin a + p, cos a — o%(p.> + p,dsina — ...,
(7.2a)
Py =py. (7.2b)
p. =—p:.sina + p,cos a, (7.2¢)

where o = = is the chart index. Hemispheres mix under
rotations; the sign o' of p,’ is found from Eq. (7.2¢c). Se-
ries expansion of this rotation shows that a thin ray pencil
|p:| << 1 is translated to o sin « in the x direction, mag-
nified by a factor cos « in that direction, and suffers from
a series of rotationally symmetric aberration terms
~(px® + p,)Y k=12,....

In the same way as for the z boost generator in Sec-
tion 4, we find the Lie-Poisson generator of infinitesimal
y rotations, $,4, = 1 + da{J,, 0}, on optical phase space p.
The generating function J,(q, p) is found by integration of
{J,,p} = ol = p,® — p,")"? and {Jj, p,} = 0; it is

2)1/2

Jy = ¢Ix0'(1 - pr — Dy = QqxP: (73)

up to additive functions of p alone. Similarly, we find the
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Lie generator functions of rotations around the x and
z axes for each o chart.?* They are
2)1/2

J, = _QJU'(l - pxz — Py = —QqyP:z, (7.4)

Jz =qyPx — @xPy = —q X P. (7.5)

The last function appeared above as the Petzval invariant
in Eq. (4.5) with the name —L (it is not an invariant under
x or y rotations, of course).

The generator functions of rotations J, Jj, and J, in
Egs. (7.3)-(7.5) form the basis of a three-dimensional vec-
tor space of functions on p that transform among them-
selves under rotations and close under Poisson brackets:

{Je, Iy} = =2, and cyclically. (7.6)
The formalism of angular momentum in quantum me-
chanics and the geometric image aberrations that are
due to screen rotation have the same Lie-algebraic struc-
ture. Hence

J2=Jd2+ J2+ 2= (g2 + ¢ - pP) - (@ X p)’
— qz - (q- p)2 (1.7)

is an invariant under rotations, because {J: J% = 0.
When we substitute Egs. (7.2) into Eq. (7.7), from
J¥q,p) = J%q,p) it follows that the spot diagrams of
rotation [q'(q, p) for q fixed and rays ranging over colati-
tude circles] are conic sections (ellipses, parabolas, and hy-
perbolas). This is only the classical construction that cuts
the circular cone of rays with the inclined-plane screen.
There are three independent boosts along the x, y, and

z axes; their generators transform as the components of a
3-vector under rotations,

{J.,B,} = —B,, and cyclically, (7.8)
and close with the rotation generators under Poisson
brackets:

{B., B,} = +,, and cyclically. (7.9)
We note the plus in Eq. (7.9) versus the minus in Egs. (7.6)
and (7.8); this distinguishes the Lorentz group SO(3,1)
from the four-dimensional rotation group SO(4). From
here we find that

B.,=¢q.p.+ p,A XP=¢:— P:4" P, (7.10)
B,=qp.°— p.AXP=0q — P,4d"'DP, (7.11)
B.=—-q'poV1-— p’=—-p,q-p. (7.12)

We note that B, and B, are independent of the chart index
o = =; their action therefore will not mix the two hemi-
spheres of rays.

The action of boosts along the y axis may be found as
in Egs. (8.1) and (7.1) on ray direction and on optical
momentum. It is given by the first two of the following
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equations:

' Ps
cosh B + p, sinh B

Dz

= p. sech B — p.p, sech 8 tanh B
+ p.p,® sech g tanh? g+ ..,
_pycosh B+ nsinh B

(7.13a)

Py = osh B + p,sinh B
= n tanh B + p, sech®’ B — p,? tanh B sech? B
+ p,® tanh? Bsech® B = ..., (7.13b)
p = P
cosh B + p, sinh B
= p. sech B — p.p, sech B tanh B
+ p.p,isech Btanh® B + ..., (7.13¢)

where we write the first- (linear), second-, and third-order
aberrations [cf. Egs. (3.3) and (6.2) for z boosts and
Egs. (7.2) for y rotations]. A telescopic system focused on
stars | p,| << 1 and boosted in the y direction continues to
draw sharp images, but from the series developments in
Egs. (7.13) it follows that the images are displaced to
p,’ = tanh g, and the star field is magnified by sech 8 = 1
in the x direction and by sech® 8 in the y direction and
with further asymmetric distorting terms in the aberra-
tion series.

Following our program, we now find the image transfor-
mations that accompany rotations and boosts of the sphere
of ray directions. Again we study the invariants: under
rotations the generating function J, is invariant, while un-
der boosts B, is invariant. Furthermore, the Poisson
bracket of the two functions is zero. Thus they are simul-
taneously invariant under their commuting finite Lorentz
transformations. This is sufficient to permit us to find
that g’ = (q,',g,") as a function of q and p, when we re-
place p'(p) correspondingly. For y rotations, ¢, p, = Jy =
Jy' = q.'p,’ and Eq. (7.2¢) lead to

' q:
cos a — (p./p.)sin «

qx

=q, Sec & + ¢, p, sec a tan «

+ g.p:2seca tan® @ + ..., (7.14a)

For the y component, q,(p.* + p.?) — q.p.p,= B,= B,' =
¢/ (p:* + p.'>) — ¢.' p.' p,, Eq. (7.2b), and Eq. (7.14a) yield

qx Py sin «
[ +
=D P: cos a — (p./p.)sin a

=qy + q.pytan a + ¢, p.p,tan® @ + .... (7.14b)

We see that ¢, is magnified by sec a = 1 (the factor is in-
verse to that of p,) and g, has unit magnification. These
facts may be found by ordinary vector analysis but here
serve to illustrate the Lie method of invariants.

For y boosts, from J, = J,' and Eq. (7.13a) we find the
transformation for the coordinate across the direction of
boost that is linear plus quadratic:

q.' = g, cosh B — g, p, sinh 8. (7.15a)
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For the y component, B, = B,’ and Eq. (7.15a) yield, after
rearrangement,

gy’ = (cosh 8 + p, sinh B)(g, cosh B8 + q * p sinh B).
(7.15b)

This is an up-to-cubic transformation. To first order,
g is magnified by cosh 8 =1 and g, by cosh? B; these
factors are inverse to those of their conjugate quantities
in Eqgs. (7.13). Paraxial images thus expand and distort.
(The last two transformations, reported in Ref. 8, were
calculated by back-and-forth guesswork with the aid of
computer symbolic manipulation; here the use of invari-
ants permits their direct algebraic derivation.)

To higher orders, phase space aberrates: the quadratic
terms ~-—gq,p, sinh 8 in ¢." and ~(q,p, + 2¢, p,)
sinh B cosh Bin g, are the second-order aberrations. To
draw the spot diagram of y boosts” and to understand the
geometry in a simple way, we write

%' =q¢’+v, q°=gq.coshB, v,= Asing,
g/ = q,° + vy, Qyo = 4qy cosh? B,
vy = B cos ¢ + C sin ¢, (7.16)

where ¢ is the azimuth of the ray (counted from the x to
the y axis). The colatitude 6 appears in the coefficients
[cf. Egs. (7.15)] ‘

A = g, sin 0 sinh 8, B = g, sin 6 sinh B cosh 8,
C = 2g, sin 6 sinh B cosh B. (7.17)

When p sweeps out in ¢ a circle of radius p = sin 6, the
second-order aberration vector v = (v;vy) draws out a
closed curve on the screen that conserves

B* + C* 2C 1
_Ez—vxz ~ AgEly + ?vyz =1, (7.18)

i.e., the equation of a conic. This may be compared to the
equation for a standard ellipse in the x—y plane, of half-
axes a and b, rotated by an angle 7 (in the common sense
of ¢ and « on the screen), which is

s\, 1 1 s& ),
(?2'+5-2'x +2cs;—5—2xy+ c?-l-l?y =1,
(7.19)

where s = sin 7 and ¢ = cos . Comparison of the three
coefficients allows us to compute a, b, and tan 27 of the
ellipses as functions of 6, g, , and the boost parameter B.
The formulas simplify for |8| << 1; then Egs. (7.17) be-
come A= B = Bq,p and C = 2Bq,p. In this case the el-
lipses are tilted by

7= Yok + Yamr (7.20)
and have half-axes

b = Bqg( + sin k)sin 6.
(7.21)

a = Bg(l — sin x)sin 6,

As we show in Fig. 6, for x = 0 (positions on the x axis)
the spot is a circle, while for k = =% (the y axis) the spot
degenerates to a line along the direction of the boost. In
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Fig. 6. Spot diagrams (to second order) of boosts along the y axis
for various values of k, the polar angle on the screen. The spot
shapes are generic because their sizes increase linearly with g,
the distance to the optical center.

qx

S

general it is a rotated ellipse. The spot of second-order
aberrations grows linearly with distance q to the optical
center; its shape depends only on the polar angle « on the
screen. The shape shown in the figure is thus generic.

We found the rotation invariant J2 in Eq. (7.7); from
there and from Egs. (7.10)~(7.12) we find that J 2 — B%and
J + B, the two Lorentz (Casimir) invariants,®® are identi-
cally zero in the geometric-optics representation of the
group. Therefore there are no further functionally inde-
pendent invariants under boosts in any direction @ and
rotations around the i axis beyond the corresponding o,
and B,,.

8. CONCLUDING REMARKS

We presented with some care the foundations of Hamil-
tonian geometric optics on the phase space p so that the
basic hypothesis of canonicity of Lorentz transformations
is evident and its conclusions are well grounded. Geo-
metric optics and special relativity may seem to be un-
weddable theories, because the latter involves time in an
essential way,"? while the former divides the proportional
s out of the evolution equations (the same remarks hold
between Maxwell and Helmholtz optics?).

The Hamilton-Lie formulation of optics determines that
the global action of Lorentz transformations results in
aberrations of optical images. These aberrations involve
magnification and circular comatic aberration when the
direction of the boost coincides with the optical z axis.
This spot diagram is a peculiar comatic 2:1 map of the
sphere on the plane. (The spot diagram of y boosts in 47
is also 2:1, because a ray and its reflection p, = — p, fall
upon the same point of the screen, although on different
sides of it.) These two spot diagrams are but two faces,
related by screen rotation, of the relativistic aberration
phenomenon. For every direction in which we point our
system, we can perform a similar analysis. The spot dia-
grams are representations by pictures of the Lorentz-
group elements.

There are other physical considerations to be taken into
account before a Gedankenexperiment can shed the quali-
fier, since light is actually a quantum-wave phenomenon.
In our context, however, the Gedanken part of this ex-
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periment illuminates the aberrations of one- and two-
dimensional signals with bounded spectrum, as general as
the concept of phase space itself. The Lorentz group
SO(3,1) is a finite-parameter Lie subgroup of all continu-
ous, nonlinear transformations J(%,) of the sphere &, of
ray directions on itself. The extension of the action of
F(%,) to the symplectic space p is, as here, generated by
functions that are linear in the components of position:
of the form f,(p)q. + f,(p)g,, When this generating func-
tion is a z axis rotation invariant, the conjugate image
aberration will always be a series of circular comas.
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