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The Maxwell fish-eye is an exceptional optical system that shares with the Kepler problem and 
the point rotor (mass point on a sphere) a hidden, higher rotation symmetry. The Hamiltonian 
is proportional to the Casimir invariant. The well-known stereographic map is extended to 
canonical transformations between of the phase spaces of the constrained rotor and the fish­
eye. Their dynamical group is a pseudoorthogonal one that permits a succint "41T" wavization 
of the constrained system. The fish-eye exhibits, unavoidably, chromatic dispersion. Further, a 
larger conformal dynamical group contains the potential group, that relates the closed, 
inhomogeneous fish-eye system to similar, scaled ones. Asymptotically, it is related to free 
propagation in homogenous media. 

I. INTRODUCTION 

The Maxwell fish-eye is an optical medium, in principle, 
in any number of dimensions, whose refractive index n (q) is 
afunction - (I + q2) - I ofthedistanceqto the center. It isa 
spherically symmetric inhomogeneous system that is a piece 
de resistance in optics textbooks and treatises 1-3 because it is 
very illustrative to test solution methods since the system 
possesses exact, closed solutions. The system was originally 
proposed as a problem by the Irish Academy; it asked for the 
refractive index of a medium that could conceivably form 
images in the least depth (fish eyes are notoriously fiat) and 
Maxwell's solution was published in 1854.4 The medium is 
ideal, of course, because of light injection and attenuation 
problems, and because of size restrictions by the physical 
requirement n> 1. Yet, this system is truly the hydrogen 
atom of optics, as we shall see: it possesses a manifest 
SO(N - I) and hidden SO(N) rotation symmetry groups, 
and SO(N,I), ISO(N), and SO(N,2) dynamical groups. 

The paths oflight rays in a Maxwell fish-eye medium are 
closed: They are circles on planes that contain the origin, and 
whose points form conjugate pairs with respect to the origin. 
(For fixed p and origin, vectors ql and q2 are conjugate 
when they are anti parallel and their magnitudes relate 
through ql q2 = p2.) In the posthumous work of Luneburg, 
Mathematical Theory of Optics, 3 a section titled "The sur­
prising properties of an optical medium of refractive in­
dex ... " shows that the circles in the Maxwell fish-eye are the 
stereographic projection of great circles on a sphere in one 
higher dimension. Group theory had not yet come into much 
vogue before 1949, when the book manuscript was assem­
bled out of lecture notes, and contains no mention of the 
work of Focks and Bargmann6 on the hidden rotation sym­
metry of the hydrogen atom. The statement that a higher 
rotation symmetry is at play in the Maxwell fish-eye was 
made in the work by Buchdahl,7 who mapped the constants 

of the fish-eye circles (plane orientation and vector to the 
center) onto the constants of the Kepler orbits (plane orien­
tation and Runge-Lenz vector). These are generators of an 
SOC 4) group under the Poisson bracket. 

The Maxwell fish-eye is usually given as an example of a 
geometric-optics perfect imaging instrument because all 
light rays issuing from anyone point in the medium will 
follow circle arcs that intersect at the point conjugate to the 
first, and the optical length of all these circle arcs between 
the two conjugate points is the same.2 (Nevertheless, chro­
matic dispersion is not discussed in the standard texts. ) Gen­
eralizations of the fish-eye, such as the Luneburg lens used in 
microwave antenna design8 give the fish-eye a nontrivial 
practical interest. 

The fish-eye is a rare instance of a "41T" optical instru­
ment; as the hydrogen atom, it is a system worth studying for 
its own, group-theoretical sake. We regard it as a prime ex­
ample to calibrate the Lie-Hamilton formulation of geomet­
ric and wave optics, previously used only for homogeneous 
optical media;9,10 the description here includes time evolu­
tion. Section II reports a succint derivation of the Hamilton 
equations of motion of optics in time from the assumption 
only of the local validity of Snell's law. We find no extra 
effort for working in N - I dimensions. These equations 
lead to the classical phase space formulation of geometrical 
optics, where the momentum vector is constrained to a 
sphere, rather than a plane as in mechanics. II 

Section III studies a system in mechanics that is also 
constrained to a sphere, albeit in configuration space: the 
point rotor. We believe that the rotor system, rather than the 
Kepler problem, is the simplest mechanical SO(N) model 
analog to the fish-eye. We write the rotation generators of 
the symmetry group, the SO(N) Casimir invariant, and the 
Hamiltonian of the system as functions on phase space under 
Lie-Poisson bracketsl2 and constrain them to their projec­
tion on the equatorial plane of the sphere. In Sec. IV we 
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introduce an extended canonical stereographic map of the 
phase spaces, the configuration part of which is the familiar 
sphere-on-plane 1: 1 map (excluding the north pole, that 
maps to the point at infinity). This is an optical aberration 
map of the generic form of distortion; 13 concomitant to this, 
the momentum spaces of the two systems map mantaining 
the canonicity of the transformation. The projected rotor 
Hamiltonian becomes the Hamiltonian of the Maxwell fish­
eye, the Casimir invariant. 14

•
15 We build the SO(N,I) and 

SO(N,2) dynamical algebra generators in Sec. V, adapting 
previous results for the hydrogen atom. 16 The exponentiated 
SO(N,2) group action is given explicitly in the geometric 
optics representation. This dynamical algebra includes a 
new number generator, square root of the SO(N) Hamilto­
nian function. 

In Sec. VI we follow the same program for wave optics 
at a lighter pace, because spherical harmonics are well 
known as solutions to wave motion on a sphere. 17

,18 The 
frequencies are discrete and given by the square roots of the 
Casimir operator eigenvalues. The medium can thus only 
sustain a discrete set of colors; sharp wave fronts will un­
dergo chromatic dispersion. Among the concluding remarks 
in Sec. VII, we point out that SO(N,1) is the potential 
group,19.20 that bridges between the fish-eye and the homo­
geneous medium. Finally, an SO(N,2) bundle over configu­
ration space is suggested to describe a more general class of 
inhomogeneous media. 

II. THE HAMILTONIAN-TIME FORMULATION OF 
OPTICS 

We model geometric optical rays as the paths taken by 
points indicated by q(t)E91D

, at a time parameter t, whose 
velocity vector may have arbitrary direction but must be of 
fixed magnitude at each point of the medium, 

dq 
v(t) =-, 

dt 

c 
Ivl=--· 

n(q) 
(2.1 ) 

Here, c stands for the light velocity in vacuum and n(q) is 
the refractive index of the medium atthe point q(n = 1 char­
acterizes vacuum). We assume that this index is a scalar 
function of the space coordinates only, and not oftime, ray 
direction, or any other ray descriptor. The time needed to 
traverse a vanishing distance ds is dt = n/c ds. Physics as­
serts that c is a universal constant and that n < 1 is unphysi­
cal. 

We shall now build a vector p(t) tangent to the path 
q(t), i.e., parallel to v. Snell's law is particularly transparent 
in suggesting the right length for this tangent vector p. It is 
not v = c/ n, as could wrongly be inferred from (2.1), but 
such that at any surface u possessing a normal vector ~ and 
separating two otherwise homogeneous media nand n' (con­
stant), there holds the well-known sine law: 

n sin () = n' sin ()', (2.2) 

with the three vectors p, p', and ~ coplanar, and where as 
usual we denote by () and ()' the angles between ~ and the 
directions p and p' of the ray before and after refraction. 

Equation (2.2) may be seen as a conservation statement 
when we write each member as the magnitude of a cross 
product I~xpi = 1~llplsin () between the (common) sur-

2758 J. Math. Phys .• Vol. 31. No. 12. December 1990 

face normal ~ and the vector p constrained to have length 
Ipi = n, or 

(2.3) 

and similarly for the primed quantities. The requirement of 
coplanarity is the linear dependence of the three vectors: 
p = ap' + {3 ~, for some real a and {3. The magnitude of the 
cross product of p with ~ is consistent with (2.2) only for 
a = 1. A vector statement equivalent to the sine law (2.2) 
plus coplanarity is therefore that 

p-p'={3~. (2.4) 

Here, {3 is a scalar function of the vectors. If we assume 
I~I = 1 and decompose p = Pl + p~~, where p~ = po~ is 
the coordinate ofp along ~, and Pl is the conserved compo­
nent of p in the plane tangent to the surface. The picture we 
obtain of the optical medium is that for every point qE91D we 
have an Y D _ I sphere in p space, that will be called the 
Descartes sphere of ray directions, whose radius depends on 
the point. 

Indeed, Snell's law should be called Descartes' if the 
French philosopher, besides finding Eq. (2.2) and the re­
quirement of coplanarity, I had only realized that the appro­
priate tangent vector p is not the velocity vector of the light 
corpuscule, but 

(2.5) 

so that its magnitude be consistent with (2.1) and (2.3). In 
the denser of two media, the ray approaches the surface nor­
mal as a particle falling in a potential step well, but actually 
travels slower. 

We shall now derive from (2.3) and (2.4) the two Ham­
ilton equations of motion for the light points of geometrical 
optics moving through inhomogeneous media, and find the 
function F'pt (q,p) that serves as optical Hamiltonian. II In 
fact, we have done so already: Eqs. (2.1) and (2.5) compose 
to the first equality in 

dq c JF'pt where F'pt = c pop + A..(q), dt = n2 p = --ap- , 2n2 'I' 

(2.6) 

where the second equality defines F'pt up to an arbitrary 
additive function ¢1(q). The equality between the first and 
third terms is Hamilton's first equation. This equation, we 
saw, follows from the geometry of tangent vectors and the 
definition of p in (2.5). 

To introduce the optical dynamics contained in Snell's 
law, we must generalize equation (2.4) for refractive indices 
n(q) that possess a gradient field Vn acting as surface nor­
mal for infinitesimal refraction p' = p + dp in a time interval 
dt. Equation (2.4) then becomes 

~ = yVn, (2.7a) 
dt 

where we are left to determine the scalar function y(p,n (q». 
This we do differentiating Eq. (2.3) in two different ways: 

dn2 dq c 
- = 2nVno - = 2n - Vnop (2.7b l ) 

dt dt n2 

= 2po ~ = 2ypoVn, (2.7b2 ) 

dt 
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whence, 

r= cln(q). (2.7c) 

From (2.3) and this follows the second Hamilton vector 
equation of motion 

dp c a7f"Opt 
-=-Vn= ----, 
dt n aq 

(2.8) 

where the Hamiltonian function in (2.6) is forced to have 
t,b(q) = const, and thus determined as 

7f"Opt(p,q) = c[p.p/2[n(q) ]2] + const, (2.9) 

is now determined up to an arbitrary additive constant. In 
fact, the Hamiltonian is constant along ray trajectories when 
the momentum vector p is everywhere on its Descartes 
sphere21,22 of radius n(q). Most important, observe that 
geometric optical Hamiltonians are constrained to have the 
form 

Jr'pt _ [momentum] 2 X [scalar function of position] . 
(2.10) 

The Hamilton equations of the motion are usually de­
rived in a roundabout way from Fermat's global principle of 
least action, through the variational argument of the Euler­
Lagrange equations. Canonical momentum is then defined 
as the velocity gradient of the Lagrangian and shown to par­
ticipate in a condensed set of equations that are Hamil­
ton's.13 It is surprising that the above short derivation seems 
not to be known. Indeed, these arguments may be repeated 
mutatis mutandis to find the Hamiltonian evolution under 
translations along the optical axis [involving d Idq; (Refs. 
10,21,22)] or along the ray length [involving d Ids (Ref. 
23) ] . Here, we take the time dt as the infinitesimal "measur­
ing rod." The form chosen here displays best the group-theo­
retical properties of the Maxwell fish-eye. 

III. THE ISOTROPIC POINT ROTOR 

The phase space of a nonrelativistic point mass in N 
dimensions is the ensemble of position coordinates 
g Q = {Q; }f~ I E!Jt N and their conjugate momenta 
P = {Pi }f~ I E!JtN

• This is a 2N-dimensional space where we 
can introduce an antisymmetric form { . , . } between pairs of 
coordinates given by 

{Q;.p) = D;j = - {Pj,QJ, (3.1) 

{Q;,Q) = 0, {p;.p) = O. (3.2) 

This can be extended to all formal power series functionsJ, g, 
h of phase space through asking the form to be linear, to 
satisfy Jacobi's identity,14 and to be a derivation 
({fg,h} = J{g,h} + {J,h}g, {J,const} = 0). These proper­
ties are those of a Lie bracket,12,14,15 so the coordinates of 
phase space serve as the basis for a Lie algebra provided we 
recognize the "I" in (3.1) as the central element in that 
algebra, with null brackets {1,QJ = 0 = {1,pJ. This is the 
Heisenberg-Weyl algebra. 24 Classical mechanics (and geo­
metric optics) work with the realization provided by the 
Poisson bracket II 

(3.3 ) 
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Under ordinary multiplication these functions of course 
commute:fg = gf. 

The Hamilton equations for geometric optics, (2.6) and 
(2.8), are expressible in Poisson brackets: 

dQ. dP· 
-' = - {K,QJ, -' = - {K,pJ. 

dt dt 
(3.4a) 

We denote {K,'} the Lie operator l2 associated to the ob­
servable K. The evolution of any function f( Q;,Pj ) with 
time tis 

df af iQ af iF 
-=---' -+---'-
dt aQ dt ap dt 

-}f,. . ~ +}f,. . !!.!!- = - {K f}. 
aQ aQ ap dP , 

(3.4b) 

This is the Hamiltonian flow of phase space generated by K. 
Since dK I dt = {K,K} = 0, the trajectories in phase 

space 'O(t), P(t), are flows along surfaces K = const. We 
may use functions h other than the Hamiltonian as genera­
tors of flows: df Ids = - {hJ}, with s a length parameter 
along the flow lines generated by h. In particular, the flow 
generated by {Q;,o} is translation of phase space in the P; 
direction. Similarly, the flow generated by {p;.o} is transla­
tion in the - Q; direction. Any observable f such that 
{K J} = 0 defines surfaces f = const that the flow of the 
Hamiltonian must respect. Finally, note that the commuta­
tor of two Lie operators {J, 0 }, {g,o } is generally nonzero; in 
fact, it is the Lie operator of the Poisson bracket of the two 
functions: From the Jacobi identity we find 

[{J,o },{g,o}] = {J,o }{g,o} - {g,o }{J,o} = ({J,g}o}. 
(3.5) 

When this quantity is zero, the Lie operators commute, and 
the flow generated by one function is invariant under parallel 
transport by the other. The Poisson bracket of the two gener­
ators is then a constant. 

Linear functions of phase space close into the N-dimen­
sional Heisenberg-Weyl algebra WN • The independent qua­
dratic functions are 

A;j =P;Pj , 

B;j = Q;Pj + QjP;, 

(3.6a) 

(3.6b) 

G;j = Q;Qj' (3.6c) 

R;j = Q;Pj - QjP;. (3.7) 

and close into the real symplectic algebra sp(2N,!Jt). The 
linear plus quadratic functions also close, the algebra is 
WN sp(2N,~). In particular, theR;j close into theN-dimen­
sional rotation algebra so(N) that generates l4 a joint rota­
tion of the '0 and P subspaces in their i-j planes; the flow 
generated by'O·P = !l:;B ~j is a radially i!!.ward flow in the '0 
coordinates and radially outward in the P coordinates, and 
leads to reciprocal scaling of the two subspaces. Flows can of 
course also mix the position and conjugate momentum sub­
spaces, as those generated by P;Pj and Q;Qj' Among all 
functions of phase space, there exist subsets that also close 
into Lie algebras whose vector dimension may be finite or 
infinite; some ofthem will come up for scrutiny below. 
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A point rotor is a mass point constrained to move on a 
sphere in configuration space 

-+ --+ -+ N 

Q 2=Q-Q= L Q;=Q.Q+Q~=p2, (3.8) 
;=1 

where p is an arbitrary but fixed radius, and we indicate by 
9 = (QI ,Q2 , .. ·,QN - I) the first N - I components of 
Q = (Q,QN)' On the sphere, thus, 

Q ';> = 0'~p2 - IQI 2
, OE{ + 1,0, - n. (3.9) 

The sign 0' of Q Jv ± > keeps track of the two hemispheres and 
the Q JS'> = 0 equator. We shall not insist on considering sep­
arately the 0' = 0 lower-dimensional manifold, but we keep 
in mind the natural continuity conditions between the two 
hemispheres. The Hamiltonian flow must leave that sphere 
invariant. 

Those functions Fofthe full !R2N phase space that have 
zero Poisson bracket with Q 2 preserve the sphere where the 
point moves; among them, our purported rotor Hamiltonian 
Jr'0t. They will generate the symmetry and dynamical 
group (s) of the point rotor (the latter contains the former). 
Functions F of phase space that have zero Poisson bracket 
with Q 2 satisfy 

• N -+ aF 
I.e., 0 = L 2Q;{F,Q) = - 2Q· ---=;- . 

;=1 ap 
{F,Q2} =0, 

(3.10) 

Among the linear and quadratic functions in (3.1), (3.6), 
and (3.7), only 1, Q;, Q;Qj' andR;J = Q;Pj - QjP; have this 
property, whileP;,P;Pj,andB;J = Q;Pj + QjP; do not. This 
property yields a Lie algebra of functions under the Poisson 
bracket,12 and its universal covering algebra (obtained by 
ordinary multiplication of the algebra elements) has the 
same property. 

The symmetry algebra of the system will be the subset of 
those functions that have zero Poisson bracket also with 
Jr'0t. The rotor point mass is on a sphere, with no preferred 
origin or direction. The set of functions R;J forms a vector 
basis for the so(N) algebra and generates the N-dimensional 
rotation group SO(N). Special consideration is thus due to 
the SO(N) Casimir function of second degree in the genera­
tors (and of fourth degree in Q; and Pj ) : 

I -+2-+2 -+-+2 
<I> = 2 'L R;JR;J = Q P - (Q-P) . (3.11) 

IJ 

In N = 3 dimensions, this is the squared norm of the cross 
product Q XP, the angular momentum antisymmetric ten­
sor. 

Under Poisson brackets, the functions I, Qi> plus 
C;J = Q;Qj belong to an Abelian ideal of dimension D given 
by I, N, plus !N(N + 1) that, together with the R;J' form a 
larger "inhomogeneous" algebra iDso(N) and generate a 
corresponding group. The Lie transformations from these 
functions do not affect configuration space at all: they trans­
late momentum space and mix it with position. The isotropic 
point rotor needs thus one further specification: its dynamics 
must be rotation invariant. This means that any and only 
rotations of a Hamiltonian flow can be Hamiltonian flows. 
Hence, Jr'0t must be a scalar under rotations and so the 
indices in the arguments must balance. Exit the single Q; 's 
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from consideration therefore, but retain pairs Q;Qj = C;J' 
Since C;J = Cj,; but R;J = - R j,;, a series expansion of Jr'0t 
with balanced indices can contain any number of C's, but 
only terms with pairs of R 'so 

On the sphere IQI2 + Q~ =p2,~;C;,; = ~;Q;Q; =p2is 
a constant, and so are ~;JC;JC;J = p4 and ~;JC;JR;J = O. 
Higher degree polynomials of the C's and R 's do not yield 
further independent invariants because any number of con­
tracted factors of C, yield a single C (times a constant, since 
~jC;JCj,k = p 2C;,k) and any odd number of contracted R 's 
yield a single R times a power of <I> (since 
~j,kR;JRj,kRk,/ = - <l>R;,/). The fourth-order invariant is 
~R;JRj,kRk,/R/,; = 2<1>2. This reduces all higherinvariants to 
contracted products of ... RCRC'" that vanish, since for 
any i and m, it holds that ~j,k,lR;JCj,kRk,/C/,m = O. The con­
clusion is therefore that the point rotor Hamiltonian Jr'0t 
can be a function of <I> only, the rotation Casimir given in 
(3.11 ). Since <I> is quadratic in momentum P we may take 

(3.12) 

for some constant OJ, E is a constant of the motion. 
The constraint to the sphere Q 2 = p2 leaves us with a 

2N-dimensional phase space (QJ) that is too large, because 
there is the redundant coordinate QN in (3.9). Since Hamil­
tonian phase spaces come in even dimensions only, we 
should expect another constraint to be at hand. Indeed, 
among the quadratic functions (3.6), the rotor evolution 
Hamiltonian (3.12) leaves invariant the traces 
Q.P= ~;B;.; = ~ andp 2 = ~;C;,; = r of (3.6); since there 
is a relation between the constants, E = OJ [p2r - ~2], we 
can choose the gauge ~ = 0 leaving r = E /OJp2. We de­
noted Q= (Q,QN); let us similarly denote P= (P*,PN ) 
.!~re p* are the first N - I components, so that 
Q-P = Q·P* + PNQN = 0 fixes 

P';> = _ Q·P*/0'~p2 -IQI2. (3.13) 

What happens to the Poisson bracket structure? Disre­
garding 0', the position space differential under constraint is 

dQ=(dQ,dQ';» = (d Q , -Q.d
Q

). (3.14) 
0'~p2 _ IQI2 

The Pfaffian form 25 (or first integral invariant of Poincare 
[16(a)]) is 

P.dQ = P*·dQ + PN dQN 

= P*.d Q + P*·QQ·d Q 
p2 -IQI2 

=P*(.I.+ .QQ. )dQ 
p2 -IQI2 

Q·P* = P·d Q for P = p* + Q. 
p2 -IQI2 

(3.ISa) 

(3.ISb) 

(3.ISc) 

(3.ISd) 

The last line defines a new set of N - I coordinates P, so that 
the standard Pfaffian form in those N - 1 coordinates equals 
the Pfaffian in the old N coordinates with the constraints. 
The transformation from (QJ) [restricted by (3.9) and 
(3.13)] to (Q,O',P) spaces preserves the Pfaffian and, from 
it, the Poisson and Lie bracket structure [( 16a) ],25 in the 
new variables (Q,P). [The sign 0' distinguishes between two 
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copies ofQ space; the P*f---+.P transformation in (3.15d) is 
I : I for all points on the jp I sphere (except when I Q 12 = p2, 
on the (7 = 0 submanifold).] Note that it would be incorrect 
to simply "leave out" the Nth coordinate in the reduction 
from N to (N - I )-dimensional Poisson brackets; the pro-..... 
jection Q= (Q,QJ:>(Q)~Q must be accompanied by the 
nontrivial momentum map P = (p* ,!~ Q,P*»)--+ 
P (Q,P*). We write this map as (Q,(7,P) = (Q,P) I rot . 

The Hamiltonian function (3.12) after this substitution 
becomes 

JY = (J)C(j, (3.16a) 

(3.16b) 

Under the Irot map, the so(N) symmetry subalgebra genera­
tors become 

(3.17 ) 

M; = R;,Nlrot = - (7~p2 - IQI2 Pi' i = I, ... ,N - 1.(3.18) 

We may verify that under the rotor map their Poisson 
bracket relations remain the same in the reduced 2 (N - 1)­
dimensional phase space (Q,P), as if we had simply replaced 
QN and set PN = O. 

There is a well-developed theory of constrained Hamil­
tonian systems of the second class (i.e., when the Poisson 
brackets of the constraints do not vanish). One may calcu­
late the Dirac bracket [( II b,c)] between two functions of 
the rotor space constrained by 51 = Q2 - p2 and 52 = PN 
and find the same formal result when t = O. The old Pois­
son bracket is the replaced by the Dirac bracket, and this 
equals the Poisson bracket in the reduced subspace of the 
first N - I components Q and P. 

In conclusion, on a homogeneous, isotropic sphere, the 
free motion of a point rotor in (QJ) is on sphere geodesics: 
arcs of great circles. The reduction to (Q,(7,P) in effect "pro­
jects" the position coordinate of the point rotor on two 
copies of its equatorial plane, distinguished by the hemi­
sphere sign (7, and with a new canonically conjugate momen­
tum P. In this phase space, the reduced Hamiltonian (3.16) 
has a natural "kinetic energy" term IPI 2 and obeys a (Q_p)2 
"potential"; the trajectory jumps between the two values of 
the sign (7 (through (7 = 0) when it crosses the I Q I = p equa­
tor. We see this motion as spherical rotor motion projected 
on the equatorial plane. 

IV. THE STEREOGRAPHIC MAP 

The stereographic map is a bijection between the mani­
folds of the sphereSN _ I C91N and 91N 

- I U{ oo} (the projec­
tion pole maps on 00). This map was applied deus ex ma­
china by Focks in 1935 to the hydrogen atom Schrodinger 
equation in momentum representation, to obtain the hydro­
genic wave functions in terms of the four-dimensional 
spherical harmonics. Figure I shows the geometry of the 
map for N = 2, between the circle SI and the line 91, and the 
essentials of the general N-dimensional case. The surface of 
the sphere };;"~ I Q; = I Q 12 + Q ~ = p2 maps on the 
(N - I )-dimensional optical position space, of vectors 
q = {q; };"~-II. A point on the sphere that subtends the angle 
X between the projecting pole and the - QN axis, will mea­
sure an angle 2X from the center of the sphere. The first 
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----------~=-~~~--------4---__ ~ 

FIG. 1. The stereographic projection maps the circle on the line in N = 2 
dimensions. The two regions IQI <p, u = ± 1, and their boundary 
IQI = p. u = 0, map onto the full line q; the boundary maps on Iql = 2p. 

appears in right triangle with sides 2p, Iql, and ~lql2 + 4p2, 
and its double in another right triangle of sides - QN' IQI, 
andp. 

Trigonometric functions of X and 2X are 

sinx=q/~lqI2+4p2, sin2x=Q/p, (4.la) 

cosX=2p/~lqI2+4p2, cos2X= -QNlp, (4.lb) 

tan X = q/2p, tan2x= -Q/QN' (4.lc) 

From common identities, we find 

and 

Iql2 = 16p2 P + (7~p2 - IQI2 
P _ (7~p2 _ IQI2 

(4.2a) 

(4.2b) 

This is the transformation that "opens" the sphere to the 
plane. \0 Similarly, we find the inverse transformation 

and 

Q J:> = U~p2 _ IQI2 = P Iql2 - 4p2 
Iql2 + 4p2 

(4.3a) 

(4.3b) 

A given point Iql <2p (X<!1T) is mapped by (4.3) on 
IQI <p, (7 = - I (since QN <0); the equator Iql 
= 2p (X < !1T) maps on IQI = p and (7 = 0 (with QN = 0). 
As Iql increases beyond 2p (!1T <X < ~1T), the range sweeps 
again through IQI <p with (7 = + I (i.e., QN > 0). The 
points at zero and infinity in the plane correspond to the 
center of the balls (7 = - I and (7 = + I (i.e., IQI = 0, 
QN = +p), respectively. The stereographic projection is 
therefore a map between qe91N 

- I and two open balls 
Qe91N 

- I, IQI <p, labeled by the sign (7 of QN' whose boun­
daries I Q I = p (QN = 0) are identified. 
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Functions F( 0) on the original sphere thus become 
functions .FlO( Q,o"» upon reduction of variables, and 
.FlO(q» upon stereographic projection. In Fig. 1, where 
N = 2, the q space is the horizontal line and Q space is the 
segment - p < QI <p twice. Figure 2 displays the N = 3 sit­
uation showing a great circle of the S2 -sphere mapping onto 
a fish-eye orbit in a two-dimensional optical world. 

Great circles on the O-sphere project by the stereogra­
phic map onto circles in the q plane.3 Only the Nth axis is 
distinguished, so we may rotate the first N - 1 coordinates 
such that the great circle lies in the 1 - 2 - N submanifold, 
reducing the construction to that of Fig. 2. Further, the vec­
tor normal to the circle plane may be made to lie on the 
Q2 = 0 plane, tilted by /3 in the QI direction. 

To parametrize explicitly, let us use Euler angles (/3,y) 
for the points of the great circle in 0 space, 

(QI(Y»)_~ COS~COsy) /3E[O,1T], 
Q2 (Y) - sm Y , ,=~ _ ro d 2 

. r=--I - in mo 1T, 
QN(Y) -sm/3cosy 

(4.4) 

where the components 3, ... ,N - 1 are zero and omitted. In Q 
space, i.e., the equatorial plane, this draws out an ellipse of 
semimajor axis p and semiminor axis p cos /3. Actually, due 
to the twice changing sign of Q A,") (y), half the ellipse lies on 
the a = + 1 chart and half on the a = - lone. Through 
(4.2a) we find the stereographic projection ofthe great cir­
cle (4.4). It is 

ql (Y) = 2p cos./3 cos Y , 
1 + sm/3cos Y 

sin Y 
q2 (Y) = 2p --.----''--

1 + sm/3cos Y 
(4.5) 

Analytic geometry verifies that this is a circle of radius 
2p sec /3 with center on - 2p tan /3. For every point 
q(Q,a)E!RN-I we may define its conjugate poine 
q* = q( - Q, - a), stemming from the antipodal point 
- 0 on the sphere. The vectors q and q* are antiparallel and 

satisfy Iqllq*1 =p2. 
A spherical coordinate grid with colatitude circles such 

as (4.5) will map onto families of bipolar coordinates on the 
plane with respect to the two poles. 17 Letting Y stand for 
time, it is clear that any great circle arc followed between two 
conjugate points will be traversed in the same time inter­
val. 1-3 It is also clear that rotations of the sphere in the 
1, ... ,N - 1 subspace will rotate the q plane simultaneously; 
rotations into the QN direction produce the full family of 
different-sized circles that join any two fixed conjugate 
points in the optical q space. The former is the manifest sym­
metry while the latter is the hidden symmetry of the system. 

The stereographic map and its inverse have been consid­
ered thus far as transformations of position space. They are 
called point transformations because the canonically conju­
gate momentum does not enter. In optics, such a map is 
called a pure distorsion. Indeed, what happens in momen­
tum space? The coordinates p = {p;(Q,P)}f=-11 that are 
canonically conjugate to the components of 
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a'~ ______________________ ~~~~ ____ -ia 

FIG. 2. The stereographic projection mapping a great circle on the Q sphere 
tilted by an angle /3 onto a circle in the q plane. Two pairs of antipodal­
conjugate points, A-A' and B-B', are shown to map on a-a' and bob '. 

qj(Q) = <,h(IQI)Q;, i= 1,2, ... ,N-l, (4.6a) 

may be found again from the conservation of the Pfaffian 
form, written p·dq = P·dQ (Ref. 25), where now 

Jq; J<,h 
dq. = "" - dQ. = A. dQ. + Q. "" - dQ. 

I -7 JQj J'I' 1 '-7 JQj J 

= "" (,1.8 .. + A.' Q;Qj) dQ. = "" J .. dQ.. (4.6b) -7 'I' I,} 'I' IQI J -7 I,} J 

Once the Jacobian matrix J(Q) = {J;j} is known for 
dq = J d Q, then p·dq = p.J d Q = p.Q solves as 
p = JT(Q) -Ip and P = JT{Q(q»p, where T means matrix 
transposition. In our case the {Q;Q/IQI 2} are idempotent 
matrices and we can find the canonically conjugate momen­
tum map to be 

p= p_a~p2_IQI2 p_ Q'P Q. 
2p 2p2 

(4.7) 

Notice that Q A,") = a~p2 - IQI2 appears with its sign, so 
that p is a single-valued function over the rotor sphere. Simi­
larly, we find the inverse transformation 

P = Iql2 + 4p2 (p + 2q·p q). 
4p2 4p2 _ Iql2 

( 4.8) 

We are working here only with maps between 2(N - 1)­
dimensional phase spaces; the (oJ) space where the rotor 
motion is embedded and constrained need not be used. 

Assured that the transformation between (Q,a,P) and 
(q,p) spaces is canonical, we may write the so(N) functions 
(3.17) and (3.18) in (q,p). They are 

(4.9) 

M; =P[(I-~)P+ q.p q], i= 1, ... ,N-l, 
4p2 2p2 

(4.10) 

and will close into the same algebras under the Poisson 
bracket in (Sol!) space as they did before under the Poisson 
bracket in (Q,P) and in (Q,P). 
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Finally, from the discussion in this section, the Casimir 
and Hamiltonian functions in (3.16) can be calculated re- . 
placing q(Q,P) and p(Q,P). They are 

(4.11 ) 

Now we compare this "stereographically projected" rotor 
Hamiltonian JY with the generic optical Hamiltonian 
jFpt = clpI2/n (q) 12 in Eq. (2.9). Their dependence on the 
squared momentum Ipl2 is the same and they coincide only 
when the refractive index of the optical medium is 

no 1 ~ n(q) = , no =n(O) =- -. 
1 + Iq12/4p2 P 2ill 

( 4.12) 

This is the refractive index that characterizes the Maxwell 
fish-eye. 

V. THE FISH-EYE so(N,2) DYNAMICAL ALGEBRA 

The realization of the so(N) algebra in (4.9) and (4.lO) 
is well known from the theory of the hydrogen atom.5,6,15,16 
The momentum space of that system is the stereo graphic 
projection of the Fock sphere, where rotor momentum 
moves. Here, it is configuration space that maps under the 
stereographic projection. The earliest reference to (the 
Fourier transform [qt-+P,~ - q] of) the so(N,2) algebra 
written here seems to be Ref. 16. It is perhaps best known 
from the book by Wybourne,26 who quotes the result of 
Barut and Bornzin,27 Here, we shall use these results to ex­
amine the exponentiation to the SO(N,2) group oftransfor­
mations of the Maxwell fish-eye optical phase space. This 
phase space is, we recall, qEmN - 1 and p constrained, for each 
point in q space, to lie on the Descartes ray-direction sphere 
(2.3), i.e., a sphere SN _ 2 cmN 

- 1 of radius 

p(q) = Ipi =N/(p[1 + IqI2/4p2]), 

as demanded by the constancy of ( 4.11). 
The set off unctions L;J in (4,7) ,'for iJ = 1,2, ... ,N - 1, 

that generate ordinary joint rotations of q and p spaces, close 
into an so(N - I) algebra that integrates to an SO(N - I) 
group. These transformations map fish-eye orbits onto simi­
lar fish-eye orbits, rotated around the origin. This is the 
manifest symmetry group of the Maxwell fish-eye. 

The N functions M;, i = 1,2, ... ,N - 1 transform as a 
vector under SO(N - 1) and, together with the L;/s, are 
generators of an so(N) algebra. The corresponding group is 
SO(N); it maps any given fish-eye orbit onto all other possi­
ble orbits in the same medium. Fish-eye orbits can thus be 
made to change their radius and center. This is the hidden 
symmetry group of the fish-eye. Still a symmetry, though. 

Enter dynamics. We may calculate that 

{M;,qj} = - o;Jp( I _lqI2/4p2) - q;q/2p, 

{M;,p) = L;/2p + o;Jq·p/2p. 

( 5.la) 

(5.lb) 

The first expression shows that under the integrated action 
of{a-M, ° }, q will map (nonlinearly) into q' (q,a). The sec­
ond expression shows that if we consider Pj' q-p, and 
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{M;,q-p} = p[ - (1 + ~~:) p; + ~; q;], (5.2) 

then further Poisson brackets of these functions will close 
into an algebra larger than so(N). To identify this algebra 
we recall that the Cartesian basis of so(N,M) generators 
satisfy 

{A;J,Ak,l} = gj,kAt.; + g;,1AkJ + gj,tA;,k + g;,kAj,l' 
(5.3a) 

where 

{

I, j=h;,N, 

gj,k = -1, N+ 1<J=k<N+M, 
0, otherwise, 

(5.3b) 

We take A;J = - Aj ,; for iJ both in the range (l, ... ,N) or 
both in (N + 1, ... ,N + M), and + Aj ,; otherwise. 

We write the so(N, I) generators in the following way: 

L;J = A;J' (SAa) 

M; = A;,N' iJ = 1,2, ... ,N - I, (5Ab) 

K; = A;,N+ 1 = M; - 2pp; 

= p[ - (1 + ~~:) p; + ~; q;]. 
KN = AN,N+ 1 = - q-p. 

(SAc) 

(SAd) 

We recognize the "noncompact" generators to be the K's, 
formally because of the minus sign in {K;.Kj } = - L;J' and 
manifestly because - q-p generates unbounded magnifica­
tions of configuration space, On smooth functions/of phase 
space, 

exp /3{KN,o }j(q,p)t-+/(e -Pq,efip), /3Em. (5.5) 

We note that this action is no longer an invariance transfor­
mation of the fish-eye Hamiltonian (4.9) but, for JY!ish-eye as 
a function of rotor radius p, 

exp - /3{K N' 0 }:JY (p ) fish-eye 

t-+llJp2(l + e2P lqI2/4p2)2e- 2P lpI2 = JY(e-Pp)fiSh-eye. 
(5.6) 

In particular, we note that the radius p of the rotor sphere 
dilates to infinity for /3-- - 00. If we set ill = !cno- 2p - 2, 
then by (4, lO) we map the Maxwell fish-eye Hamiltonian 
JY(p)fiSh-eye onto JY( 00 ) fish-eye = no, the optical Hamilto­
nian of an infinite homogeneous medium. 

The other K;. i = 1,2, ... ,N - I will produce SO(N)-ro­
tated versions of this action, Of these we wish to remark a 
direct physical interpretation, The SO (N,} ) generators in 
(SAc) may also be obtained through the standard de/orma­
tion formula14,28 as K; = {'G' ,pJ, in general with a sum­
mand 1'p;, l' = const, This suggests ill - l{JY!ish-eye,pJ = ill - 1 
dpJdt, to be a ray "acceleration" vector. 

We observe that the functions p; are linear combinations 
ofso(N,I) generators, viz"p; = (M; - K; )/2p. Thus a sec­
ond visible noninvariance transformation of the optical fish­
eye Hamiltonian is 

exp l:;a;{M; - K;,o }:JY(q,p)fiSh-eyet-+JY(q _ 2pa,p)fiSh-eye, 
(5,7) 

i,e" the map is to another fish-eye whose origin is at a instead 
of the origin. The algebra generated by L;J's and p; 's is the 
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Euclidean algebra iso (N - 1) C so (N, 1 ) . 
The group SO (N, 1) thus obtained therefore contains 

not only the symmetry group of the Maxwell fish-eye, but 
also the transformations between all possible such fish-eyes, 
translated and dilated, up to and including asymptotically 
the homogeneous medium. This is the potential group of the 
Maxwell fish-eye. Potential algebras of the family so(M,N) 
were used in Refs. 19 and 20, to relate the quantum Poschl­
Teller and other mostly one-dimensional potentials to the 
free particle. That this approach also serves optical systems, 
is in principle remarkable. 

A search for further functions closing under Poisson 
brackets with the generators of so(N, 1) is rewarded when 

we introduce the function p = m = 1 p I. We may then ver­
ify that an algebra is formed by the previous so(N, 1) genera­
tors, plus 

Hi = Ai,N+ 2 = qiP, i = 1,2, ... ,N - 1, ( S.8a) 

HN =AN.N+2 =HN+ I -2pp= _p(1_lqI2/4p 2)p, 
(S.8b) 

.ff=HN+ I =AN+ I ,N+2 =p(1 + IqI2/4p2)p= + fl. 
(S.8c) 

We note prominently that.ff in (S.8c) is the square root of 
the so(N) Casimir function Crff in (4.9b). It is a compact 

The evolution parameter s is along the flow lines 
v = p( 1 + Iq12/4p2)p = const, or Hfish-eye = constant. Thus 
we find the optical evolution generated by the Hamiltonian 
H fish·eye = OJ.../f/l through observing that 

exp t{Hfish-eye,o} = exp(lUt 12v) {.ff,o }. (S.12a) 

The result is then given by (S.lO) and (S.II), replacing the 
parameter s by the time t through 

s = lUt /2p(1 + Iq12/4p2)p. (S.I2b) 

This is the transformation of phase space along the orbits of 
the fish-eye system. 

VI. WAVIZATION OF THE MAXWELL FISH-EYE 

In this section we shall use another well-known realiza­
tion of the symmetry and potential algebras and groups that 
describes wave optics. We will "wavize" (or "ondulate"?) 
the Maxwell fish-eye by a method analogous to the dynami­
cal quantization of mechanical systems. 29 

The scalar wave equation for the field amplitUde <I> (O,t) 
in a homogeneous N-dimensional medium ~!RN, of refrac­
tive index no, is 

f a2<1>(~,t) = (~)2 a2<1>(~,t) (6.1) 
;~I aQi c at 

This equation may be put in evolution form (i.e., with first-
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generator of an so (N,2) algebra. In the hydrogen-atom sys­
tem,16 this 'last' generator is the number operator. 

Let us examine finally the integrated group action gen­
erated by .ff = H N + I = An + I.N + 2' This is a sui generis 
evolution of the fish-eye system. From (S.3), 

exp s{.ff,o }:AiJ 

= K;"coss-H; sins, I<,i<,N,j=N+ 1, (S.9) 
{

A ., 1 <,ij<,N, 

K; sin s + H; cos s, 1 <,i<,N,j = N + 2. 

Hence, forpi = (M; - K;)/2pandp = (HN+ I - H N)/2p, 

[
. I-COSs] + p sm s + qop q;. 

4p2 
(S.lOa) 

exps{.ff,O}:p= [coss+ I-;OSS (1 + ~~:)]p 

- _1_ q.p sin s. (S.lOb) 
2p 

Finally, for q; = H;lp, 

(S.l1 ) 

order time derivative) through doubling the function space, 

Ccln: )2a ~)(:) = :t (:), (6.2a) 

where the space Laplacian a is 

N a2 
a=I-2' 

;~I aQ; 
(6.2b) 

The first component equation in (6.2a) defines 
4>(O,t) = a<I>(O,t)lat, and the second then reproduces 
(6.1). The solutions of the wave equation can be expressed in 
terms of the initial conditions (<1>0,4>0) at t = 0, through 
integration of the one-parameter evolution group. This is 

(
<I> (Q,t») (0 
4> (O,t) = exp t (clno )2a I)(~o(E») o <1>0 (Q) , 

(6.3) 

provided the refractive index no is independent of time-a 
good general assumption. 

When light is of a definite color, i.e., when the time be­
havior of the wave function is that of a single Fourier compo­
nent v, 

(6.4) 

then the time-independent wave equation for a homoge­
neous medium factorizes as 
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here we have further factorized into radial and angular vari­
ables 

- 1 N-2 
Crfi= --IA k 2 j,k J, 

(6.6a) 

Aj,k = {Qj a~k - Qk a~j)' (6.6b) 

Notice that in (6.5), the factor (vnOIC)2>O appears where 
the familiar energy eigenvalue 2mE Ifz2 appears in the time­
independent Schrodinger equation of quantum mechanics. 

The wave equation on the sphere S N _ 1 C mN is obtained 
from (6.1) after separation in spherical coordinates. This 
reduces the equation to 

_ -+ (n Vp)2 -+ 
Crfiq>(Q) = ~ q>(Q). (6.7) 

The operators (6.6b) are well known !.t' 2 (mN) self-adjoint 
realizations of the rotation algebra and group generators. 
Only N - 1 variables among the Q; are independent be-

cause, as in (3.9), QN = U~p2 - IQI2. Through the stereo­
graphic projection (4.2) and (4.3) we may now map the Q; 
coordinates of the p sphere in (6.6) onto the q plane mN 

- 1 
where the Maxwell fish-eye lives. The chain rule for (4.2a) 
would yield 

~ - (1 + J!L) (~+ 2q; q.~) (6.8) 
aQ; - 4p2 aq; 4p2 _ Iql2 aq' 

for i = 1,2, ... ,N - 1. Compare with the geometrical (classi­
cal) expression (4.8) for the canonical conjugate Pj : func­
tions on the p sphere no longer have an independent coordi­
nate QN' and a laQN acts as zero and plays no further role. 

While in mN, the independent formal operators, Q; and 
a laQj close into the N-dimensional Heisenberg-Weyl alge­
bra, after restriction to S N _ 1 and subsequent stereographic 
projection, they do so only for iJ = 1,2, ... ,N - 1. The opera­
tors (6.8) generate translations that do not leave the sphere 
S N _ 1 invariant, so they cannot be exponentiated alone; they 
are not self-adjoint on the space of functions on the sphere. 
However, the rotation generators A;j in (6.6b) are self-ad­
joint, and hence valid operators on the sphere. Other valid 
operators are the Q;, i = 1,2, ... ,N - 1, and products or uni­
formly convergent series thereof. 

The Casimir operator Crfi appears in (6.7); its eigenval­
ues on the space of single valued and bounded functions are 

(6.9a) 

The light colors v that the compact space S N _ 1 can sustain 
are thus limited to the discrete frequencies 

vN =-C-~/N(lN +N-2), IN =0,1,2, .... (6.9b) 
nop 

We know l8 the Hilbert space !.t'2(SN I) of Lebesgue 
square-integrable functions q>(Q) over the sphere SN_ I' 
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These functions are first mapped on the two functions 
<1>,,= ± 1 (Q) = q>(Q) on the balls in mN- 1 where IQI <p, as 
we saw in Sec. IV. Then we proceed through the stereogra­
phic projection on wave functions ¢(q) = <l>u(Q), with 
q(Q,U)EmN- 1 as given in (4.2). The !.t'2(SN_I) inner 
product oftwo functions q>, 'I' is thus 

(q>,'I')y'2(SN_ 1l 

= L
N

_

, 

dN-1n(Q)q>(Q)*'I'(Q) (6.1Oa) 

I ~ ( dN-1Q <l>u(Q)*\IIu(Q) 
u= ± 1 P - JIQI <P U~p2 _ IQI2 

1 ( dN-1q 

= pN- 1 JmN-1 (1 + IqI2/4p2)N- 1 

X q>(Q( q) )*<I>(Q( q» 

= (¢;,p)fiSh-eye = ( dN-1q¢(q)*tP(q), J9iN- I 

where 

and 'I' and tP are bound by a similar relation. 

(6.1Ob) 

(6.1Oc) 

(6.1Od) 

(6.11 ) 

Under this inner product, symmetry transformations 
are unitary and their infinitesimal generators (6.6b) are self­
adjoint. When we use the customary inner product form 
(¢,tP)fish-eye in (6.1Od) for a "flat" space of measure d N - I q, 

'" A theso(N) generatorsL;j andM; are the Schrodinger quanti-
zation ofthe "classical functions" in (3.17) and (3.18) and 
(4.9) and (4.10) [i.e., through the replacements q;f-+Il;', 
(multiplication by q;), and P/-~P; = - i a laq;]. Because 
the functions involved are linear in the components of Pi> 
there is no operator-ordering ambiguity in this case: any 
quantization rule that guarantees self-adjointness under the 
inner product f mN _ I d N - Iq ... Ref. 24 yields 

!(q; )Pj~~{!(q; ),p) + 

= ~ [!(q;)Pj +pj'(q;)] 

= _ ij(q;) ~ + ~i a!(q;) . 
aqj 2 aqj 

This allows us to write the Maxwell fish-eye dynamical gen­
erators K; in (5.4), independent of any ordering rule. 

The optical fish-eye Hamiltonian is the Casimir opera­
tor of SO(N) built in (3.17) and (4.9). By itself, as a func­
tion in (Q,P) or (q,p), the Hamiltonian function would be 
subject to ordering-rule ambiguities;24 however, as Casimir 
operator, Crfi is the sum of squares of the operators (6.6a); 
defined thus, the Hamiltonian is unique and independent of 
the quantization scheme. All higher-order Casimir invar­
iants are zero: the sphere S N _ 1 can only support the totally 
symmetric representations of SO(N). The number of inde­
pendent Maxwell fish-eye states that are degenerate for some 
IN is given by the branching rules of the so(N) representa­
tions. The representation row indices are provided by the 
canonical basis, 14 and given as a (N - 1 )-plet 
{IN,IN-1> ... ,12}, with the integer labels Ij bound by 
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IN >IN -I>···>/3 >1/21. The count is 2/2 + 1 forthespheri­
cal harmonics on the surface of the ordinary sphere S2' and 
(/3 + 1)2 for the curved S3 space that we use in the model of 
the "physical" Maxwell fish-eye. 

In the plane two-dimensional optical world projected in 
Fig. 2 (N = 3), the description of the wave patterns in the 
Maxwell fish-eye is easy: The labels are the usual {I,m}, and 
the wave solutions are in the linear span of the ordinary solid 
spherical harmonic basis {'?!I I,m ('n}~ ~ _ I (Ref. 18), each 
vibrating with an angular frequency (6.9b), namely 

v(/) = (clnop)~/(/+ 1), 1=0,1,2, .... ( 6.12a) 

The time evolution of a linear combination of harmonics 
with coefficientsf/,m is then 

~ 00 I ...... 
<1>( Q t) = "e;V(/)1 " I' '?!I (Q). (6.12b) ,~ L JI,m I,m 

I~O m~-I 

These functions can be visualized as a pattern of light with 
intensity (<I>,<I»y2(S2) on the ordinary S2 sphereofradiusp. 

Light of a given color number I has only 21 + 1 distinct wave 
patterns labeled by m = 0, ± 1, ... , ± I. Rotations of the 
sphere will mix m's, maintaining the linear subspaces I invar­
iant. When the stereographic projection (4.3) is applied, 
with the weight (obliquity) factor given in (6.11), the pro­
jections of the spherical harmonics on the optical q space will 
provide an 2'2(vt2)-orthogonal basis for the Maxwell fish­
eye solutions. These are 

'Y' t _ YI,m(q/( 1 + IqI2/4p2» 
I,m (q, ) - 1 + Iql2/4p2 

X exp(ict ~/(/ + 1 )Inop , (6.13 ) 

where we have written the solid spherical harmonic con­
strained to the sphere in Cartesian coordinates as 

'?!I I,m (Q)ls, ='?!II,m(Q,u~p2_IQI2) =pIYI,m(Q,u). 
Consider first the "extreme" m = ± I wave patterns 

'Y'I, ± I (q (,8, y) ,t), using polar angles (,8, y) on the sphere. The 
functions behave as sin I ,8 exp i( ± Iy + ct 1 
nop~ I (/ + 1) and will exhibit I moving nodal meridians 
with a braid of maxima at the equator,8 = 11"12. The pattern 
is a function of y + Wit, where WI is the angular velocity of 

the sphere, WI = (c/nop)~1 + 1//,1= 1,2, .... That rotat­
ing light pattern will project on the optical plane as the circu­
lar motion of waves in the fish-eye, with I nodes as spokes in a 
rigid rotating wheel. The belt of light maxima may also ro­
tate on an inclined axis; it will then project its equatorial 
braid on an off-center circle on the fish-eye plane, the nodal 
meridians will project on circular nodes that cross through 
the two conjugate points that are images of the new rotation 
poles. These 'circle-of-light' rotating solutions, we surmise, 
are the best wave analogs of the geometric light orbits, such 
as that of Fig. 2. 

We note that, inevitably, chromatic dispersion takes 

place: WI -~ 1 + 1/1 is not independent of I, as it is in a 
homogeneous optical medium where wave velocity is inde­
pendent of wave number. For 1= 0, 'Y'o,o (q) = const! 
(1 + Iq12/4p2) in (6.13). For growing I, Iwd decreases 

monotonically from WI = c{2lnop down to Woo = clnop. 
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Asymptotically with I, we see that the surface of the sphere 
of radius p moves at the equator with velocity 

v = Woo = clno· 
Another set of harmonics that are easy to "isualize, are 

the m = ° solutions '?!I 1,0 ( Q3 ). They contain a Legendre pol­
ynomial PI (cos ,8), that has I nodal circles (only one can be 
the equator great circle); they are independent of the longi­
tude angle y. These linear multi pole standing-wave solutions 
have their global absolute maxima at the two sphere poles, 
with a relative sign ( - 1) I between the two, and their single, 
sui generis vibration frequency v(/) in (6.12a). When this 
vibration mode is tilted by SO (3) to any angle and projected 
on q space, the strongly elongating polar regions will map on 
a conjugate pair of pulsating light zones in the Maxwell fish­
eye. They will be in or out of phase according to the parity of 
I. A Dirac 8 flash at some point of the fish-eye, or at a closed 
wave front line q(,8o,y), yESI, will decompose by 

00 

8( cos,8 - cos ,80) - L PI (cos /3) PI (cos /30) 
I~O 

into a weakly convergent series of the above conjugate-pair 
"standing waves." 

There is dispersion again. Under time evolution, the co­
efficients PI (cos /3 0) in the series will be multiplied by 

e;v(/) t, v(/) _ ~ 1(/ + 1), whose periods are incommensurable. 
Thus although the optical path between two conjugate 
points is equal along any circle arc joining the points, and 
wave fronts are well defined, I we see that the Maxwell fish­
eye is not quite a perfect imaging device2 in the sense that it 
cannot forestall the chromatic dispersion that will smear out 
any pulse. This is in contrast with optics in a homogeneous 
space, where spherical 8 wave fronts propagate as such in 
odd dimensions (and develop a trailing wake in even dimen­
sions I7 ). Although we can work with Dirac 8's on the S2 
sphere, they are not eigenfunctions of any rotation genera­
tors. 

In the plane optical world of Fig. 2, the manifest symme-
1:J.y gener~tor is L 1,2 and the hidden symmetry generators are 
MI and M2':'" Thx extra ~nerators of the dynamical algebra 
so(3,1) areKI> K 2 , andK3 , given by (5.4c) and (5.4d). This 
enlarged linear space of operators may be used to define oth­
er bases for the polychromatic, wavized fish-eye. We refer to 
Eqs. (5.4c) to choose the two commuting operators 

P;=-2
1 

(if;-'k) = -i a
a , i=I,2, (6.14) 

.p q; 

that are generators of the Euclidean algebra iso (3) together 
with the symmetry generators. These define the plane-wave 
generalized basis of the 2'2(!Ie) with the inner product 
(.,. )/iSh-eye in (6_lOd). Such solutions quickly loose their 
shape under Maxwell fish-eye evolution because they are 
eigenfunctions of operators that do not commute with the 
driving Hamiltonian. Their time evolution may be calculat­
ed group theoretically through the transformation (5 . lOa ) 
or as overlap coefficients between the elliptic (I,m) and 
parabolic (PI ,P2) subgroups of the SOC 3, 1) group that we 
have realized on the !If plane_ 

Extending further the dynamical algebra group to the 
conformal SO (3,2) by the geometric-optics generators 
H; = q;p, i = 1,2, H3 = JV - 2pp, and H4 = JV 
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= p( I + /q/2/4p2)p [generically SO(N,2) for (N - 1 )-di­
mensional fish-eyes], we have integral operators: the scalar 

root of the Laplacian, p = ~pi + p~ . Its action p on smooth, 
properly decreasing functions t,6(q) is through a formally 
divergent kernel (as a Dirac {j' derivative) given by 

(pt,6)(q) = r d 2q'II(q - q')t,6(q'), 
JV!2 

II(q) = _,_' r d 2p/p/exp ip.q. 4r JV!2 
(6.15 ) 

This scalar root operator may enter commutators and sym­
metrized products. Indeed, the Heisenberg-Weyl commuta­
tors of 

H; = !(q;p + pq;) and % _ pp =!( /q/2p + p/q/2) 
close, with the rest of the SO (3,1) generators, into the Lie 
algebraofSO(3,2) in Eqs. (5.3). In this realization we have 
the SO(3) Casimir operator written as%(% + 1). Gener-

A A 

ally, for SO(N,2), it isff(ff + N - 2). 

VII. CONCLUDING REMARKS 

When a "physical" three-dimensional optical medium 
is homogeneous, the symmetry of the system is the Euclid­
ean algebra iso ( 3 ) .9 In this case there are no additional, 
hidden symmetries. The optical Hamiltonian is then also the 
Casimir invariant, with eigenvalues - k 2;>0; the irreduci­
ble representation is then labeled by the wave number kE!R 
(the second Casimir,L'p, is zero). We may thus isolate any 
single "color" k and work with monochromatic optics. On 
the other hand, the Maxwell fish-eye seen here has the sym­
metry algebra soC 4) and its representation labels are dis­
crete, allowed only for discrete colors v n' n = 0,1,2, .... Once 
one n is chosen, the space of wave functions is of finite di­
mensions n2

, just as in the hydrogen atom. All these soC 4) 
representations fit into a single degenerate representation of 
its dynamical algebra so ( 4,1 ). 

The dynamical algebra so( 4,1) also contains the Euclid­
ean iso (3) algebra of rotations and space translations of ho­
mogeneous media. Homogeneous and fish-eye optical spaces 
are thus identified as different subalgebra reductions of their 
common dynamical algebra so ( 4,1 ). The iso (3) algebra is a 
contraction of so ( 4 ) by the scaling generator A N,N + 1 seen in 
(5.4d). In this sense, so(4,1) is the potential algebra 19 (or 
group,20 that binds the fish-eye light orbits to free propaga­
tion in a homogeneous optical medium. 

The role of the larger dynamical algebra so ( 4,2) in the 
Maxwell fish-eye is more subtle: it yields the Hamiltonian 
time evolution as a number generator in the algebra, 
ff = AS•6 ' that exponentiates easily to the evolution sub­
group. Indeed, the same strategy of finding a larger group, 
applied to homogeneous space optics, will use the square 
root p of the Casimir invariant p2 of iso (3). This quantity is 
p = (A4,6 - AS,6 ) /2p and commutes with all iso (3) opera­
tors. The scaling generator also contracts ff to p. 

We have seen here that there is a realization of the alge­
bras that models scalar geometrical optics, and another real­
ization that models wave optics, both for the Maxwell fish­
eye and for homogeneous media. Evolution along an optical 
axis has been the primary concern for Euclidean optics,9 
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while evolution in time is highlighted here to predict chro­
matic dispersion. 

Small neighborhoods around points qo in a smooth radi­
ally symmetric inhomogeneous medium may be approxi­
mated by neighborhoods of Maxwell fish-eyes that are dis­
placed by v and/or scaled by p and no, in such a way as to 
approximate the refractive index n(qo + q) 

=n(qo) +l:;q;[Jq;n(q»'Io + ... by the "local" fish-eye 
shape 

no/( 1 + /q - v/2/4p2) -no (1 + /v/2/4p2) 

- noq·v/2p2 + ... 
through their value and gradient, when n( /q/). This con­
struction is a section in a bundle over configuration space, 
where for each qE!R3 there is an so ( 4,2) evolution direction 
determined by the local Hamiltonian. While the curvature is 
positive, the "compact" AS,6 -generated subgroup is fol­
lowed, or its translates by SO (2,1 ) C SO ( 4,2) group trans­
formations. In the regions where n is constant, the direction 
is along the free-flight Euclidean number operator p. Finally, 
when the curvature is negative (~ip), the "noncompact" 
generator is A4,6' This 'hyperbolic' Maxwell fish-eye carries 
its corresponding local so(3,1) symmetry algebra. Work is 
being done to understand further the Lie algebra and global 
group properties of particular inhomogeneous optical sys­
tems. 
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