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It is shown, in the framework of Hamilton-Lie geometrical optics, that the image on a moving 
screen undergoes comatic aberration as the conjugate sphere of ray directions distorts under 
Lorentz boosts. 

I. INTRODUCTION 

Stellar aberration is a phenomenon known for centuries 
in positional astronomy: As a result of the Earth's motion in 
orbit, the directions to stars on the celestial sphere suffer 
distortion toward the direction of motion. In relativity we 
know that, corresponding to a ray with angle () measured 
from the motion vector, and a velocity v = c tanh a, the dis­
tortion is given by the transformation of the circle l 

tan i()-+tan i()' = e - a tan W (1.1 ) 

Hamilton-Lie geometrical optics2
•
3 works with phase­

space observables on plane screens. It is usually natural to 
distinguish an optical axis when working with optical image­
forming systems or optical fibers. In that case it is convenient 
to perform the aberration expansions of classical geometri­
cal optics.4 In this paper we treat the aberration phenome­
non globally, i.e., through exact (closed) expressions valid 
on the whole optical phase-space manifold: optical momen­
tum is directly related to points on the direction sphere, and 
this is a compact manifold (unlike the phase space of point 
particles) . 

Distortion of the sphere of directions entails a corre­
sponding coma tic aberration of ray position at the screen, if 
the relativistic transformation is to be canonical on optical 
phase space. 

In Sec. II we assemble the basic facts of the Hamilton­
Lie account oflocal and global properties of the phase space 
of geometric optics. In Sec. III we use this formalism in the 
framework of Euclidean and special relativity: screens may 
be translated to new origins, rotated to new optical axes, or 
boosted to motion. This last transformation is performed by 
group deformation 1,5,6 of the Euclidean to the Lorentz alge­
bra and group, in Sec. IV. In Sec. V the specific aberration 
due to screen motion along the optical axis is studied as are 
some of its basic geometric properties for all velocities. Caus­
tic phenomena are highly visible and could be observable in 
appropriate experimental situations. In the concluding sec­
tion (VI) some considerations of a mathematical nature are 
added. 
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II. OPTICAL PHASE SPACE 

Optical phase space in the three-dimensional world of 
geometric optics is referred to a two-dimentional screen of 
positions and a sphere of ray directions. It is a four-dimen­
sional manifold where it is convenient to introduce Cartesian 
coordinates7 and write its points as w = (p;q), p = (Px,Py), 
q = (q x ,qy ), with qE~2 (the real plane) the position vector 
of the ray's intersection, and p the momentum coordinate. 
The latter is the projection on the plane of the screen of a 
three-vector it = (Px,py,h) along the ray whose length is n, 
the refractive index of the medium (constant in this paper, 
corresponding to a homogeneous optical medium). The two 
coordinate sets are canonically conjugate, i.e., the Poisson 
bracketS relations hold: 

The origin of phase space is q = 0 (the optical center), and 
p = 0 (the optical axis). 

We note that the range of the momentum coordinates is 
limited by p2 <n2, and is the projection of the sphere S 2 of ray 
directions on the screen plane. It consists of the disk p2 < n2 

counted once for h > a ("forward" rays), and once for h < a 
("backward" rays); the two disks are at the boundary 
p2 = n2 when h = O. We may assume the sign of the z compo­
nent of n, i.e., h, is always available to distinguish between 
the two disks, and we may freely revert to the direction 
sphere coordinates, (The range of p in two-dimensional me­
chanics, in contrast, is the full ~2 plane.) 

The z component of the direction vector Ii is 
h = (n2 - p2)1/2 (2.2) 

and serves as (minus) the optical Hamiltonian. 3 (The series 
expansion h = n - p2/2n' .. suggests giving n the analog 
role of a potential, notwithstanding that it also appears in the 
denominator, where mass ought to be in mechanics.) 

Lie optics uses the symplectic structure (2.1) to build 
Lie operators j = {f,.} associated to differentiable functions 
f(p,q). Their action on phase space is 

A } Jf A 

fp = (f,p = a' fq = {f,q} = 
q , 

Various properties follow,9 such as 

jg(p,q) = (f,g}(p,q) = gUP,{q) , 

({f,g}) ~ r);g], 

(2.3) 

(2.4a) 

(2.4b) 
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where [ ',' ] is the commutator of operators. They allow us to 
work with the enveloping algebra of (2.1 ), and exponentiate 
to the corresponding Lie transformation generated by f 

Fa = exp(aj) = 1 + af + 1!2!a2f2 + "', (2.5) 

so that acting on suitably smooth functions g( p,q) (such as p 
and q themselves), 

(2.6) 

Also, Lie transformations are canonical,9 i.e., for arbitrary 
gl(p,q) andg2 (p,q), 

{Fa gl,Fa g2} = {g1,g2}' (2.7) 

As a first (counter- ) example, considerf to be a function 
quadratic in the components ofp and q. Then2

,9 Fa will map 
the components of p and q linearly among themselves, thus 
generating Sp (4,R), the group of linear symplectomor­
phisms of phase space. In this example, however, the natural 
range of optical momentum p2 <n2 is not preserved. [In spite 
of not globally respecting optics, Sp (4,R) has been extreme­
ly useful in treating aberration expansions by order around 
an optical center and axis. 10] 

The position coordinates (qx ,qy ), in particular, are also 
not good functions to generate Lie transformations for glo­
bal optics, since they translate the p plane, as in mechanics, 
and do not respect the natural range p2<n2 of optical mo­
mentum. 

In fact, it seems rather difficult to write Lie transforma­
tions that do not preserve the optical momentum range, ex­
cept for one very obvious class: point-to-point mappings of 
the sphere, i.e., rotations and distortions S2 ..... S2 so that 
p ..... p' = p'(p, sgn h). These are distortions in the sense that 
p' is not a function of q. [In the optical distortion aberration,4 

q'(q) is independent ofp; the latter is the Fourier conjugate 
variable except for ranges. ] 

To avoid uncomfortable formulas at the joining of the 
two momentum disks, let us use explicit spherical coordi­
nates for the three-vector of ray directions: 

Px = n sin e sin fjJ, 

Py = n sin e cos fjJ, 

h = n cos e. 

(2.8a) 

(2.8b) 

(2.8c) 

We now define the Lorentz group action of special relativity 
on the phase space of geometrical optics through binding 
(2.8) to be the three-vector parallel to the three-vector part 
of a lightlike four-vector (kx,ky,kz,ko) undergoing such 
tranformations. Thus setting k = (kx ,ky ), 
k = (k ~ + k;) 1/2, P = nklko, and h = nkzlko, we obtain 
the following relations: 

pin = sin e = k Iko, 

h In = cos e = kzlko, 

(2.9a) 

(2.9b) 

(2.9c) 

Hence when the lightlike vector (k,kz ,ko) undergoes a boost 
in the z direction, the transformation of (2. 9c) yields ( 1.1 ). 
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III. EUCLIDEAN TRANSFORMATIONS 

Three functions that generate Lie transformations that 
map optical phase space onto itself properly are the compo­
nents ofii = (Px,py,h). The firsttwo generate translations in 
qE&f2

, 

exp(a·p)g(p,q) = g(p,q - a); (3.1 ) 

while the last one generates translations along the optical 
axis normal to the screen, 

exp(zh)g(p,q) = g(p,q + z plh). (3.2) 

The transformation of q in the last argument reads 
q + z tan e in the direction ofp, as is clear from simple geom­
etry. The three generating functions commute under the Lie 
bracket: {pj'Pj} = 0, {pj,h} = O. 

Another set of S 2 -preserving Lie transformations is the 
group of rotations of the screen in three-space. II To simplify 
arguments, consider the two-dimensional optics case depict­
ed in Fig. 1, where a ray is seen in two different frames rotat­
ed by y, as e and as e ' = e + y, or, in two-dimensional phase 
space, 

p ..... p' = p cos y + h sin y, ( 3.3a) 

(3.3b) 

(3.3c) 

h ..... h ' = - p sin y + h cos y, 

q __ q' = ql(cos y - plh sin y). 

The last relation is obtained from the law of sines in the 
triangle of the figure. From here, the generator of two-di­
mensional rotations exp ( yfh) may be found through 

am A ap' I am A aq' I Iii = mp = ay r = 0' ap = - mq = ay r = 0' 

and is II m = qh. In three-dimensional optics, if Fig. 1 is the 
x-z plane, the generator will be that of rotation ry around the 
y axis, and if it is the y-z plane the generator will be - r x' 

Hence the generators of rotations of the direction sphere are 
[cf. Ref. 11, Eq. (2.9)] 

rx = qyh, 

'y = - qx h, 

(3.4a) 

(3.4b) 

rz = qxPy - qypx = qXp, (3.4c) 

and are easily checked to close into an so (3) algebra under 
the Lie bracket of geometrical optics: 

{rx,'y} = rz, {ry,rz} = 'x, {'z"x} = 'y. (3.5) 

The first ofEqs. (3.5) may be used to define,z in (3.4c); this 
quantity generates rotations in the plane of the screen 
around the optical center, together with rotations of the di­
rection sphere around the optical axis. Its square is the Petz­
val invariant of optics. 10 

FIG. 1. The transformation of optical phase 
space due to rotation of the screen about the 
origin by y. The ray (p = n sin O,q) trans­
forms to (p' = n sin O',q'). 
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The six functions (Px ,py,h; rx ,ry ,rz ) close under Poisson 
brackets into the Lie algebra iso (3) of the Euclidean group 
of motions: the three translations leaving the direction 
sphere invariant and the three joint rotations intertwine 
through 

{r;,p) = Pk, (3.6) 

with iJ,k cyclic permutations of x,y,z, and pz = h. The Eu­
clidean group ISO (3), containing the Hamiltonian among 
its generators, is the dynamical group of I I geometric optics 
in a homogeneous medium. The two Euclidean invariants 
are p2 + h 2 = n2 and it·p = O. 

IV. THE DEFORMATION ISO (3) ..... SO (3,1) 

We recall the classic deformation process l
•
5 that builds 

the Lorentz algebra so (3,1) out of the generators of the 
Euclidean iso (3), realized on a sphere, and generalizations 
thereof.6 Basically, one builds bilinear functions of the gen­
erators of iso (3) with the right transformation properties 
under so (3). These will close into so (3,1) on the sphere. 
One may also add linearly the generators of the translation 
subalgebra, thus arriving at all representations of the nonex­
ceptional continuous series. In geometric optics we may pro­
pose the three-vector 

(4.1 ) 

As vector functions in the phase-space coordinates, the com­
ponents are 

b = nq - p·qp/n + Gp, 

bz = - p·qhln + uh. 

(4.2a) 

(4.2b) 

These three functions transform under the so (3) subalgebra 
(3.4) as the components of a proper three-vector, 

{rx,by} = bz (and cyclically). (4.3) 

Finally, they close under the Lie (Poisson) bracket of the 
algebra, into the Lorentz algebra so (3,1): 

{bx,by} = - rz (and cyclically). (4.4) 

The constant u in the boost generators (4.2) is also in the 
Lorentz invariant b 2 - -p. = n2t? while r' b = O. 

It is noteworthy that we may express the ray position 
coordinate q in terms of the functions generating Lorentz 
boosts and Euclidean translations: 

q = bin - bzp/nh. ( 4.5) 

We shall examine in detail the boosts along the optical 
axis; these are generated by bz in (4.2b) as the Lie transfor­
mation exp (ab z ) acting on the reference (stationary) screen 
phase space (p,q), to produce the phase space 
(p' (p,q,a) ,q/ (p,q,a») of a screen in motion with velocity 
v = c tanh a. On the momentum coordinates, we find the 
integrated group action to be 

p/(p,a) = exp(abz)p 

= p/(cosh a + h In sinh a). (4.6) 
This, we duly note, is a mapping p/(p) independent ofposi­
tion q and the "Lorentz constant" u. The momentum distor-
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tion of S2 is precisely-of course-the stellar aberration 
(1.1). as may be verified through (2.9). 

We may also find the action of this boost on the position 
coordinate q with the help of (4.5) and (2.4). The trans­
formed position coordinate is 

q/(p,q,a) = exp(abz)q 

= (cosh a + (h In)sinh a) 

x( + sinha 
q n sinh a + h cosh a 

(4.7) 

The magnification and aberrations present in (4.7) will be 
studied in Sec. V. We only point out here that the meaning of 
the arbitrary "Lorentz" constant u may be elucidated in the 
Inonii-Wigner contraction of SO (3,1) to ISO (3), when 
a -+ 0, U -+ 00, with finite z = au. Then q/ -+ q + zpl h, show­
ing an (arbitrary) amount of z translation (3.2), which will 
not affect ray direction. We will disregard this (purely 
sphericaI2

•
4

) aberration and set u = 0 henceforth. The trans­
formation (4.6) and (4.7) of phase space may be verified to 
be canonical. 

V. THE RELATIVISTIC COMA 

Transformations of a four-dimensional manifold are 
difficult to visualize. The canonicity of the transformation 
only assures us that the manifold of rays will move as specks 
of dust in an incompressible fluid (Louville's theorem). A 
section of much use in optics is to choose a single "object" 
point qo, and plot q' (p,qo) as a function ofp on part (or the 
whole) of its range. This corresponds to a bundle (or all) 
rays passing through the chosen qo (as a point light source) 
imaged after the transformation. In the figures of this section 
we let p draw a polar coordinate grid around the optical axis, 
and plot the image q/Ey?2; this is the spot diagram of the 
optical transformation for qo. 

When we take a square lattice of such object points a 
distance d apart, at qo + nx (d,O) + ny(O,d); nxny integers, 
we obtain the spots diagram (as in our figures), usually also 
called "spot." It depicts what is seen on the screen of an 
array of luminous points after the transformation to 
(p/ (p,q) ,q/ (p,q». [The spot diagram before the transforma­
tion, i.e., (p,q) is simply a square array of points. a perfectly 
focused 1: 1 unit transformation of the object.] 

We start the analysis of relativistic coma in the context 
of aberration-expansion optics, and will later consider its 
global characteristics. We must assume pin to be less than 
unity so that the expansion of (4.6) and (4.7) may be per­
formed by powers of p2. This may mean p2 < n2/10 
«() < 18°26' ... ) or p2 < n2/2 «() < 45°), according to how high 
the order of aberration we are willing to calculate. To fifth 
aberration order we have the following fifth-degree approxi­
mation of relativistic coma: 
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p' = e-ap + !n-2 sinh a e- 2ap2p 

+ !n-4 sinh a e - 2a( 1 - !e - 2a)p2p + "', (5.1a) 

q' = eaq - n- I sinh a poqp - !n-2 sinh ap2q 

- !n- 3 sinh a e - 2ap2poqp 

(5.1b) 

with increasingly complicated coefficients for higher (p2) mp 
in (5.1a), and (p2)m - Ipoqp and (p2)mq in (5.1b). 

The first term on the right-hand sides of (5.1) is the 
linear part of the mapping. This falls within Gaussian (par­
axial, linear) optics: p' = e - a p is a contraction of ray mo­
mentum that necessitates (for canonicity) the expansion 
q' = eaq of ray positions. 

The rest of the series (5.1) is nonlinear and contains the 
aberration due to boost. It should be noted carefully that the 
only smallness parameter is p2. Indeed, in a, the magnifica­
tion part e - a p = (1 - a) p and the aberration part = a(p21 
2n2 + (p2) 2/Sn4 + "')p in relativistic coma are of the same 
order; similarly for q'. 

In the expansion (5.1b) [and in the exact form (4.7) l, 
it is useful to note that the particular function form 
C(p,q) = Apoqp + Bp2q maps a cone of rays around the op­
tical axis (q and p = ipi fixed, twice (for ± p) onto a circle 
in the spot diagram, with center at (A /2 + B)p2q, of radius 
Ap2q12, and extending between (A + B)p2q (the image of 
the two meridional rays, i.e., in a plane with the optical axis, 
poq = ± pq) and Bp2q (the image of the two saggital rays 
across, poq = 0). 

In Lie optics2 the generator of circular coma aberration 
of order 2m + 1 isF= (p2)mpoq. (ThisisMmlO in the mon­
omial basis 10 and m + IX::: + I in the symplectic basis. II) The 
action of exp K/c on phase space, to the aberration order, is 

p .... p + K(p2)mp 

and 

q .... q _ K[2m(p2)m - Ipoqp _ (p2)mq]. 

On this basis we recognize the relativistic aberration as circu­
lar coma. The third-order (m = 1) comatic parameter is 
thus 

K(3) = !n -2e - a sinh a. (5.2a) 

In the factorization order2 

the fifth- and seventh-order coma parameters are found to 
be9 

K(5) = -hn-4e-2a sinh 2a, 

K(7) = -fin -6e - 3a sinh 3a. 

(5.2b) 

(5.2c) 

In Figs. 2 and 3 we show the spot(s) diagram of reI at iv­
istic coma at values a = 0.3 and a = - 0.3, respectively, for 
a 4 X 4 array of sources. The tips of the "comets" (where­
from the name for coma aberration) exhibit the familiar 60· 
opening angle characteristic of third-order Seidel coma.4 

The angles r which the circles subtend from the tip are not 
constant, however, but 

sin !r(p2) =! + p2(2e - 2a - 1 )/16n2 + .... 
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alpha· fl.' 

FIG. 2. Spots diagram of the relativistic coma transformation with positive 
a = 0.3. A 4X4 array of object sources (the last row and column of which 
fall entirely outside the figure) is shown for ray angles of up to 45' (the 
values of momentum p are spaced by 0.101, up to 0.7071, corresponding to 
seven circles. The optical center is at the lower left corner. 

For a = 0.3, the p2 coefficient is positive and so the comet 
opens; for values beyond a = !In 2=0.3466, from 60·, r 
closes somewhat before opening again for p2 in the far-me­
taxial region, to be discussed below. 

The figures were drawn for p2 up to n2/2, i.e., for rays 
with angles () of up to 45· from the direction of motion. This 
is more than what most instruments are designed for, but it 
allows us to discuss relativistic coma as a global aberration 

FIG. 3. Spots diagram of the relativistic coma transformation with negative 
a = - 0.3. The array of sources and angles are the same as in Fig. 2. 
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phenomenon. The figures were plotted using the exact 
expression (4.7) rather than any truncated aberration ex­
pansion (5.1b). 

Consider what happens for negative a: as the screen 
moves in the - z direction, ( 1.1 ) shows that some "critical" 
rays with angle ()c to the optical axis will map onto rays with 
angle (); = 1T/2. This happens for tan !()c = ea or 

Pc = n sin ()e = n sech a, he = n cos ()e = - n tanh a. 

At this value, the denominator in (4.7) vanishes, and that 
cone of rays will map to infinity at the moving screen. The 
Poisson bracket {q',p'} remains constant: the blowup of 
q'(q,Pe) at ()e is compensated by p'(Pc) reaching its maxi­
mum at ()' = 1T/2 and having zero derivative there. There is, 
of course, no physical singularity, as there is none for rota­
tions in (3.3c) vis-a-vis Fig. 1, when () + Y-+1T/2. Up to ()e' 

the circles subtend angles up to 180·, while the distance from 
the circle to the comet tip slowly increases up to and beyond 
()e' 

The global picture of the relativistic coma aberration is 
the mapping of the whole direction sphere. We note that 
forward rays (h > 0) under backward motion (a < 0) are the 
same as backward rays (h < 0) under forward motion 
(a> 0); indeed, Eq. (4.7) is invariant under the exchange 
(h,a)++( - h, - a). Thus while Fig. 2 is the image of rays 
around the/orward pole of the direction sphere, a > 0, Fig. 3 
is the image of rays around the backward pole, also for I a I. 
To see the spot diagram of the whole direction sphere we 
may superpose both figures: the spot will extend from 
q; = eaq (the image of the forward ray, along the optical 
axis) to q~ = e - a q (the image of the backward ray, counter 
to that axis). The full coma tic caustic acquires a diamond 
shape, with two 60· angles at the two finite tips, qF and qB' 
and two "vertices" at infinity in the perpendicular direction. 
The location of the asymptotic caustic line may be found in 
( 4.7) as the position of the saggital rays (p.q = 0) at the 
critical angle ()e: it is qe = sech a q. The three points: qB' qc> 
and qF lie in a line in that order. The region of the direction 
sphere accessible to optical focusing is in practice very limit­
ed, of course. 

Thus far we referred to the boost aberration as coma, 
because of its striking appearance when the screen move­
ment is in the z direction. The effect of boosts in the screen 
plane, specifically, bx , will be described now more succinct­
ly. 

The boost function bx in (4.2a) for u = 0 will generate 
the Lie transformation on the ray position plane, 

= (cosh a + Pxn-I sinh a) 

X (qx cosh a + p·qn- I sinh a), 

eabxqy = q; = (cosh a + Pxn-I sinh a)qy, 

(5.3a) 

(5.3b) 

while on the ray direction sphere it yields the familiar stellar 
aberration in the x direction. 

To first order in a, the aberration of phase space pro­
duces spot diagrams with elliptical spots. If qy/qx = tan 7, 7 

is the angle between the object point and the direction of 
motion (the x axis here), the ellipses are tilted by K = 7/2, 
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have "major" axis a( 7) = apq(1 + cos 7)/n, and "minor" 
axis b( 7) = apq( 1 - cos 7)/n. We note that 
a( 7) = b( 1T - 7), b( 7) = a( 1T - 7), so that the longer axes 
of the ellipses are closer to thex axis. For object points on the 
x axis the ellipse degenerates into a line segment of length 
2a(0) = 4pqa/n, mimicking third-order Seidel astigma­
tism2 on that axis. Object points on the y axis have their spots 
circular, as in third-order Seidel curvature of field. 

This first-order description holds up to p = n, i.e., for 
the whole forward (0<8<1T/2) hemisphere of rays. The 
same spots are obtained from the backward (1T/2";'()<1T) 
hemisphere: note that (5.3) do not depend on the sign of h. 
The global mapping of the direction sphere on the image 
plane generated by bx is thus also a 2:1 mapping. The global 
coma of boosts has a variety offaces according to the orienta­
tion of the observer screen with respect to the boost direc­
tion, resembling Seidel coma in the z direction, and an asym­
metric kind of Seidel astigmatism/curvature of field 
aberration for directions of boost in the x-y plane. Intermedi­
ate orientations should interpolate between these faces. 

Regarding the observability of relativistic coma, stellar 
aberration is the ray direction aspect of the phenomenon. To 
observe it in ray position space (regardless of the imaging 
apparatus one may contrive) we may present the following 
estimate of aberration size: at satellite speeds of V - 10 km/ 
sec, a - 3 X 10-5, a 8 = O.lr- 5.7· cone of ray directions 
around the optical axis will yield a factor of ap / n - 3 X 10 - 6

. 

Under z boosts this will spread into a circle of radius 
1.5 X 1O- 7q in a coma whose caustic has a relative size of the 
order of 10-7 q. For boosts in the screen plane, we may have 
from circles of radi us 3 X 10 - 6 q to caustic segments oflength 
6 X 1O-6q. The linear factor q gives the relative scale of the 
aberration to object size. 

VI. CONCLUDING REMARKS 

The spirit of our prediction of a relativistic comatic 
aberration due to screen motion has been Lie theoretical. In 
that vein we should add the following glossary and com­
ments beyond geometric optics. 

The three-dimensional Euclidean group is the dynami­
cal group of optics in a homogeneous medium. 12 The defor­
mation5

.
6 of this group on the (ray direction) sphere leads to 

the Lorentz group of special relativity acting on the same 
sphere. When the projection of this sphere is called momen­
tum space for a system, the canonically conjugate position 
space will undergo spherical aberration and circular coma 
when the screen is boosted (infirst aberration order these are 
free flight and pure magnification) perpendicular to itself. 

The Casimir invariant of the Lorentz group is related to 
the freedom in translating position space without affecting 
ray direction. This role ofthe invariant seems to be new and 
needs to be further exploited. 

Finally, the relativistic transformation is global over the 
phase space of geometric optics, singularities notwithstand­
ing. 

The group theoretical objects mentioned above were 
seen here in the geometric optics realization. They possess 
other realizations, however, that are better known,13 and 
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that will be explored to clarify further the "wavization"14.15 
process. It seems this should be parallel to quantization, 7 but 
based on the Euclidean, rather than Heisenberg-Weyl, alge­
bra. 
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