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Diffraction-Free Beams Remain Diffraction Free under All Paraxial Optical Transformations
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It is pointed out that the nondiA'racting Jo beams of Durnin, Miceli, and Eberly are subgroup-reduced

basis functions for the group of paraxial (symplectic, linear) transformations of optical phase space.
This allows the action of the group on such and similar beams to be computed through 2 x 2 matrix alge-

bra.

PACS numbers: 02.20.+b, 03.50.—z, 03.65.—w

The diffraction-free beams predicted by Durnin' and
observed by him together with Miceli and Eberly2 have
attracted attention for their properties of being extreme-

ly narrow and (almost paradoxially) nondiffracting.
They have been called Jo beams and have the form:

4,(q„,qy, z;tc) =e'S*Jo(aq), 0 & a & tr,

2+P2~ tr2q2+q2q2

oscillating in time with a factor exp( —itcct) (i.e., a
phase x'ct). The half width of the central intensity peak
is nearly 1/a, and is independent of z. They are separat-
ed solutions of the wave equation in cylindrical coordi-
nates. As for plane waves (also nondiffracting), (1) are
not square integrable. Indeed, the necessarily finite ex-
tent of the experimental wave front brings in diffraction
in the form of a shadow zone ', this was one of the deter-
mining properties measured in Ref. 2.

In this Letter I want to point out that the Jo beams
(1) are a class of functions with the property of self-

reproducing under paraxial optical transformations:
small angles, thin lenses, parabolic-profile graded media,
and similar mirrors. This is a consequence of the fact
that (1) are subgroup-classified representation functions
of Sp(2,R) SL(2,R), the group of paraxial transfor-
mations by axis-symmetric optical systems.

Bacry and Cadilhac derived the (double cover of)
Sp(4,R) as symmetry group of the wave equation in the

K$- —,
' ( —d'/dq'+ y/q'+q'),

K$= —(-,' i)(qd/dq+ —,
' ),

Kr+ =K(+Krt+ 2 ( —d /dq +y/q ),

K" =K( Kf = —,
'

q . —

(2a)

(2c)

(2d)

The Casimir invariant is —y/4+ —,', =k(1 —k), for y
=(2k —1) ——,', where k is Bargmann's label for the
(positive) discrete representations Dk+, k = —,', 1, —,', . . . ;
this range is related by integer

~
m

~
=2k —1 to the rep-

resentations of the conjugate O(2) subgroup.

paraxial limit. The recognition that the optical transfer
functions are canonical transform kernels is due to Na-
zarathy and co-workers; a monographic account of
canonical transforms in paraxial wave optics may be
found in Castano, Lopez-Moreno, and Wolf. s It is to be
expected (post factum —with apology) that the Jo beams
should be identified with a clear group-theoretic struc-
ture.

In 1980 Basu and Wolf studied all representations of
the SL(2,R) group in all subgroup reductions. I consid-
er the oscillator representation of the full Sp(4,R) group
of linear (asymmetric) transformations of optical phase
space, reduced by the symmetry O(2) of rotations and
inversions around the optical z axis, as Sp(4,R )
DSp(2, R)SO(2). The three generators of the "radial"
Sp(2,R) are given by
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On X'(R+), with inner product

(f,g) = dq f(q)*g(q),

eigenfunctions of K$ are harmonic oscillator + y/q po-

tential wave functions; those of K~~ are similar repulsive
oscillators; those of K( are the Mellin transform basis

functions; and those of K"— are B,(q) =6(q —a), the

generalized basis of q-localized states. Our interest here

is in the 2 (R+) generalized eigenbasis of K~j., since

they are Bessel functions:

e."(q)=e""(aq) 'i'Jzk )(aq),

with eigenvalue a /2 6 R+; they are Dirac orthonormal
and complete.

The group Sp(2,R) generated by the second-order
diff'erential operators (2) is a group of unitary integral
transforms on X (R+) of the Hankel type. The ma-
trix representation and optical elements of the various
subgroups are

exp(iPK( )
0

exp(P/2)

cos8/2 —sin 8/2 SO(2)
sin 8/2 cos8/2 quadratic fibers.

exp( —P/2) SO(1,1) of pure

0 magni6ers.

(4a)

(4b)

1 bE(—2) parabolic group
exp(lbK+)- 0 1

—
of freefllghtz=Kb.

1 0 E(2) of thin lenses
exp(icK" )-

(4c)

(4d)

The paraxial group composition law is that of matrix multiplication (here no metaplectic sign). (See Ref. 7 with the
notation correspondence of its footnote 1.) The group action is the integral transform C (M), detM =1,

„ab ~" „abC"
d f (q) = dq'C"

d (q, q')f(q'), (Sa)

with a kernel that is the optical transfer function

„a b

c d (q, q') =e ' "b '(qq') 'i2exp q q Jzk ((qq'/b)
i (dq '+ aq ')

2
(5b)

In the singular case b =0, the action is geometrical:

0

—iba
2a

exp
' q e.'(q/a).
2a

lcgC"
~ f (q) =a 'i exp f(q/a), a )0. (5c)ca ' 2a

Using the matrix representation (4) and products thereof, one can see that a paraxial transformation (5) applied to
the Kr+ (free flight) eigenbasis 4," reproduces the form of the wave function:

„a b „a0
C"

d 4," (q) = C
~ exp( —iba 'K"+)@," (q) =a 'i exp (6)

c a

In words: A thin lens (4d) will multiply the diff'raction-
free states @, by a phase exp(icq /2) (with no effect on
the intensity); pure magnifiers (4b) will yield
a ' @,"(q/a) =a' @,"i,(q), a diffraction-free state of a
diff'erent width; a length of quadratic-profile fiber (4a)
will produce a line of integral transforms of the
(Fourier) Hankel type. Finally, free propagation (4c) by
b=z/x multiplies @ by the phase factor exp( iza /—
2x). This phase is the paraxial approximation to the
phase anomaly factor of Durnin's function (1) for a «r,
P=~ —a /2r —a /8x — . The paraxial approxima-
tion with integral transforms (5) does violence to the re-
lation P =(x —a ) 'i that keeps a minimum beam
width: It frees the conjugate optical Hamiltonian mo-

mentum from the constraint of taking values only inside
a circle of radius n, the refractive index of the medium.
This is the price of the application of Schrodinger quant-
ization to model paraxial optics. The cutoff to a & x

comes from the restriction of having a finite smallest
wavelength in the spectrum of optical wave functions.

Modulo these caveats, we identify Durnin's diArac-
tion-free Jo states (1) with the Kr+-classified eigenbasis
(3) of the group of paraxial transformations, for k = —,

'

(y= ——,
' ): thus

e.(q„,qy, 0;v) —e,'~'((q„'+ qy') '~'). (7)

The (aq)'i factors in (3) and (5b) yield the proper
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measure fo q'dq'. . . to integrate over the circles' radii.
We should not overlook that also k~ —,

' transforms exist
and they originate from wave syntheses [Eq. (2) in Ref.
1] with azitnuthal dependence A (p) -e' ~.

The title of the Letter refers to the self-reproducing
form of Eq. (6) with respect to &,". Paraxial optical sys-
tems normally end with free flight g, i.e., the image on
the screen is the canonical transform C "(M~) of the ob-
ject Jk state corresponding to the matrix

1 ( a b a+(c b+(d
01 cd c d (8)

Since the 1-1 element of M& depends on (, the half-width
a of the outcoming beam will depend on g. This con-
verging or diverging "diffraction-free ' beam differs only

by scale and quadratic phase from the object Jk state;
the transversal illumination pattern, however, will be the
same, up to scale.

Self-reproducing wave functions in this sense are all
the subgroup-reduced eigenfunctions including radial
harmonic and repulsive oscillator functions, and, com-
plexifying, Gaussians (with a modified Bessel function in

aq in place of the usual exponential factor), and Barut-

!
Girardello coherent states. ' The last two are, respec-
tively,

lN 1

G„(q —a) =co '(aq) ' e '
I2k t(aq/co)e "= C" 4" (q)

1/J2 —i/E2, „1/J2 —i/J2 „0 1

Y,(q) =(2tr)'I C" 8, (q) =(2n)'I C" C"
1 0 @," (q).

(9a)

(9b)
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