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Optical phase space has a momentum coordinate which runs over a circle; a mixed
Heisenberg-Weyl group embedding requires the position coordinate to range over a
lattice of “sampling’’ points. We build on that basic algebra an Euclidean Lie algebra
whose generators are the precise position, momentum, and Hamiltonian of the optical
system. The free propagator function is found and we introduce “Gaussian’ beams as
diffusion of the propagator to imaginary width, resembling the Gaussian exponential
function of paraxial Lie optics. We regain the results of paraxial Lie optics in the
metaplectic group formulation when taking “forward-concentrated’” beams.

I. INTRODUCTION

The R® Heisenberg-Weyl model of Lie (Fourier) optics [1] builds a
phase-space where each coordinate and its canonically conjugate momen-
tum, ranges over the real line R. This allows the straightforward Schrod-
inger quantization of the system [2], which works well in the paraxial
[3, 4] (or Gaussian) approximation, and may yield, as preliminary results
seem to indicate, [5] to describe aberrations.

Nevertheless, in doing so, one neglects the fact that the optical hamil-
tonian momentum [6] —basically ray direction— ranges over a sphere S,
in two-dimensional optics, and a circle S; in a one-dimensional world of
cylindric lenses. In Section II we recapitulate this fact and the current
treatment of the Schrodinger quantization of paraxial [7] and metaxial
optics. Section III introduces [8] our model: the Heisenberg-Weyl group
W(ZS?), with a direction coordinate on S, and a configuration space AZ,
where A=\/27 is the reduced wavelenght and Z the set of integers. The
generators of the Schrodinger Heisenberg-Weyls group W(R?), Q, P and
I=A1, keep Q and I as before, but in W(ZS?), there is only a generator of
finite translations E =¢'®. Section IV presents this finite/infinitesimal
algebra, and Section V constructs the self-adjoint momentum and Hamil-
tonian operators on [2(S;). We introduce the Euclidean algebra generated
by the position, momentum, and Hamiltonian observables in Section V.

* Permanent address: Instituto de Investigaciones en Matematicas Aplicadas y en Sistemas,
Universidad Nacional Auténoma de México. Apdo. Postal 20-726, 01000 México DF, México.

[141)



142 WOLF

This algebra may allow, through exponentiation to the Lie group /SO(2),
the role of the dynamical group of the system. Through deformations of
the group one may treat paraxial and metaxial optics. Section VI obtains
thus the system’s propagator and Section VII uses it to define the Gaussian
function for the system. Free propagation is built naturally into the model
since it is a subgroup of the dynamical Euclidean group for homogeneous
systems. A well-known deformation of the Euclidean group is examined in
section VIII, which in the paraxial approximation yields the Gaussian
Sp(2, R) group of linear optics. In Section IX we offer some problems of
interest.

II. THE HAMILTONIAN DESCRIPTION OF OPTICS

In the Hamiltonian description of optics, [6, 9] phase-space coordinates
are set up in the following manner: the position of the intersection of a
geometric light ray with a reference plane is a two-vector q, while the
canonically conjugate momentum p, is a two-vector in the same plane,
built as the projection on the plane of the light-ray, and of magnitude

p=nsinb (1)

where 0 is the angle between the light ray and the normal to the plane, and
n is the index of refraction of the medium at the point of intersection.
The normal to the plane at the origin of position coordinates defines the
optical axis (drawn to the right) along which we measure the ray evolution
through a variable z, which we may call optical lenght, or time. Let us
from the start work here in one-dimensional optics for reasons of simplicity,
which will be justified in the concluding section.
The Hamiltonian of the system [6, 9] is

h=—\/n*—p?*=_—_ncosh . (2)

This form, we should emphasize, isnot the usual quantum mechanical func-
tion (1/2) p? + v(q), quadraticin p. Furhtermore, for homogeneous media
(n constant), there is a series expansion for 4 in powers of p?:

4

1 1
h=-n+—p*+—p pt + ... 3
8n3

2n 16n5

which is valid for | p| <n. When we take only two terms in the above expan-
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sion, we are in the paraxial approximation, |p|< n. There, the model
Hamiltonian is [10].

1
hy:=—n+— p? . (4)
2n

Terms beyond the second are used for the treatment of aberrations. [6,
11]

The paraxial Hamiltonian %, in [4] has the form of the mechanical
Hamiltonian of free flight. Mass is here the refraction index, which may
depend on position; if such is the case, the paraxial approximation still
assigns to n(q)=v —p q — 0 g*, the role of a potential, but keeps the
denominator in (4) equal to v. We thus have a system which obeys a
(1/2) p, + V(Q) Hamiltonian, and this is easily brought to quantum
mechanical form as a Schrodinger equation. This is paraxial wave optics,
which yields beautifully to Lie-theoretical techniques such as the associa-
tion between optical elements and elements of the metaplectic group of
canonical integral transforms [3, 4, 10, 12, 13].

One has to aware, though, that this treatment of quantum/wave optical
systems requires that phase space (p, g) be a plane R?, so that it serve as
homogeneous space for the linear symplectic Sp(2, R) group action. The
same assumptions are at the root of the symplectic classification of aberra-
tions [14], where the Weyl quantization scheme has been proposed to keep
the classical and operator [7] quantities to transform as the same finite-
dimensional (nonunitary) irreducible representation under Sp(2, R). The
effect of aberrations on functions with an Sp(2, R) —defined property,
such as Gaussian beams and discrete coherent states [S], may be calculated
in closed form. There is the necessary assumption, however, that all wave
functions Y(q) be forward-concentrated, i.e., that | @'(p) | be strongly
peaked (concentrated) around zero (in the forward direction), negligible
before n, and zero beyond.

Here we want to investigate the consequences of the forms of p and 4,
(1) and (2), in terms of a Heisenberg-Weyl group distinct from the one
costumarily used in quantum mechanics, and better adapted to the topo-
logy of optical phase space, i.e., the physical requirement that 6 be the
coordinate on a circle S; (6 =6 mod 2x), as a ray direction.

III. THE MIXED HEISENBERG-WEYL GROUP W(Z5*)

Hermann Weyl!’s original formulation of quantum mechanics [17] was
through what is now called the Weyl commutation relation
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D(x) E() = E¢) D(x) ™V | (5)

where we have placed the symbol A (for reduced wavelenght A = A/27), in
place of the costumary Heisenberg constant h. In the Schrodinger configu-
ration representation on [2(R), the phase-space translation operators D(x)
and E(y) are

D(x) = exp (ixQ), [D(x)f]1(q) = e*4 fig) , (62)

E(y) = exp (yP), [EQ) f1(@) = flg +Ay) . (6b)

One may then define the Heisenberg-Weyl group W, as composed [2] of
elements whose basic presentation [16] is

wkx, ¥, Z) = Dx)E@)exp(iA[Z + %xy])
1
= E(y)D(x)exp (A [Z — Exy]) (7

and which in quantum mechanics would be written exp i(xQ +yP + zI),
with I= Al. The action on functions f(g) and their Fourier transforms

f=Ff,is
1
wx, ¥, Z):flg) = expi(gx +A[Z + % xy)flg+Aiy), (8a)
~ 1
Fw(x,y,Z) :f(0) = expi(fy +A[Z = xy]) f(6 —Ax) . (8b)

This follows from the representation of Q and P as g. and —iAd/dq in the
first equation, and iAd/d@ and 6 in the second. We want to keep distant
from the Schrodinger [2(R) representation, though, noting that we have
chosen “0” (and not “p”) for the Fourier conjugate variable. Only the
Schrodinger operater P may not be used in what follows, i.e., disregard
the first, but not the second of equations (6b). In the group presentation,
the composition law is

WXy, Y1, Zy) WXy, ¥y, Z,) =

1
wx, +x5,¥1 2.2, +2, +'2‘ bixy —x122] - (9)
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It may be verified from (5) and (7), or from (8). The group unitise, =
w (0,0,0), and w(x, y, z) ! = w(—x, —y, —z). When (x, y, z) range over

R?, we shall call this group W(R?).
The variable 6 in optical phase space is the ray direction, so it ranges

over S;. Turning the system once around the optical center (¢ =0, z =0)
should yield an optical system indistinguishable from the first one. Hence,
translation by Ax = 27 must be congruent with e,, . These discrete x-trans-
lations generated by x = 2w/A form a group Zp, of elements D(2wk/N),
k integer. The elements in Z, are not central in W(R3), however. They
should be central if we insist on an invariance group of turns.

To resolve and apply this requirement, we draw attention in (8a) to the
factor exp(igx). This cannot be unity for x = 2@/A, unless q =A\k, with k
integer. That is, position is quantized. So, let us now take the lattice of
points g = Ak as a sample on which we can define the wavefunctions f(q).
This is the price we pay for demanding that f (0) be a function on the
circle. (This is exactly what we do when we consider Dirac comb functions
to arrive at the Fourier series [13] description of periodic phenomena).
Hence the two functions (f over the integers and f over the circle) are
related, as the Fourier series coefficients of a function,

fr = fAk) = J do £ (0)e—ko (10a)
22roJ .
£(0) = Z fi eike (10b)
2M k=—oo

Regarding the group W(R?3®), we are thus picking the set of elements
w(x, v, z), with x modulo 27/A and y integer, to translate properly in
(8a).

Let us now verify if we are consistent in these requirements. We should
notice first that Weyl’s commutation relation (5) tells us that a rotation
generated by D(2w/A) and a translation generated by E(1) commute
(Axy = 27 X integer), so their effect on a wavefunction cannot be more
than a constant phase. On the group level, (9), z remains a real variable,
but when we reduce to the representation A of W, as is done in (8), z leads
a phase and is meaningful only counted modulo 27/A. Yet on this represen-
tation space, D(2w/A) and E(1), although they are separately invariants (and
commute, of course), are not without effect. Indeed

[w2n/A, 1,0): f1(@) = —flg) - (11)
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We thus observe a sign multiplier, which means that the representation (8)
is two-valued over the group

W(ZS?*)= {w(x, y,z) € W(R?) [x mod 27/A,y €Z, zmod 2n/A} . (12)

This may be a welcome feature, in view of the need of a sign in the meta-
plectic representation [1] of Sp(2, R).

We are thus constrained to ascribe to the position coordinate a discrete
character, a lattice of points A apart. This should not come as a surprise
though, we are dealing with a canonically conjugate momentum p = » sin 6
whose support is bounded by »n. The Whittaker-Shannon sampling theo-
rem [17] asserts that a band-limited signal be represented by a sampling
lattice of points distant by one minimum wavelengh, A/n, in that medium.

IV. THE INFINITESIMAL AND FINITE GENERATORS
Let us now turn to the generators of W(ZS?). This is a mixed [2, 15]
Lie group, with two continuous parameters, x and z, and one discrete

parameter, y. The Lie generators of the two continuous-parameter sub-
groups in the configuration-space representation (8a) are

Q=g (g=kh), I=Al. (13a)
The generator of y-translation is the finite group element
E:=E(1)=w(0,1,0) , (13b)
which effects the function-space maps
E:flg))=flg+N,0tE: fr =fxy1 - (13c)

This is a unitary, irreducible representation of W(ZS?) on the space 22 of
square-summable sequences, with inner product

e = 2, X8 - (14)

K== =
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In the momentum representation (8b), the above generators have the
form

d .
Q=i1rga’ (0€S,), I=A1, (15a)

E=e¢if - . (15b)
In the Hilbert space [2(S,) of functions with finite inner product

7 s, ;=j do 702 ©) (16)

Q and I are self-adjoint and E is unitary. There is no self-adjoint generator
© to be the position operator in momentum space. Only exp i® is defined,
and is diagonal, i.e. it acts by multiplication through exp i®, translating
by one unit the discrete configuration space. The angle variable, we repeat,
has no “position” operator associated to it, only operators built out of
convergent series of powers of E may be applied to 7(0) or fi =f(Ak), the
two pictures of the wavefunction.

V. MOMENTUM AND HAMILTONIAN

Observables should correspond to self-adjoint operators, since expecta-
tion values must be real [18]. The two self-adjoint operators contained
linearly in E are

P:=2%(E—ET)=nsin0', (17)
H:=§(E+ET)=—ncose- . (18)

Note that we are here defining P and H, but electing the literals to stand
as usual for momentum and Hamiltonian, because of (1) and (2) on the
direction variable; the constant n is chosen so as to give P and H the pre-
cise forms in those equations. We may expect that we shall in the future
have to consider functions n(q) to model inhomogeneous-medium optics
such as those of fibers. Since we cannot as yet model lenses [9-11], we
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shall here apply these concepts to the description of Gaussian beamsunder
free propagation within this W(ZS?) model.

VI. THE EUCLIDEAN ALGEBRA

We have thus at out disposition the three operators Q, P, and H, which
are self-adjoint when represenied on 22 and [%(S,) in the following forms:

~ d ~
QA @ =qfa) RF1O=A2F@) , %W
[Pf](q)=2n—l.[f(g+7\)—f(q—7\)] CPF1@) =nsindF @) , (19)
[Hf] (q)=—%[f(q +2) +fg —N)], [HF10)=—ncosF (8) . (19¢)

We may also perform their commutators, and see that

[Q,P]=—i\H , (20a)
[Q, H]=iAP , (20b)
[P,H]=0 . (20c¢)

In contrast to the basic Schrodinger operators Q and P, which obey
[Q, P)=iAl, and for which in the paraxial approximation H, = —nl +
1/2P2, so one has the commutators [Q, H] =/AP and [P, H] =0, identical
to (20b, ¢), the Euclidean algebra iso(2) exhibits the new commutator
(20a).

For paraxial optics we regain the Schrodinger representation of the
Heisenberg-Weyl algebra. As we remarked earlier, we take matrix elements
only between forward-concentrated functions, ie. functions such that
fc(0) <1 outside 8 <Il. For (19b) and (19c¢) se see that Pr. =nlf.,
Hf,. = —n f,. In that case, the commutator (20a) becomes the usual one
for quantum mechanics.

VII. THE EUCLIDEAN GROUP AND FREE PROPAGATION
The Euclidean algebra iso(2) of last Section, may be exponentiated

to a Euclidean group, with subgroups generated by (19). These are, on
2%(g =Ak) and [26S,),
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[exp (ixQ) fl=exp (ixq) fy, [exp (ixQ) f 1(0)=F (8 — Ax), (21a)
lexp (YP) fle =D fo I w m),
<.

[exp (ivP) £ 1(6) = exp (iyn sind) f (6) , (21b)

lexp(izH) [l =D fi exp [— im (k — k')/2) T, _ 4 (Zn),
<

[exp (iZH)f] (6) =exp (izn cos 0)7 @) . (2lc)

In fact, by changing the sign of the exponent in (21c), we have the evolu-
tion operator of optical free propagation

Fy :=exp (—izH} . (22a)
The representation of F, on ray Jirection 6 is a diagonal integral kernel:
F,(6,0") = 8 — 0" exp [izn cos 0], § €5, (22b)

i1 coordinate space, we have the propagator matrix [21]

1 m m
F, (k, k')=-2— dOI d6' expi[zn cos® —(k —k') 0]
) _x -

=exp [in (k' — k)/2)J_ 4 (zn), q=Ak, kE€EZ . (22c)

This propagator is simple enough to allow visual examination of some
features. It represents a process which is unitary in 22. The sum of the
point illuminations, Z; | ¥ | 2, is conserved. The process is homogeneous
(invariant under g-translation, hence depending only on k' — k), and
isotropic (only dependent on | k" — k | ). The propagator here is related to
the mechanics of a vibrating infinite lattice of masses [19], which sports a
ik sin 6 in the exponent of the integrand corresponding to (21b), in place
of our izn cos 6 in (21c¢). The optical system is here “‘rotated” by 90° with
respect to the mechanical model. This bring in the phase exp(im(k’ — k)/2)
in front of the Bessel function; the Bessel functions which propagate the
vibrating lattice have no phase, and can be seen in Ref. 20.

In figure 1, we sketch the zeros of the Bessel functions of integer index.
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Figure 1 The zeros of the Bessel function (black rectangles), joined to outline the wavefronts of a
Gaussian beam in free propagation.

These zeros mark the wavefronts of a sharply waisted beam, and may be
compared with the wavefronts obtained by Gaussian exponential functions,
sharply peaked, in the paraxial approximation [12]. It must be remarked,
though, that wave-fronts are a continuous concept. If position coordinates
are discrete, we may join their zeros in various ways to visually integrated
wavefronts. In the same figure we may draw wavefronts which open
asymptotically like 45° cones, or asymptotically plane fronts. In the latter,
we join zeros of Bessel functions in index jumps of two.

It is also evident from the figure in Ref. 20, that the propagator here
has its amplitude concentrated on a cone. This may be seen recalling that
the Bessel function Jy (zn) remains near zero along z until it finds its first
zero; around the first zero, oscillatory (and damped) behaviour begins; for
k large, this happens when zn =k + 1.85575k'”® + o(k V?). The damping
is vz V2 We conclude thus that the propagator F, (k, k') is significantly
different from zero on the cone zn > q/A, or ¢ <n A z. The limit A= 0
allows for infinitely focused beams, while for every finite A there is a
minimal unavoidable spread in g given by n A z.
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Propagator functions describe the effect on the medium due to a delta
initial distribution, at an optical lenght z. Since g-space is discrete, it is a
Kronecker §. Propagators, therefore, exhibit maximal spread in momen-
tum, since they have been completely constrained in initial position. Con-
sider now a wavefunction completely constrained in momentum, f, , 6)=
6(0 —0y), i.e., a light beam with a precisely defined direction. Then, the
optical lenght evolution is obtained through product with exp(—izn cos 6,),
still a beam with the same precise direction. The only change has been the
phase. The position-space intensity is obtained from the Fourier analysis
of fo, (6) as in (10a), yielding fi = (2m) V2 exp(—i[zn cos 8, + kB, 1),
i.e., it is a plane wave directed with angle 6, to the optical axis.

VIII. GAUSSIAN FUNCTIONS

What is the model’s best choice for a Gaussian beam? Let us first pro-
pose the following definition of the centered Gaussian function of widthw
for an W(ZS?) system. This we do in terms of the propagator (22), as

G, (@) :=F,, (k=q/A 0)=1I, (wn) . (23)

It is the propagator at an imaginary optical lenght z = iw, so that the origi-
nal & is diffused to G,,. The last member in (23) is simply (22¢), where
the modified Bessel function /; appears on the imaginary axis of the origi-
nal Bessel J; function’s argument [22].

In figure 2 we draw the profile of such a Gaussian for discrete configura-
tion space (for a width wn =5) from a standard table [23]. The profile at
the integers indeed looks “Gaussian”. Moreover, the virtue of these Gaus-
sian functions is that they sftay Gaussian under free propagation, even if
with complex width, for it isevident that we have translations in a complex
optical lenght variable:

F; G, (q) = [Fz Fiw 801 (q)

[Fz+iw 60](CI)=FZ+,'W (k:Q/}\,O) (24)

=Gy_iz @) .

We may abstract the symbols and recall that the exponential Gaussian
function w "2 exp(—g?/2w) has exactly the same property with respect
to Gaussian (paraxial) free propagation [12] generated by 4, in (4).
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Figure 2 The modified Bessel function for constant argument outlines the shape of a Gaussian
beam at the object plane. Black dots are the position coordinate. (From Ref. 23.)

The direction (momentum) distribution of a thus defined Gaussian
beam, (23), is, due to (10) and (22b),

~

G, (0) = exp [wn cosf] (25)

which is indeed preferentially in the forward direction for large width w.
Rotated and translated Gaussian beams are obtained acting with W(ZS?).

IX. DEFORMATION OF THE EUCLIDEAN GROUP

‘Still within the framework of the Euclidean algebra we can build énvel-
oping algebras. Indeed, since in this representation the lenght of the Eucli-
dean translation vector is constant (P2 + H2 =n?1), we can use it to de-
form [24, 25] the Euclidean group to SO(2, 1), locally isomorphic to
Sp(2, R). Specifically, Bargmann’s realization [24] of this group on the
circle is generated by

1 _ d i
j :=§(QH+HQ)+cP—>—znkcosG%+n(c +57\) sin 6 | (26a)
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1 d '
L2:=5 (QP+PQ)—cH—>z’n7\sin6d—0+n(c+'12“7\)0089, (26b)

o d
Lo :=Q —nk;l;. (26¢)

Quite interestingly, the first generator is the classical Snell invariant [14],
generator of phase-space transformations corresponding to rotations in the
z — q plane around the point z =c. In [%(S,) we have the principal series
Cf of representations of SO(2, 1). Fittingly, also, the compact subgroup
reduction diagonalizes L,, which is the compact generator having a dis-
crete spectrum. The Bargmann d- and D-functions [24] appear when (26)
are exponentiated to the group SO(2, 1).

X. SOME CONCLUDING REMARKS

Any discussion of a model in optics would be incomplete if it did not
include Gaussian —linear— optics as a limiting case for small angles. This
is an Sp(2, R) group with well-defined properties [3, 12] whose generators
are —as Schrodinger-Heisenberg-Weyl symbols—

1
P2, > (PQ +QP) ,Q%? , R3® — (Heisenberg-Weyl) 27)

The role of the first one is taken very naturally to be H in (18). The last
one generates Gaussian refracting-surface transformations which do not
change the position of an object, but bend its rays through P> P + vy Q,
where 7 is the Gaussian power of the lens. Hence, Q2 hasalso a clear coun-
terpart in the self-adjoint operator represented by —A2d?/d6? in [2(S,)
and g® = A%k? in Q2.

Although the basic algebra is the Euclidean one, the commutators of H,
Q? and the resulting expressions are

[H,Q2?] = —iA(QP + PQ) , (282)
[H, QP + PQ]=2iAP? | (28b)
[Q%,QP +PQ] = —iA (Q? H + 2QHQ + HQ?) . (28¢)

In the paraxial approximation H—>n1 — (1/2n) P2, and disregarding all
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operators of order higher than second, we have indeed Sp(2, R). In the
model presented here, (28) do not close into a finite-dimensional algebra
for all orders. The W(SZ?) model of optics, therefore, does have a Gaus-
sian approximation corresponding to the well-studied metaplectic trans-
formations of [*(R). The only deformation of the Euclidean algebra,
however, is the so(2, 1) algebra (26), which still has to be studied before
an enveloping algebra can be given to account for aberrations.

A basic objection to Schrodinger aberration Lie optics is contained in
the statement that not all operators associated to observables p” g" may
be exponentiated to unitary transformations [26]. We may expect, though,
that by having a compact momentum space (i.e. a circle), this objection
may be circumvented. The main taks in this regard is to represent the
action of arbitrary refracting surfaces on the spaces 2 and [2(S;) as in
(8) and (21). To this purpose we have at our disposition the results on
classical systems in Ref. 27. A refracting surface z = {(q) produces a trans-
formation S(n, n'; ¢) which is shown to factorize as

Sn,n";$)=R(n; ) R(n'; )7, (29)

where the “root” transformation is locally canonical (g, p =n sin 8), and
acts as

R(n;$):q=:q9 =q+¢§(q)tanf | (30a)
R(n;f):sin0=:sin0_=5in9+cos(9di,(;q). (30b)

Note that this is an implicitly-defined canonical transformations, which
must have singularity caustics. The appropriate way to embed this trans-
formation into the W(ZS?) model is being sought.

Finally, this model generalizes easily to an N-dimensional space where
angles run over a torus Yet what is needed is some nontrivial phase-space
topology to have them run over a sphere. What is discrete position then?
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RESUMEN

E1 espacio fase de la dptica tiene una coordenada de momento que toma valores sobre un circulo;

su inmersion en un grupo de Heisenberg-Weyl mixto require de una coordenada de posicion que
toma valores sobre una reticula de puntos ‘‘de muestreo”. Sobre el algebra de Lie del grupo mixto,
construimos un algebra cuclideana cuyos generadores son los operadores de posicion, momente y
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el Hamiltoniano delsistema optico. El propagador libre se encuentra, e introduce haces “Gaussianos”
mediante la continuacion difusiva del tiempo de propagacion a valores imaginarios del ancho, tal
como se hace con los haces Gaussianos exponenciales en la dptica de Lie paraxial. Cuando se consi-
deran haces “fuertemente enfocados hacia adelante”, se recobran los resultados de la optica de Lie
paraxial en su formulacion metapléctica.



