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The Heisenberg-Weyl ring contains the metaplectic group of canonical transforms acting 
unitarily on -? 2(a'). These ring elements are characterized through (i) the integral transform 
kernels, (ii) coset distributions, and (iii) classical functions under any quantization scheme. The 
isomorphism under group composition leads to several new relations involving twisted products 
and quantization of Gaussian classical functions. The Wigner inversion operator is a special 
central group element. It is shown that the only quantization scheme invariant under metaplectic 
transformations is the Weyl scheme. The structure studied here appears to be relevant to the study 
of wave optics with aberration. 

I. INTRODUCTION 

A group ring is the structure composed out of formal 
linear combinations of the group elements. The group multi­
plication law induces an operation of multiplication for ring 
elements; the group unit serves as a ring unit but, since no 
inverse under multiplication is assured, the structure is not a 
group, but a ring. The Heisenberg-Weyl algebra wand 
group W were introduced as foundations for quantum me­
chanics by Heisenberg! and Weyl, 2 respectively. The former 
lead to the representation of canonically conjugate observa­
bles (having the real line for its spectrum) by Schrodinger. 
(The requirement on the spectra of the algebra elements is 
partially circumvented in Weyl's approach.) The Stone-von 
Neumann theorem3 assures us of the existence and unique­
ness of the Schrodinger operators representing position and 
momentum. 

The Heisenberg-W eyl group W in N dimensions has 
2N + 1 generators, is nilpotent, is an extension of the group 
of translations of the phase space, and is a non-Abelian 
group with a nontrivial center. Its early association with 
quantum mechanics should not hide the fact that it has been 
most useful recently as a frame to describe wave systems­
optical and radar-where a meaningful phase space and geo­
metric (i.e., classical) limit exist. 

One of the peculiar features of the Heisenberg-Weyl al­
gebra w, is that its isomorphism group is larger than the 
group W of Heisenberg and Weyl. The endomorphism of the 
enveloping algebra w (factorized by (H-1), where H is the 
central generator) of the Heisenberg-Weyl algebra have 
been studied by Dixmier.4 The Heisenberg-Weyl algebra 
can undergo symplectic real linear transformations in the 
position and momentum generators5

; these are the linear ca­
nonical transformations in quantum mechanics studied by 
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Moshinsky and Quesne,6 who also inquired into the repre­
sentation of these on the 2'2(~N) Hilbert space of wave 
functions. On this space, the group has a two-valued repre­
sentation that is faithful for the twofold cover of the sym­
plectic group [Sp(2N,~) is infinitely connected], i.e., the me­
taplectic group Mp(2N,~) (see Ref. 7). The latter is a 

subgroup of the universal covering group Sp(2N,~); 

Sp(2N,~) ~ Sp(2N,~)/ lr. 
For continuous groups the elements of the group ring 

may be characterized by a function over the group, which 
takes the place of generalized linear combination coefficients 
for the group elements. If, besides functions within some 
subspace of 2'2( W) over the group manifold, we allow distri­
butions-Dirac 8's and their derivatives up to arbitrarily 
high order, then the group ring rr comes to contain the 
group W itself, its Lie algebra w, and its enveloping algebra 
w. In this context one of us examined8 some time ago the 
question of quantization in physics, using the fact that the 
Heisenberg-Weyl ring rr contained all operators A one 
would wish to quantize, and that these could be described 
either through their group function A (g), gE W, or through 
their integral-kernel representative A *(q,q'), or through a 
classical/unction at/> (q,p) in some quantization scheme ¢>. The 
integral kernels were derivatives of 8's and Hermiticity of the 
operators in 2'2(~) was required. 

Here we wish to use the rich structure of the Heisen­
berg-Weyl ring rr to study another object, namely the me­
taplectic group Mp(2,~) of linear canonical transforma­
tions,9 which lies within the ring. The set of these ring ele­
ments is characterized by a set of proper functions over the 
group, by integral transform kernels, and by classical func­
tions. These compose under multiplication of ring elements 
as a group. The last two realizations, in particular, are inter­
esting even as mathematical relations. For this reason, we 
work in N = 1 dimension. The purpose in physics of these 
will be, in following papers, to treat wave optics with aberra­
tion. The Gaussian limit lO of lens optics is served by the 
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results obtained here, which come to describe the results of 
Nazarathy and Shamir, II who used canonical integral trans­
forms. The group-theoretical treatment of wave optics with 
aberration l2 will need further structures within the Heisen­
berg-Weyl ring, which are under development. 

In Sec. II we formally introduce the characteristics free­
ly used above, and Sec. III describes the ring elements in 
terms of the three functions we have mentioned, particularly 
under multiplication. The metaplectic group is treated in 
Sec. IV and shown to contain among its elements the Fourier 
transform, the free-space propagation, the Gaussian lens 
transformation, and the Wigner operator (one of the two 
central elements of the ring). Section Vends showing that 
the only quantization scheme that is invariant under meta­
plectic transformations is the Weyl-McCoy rule. 13.14 This 
fact is probably crucial in the process of quantization (or 
waveization) of geometrical optics with aberration. 

II. CAST OF CHARACTERS AND ROLES 

We shall be dealing with the following mathematical 
objects, all named after Heisenberg and Weyl (HW): The 
HW algebra w, the HW universal enveloping algebra W, the 
HW group W, and the HW ring 'lY. Succinct definitions 
follow. 

The HW algebra w: This is a three-dimensional vector 
space generated by Q, P, and lHI, with the commutator Lie 
bracket 

[Q,P]=rH, [Q,lHI] =0, [P,lHI] =0. (2.1) 

It is two-step nilpotent and lHI is the central generator. Due to 
the Stone-von Neumann theorem,3 the generic Hermitian 
representation of w is the usual Schrodinger representation 
on a space of smooth functions: 

(Qf)(q) = q((q), (Pf)(q) = - ht d~~q) , 

(lHIf)(q) = *f(q) , (2.2) 

where7h=~ labels the representation. We write * = A /2rr in 
optics and * = fz in quantum mechanics. 

The HW enveloping algebra w: The generators of ware 
multiplied (noncommutatively) to form monomials 
QmpnlHI\ on which the commutator Lie bracket acts distri­
butively through the Leibnitz identity. These monomials 
generate an infinite-dimensional algebra w under the com­
mutator. Of course, wCW. 

Within w we also have a symplectic sp (2,~ ) subalgebra, 
generated by 

XI+ I: = p2, X6: = ~(PQ + QP), X~ I: = Q2, (2.3a) 

with the well-known commutation relations 

[X6,X~ I] = ± 2i*X~I' [XI± I ,X~ d = - 4i*X6 . 
(2.3b) 

When writing down the "basic monomials," we may do 
it (1) in standard order, i.e., all Q's to the left of all P's as 
Qmpn; (ii) in antistandard order, i.e., all Q's to the right of all 
P's as pnQm; (iii) in symmetrized order;13 i.e., one-half of (i) 
plus (ii); (iv) in Weyl order, i.e., the sum of all permutations of 
the Q's and P's considered as individual objects, divided by 
their total factorial (the explicit expressions furnished by 
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McCoy 14 will be given in the next section); and (v) any of an 
infinity of orderings, defined by Cohen's 15 ordering function 
,p, which will be given below. 

The HW group w.. The Lie group W generated by w has 
elements w, which may be parametrized8 through 

w(x,y,z): = exp i(xQ + yP + zH) 

= exp(ixQ)exp(iyP)exp(i[z + ¥y]H) 

= exp(iyP)exp(ixQ)exp(i[z - ~y]H), (2.4a) 

and have the composition rule 

w(x I'YI,z 1)w(X2,Y2,z2) 

= W(XI + X2'YI + Y2,ZI + Z2 + HY IX2 - XIY2])' 
(2.4b) 

The group unit is e = w(O,O,O) and the inverse 
w(X,y,z)-I=W(-X,-y,-z); the Haar measure is 
dw = dx dy dz. The space of self-adjoint irreducible repre­
sentations of w,w is parametrized by 7h=~, with Plancherel 
measure dw(*) = 1* ItM /4~. 

In the Schrodinger realization, where the algebra gener­
ators are (2.2), the unitary group action on functions 
fE.?2 (~) is given by 

[w(x,y,z)!](q) = exp i(qx +* [z + ¥y])f(q +*y) . 
(2.5) 

The inner product in .?2(~) of a functionfl and W!2 yields 
the bilinear functional on W given by 
H ifl,f2;X,y,Z): = ifl,W(X,y,z)!2) 

= J dq fl(q)* [w(X,y,z)!2](q) 

= e'*zjdqfl( q - !*y)*e'QXf2(q + ~*y). 
(2.6) 

This is the cross correlation of fl and f2; * y is the spatial 
correlation parameter between the two functions and x the 
frequency correlation parameter. Whenfl andf2 are allowed 
to run over the elements Ii;, ) of a basis of .?2(~) (denumera­
ble or generalized), then D;v(w): = H if/-' ,fv;w) constitute 
the (matrix or integral kernel) representations of W. For the 
generalized eigenfunctions t>(q - qo) of Q, this yields the rep­
resentation kernel 

D* ,(w(x,y,z» QQ 
= t>(*y - [q' - q])expi( *z + ¥[q + q']), (2.7) 

which basically one obtains from (2.5). It is unitary and irre­
ducible. The generalized eigenfunctions ofP, (2rr)-1/2eiPQI*, 

PE~, may be used to yield [Ref. 8, Eq. (2.24)] D* ,(w). For 
PP 

the harmonic oscillator eigenfunctions of !(P2 + Q2) one ob-
tains [Ref. 8, Eq. (2.43) with the exponent sign correction 
remarked by Dahl, Ref. 16, Eq. (35)] a half-infinite matrix. 

The HW ring 'lY: The elements of Ware taken as the 
formal basis for a linear vector space 'lY, which thus inherits 
the multiplication law, and whose elements are in the (Haar, 
formal) integrals 

A = J/w A (w)w 

= J dx dy dz A (x,y,z)exp i(xQ + yP + zH) , (2.8) 
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with A (w) a distribution over W called8 the group representa­
tive of Ae?r. The elements of ?r may be linearly combined 
and multiplied but, since no inverse A -I is assured for every 
A, the structure of ?r is that of a ring. 

III. DESCRIPTION OF THE HW RING ELEMENTS 

When the elements of ?r act on functions in 'y2(&i') 
carrying a definite representation*of W, the third generator 
lHl is simply replaced by the real number *. The integration 
over z in (2.8) may be thus performed defining the coset distri­
bution over the space W /Z, Zbeing the one-parameter cen­
tral subgroup generated by lHl, as 

A*(x,y): = L dzA (w(x,y,z)ei*z. (3.1) 

We shall henceforth drop * as an index in the quantities 
which bear it. We take *> O. The ring element (2.8) appears 
as 

A = f dx dy A (x,y)exp i(xQ + yP) 
J&1 2 

= f dx dy As (x,y) exp(ixQ)exp(iyP) 
J&1 2 

= f dx dy Aa (x,y)exp(iyP)exp(ixQ) . (3.2a) 
J&1 2 

We have also defined the standard and antistandard coset 
'" '" distributions, As, Aa, over the space W /Z using (2.4a), that is 

As (x,y): = A (x,y)ei*XY/2, Aa (x,y): = A (x,y)e - ihy/z. (3.2b) 

We shall associate the coset distribution A (x,y) with the 
name ofWeyl and write it as Aw(x,y) when convenient. 

The names of "standard," "antistandard," and "Weyl" 
should bring to mind the quantization-scheme and operator­
ordering problems. In this paper westart from a ring element 
Ae?r whose action on 'y2(&i') is that of an integral trans­
form 

(Af)(q) = f dx dy A (x,y) f dq' D ,(w(x,y,O))f(q') 
J&1 2 J&1 qq 

= :L dq' A (q,q')f(q') , (3.3) 

with an integral kernel A (q,q'), which will be well defined, 
and in terms of which we shall find the coset distributions in 
the following way: 

A (q,q'): = f dx dy A (x,yjD ,(W(X,y,O)) J&1 2 qq 

= _1_ f dx A (x,[q - q']I*)expi(Hq + q']), 
1*1 J&1 

(3.4a) 

A (x,y) = J±1 f dq A (q - ! * y,q + ! * y)e - ixq . (3.4b) 
21T J&1 

We may now speak of (at least) three classical/unctions 
ac(q,p), the Weyl, standard, and antistandard classical func­
tions, denoted by the subindices c = W, s, or a, just as their 
corresponding coset distributions. The former are defined as 
the Fourier transforms of the latter: 
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'" Ii Ac(x,y) = -=:2 dq dp ac(q,p)exp( - i[xq + yp]), 
41T &1 2 

(3.5) 

with its well-known inverse (which simply changes the sign 
of the exponent and removes the 1/~ factor). Since we 
choose to regard the integral kernel as that which primarily 
defines the ring element, we write the composition of (3.2b), 
(3,4), and (3.5) to find the three classical functions as 

aw (q,p) = L dr A (q + !r,q - !r)e - ipr/* , (3.6a) 

as (q,p) = e - iqP/*J dq' A (q,q')eiq'p/* , 

aa(q,p) = eiqb/*J dq' A (q',q)e-iq'P/*. 

(3.6b) 

(3.6c) 

We should remind the reader that to quantize in the 
standard (antistandard) scheme means to propose functions 
as (resp. aa) of phase space (q,p) and to replace the monomials 
(in the Taylor expansion, if need be) by the same functions of 
the Schrooinger operators Q and P, all Q's being left (resp. 
right) of all P's. Rather trivially, thus we have a linear map­
ping as (resp. aa) between functions a(q,p) of phase space 
and elements Ae?r (which also lie in w), which effect 

as (qmp") = Qmp" , 

aa(qmp") = p"Qm. 

(3.7a) 

(3.7b) 

The Weyl quantization scheme a w is not so trivial, but 
the correspondence 

a w (qmp") = --k- i: (m)Qm - "Jp"Qk 
2 k=O k 

= ~ ± (n)p" _ kQmpk 
2 k=O k 

(3.7c) 

has been given by McCoy,14 as well as the next displayed 
equation. Basically, the Weyl-McCoy scheme permutes all 
operators and divides by the factorial of their number. 

In what appears to be a characterization of all such 
schemes aJ., Cohen 15 introduced an ordering function tP(u), 

",'I' '" 

defining A", (x,y) = Aw (x,y)tP(! * xy) and, through (3.5), a cor-
responding coset distribution to be entered in (3.2) to yield 
the ring element. Written in standard order, this is 

a", (qmp") = m:~~") (~) (:)k! 

x tP d - !i * )kQm - kp" - k , (3.7d) 

tPk:= ± (k)(_2i)/altP(~) I . 
1=0 I au u=O 

(3.7d') 

In terms of Cohen functions, the Weyl quantization scheme 
(3.7d) corresponds to tPw(u) = I, while the standard and an­
tistandard schemes come from tPs (u) = eiu and tPa (u) = e - iu. 

The often -used Born-Jordan 17 and symmetrization 13 
schemes correspond to tP( u) = u - 1 sin u and cos u, respec­
tively. 

There are restrictions on the Cohen function tP(u), 
though. If one requires the usual quantization for qm to Qm 
andp" to P", as demanded by Dirac l8 and von Neumann, 18,19 

then tP(O) = I (so tPo = I). If one wants qp to have its corre­
spondence with !(QP + PQ), as in (2.3), then tP'(O) = 0 (so 
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(JI = 1 also). This last requirement is, of course, violated by 
the s and a schemes, but it is not a great fault; we shall use it 
below. 

The classical monomials q'"pn, under Fourier transfor­
mation inverse to (3.6), yields derivatives of Dirac 8's and/or 
powers in q + q' and q - q' for the integral transform ker­
nels (so they become differential operators). In this article, 
we are mostly interested in a group of ring elements whose 
kernels are proper functions of q and q'. 

The inner product in g2(8i') allows us to introduce the 
adjoint of a ring element A, as that B = :A t, which satisfies 
(Bf,g) = (f,Ag) for allfand g in a dense subspace of g2(8i'). 
The integral kernel ofB is, from (3.3), B(q,q') = A (q',q)*. The 
coset distributions of these elements relate, from (3.4b), as 
A A 

B (x,y) = A ( - x, - y)*, while, for any Cohen function (J, 
A A 

B?(x,y) = A?( - x, - y)*((J/(J*). From (3.6a), thus, 
b?(q,p) = a? (q,p)* for all classical functions with a real Co­
hen function (JH * xy). When the quantization-scheme func­
tion is not real, one remains, in general, with a convolution 
integral relation between b?(q,p) and a?(q,p). Between the 
standard and antistandard quantization schemes, for which 
(J., (Ja are not real but ei*xy

/2, e- i*xy
/2, one has 

b. (q,p) = aa (q,p)*. Hence, if a real classical function is to 
quantize to a self-adjoint operator, it is necessary that the 
Cohen function (J be real. 

Quantum mechanics is mostly preoccupied with Hei­
senberg-Weyl ring elements which are self-adjoint. In this 
work we shall regard unitary ring elements, i.e., those which 
when multiplied by their adjoint-in either order-yield 
back the identity operator. To detail multiplication we tum 
now to find explicit forms for the three views we have on ring 
elements through their integral kernel, coset distribution, 
and classical function. 

Let C = AB be the ring element that is the product of A 
and B. From (3.3) it follows that the representing integral 
kernels compose simply as 

C (q,q') = L dq" A (q,q")B (q" ,q') . (3.8) 

The corresponding functions over the group follow a convo­
lution productS and the coset distributions (3.1) then com­
pose, from (3.4), as 

A 1 A A C (x,y) = dx' dy' A (x',!y + y')B (x - x',!y - y') 
!!il 2 

xexp [i! * (xy' - x'y + !Xy)] . (3.9) 

Similarly, from (3.6) and its inversion follows, for the classi­
cal function (in the Weyl scheme), 

cw(q,b) 

= 1TII~12L4 dq' dq" dp' dp" aw(q',p')bw(q",p") 

Xexp[2i{q(P' - p") + q'(p" - p) + q"(P - p')}/*] 

co (* 12t( a a a a)m 
= m~o ----;! aq' ap" - aq" ap' 

Xaw(q',p')bw(q",p")lq'=q- =q . (3. lOa) 
p'=p"=P 

For the classical functions which quantize in the standard 
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scheme, one has 

c.(q,p) = 21T~* I L2 dq' dp' a. (q,p')b. (q',p) 

X exp [ - i(q - q')(P - p')/* ] 

co (_ i * t (a a)m , , 
= L , -a'a' a.(q,p)b.(q,pllq'=q, 

m=O m. q 'P p'=p 

(3.10b) 

and for the classical functions in the antistandard scheme, 

Ca (q,p) = 21T~* I L,dq' dp' aa (q,p')ba (q',p) 

Xexp[i(q - q') (p - p')/*] 

co (i*)m (a a)m, , L --,- -;-;--a' aa(q,p)ba(q,p )Iq'=q' 
m=O m. c.iq 'P p'=p 

(3.1Oc) 
These equations between the classical functions define 

so-called twisted products, Twisted products are known 
from the theory of operator symbols20 (pseudodifferential 
operators21

) in mathematical literature and phase-space 
methods in physical literature. 22,23 The second members in 
the last three equations are simplest to apply to polynomials 
(and special rational) functions, the case in which the sum is 
finite. Twisted products have been also applied for calcula­
tions in noncommutative algebra by use of computer-algebra 
systems.24

,25 The integral form we offer seems to be most 
appropriate for the cases where the factor functions are ex­
ponentials or Gaussians, 

The unit element lE in the ring 'ir is described by an 
integral kernelE (q,q') = 8(q - q') [see (3.3)], a coset distribu-

A 

tion E(x,y) = 8(x)8(y) [see (3,4)], and a classical function 
a?(q,p) = 1 in all quantization schemes (J. This may be used 
to verify the coefficients in (3.10). 

Unitary ring elements are described by unitary integral 
kernels in the usual g2(8i') sense. 

The HW group W is contained in the ring 'ir; the de­
scribing distribution over the group [see (2.8)] of a group 
element Go=llJ(xo,yo,zo) is Go(llJ) =8w(llJoll1-l) 
: = 8(x - xo)8(y - yo)8(z -zo); from (3.1), the coset dis­
tribution is Go(x,y) = 8(x - x o) t5(y - yo)ei*zo, from 
(3.4a) the integral kernel is Go(q,q') = D ,(llJ(xo,yo,zo»' qq 
The Weyl classical function of Go is 
gow (g,p) = exp i(x~ + YeP + * zo), while any other 
scheme function (J yields a well-defined classical function 
gQ4> (q,p) = gow (q,p)(J(! * xoYo) for this subset of ring ele­
ments. Multiplication in W may be followed in the classical 
functions for the s, a, and W cases through the integral or 
twisted product composition expressions (3.10). 

In the next section we shall introduce the set of ring 
elements that constitute a metaplectic group. It should be 
noted that here we have generally afixed ring element (de­
fined through its integral kernel or coset distribution) and a 
whole (J range of "classical" functions, the Weyl among 
them. This is different from the usual stance in quantum 
mechanics, where one has a classical function to start with, 
and a (J range of elements of the ring, among which we try to 
choose. 
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IV. CANONICAL TRANSFORMS AS RING ELEMENTS 

We may be sure the HW ring 'IF contains other subsets 
which are groups, besides W itself. The enveloping algebra 
iii, we noted in Sec. II, contains the symplectic algebra 
sp(2,~), explicitly given by (2.3). The embeddings of sp(2,~) 
in iii [and ofsp(2N,~) in the generalization ofiii toN canoni­
cal pairs (Qp ... ,QN'PI"",PN) and in its quotient division 
ring] have been systematically studied.26 Moreover, embed­
dings (canonical realizations) have been constructed filling 
the gap between minimal and maximal (with respect to the 
number N of canonical pairs) canonical (Schurean, anti-Her­
mitian, nonequivalent) realizations.26 

Now, integral transform representations27 of the [uni-

versal cover Sp(2,~) of the] symplectic group Sp(2,~) on 
.2"2(~) are known for some time under the name of canoni­
cal transforms.6,9 They are special in that they are generated 
by second-order differential operators. If the generators are 
(2.3a) and the space is .2"2(~), the representation is called 
the oscillator (or metaplectic) representation. It is not irredu­
cible, but consists of a direct sum of the lower-bound discrete 
series D jj4 and D jj4 irreducible representations in the nota­
tion of Bargmann. 27.28 The integral transform operators CM' 
which act adjointly on w as the linear transformation 

(4.1a) 

(using an obvious vector notation and not changing the cen­
tral element), are specified through their integral kernel,6.9 
which depends on the matrix parameters of 

M = e !), ad - be = 1. (4.1b) 

The integral kernels are given by 

eM (q,q') 

b =1=0, 

(4.1c) 

For lower-triangular matrices (b = 0), the integral kernels 
become one of the sequences leading to a Dirac 6, and the 
integral transform becomes a Lie transformation (with mul­
tiplier factor). This subgroup is generated by the first-order 
differential operators in (2.3a), ~ generating the scale trans­
formations and Xl_I generating the multiplier. 

Through the integral kernel composition (3.8), it follows 
that the ring elements (4.1) have the composition property 

CM1 CM2 = oiMI,M2)CM , M = M IM2, (4.2a) 

where u is a sign given by 

u(M I ,M2 ) 

= exp[itr(sgn b - sgn b l - sgn b2 + sgn _b_)] . 
4 bl b2 

(4.2b) 
J 

This sign is quite fundamental and it may be observable. It 
may be a wave-mechanics counterpart of spin, for here it is 
the symplectic group Sp(2,~), which is doubly covered. To 
uncover its significance, consider the (* = I) harmonic oscil­
lator Hamiltonian 1HI = !(P2 + Q2) + !(Xl+ I + X~ 1)' which 
lies in ill and exponentiate it. This yields a line of integral 
transforms 

eiaH = c(c~s a 
sma 

-Sina), 
cos a 

where for a = 11"/2 we have the inverse Fourier transform 
times e + i11"/4. For a = 11" we have the square of this, which is 
ei11"/2 times the inversion operator; a = 311"12 corresponds to 
e3i11"/4 times the Fourier transform, and for a = 211" we have 
the operator - 1, which is the unit (1 = CI ) operator times 
- 1. When CM acts adjointly on w, this yields the transfor­

mation (- l)X( - 1)-1 = X, which is an identity transfor-
mation of the algebra, but not for functions in .2"2(~), where 
- 1 acts. It is only when we let a = 411" that we obtain back 

the unit operator in .2"2(~). On .2"2(~) we thus have a 
group of operators that is the double cover of the circle ma­
trices 

(c~sa sma 
-sina). 

cos a 

When Bargmann27 described the connectivity proper­
ties of the Lorentz group (in three dimensions) SO(2, 1), he 
also introduced a proper parametrization ofthe metaplectic 
group, which for fourth-integer k, D k+ representations are 
faithful. For our purposes here we shall not need the compo­
sition formula (4.2a), and it suffices to consider group ele­
ments near the identity of the metaplectic group, corre­
sponding to elements near the symplectic group identity 
element. In this regard it is helpful to note that CM is a Hil­
bert-Schmidt operator when its integral kernel has param­
eters a, b, c, d with small imaginary parts such that the inte­
gral kernel is a decreasing (rather than increasing) Gaussian, 
i.e., forIm (alb) > O. For real a > Owecanascribetobasmall 
negative imaginary part, so that the limit of real parameters 
a, b, c, d can be approached from b 's in the lower-half com­
plex plane. In that case, the argument of positive b is zero and 
that of negative b is - 11". When b vanishes from negative 
values (as when we followed the Fourier circle above), then a 
can be thought to be constrained to the lower-half plane (so 
a < 0 means arg a = - 11"); when b vanishes from positive 
values, a is contrained to the upper-half plane (so a < 0 means 
arga = + 11"). 

In order to investigate the properties of the coset distri­
butions and classical functions of the ring elements CM we 
use integral kernels we have defined above. The following 
integrals (regularized for real values of the parameters) are 
useful: 

J(R,S): = L dx exp i(Rx2 + Sx) = ei11"/4..Ji exp (- iS2/4R), 1m R;'O, (4.3a) 
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1 21Ti (.D
2
C+E

2
A -EBD) I (A,B,C,D,E): = dx dy exp i(Ax2 + Bxy + Cy2 + Dx + Ey) = exp - 1 4AC _ B 2 ' 

[if2 ~4AC _ B 2 

ImA;:;.O, Im(C-B2/4A):;;'0, ImC:;;.O, Im(A-B2/4C):;;'0. (4.3b) 

From (3.4b) we find the coset distribution of eM: 
'" CM(x,y) 

21T*~a +d - 2 

X (
'.i - bx

2 + (a - d)xy + Cr) exp 17t' , 
2(a +d- 2) 

b =1=0, 
= (4.4) 

.,fa -----

(. [cay2 1 a + 1 ]) Xexp 1* 2 +---xy , 
2(a - 1) 2 a - 1 

b=O. 

The Weyl, standard, and antistandard classical functions are 
obtained as 

CM,w(q,p) 

2 

~a+d+ 2 

Xexp ( 2i [ _ bp2 + (d _ a)pq + cq2 ]) , 
*(a+d+2) 

(4.5a) 

CM,.(q,p) 

= _1_ exp (_i_[ _ bp2 + 2(1 _ a)pq + Cq2 ]) , 
.,fa 20* 

(4.5b) 

CM,a(q,p) 

= _1_ exp (_1_' [_ bp2 + 2(d _ l)Pq + Cq2 ]). 
-!if 2d* 

(4.5c) 

The Weyl classical function as presented above reproduces 
correctly the results of Combe et al.29 and Burdet and Per­
rin30 contained in the metaplectic group. The product com­
position is (3.1Oa), (3.1Ob), and (3.1Oc), respectively. 

The Lie algebra corresponding to the integral kernel ac­
tion of eM on 'y2(~) yields up-to-second-order differential 
operators, and eM may be written directly as the exponential 
of second-order operators in various alternative forms using 
the product (4.2); similarly, as an integral over exponentials 
of first-order operators we may use (3.2)-(4.4). We thus ob­
tain 
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= exp ( - :*p
2
)exp (ilnd. ~ [PQ + QIP)) 

xexp(~*Q2) 

= exp (~"c* Q2)exp ( - iln a.~ [IPQ + QIP)) 

X exp (~:1P2) 

( 
._ar_c;=co=sh~~(a:;;:::+=d~) = exp I. 
*~(a +d)2-4 

X [ bp2 + ~ (a - d )(IPQ + QIP) - CQ2 ]) 

= * r dxdy 
21T~a + d - 2J[if2 

(
. - bx2 + [a - d ]xy + Cy2) 

Xexp I------~--~~--~ 
2(a+d -2) 

X exp i(xQ + yIP) , (4.6) 

as the Weyl, standard, and antistandard quantization of 
(4.5a), (4.5b), and (4.5c), respectively. 

Particularizing, we may obtain several interesting rela­
tions. The exponential function of qp in different quantiza­
tion schemes, expressed in terms of the anticommutator 
~(IPQ + QP), is 

flw(eiXqpl7t:) 

= 1 exp [2i arctan ~ . .J-!PQ + QP)] , 
~1 - (X/2)2 2 2 

fl. (e lxqbl7t:) 

= 1 exp [i In (1 + x) • "!"(PQ + QIP)] , (4.7) 
~1 +x 2 

fla (eIXqpl7t:) 

= 1 exp [ _ iln (1 - x) • ..!..(IPQ + QIP)] . 
~1-x 2 

The (normalized) Fourier transform operator may be 
written as the ring element 

applied to a smooth function (multiplied by e - 117"/4): 

GarcIa-Bulle, Lassner, and Wolf 34 

Downloaded 27 Jun 2011 to 132.248.33.126. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



= _e__ dq' e - ;qqj(q') -;"./4 i 
fi1i g; 

- i i [i(X +y)2] . = -- dx dy exp e,x:!(q + y) . 
2ff~ g;2 4 

(4.8) 

The correctness of the last result may be verified reducing 
the twofold integral to a single one by means of (4.3a). 

Corresponding to the matrix - lone has one of the 
central elements in the group, 

(-1 0). 
C 0 -1 

This is the Wigner inversion operator studied by Gross­
mann/I Huguenin,32 Royer,33 and Dahl. 16 Indeed, follow­
ing the one-parameter "harmonic oscillator" subgroup 

(c~s a - sin a), 
sma cos a 

we arrive, for a-+ff-, at the ring element given through (4.7) 
by 

C_ I = i* r dx dy exp(i[xQ + yJP]). 
4ffJg;2 

(4.9) 

This corresponds to a coset distribution constant over the 
manifold, an integral kernel{)(q + q'), and the Weyl quanti­
zation of a classical Dirac {) at the origin of phase space. 

In Gaussian geometrical optics,5 the Hamiltonian for­
mulation introduces a momentum canonically conjugate to 
the position q of a ray at a plane perpendicular to the optical 
axis z. This momentum is p = n sin e, where n is the refrac­
tion index of the medium and e is the angle between the 
optical axis and the light ray. 

For lens systems, II the subsets of Mp(2,9P) that are of 
interest are the parabolic subgroup of upper-triangular ma-
trices 

IF . = C(l 
z· 0 

-zln) (.z 2) 1 = exp - '-;JP , z>O , (4. lOa) 

corresponding to free propagation through a length z in a 
medium with refraction index n, and the group elements 

§p: = C~ ~), p= 2{3(n' - n), (4. lOb) 

which corresponds to the action on optical phase space of a 
refracting surface z = t (q) = {3q2, where light passes from a 
medium n to a medium n'. If standing for a lens, P is the 
Gaussian power. 

From these optical elements we may build as a limit any 
Mp(2,R ) transformation of optical phase space.34 The corre­
sponding canonical transform is the Huygens-Fresnel inte­
gral cut to the quadratic exponential term. This acts on the 
object phase function to yield the image. 

One further development, which is immediate but not of 
central import to this paper, is the consideration of the semi­
direct product between the Heisenberg-Weyl group Wand 
the metaplectic group explored above, WMp(2,9P) 
= W/\Mp(2,9P), with Wa normal ideal. In terms of the 

results of Combe et al., 29 Burdet and Perrin,30 this allows the 
inclusion of the linear potential (free-fall) Hamiltonian. The 
group of translations and inversions of Dahll6 is simply 
(4.9) in semidirect product with W. 
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v. SYMPLECTIC IDEALS AND WEYL QUANTIZATION 

As we stated in the Introduction, our eventual aim is to 
apply the structure of the Heisenberg-Weyl ring 'lr to the 
description of wave optics in aberration. The metaplectic 
group within 'lr describes Gaussian optics, its elements act­
ing on the object phase function to yield the image phase 
function. 

The study of geometrical optics of aligned systems with 
third aberration order has been done using the "classical" 
Poisson-bracket Lie algebra of observables quadratic and 
quartic in the phase-space variablesl2,35 modulo higher-or­
der terms. Preliminary results suggest that the relevant alge­
braic structure is v /\ sp (2,9P), where v is a nilpotent ideal 
under the Gaussian algebra sp(2,9P). This ideal decomposes 
into Nth-order aberration ideals36 under sp (2,9P). Concre­
tely (in one dimension), if we denote 

.1m: = pi+ mqi-m, 

m = j,j - 1, ... , - j, 2j = 0,1,2, ... , (5.1) 

then the Poisson bracket ! .,.} between these elements is giv­
en by 

!X{..'X~'} = 2(jm' - j'm)xi".+~';;/ . (5.2) 

Now, it is a well-known fact that the quantities (5.1) with 
Lie bracket given by the Poisson bracket form an infinite­
dimensional Lie algebra with a grading. If we now consider 
.1m as classical functions to be quantized according to some 
scheme, it is also a well-known fact that the algebra whose 
Lie bracket is the commutator will not be isomorphic to the 
previous one. Classical Poisson brackets and quantum com­
mutators do not follow each other, exceptS for (i) up-to-qua­
dratic expressions in the basic Heisenberg-Weyl constitu­
ents, (ii) classical functions of the formpf(q) + g(q) and their 
corresponding quantum operators, and (iii) classical func­
tions qflp) + glp) and their quantized operators. [We have 
not included some finite-dimensional Lie subalgebras of w 
!(l,QJP,Qlcp/,)k, I fixed, k =1=1, k,I<2) and Abelian infinite­
dimensional Lie subalgebras (polynomials in one element, 
e.g., QkJP\ k = 0,1,2, ... ), which are also isomorphic to the 
corresponding Lie algebras of their classical functions under 
Poisson bracket.] The algebraic span of any two of the above 
classes is outside the span of each class by itself. 

In Gaussian optics (with prisms) the geometrical and 
wave treatments follow each other since the generating oper­
ators all belong to class (i). Optics with aberration lacks this 
isomorphism due to the fact that it uses quantities (5.1) with 
j> 1. 

In following papers we intend to show that a quantiza­
tion analog of wave optics out of geometrical optics-in an 
approximation still to be explored-is achieved if we retain 
only the requirement 

f Ii} - 2(' .) i tXm'X m' - m -Jm~ m+m" (5.3a) 

so that the quantized version of this relation, 

[X~,Xim'] = 2i*(m' - jm)Xim + m, , (5.3b) 

holds. We show here that this is possible if and only ifXim is 
the Heisenberg-Weyl ring element corresponding to the 
classical function .1m in the Weyl quantization scheme. What 
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we are asking for is that I Xim }~ = _ j transform under the 
symplectic group in the same way as the classical quantities 
l.rim J~ = _ j do. We shall detail elsewhere the association 
between the multiplet X j and Sp(2,R I-classified aberrations 
of order A = 2j - 1. In the following we prove that (5.3b) 
follows from (5.3a) in (and only in) Weyl quantization. 

We refer to (3.7) for the general-scheme quantization of 
the basic monomial q"'pn, and calculate its commutator with 
Xl_ 1 = Q2, the sp(2,R ) lowering operator in (2.3): 

[Q2,n~(qmpn)] = f(:)(~)k!¢k 

X ( - ~ i * r Qm - k [ Q2,pn - k ] 

= 2i7ln f(m t 1)(n ~ 1)k! 

X{¢k - m: 1 (¢k -¢k-l)} 

X (- 21 i * )kQm + 1 - kpn - 1 - k . 
(5.4) 

If the last member is to be an operator quantized from a 
classical monomial function in the same scheme, the quanti­
ty in curly brackets must be again ¢k and independent of m. 
This is possible if and only if ¢k = const. This is the trade­
mark of the Weyl scheme. The same derivation applies for 
the commutator between xl = p2 and n~ (qmpn) and thus for 
any sp(2,R ) element and its exponential to the group. The 
Weyl rule is thus invariant under metaplectic transforma­
tions. The proof given here is algebraic; a geometric proof 
would be of interest. 
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