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Starting from an N-body quantum space, we consider the Lie-algebraic framework where the 
Poschl-Teller Hamiltonian, -! a; + c sech2 X + s csch2 X' is the single sp(2,R ) Casimir 
operator. The spectrum of this system is mixed: it contains a finite number of negative-energy 
bound states and a positive-energy continuum of free states; it is identified with the Clebsch­
Gordan series of the .fj!+ X.fj!- representation coupling. The wave functions are the sp(2,R ) 
Clebsch-Gordan coefficients of that coupling in the parabolic basis. Using only Lie-algebraic 
techniques, we find the asymptotic behavior of these wave functions; for the special pure-trough 
potential (s = 0) we derive thus the transmission and reflection amplitUdes of the scattering 
matrix. 

I. INTRODUCTION 

Symmetry methods involving dynamical algebras have 
been long used to study the eigenstates and spectra ofSchro­
dinger equations for certain one-dimensional potentials. 1-4 
Notable among them are the hydrogen atom l (bound states 
and scattering states), the harmonic oscillator,3 and the radi­
al oscillator (bound states only); among the systems with 
continuous spectra we know the free-fall (or linear) potential, 
the free particle, and the repulsive oscillator,4 and the latter 
two in their welled versions. Here the symmetry method 
builds the dynamical algebra, and -in all but the first case, 
where it is the pseudo-Coulomb system which enjoys the al­
gebra-the Hamiltonian is an element of this Lie algebra, 
which is4.6 sp(2,R) = so(2,I) = sl(2,R) = su(I,I), and which 
we refer to as the two-dimensional real symplectic algebra 
sp(2,R ). (We note that Lie algebras are involved, rather than 
Lie groups, as it is often stated.) Symmetries have a longer 
history, of course, since the angular properties of any central 
potential Hamiltonian and the rigid rotator acquainted phy­
sicists with group theory in the first place.7 We are here con­
cerned with dynamical algebras, i.e., those whose represen­
tations correspond with the whole energy spectrum of the 
system. 

It is important to state that the only spectra that have 
been obtained from a dynamical algebra of which the Hamil­
tonian is an element are equally spaced spectra8.9 if discrete 
(with a lower bound if realistic), a lower-bound continuum, 
or a double non-lower-bound continuum. These cases corre­
spond to the Hamiltonian being on the elliptic, parabolic, or 
hyperbolic subalgebras ofsp(2,R ).6 

Next; the Hamiltonian may be a simple function of one 
or more of the generators, the spectrum now being that func­
tion of the integers or subset thereof. This construction may 
be made for the bound hydrogen atom states, for its scatter-

• ) On sabbatical leave from Instituto de Investigaciones en Matematicas 
Aplicadas y en Sistemas, Universidad Nacional Autonoma de Mexico, 
04510 Mexico, D. F., Mexico. 

ing states separately, I and has been used recently for the 
MorselO and Poschl-Tellerll potentials, among others, by 
Alhassid, Giirsey, and lachello. 

The Morse potential 12 is very well-known for its role in 
molecular physics while the Poschl-Teller potential13 

emerges in connection with diverse physical systems, such as 
completely integrable many-body systems in one dimen­
sion,14 the solitary wave solutions to the Korteweg-de Vries 

• IS d' h H equatIOn, an 1D t e artree mean field equation of many-
body systems interacting through a {j force l6 among others. 
The Poschl-Teller Schrodinger equation also stems from the 
Klein-Gordon equation on a space of constant curvature, 
with an appropriate set of separating variables, the D' Alem­
bertian being the Laplace-Beltrami operator on a sphere or 
hyperboloid. 17 

The Poschl-Teller potential has two free parameters: 

vcs(x) = c sech2 X + s csch2 X . (1.1) 

See Fig. 1. There is a -siX 2 core at the origin plus a 
trough _sech2 X. When 0< -s/c< 1, the two may com­
bine to a potential with a core (s > 0) and a trough (c > 0). This 
trough may capture one or more quantum bound states 

when ~2s + 1 <~ - 2c + 1, which will be part of the spec­
trum of the Poschl-Teller quantum Hamiltonian lfIPT. The 
number of bound states is the integer part of the difference 

between ~2s + 1 and ~ - 2c + 1. 
Alhassid,18 Giirsey,19 and lachello ll used the algebra 

(a) 

o#==_""'5' ___ ...:.X~ 

(b) 

ot--......:::"""-__ ...:.X::... 

FIG. I. (a) The POschl-Teller potential 
with a core and trough, exhibiting two 
bound states and the continuum. (b) A 
Poschl-Teller potential where the 
trough parameter is smaller than the 
core parameter; it has only a continuum 
of positive-energy states . 
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so(3) with one subalgebra generator for full representation I' 
and row m classification. The Poschl-Teller equation is then 
found to be the square of that generator and thus the bound­
state spectrum is accounted for, being - - m2 over the mul­
tiplet. This potential also has a continuum of positive-energy 
scattering states, and the Weyl analytic continuation is used 
to turn the algebra into so(2, 1), where the positive contin­
uous energy eigenvalue is the square of the eigenvalue of a 
noncompact generator of the algebra. They also investigate a 
more general version of the Poschl-Teller potential, which is 
obtained from a representation of the direct sum algebra 
suI 1,1) EB suI 1,1) realized by the symmetric top system in 
which one of the Euler angles is made hyperbolic.20 They are 
thus able to show that the Poschl-Teller Hamiltonian 
emerges as essentially the Casimir operator of the algebra 
and that it has mixed spectrum, including the bound and 
scattering states of the potential,20 a result also found by 
Basu and Wolf.21 

In this article we shall reexamine the Poschl-Teller po­
tential, showing that the Clebsch-Gordan series22 of sp(2,R ) 
yields the spectrum of the system, while the eigenstates turn 
out to be the sp(2,R) Clebsch-Gordan coefficients in the 
parabolic chain ofBasu and Wolf1 for a lower- and an up­
per-bound sp(2,R ) discrete series repreSentation, coupling 
into a finite sum of discrete series plus an integral over con­
tinuous-series representation. The energy values are deter­
mined by the coupled-sp(2,R ) representations, while the po­
tential parameters in (1.1) are determined by the two-factor 
sp(2,R ) representations. The action of the raising and lower­
ing operators in the conjugate so(2,2) algebra allow us to 
relate potentials (1.1) with different values of the potential 
parameters s and c for eigenstates of the same energy. In 
particular they can be made to relate a given potential with 
the free-particle potential Voo(x) = 0, the eigenstates of the 
two systems then being related through an algebra with shift 
operators, thus allowing a derivation of the reflection and 
transmission coefficients of the S matrix by purely algebraic 
means. These will be functions of the potential parameters 
and the energy of the state. 

The mixed-spectrum character of the Poschl-Teller po­
tential makes it attractive for nuclear physics models of scat­
tering. It is shown in Sec. II and III that this potential arises 
in an N-particle space out of the quadratic operators in posi­
tion and momentum, forming an oscillator sp(2N,R ) algebra, 
which contains sp(2,R) through the maximal subalgebra 
sp(2,R ) EB so(n,m). In this reduction, the representations of 
the two summands are conjugate. We further decompose 
so(n,m):::) so(n) EB so(m), each direct summand algebra having 
a conjugate sp(2,R ), which provide the Poschl-Teller poten­
tial parameters sand c with restrictions to discrete values. In 
Sec. IV we use the so(2,2) algebra generators to raise and 
lower·23 these values: the dimensions nand m are not cru­
cially important for the structure of the system, and so(2,2) 
has most of the general features, plus some particularly use­
ful ones. In this way we find the reflection and transmission 
coefficients24 and the scattering matrix for this potential. 
The closing section offers some conclusions as to the place of 
the system treated here within the general systems whose 
spectrum is given by the Clebsch-Gordan series for sp(2,R ), 
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which may include the Coulomb system in the proper repre­
sentation coupling class. 

II. THE OSCILLATOR REALIZATION OF 
sp(2n,R) :::::> sp(2,R) EB so(n) 

We consider the Schrodinger realization of the quan­
tum operators of position and momentum in an n-dimen­
sional Euclidean space R n, 

Qa fIx): = Xa fIx), Pa fIx): = - i af(x), a = 1,2, ... ,n . 
aXa 

(2.1a) 

They are self-adjoint in a common invariant domain dense in 
,2"2(R n), and satisfy the well-known Heisenberg commuta­
tion relations 

(2.1b) 

where 1 is the unit operator. 25 Next, we build all bilinear self­
adjoint operators in Qa and Pb , denoting them as 

J!b: = !(PaPb - QaQb)' 

J~b: = !Nab: = !(QaPb + QbPa - i£5a,b l ), 

.fob: = !(PaPb + QaQb)' 

(2.2a) 

(2.2b) 

(2.2c) 

(2.2d) 

This set of operators closes under commutation, with 
the commutation relations defining the 2n-dimensional real 
symplectic algebra2 sp(2n,R). Since J~b = J:" and Mab 
= - Mba' there are 2n2 + n operators in the set and they 

are self-adjoint in ,2"2(R n). On this space, they yield the oscil­
lator (or metaplectic26) representation of sp(2n,R ). On this 
space this representation is not irreducible, since the inver­
sion commutes with the set (2.2), and decomposes into two 
irreducible representations, one in the subspace of even func­
tions and one in the subspace of odd functions. 

Now we construct the linear combinations 

n 

Jk: = L J~a' k = 1,2,0. (2.3) 
a=1 

These three operators generate an algebra sp(2,R) which 
commutes with the operators Mab in (2.2d). The latter com­
mute among themselves and generate the n-dimensional or­
thogonal algebra so(n). We thus consider the algebra chain 

sp(2n,R) :::::> sp(2,R ) EB so(n) , (2.4) 

where the subalgebra is maximal in the parent algebra. The 
two direct summands in the subalgebra are, moreover, con­
jugate, i.e., within the oscillator representation of sp(2n,R ), 
the representation of one direct summand determines the 
representation of the other. Indeed, the Casimir operator of 
sp(2,R) is6 

C·P: = ( JI)2 + ( .f)2 - ( fI)2 , (2.5a) 

while the second-order Casimir operator ofso(n) is 2 

(2.5b) 
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and all higher-order Casimir operators of the latter are zero 
since the algebra is realized on the n-sphere27 S" - I. The 
second-order Casimir operator (2.Sb) is the Laplace-Bel­
trami operator on that (n - 1 )-dimensional space S" - I, 

with constant curvature related to the radius of the sphere.28 

One may,show directly replacing (2.2) that the two operators 
(2.5) are related by 

C"p = -! coo + T6 n(4 - n) . (2.6) 

The eigenvalues of COO on S" - 1 (i.e., the spectrum of the 
D' Alembertian) are given by 

c"" = 1(1 + n - 2), 1 = 0,1,2, ... , (2.7) 

and thus through (2.6), the eigenvalues of cop are 

c"P=k(l-k), 

k = W + ! n) = !n,!n + !,!n + 1, ... , 

(2.8a) 

(2.8b) 

where k is referrred to as the Bargmann sp(2,R ) representa­
tion index.6 The representations of sp(2,R ) present in the 
decomposition (2.4) are thus the lower-bound discrete-series 
representations ~ k+ • The parity of the so(n) representation 1 
on S" - 1 is well known to be ( - 1 )1. It follows that on the 
irreducible subspace of even functions, the oscillator realiza­
tion (2.2) decomposes into the direct sum of sp(2,R )!B so(n) 
representations (k,l) = U n,OH(!n + 1,2) + (!n. + 2,4).+ .. :' 
while in the subspace of odd functIons It IS 
(k,l) = (!n + PH(!n + PH(!n + PH .... 

In the case n = 1, the generatorless algebra "so(l)" is 
replaced by the inversion operator with eigenvalues + 1 and 
- 1 on the two-point space So. The former goes with k = ! 

and the latter with k =~. This "so(l)" also effects the "alge­
bra reduction" ofso(2) to eigenvalues m = ± 1 of the latter's 
single generator, the sign being the "so( 1)" eigenlabel. In the 
general-n case, we need not concern ourselves with the repre­
sentation row labeling. 

Regarding the subalgebra reduction of sp(2,R ), the bet­
ter-known6 chain involves the compact subalgebra with gen­
erator t>. This operator is the n-dimensional harmonic oscil­
lator Hamiltonian with angular momentum 1, whose 
spectrum is lower bounded by k and is linearly spaced by 
integers.2 In this work we shall use the parabolic subalgebra 
generator29 

1 n 
j-: = t> - JI = - L Qa Qa . 

2 a= 1 
(2.9) 

This has been implicitly used whenever sp(2,R ) is realized in 
terms of up-to-second-order differential operators, but has 
not often appeared as an abstract subalgebra chain in the 
physics literature. The operator J- is noncompact and its 
spectrum therefore continuous; in the discrete-series repre­
sentations ~ :- , it is positive, as seen here, and simple. In the 
continuous-series representations of the next section, it is 
still simple but both positive and negative. 30 

The algebra sp(2,R ) also has negative discrete-series re­
presentations, denoted by ~ k . These may be obtained from 
the positive-series operators (2.2) and (2.3) on y2(R n) 
through the mapping6 
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A:{ j\j2,t>}I-+{ - j1,j2, - t>J . (2.10) 

This is an automorphism of sp(2,R ), so the Casimir operator 
eigenvalues (2.8) are unaffected. It is involutive, but not with­
in the group generated by it, i.e., it is outer. It inverts the 
harmonic-oscillator spectrum of t> to negative values, so the 
eigenvalues of the latter are upper bound by - k. The spec­
trum of Aj- is now the negative half-axis. 

III. COUPLING AND REDUCTION IN 
sp(2N,Rj::)sp(2,R)!B so(n,m) 

We now consider the following Euclidean spaces: R ", 
R m, and R N, N = n + m, where the two first spaces are dis­
joint subspaces of the latter, arranged so that xaeR" for 
I<a<n and xaeR m for n + l<a<n + m = N. On the y2 
(R N) space offunctionsJ(x) we may build the oscillator rep­
resentation of the symplectic algebra sp(2N,R ), which has 
been presented in the last section and given in (2.2), letting all 
index ranges grow to N. We reproduce the structure for R n 

and Rm placing their oscillator algebras sp(2n,R) and 
sp(2m,R )assubalgebrasofsp(2N,R). Each of the former two 
will be decomposed as sp(2n,R) ::) sPIn) (2,R ) !B so(n) and 
sp(2m,R) ::) sP(m)(2,R)!B so(ml' wherekthe generators oft~e 
first factors will be labeled as j(n) and J(m) for k = 1,2,0, buIlt 
as in (2.3) with the appropriate summation index range. 
Now, if we follow the same procedure with sp(2N,R ), we are 
couplingl l

,31 the representations of sPIn) (2,R ) and sP(m) (2,R ) 
to a representation of SPIN) (2,R ). If the two factor represen-

f'd!+ • h' od 21223132 '11 tations belong to the = senes, t elr pr uct ' . . WI 
be reducible in terms of irreducible representations of the 
latter also belonging to the ~ + series. If the former are given 
by their Bargmann indices kIn) and k(m)' the Clebsch-Gor­
dan series will contain the SPIN) (2,R) representations kIN) 
= kIn) + k(m"k(n) + kIm) + I, ... and its Casimir operator 

would have eigenvalues kIN) (1 - kIN)) with kIN) on the se­
ries. These facts may be easily seen in the compact subalge­
bra reductions, where JfN) is the sum of the harmonic oscilla­
tors .lfn) and Jfm) with the consequent sum of their discrete, 
lower-bound spectra to a "radial" discrete, lower-bound 
spectrum which, were we to follow this coupling, would lead 
to the constraining Poschl-Teller potential (ofthejirst type) 
V(x) = c sec2 X + s csc2 X, 0 <X < 1T/2. 

Our interest in this paper lies in the scattering Poschl­
Teller potential (i.e., of the second kind): 

vcs(x) = c sech2 X + s csch2 X , (3.1) 

which, according to the values of the two parameters, c and s, 
will have a lower-bound continuum of scattering states, with 
the possibility of a finite number of bound states. 

To achieve this, we couple the two sp(2,R ) subalgebras 
in sp(2n,R) and sp(2m,R) to the SPIN) (2,R) algebra in 
sp(2N,R ) through essentially the difference of the generators, 

. h' b" 2 3132 followmg t e hnear com matlons' . 

(3.2a) 
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Jr;v) = Jfn) + Jfm) , 
Jl'N) = Jl'n) - Jl'm) . 

(3.2b) 

(3.2c) 

This corresponds to coupling one!P k~n) with one!P kim) irre­
ducible representation. The so-algebra commuting with this 
SP(N) (2,R ) is the pseudo-orthogonal algebra so(n,m) whose 
set of generators is the union of the so(n) generators Mob' 
a,b = I, ... ,n (communting nontrivially with J~)), the so(m) 
generators Mob' a,b = n + I, ... ,n + m (commuting nontri­
vially with J~)), and the "cross" noncompact boost genera­
tors Nab' a = l, ... ,n, b = n + 1, ... ,n + m in (2.2b). We thus 
work with the subalgebra chain 

sp(2N,R) ::> sp(2,R ) $ so(n,m) . (3.3) 

The second-order Casimir operator of this so(n,m) may 
be expressed in the following form, in terms of the three 
constituent sets of generators: 

n n+m 
c:so(n.m) = c:so(n) + c:so(m) - L L (Nabf, (3.4) 

a I b=n+l 

while that ofsp(N) (2,R ) is given by (2.5a)in terms of(3.2). The 
two direct summand algebras in (3.3), sp(2,R ) and so(n,m) are 
again conjugate in sp(2N,R ), and their Casimir operators are 
related as in (2.6), with N replacing n; the eigenvalues relate 
accordingly. 

The spectrum of the so(n,m) Casimir on the (n,m) hy­
perboloid H N - I may be written as in (2.7), but with a differ-

ent range of values of I. Through (2.8) we conclude that the 
conjugate SPIN) (2,R) representation is labeled by k 
= (1 + iA )/2 and thus belongs to the continuous (nonexcep­

tional6) representation series '(J ~ with Casimir eigenvalue 
c = (1 + ,P)/4;;;' !andmultivaluationindeXE = O,!resolved 
in the .,.?2(R N) subspaces of even and odd functions. 

When n = 1 = m, both "so( I)n Casimir operators are 
zero and eso(l.I) is the square of a single boost generator N 12' 

with a negative sign, i.e., ~1,1l = - A 2 corresponding to 
1= iA,A;;;'O. 

For general n,m> 1, the coupling of !P k+ and!P k . ~ ~ 

representatlOns of sp(2,R ) has the following Clebsch-Gor­
dan series21 ,22.31.32; 

(3.5) 

i.e., for kIn) > k(m)' a direct finite sum of lower-bound dis­
crete-series representations fiJ ;/iN) from kIN) = kIn) - kIm) in 
integer steps down to (but not including) !, plus a direct inte­
gral over all nonexceptional continuous representation se­
ries with the appropriate multivaluation index E = 0 or 
E =!, according to the total space inversion parity. The dis­
crete part of the spectrum is absent if kIn) - kIm) <iq. The Ca­
simir operator of SPIN) (2,R ) has thus the mixed spectrum 

sp (2R) {k(l-k)<!, k=kmin,kmin -1, ... ,>~, k min =k(n) 
C IN)' = 

!(l + ,r);;;.!, K;;;'O. 
(3.6) 

This is the form of the spectra fitting into our coupling 
scheme: mixed spectra with a continuum of positive energy 
and a finite number of bound states with a characteristic 
quadratically downward-increasing separation for negative 
energy. 

The previous statements are basis independent. In or­
der to see how (3.6) becomes the spectrum of the scattering 
Poschl-Teller potential SchrOdinger Hamiltonian, we intro­
duce the appropriate coordinates in R N. These are (n,m)­
bipolar-hyperbolic coordinates Xj (q,p,x, {Vk }, ((i)k }): 

Xj = ;vvj , j = 1,2, ... ,n; y;;;.O, L (Vj)2 = 1, (3.7a) 
j 

Xj = ;S(i)j' j = n + 1, ... ,n + m; s;;;.O, L ((i)j f = 1; 
j 

(3.7b) 

q= +1 (r>s) 
{r=:pcosh X, P,X;;.oO, 

(3.8a) 
s=:psinhx, 

q= -1 (r<s) r=:PSinhx, 
s=:pcosh X· 

(3.8b) 

The {vj } j = I and ( (i) d k :!: ::' + I are coordinates on the 
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spheres S n - I and S m I, and the Casimir operators of so(n) 
and so(m) are second-order differential operators in them, 
while rand s do not enter their expression. The so(n,m) Casi­
mir operator will be a differential operator in all variables 
but p. One should be careful to note that these coordinates 
are not global, i.e., two charts, labeled by q = ± I, are need­
ed to cover the r ,s;;.oO quadrant by p, X;;.oO, (2.8a) and (3.8b). 
The so(n,m) Casimir operator will have two forms, one in 
each chart.21

•
31 

We now detail the forms of the six operators and their 
eigenvalues, whose eigenfunctions are--once appropriately 
normalized-the fiJ k~n) X fiJ kIm) Clebsch-Gordan coeffi­
cients.21 

k(n): I(;"Pln)12.R) has eigenvalue kIn) (1 - k(n))' This fixes the 
v dependence of the eigenfunction to be an so(n) harmonic 
with angular momentum I(n) = 2k(n) - ! n. 

k(m): c:sPlm
)(2.R) has eigenvalue kim) (1 - k(m))' The ro de­

pendence is that of an so(m) harmonic lim) = 2k(m) -! m. 
k(N): c:SPIN )(2,R) has eigenvalue CSP1N )(2.R) given by the 

Clebsch-Gordan series (3.6), expressible through (2.6). (3.4), 
and (3.7) as the differential operator on (q,x,v,ro), 
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C·PINi2,R) = -h N (4 - N) -1 cso(n) + cso(m) + L L Xa --+ Xb --
[ 

n n + rn (a a )] 
a=lb=n+1 aXb aXa 

= ~ 1 [N ( N - !) + (1 - ;2 )cso(n) + ( 1 - ::)cso(m) 

+ (r~+s~)2 + ((n - 1)~ + (m - 1)~) (r~ +s~)] as ar r s as ar (3.9) 

= -=-![N(N -~) + L + ((n _ 1){tanh x } + (m _ 1){coth X}) ~ 
4 4 ax 2 cothx tanhx ax 

+ {sech
2 x } cso(n) + { - csch

2 x} coo(m)], for {(T = + I} . 
- csch2 X sech2 X (T = - 1 

Note that this operator has one form on each chart. Now we 
come to the parabolic subalgebra "row" labels. 

r: J(;;j =! r with nonnegative eigenvalue. 
s: J(;;;) = ! S2 with nonnegative eigenvalue. 
((T, p): J(N) = - J(;;j - J(;;;) = !(r 2 - S2) = !(Tp2. 

This eigenvalue is fixed by rand s, which determine the chart 
(T on which CSP1n)(2,R ) lies, and p ;;;.0. 

The normalized eigenfunctions of the first three opera­
tors, valuated at the eigenvalues of the last three, are the 
numerical Clebsch-Gordan coefficients. Only two of the lat­
ter three are independent. We may fix ((T, p) and, say, r, to 
determine s. We decide to fix (T and p, and let the coeffiCient 
be a function of the single free coordinate X. Then, the 
Clebsch-Gordan coefficients are obtained as functions of X 
satisfying the differential eigenfunction equation (3.9) with 
(3.6) for its spectrum.21 It is particularly important to fix (T 
since this places us on a single chart (T, which we choose 
hereafter to be (T = + 1. (Choosing (T = - 1 only exchanges 
nand m.) 

Clebsch-Gordan coefficients, even for noncompact al­
gebras, are best known when reduced with respect to a com­
pact subalgebra, 7,2),32 so that the row indices are integers m l , 

m2' and m = m) + m 2, for example. These satisfy three­
term recursion relations-a second-order difference equa­
tion-which stem from the coupled Casimir operator. Their 
proper summation for normalization is a rather difficult 
problem. In the noncompact parabolic subalgebra basis, the 
row labels are continuous and the eigenfunctions of (3.9) sa­
tisfy an ordinary second-order differential equation when 
the so(n) and so(m) eigenfunction subspaces are taken. We 
anticipate that the solutions of (3.9) are zP) Gauss hypergeo­
metric functions,21 while the elliptic or hyperbolic subalge­
bras lead to ~2 functions of unit argument. 31 ,32 

The original2"2(R N) eigenfunctions of the Casimir op­
erator are orthogonal under a maximal set of commuting 
operators under the measure 

d NX = pN - I dp f1nm (x)dx d n - IV d rn - 100 , 

f1nrn (x) = (T sinhn - I X coshm - I X . 

(3. lOa) 

(3. lOb) 

The integration on v and 00 leads to orthogonality in the so(n) 
and so(m) representation labels kin) and k(m) , and row labels 
which are absent from the sp(2,R ) coefficient. Definite J(N) 
eigenfunctions restrict to a definite ((T, p) value, on the X half­
line, the operator (3.9) is symmetric with respect to the mea-
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I 
sure f1 nm (x)dX. By similarity we may transform (3.9) to an 
operator symmetric with respect to dX, containing thus no 
first-order derivative terms: 

CSP: = f1 I12CSPIN)(2,R)f1 -1/21 
k(nl,k(m) 

=-hN(4-N)-H~ - {(2k(n) _1)2_ U sech2x 

+ ((2k(m) - 1)2 -1) csch2 X -1(N - 2)2]. (3.10e) 

To obtain the usual -!a; + V(x) form of Schrodinger 
equations, we define 

lHIPT = 2Cs
p - ! = -!a; + VC'(x) , (3.11a) 

where VC'(x) is the scattering Poschl-Teller potential (3.1) 
with parameters 

c = - H(2k(n) - 1)2 -1] <l, (3.11b) 

s = H(2k(m) - 1)2 - H;;;. -l, (3.11c) 

and spectrum 

Ek = 2k(N)(1 - kiN)) -! = - !(2k(N) - 1)2, (3.11d) 

where the range of k in the Clebsch-Gordan series (3.5) and 
(3.6) yields negative-energy bound states for couplings to the 
discrete series: k = kmin , kmin - 1, ... > !, kmin = kin) - k(m)' 
The continuum of positive-energy scattering states appears 
for couplings to the continuous series for k = !( 1 + iK), K;;;'O. 
The multi valuation index is determined by kin) - kim) 
mod 1; € = 0 allows the K = 0 value, while € = ! excludes it 
since the representation belongs to the exceptional type and 
is not square-integrable.29 

Some remarks about the allowed values of the Poschl­
Teller parameters c and s, and the proper spectrum of lHIPT 
follow. 

The coefficients in (3.11 b) multiplies the csch2 X term of 
the potential, which is singular as -X -2 at the origin. The 
coefficient s represents thus a core parameter. There may be 
three cases. 

(a) The core maybe a singular, negative well (O>s;;;' -1) 
for 1 < kim) < i. Among the representations of sP(rn) (2,R ) con­
tained in the oscillator representation of sp(2N,R ), only kim) 
= ! leads to a potential with an attractive well s = - l at the 

origin. This is what we would call a weak 8 well for the pur-
poses of investigating the conditions under which the 
Poschl-Teller Hamiltonian has a unique spectrum. 

(b) When kim) = lor i, the core parameter s is zero.24 

These values of kim) are allowed within sp(2N,R ) [see (2.8b)] 
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only when I = 0, m = 1, i.e., when the reduction of so(n, 1) is 
the canonical one to so(n), and (3.7) and (3.8) are spherical 
coordinates. For n = 2, this is the chain 
sp( 6,R) :::> sp(2,R ) ED so(2, 1), and the algebra so(2, 1 ) is doubly 
at play. Using only so(2,1) with its Casimir operator and 
generators, thus, we cannot get a nonzero core parameter. 
We do get, however, the two parity values which allow the 
system to be extended to the full line XeR. 

(c) Finally, when s> 0 we get true core potentials. We 
must note the interval (0,1) u (i, 1) for which 0 < s < a. It is in 
fact a weak core,8 and the problem is having two values of 
kIm) leading t6 a single potential with fixed s; the interval, 
luckily, does not include values allowed by sp(2N,R). For 
k(m);;..1 the core isstrong33 (i<s = i,I,.Ij,3, ... ,.for k = 1, i,~,~, 
... ) and the square-integrable solutions of the Schrodinger 
equation must be zero at the origin. 

The second parameter e is factor to a sech2 X term in the 
Poschl-Teller potential. It is a trough parameter for e < 0, 
and a smooth bump for 0 < e<l. There are also three cases: 
(a) a e = 1 bump for k(n) = !, (b) a e = 0 zero potential for kin) 
= 1 and i allowing the system to be extended to XeR, and (c) 
troughs of coefficient e = - i, - 1, -lj, - 3, ... for kin) 
= 1, i,~, ~, .... 

The core and trough parameters combine to a Poschl­
Teller potential with a trough when 0 < - sic < I (i.e., kin) 
>klmJl at the position Xmin =arctanh (-slc)1/4 and of 
depth VI" . ) = - (s - ~ - e)2. This potential is able to 

\Amtn I 

hold bound states for ! < kmin = kin) - kim) or ~ - 2c + 1 
- ~2s + 1> 1, and the number of these states is the integer 
part of kmin . The bound state energies are given by (3.11) for 
kiN) = kmin' kmin - 1, ... >!, each corresponding to a dis­
crete-series term in the Clebsch-Gordan series. For all 
sp(2N,R )-allowed .poschl-Teller potential parameters, there 
is a continuum extending over positive energies, and corre­
sponding to the continuous-series representations in the in­
tegral in the Clebsch-Gordan series for k = !( 1 + iK), KeR +. 
It should finally be remarked again that for n even, kin) may 
be fixed to be integer or half-integer, while for n odd, kin) may 
only be a quarter-integer. 

The Poschl-Teller bound and free wave functions 

(3.12) 

may be obtained directly, in normalized form, from the work 
of Basu and Wolf on sp(2,R ). They relate through34 

( 
kl k2 k ) 

C> + I,r _ l,r ; + I,p 

= Dt! r 2 - ~ - !p2)(p2 cosh X sinh X )-1/2 tP'f"k,)( xl, 
(3.13) 

wherekl = kin) andk2 = kim) determine thee ands potential 
parameters, -! (2k - 1)2 is the energy [see (3.11), setting 
k = kIN) ],andtanhx =s/r[s/r< lontheu= + 1 chartJis 
the position in the Poschl-Teller Schrodinger equation. 

The bound states have the following wave functions 
normalized on [0, 00 ): 

[ 
- kl + k2 + k, - kl + k2 - k + 1 . 2 ] tP'f,k')(K) = c~,k'(cosh X) - 2k, + 3/2(sinh X )2k, 1/2 F 2k2 ; - smh X , (3. 14a) 

e~,k, = _1_ [(2k - I)r(kl + k2 - k )F(kl + k2 + k - 1)] 112, 

r(2k2 ) r(kl - k2 + k)F(kl - k2 - k + 1) 
(3. 14b) 

where F [a:;z] is the JI Gauss hypergeometric function. 
These also may be put in terms of Jacobi polynomials of 
degree kJ - k2 - k and argument 2 sech2 X-I. The scat­
tering states are described by the wave functions 
tP'f,k,)(K) = ~,k,(cosh X )2k, 1I2(sinh X )2k, - 112 

F [
kl + k2 - k, kl + k2 + k - 1 'nh2 ] 

X ;-SI X, 
2k2 

(3.15a) 

c~,k, = [ll1rr (2k2)] B K sinh 1rK 

Xr(kl +k2 -k)r( -kl +k2 +k) 

Xr(kJ + k2 + k - I)F( - kl + k2 - k + I)] 112. 
(3.15b) 

We note the symmetry relations 

tP'~ - k"k,)(K) = tP'f,k,I(KI, for kl E R , 

tP'f"I- k,l(K1 = tP'f,k')(K), for 2k2 integer, 

(3. 15c) 

(3.15d) 

for the scattering states. This is an invariance transformation 
for the potential parameter c in (3. I Ib), obviously. Not so for 
s, however, as we shall see in the next section. In particular, 
from the coupling of two oscillator representions to the con­
tinuous-series representations35 we obtain 
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tP't4,3/4)(K) = tP'F4,3/4)(K) = ~211r sin KX , 

tP't4,1/4)(K) = tP'F4,1/41(K) = ~2/1r cos KX , 

normalized on [0,(0). 

(3.16a) 

(3.16b) 

The asymptotic behavior of the scattering states under 
X~oo corresponds to the oscillatory behavior of the 
Clebsch-Gordan coefficient (3.13) in the neighborhood of 
the cone r = s, where p becomes vanishingly small. Out of 
the tabulated asymptotic properties of the hypergeometric 
function, one may find, for k = ~(1 + iK), 

tP'f,k,)(K) - a~,k'ejKX + /3 ~,k'e - iKX , (3.17a) 
X~CO 

/3 1- k.,k, 
k • (3.17c) 

In the next section we shall rederive these asymptotic coeffi­
cients out of pure Lie-algebraic considerations. In particu-
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tar, we shall use them to find the reflection and transmission 
amplitudes of the pure trough potential p0(x). 

IV. 80(2,2) SHIFT OPERATORS FOR THE SCATTERING 
STATES 

In Sec. II we started with the parent algebra sp(2N,R ) in 
its oscillator representation (2.2) in order to provide an un­
derlying N-particte phase space. There, the sp(2,R ) subalge­
bra in the chain (3.3) has for Casimir operator (in bipolar­
hyperbolic coordinates) the Poschl-Teller equation. The 
price we pay is to be able to account only for certain values 
for the potential coefficients c and s. In particular, we do not 
obtain (for n,m > 1) the null potential Voo(x). 

We may do away with this restriction in one important 
case: 

sp(8,R ) ::> sp(2,R ) $ so(2,2) . (4.1a) 

There, the dimensional accident occurs thae 

so(2,2) = SPa (2,R ) $ SPb (2,R ) . (4.1b) 

In fact, it also allows us to present the Poschl-Teller equa­
tion as the Klein-Gordon equation l7 (A - p,Z),p = 0 with A 
being the Laplace-Beltrami operator on the three-dimen­
sional surface of the (2,2) hyperboloid H3 [(3.7) and (3.8] 
p = const, XE[O, 00 ), 0, t/JES 1, 

XI = P cosh X cos 0, X3 = P sinh X cos t/J, 
X z = P cosh X sin 0, X 4 = P sinh X sin t/J . (4.2) 

The eigenvalues p, may be interpreted as the masses allowed 
in such a model. 

The so(2,2) algebra in the decomposition (4.1b) may be 
written explicitly in terms of the generators (2.2) as 

K~ =! (M12 + M34) = - (iI2)(ao + a,p) , 

K~ =!( - M12 + M34) = (iI2)(ao - a,p), (4.3a) 

K! =! (N23 + NI4), Kl =!( - N23 + NI4), (4.3b) 

K~ = ~ (- N I3 + N24), K~ =!( - N I3 - N24). (4.3c) 

We note that on H 3 the two Casimir operators of the two 
sp(2,R)'s in (4.1b) are equal to each other and related to the 
sp(2,R ) Casimir in (4.1a) through 

CSPe = (K!)2 + (K~)2 - (K~ f 
= -! Cso{2,2) = C SP(2,R), C = a,b . (4.4) 

This means we have a "square" (k,k ) representation ofso(2,2) 
corresponding to the degenerate representation with Casi­
mireigenvaluel (I + 2),k =!I + 1, as before. Theso(2,2) rep­
resentation basis elements, classified through their eigenval-
ues Ma and Mb under K~ and K~, and k under CSPa = c"Pb, 

may be written as functions over H3 through 

(4.5) 

where m l and m2 are the eigenvalues under MI2 and M34, 

ma - mb = m J = 2kl - 1, ma + mb = m 2 = 2k2 - 1 

(4.6) 

(on H 3, m I and mz can be all and only integers), and 1fJ't',k,)(x) 
is the normalized Poschl-Teller wave function (3.14) and 
(3.15) of energy - !(2k - W. 
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The four so(2,2) shift operators are 

K; =K! ±iK~ 
= !e±l(o+ ,p)[ =Fax + tanh X ( - i ae ±!} 

+cothX( -ia,p ± m, (4.7a) 

K; =Kl ±iK~ 
=!e±l(-o+ t/»[ =Fax + tanh X (iae ±!) 

+cothX(-ia,p ± m. (4.7b) 

Shift operators, independently of their realization, have the 
well-known constants and action6 on any normalized eigen­
basis of CSPe and KO given by 

K t fIJi: = [(k ± m)(1 - k ± mW/2 fIJ i:± 1. (4.8) 

The shifts produced by (4.7) on a fixed Poschl-Teller poten­
tial generates the elements of its multiplet: 

K; :(m 1,m2 ) 1---+ (mJ ± 1,m2 ± 1), 

K; :(m1,m2) 1---+ (ml =F 1,m2 ± 1), 

K; :(kl>k2) 1---+ (k l ± !,k2 ± !), 

K; :(k1,k2) 1---+ (kJ =F !,k2 ± !). 

(4.9a) 

(4.9b) 

We noted in (3.15) that reflection in kJ through!, 1fJ't',k,)(X) 
= tlf1- k"k,)(x) holds for all kJ due to hypergeometric func­
tion identities. This is as expected, since m1 and - m 1 pro­
vide the same sech2 x-potential coefficient c in (3.11 b). When 
2kz is an integer (i.e., when m2 is an integer, but only then) it 
holds that kz may be reflected through !, corresponding to 
the same cschz x-potential core coefficient s in (3.11c). 

We thus arrive at the point of view of 80(2,2) as the 
"dynamical potential group" (named in Ref. 11, Sec. 7) of the 
Poschl-Teller system, where the irreducible representation 
basis elements are the wave functions, with the same energy, 
of different potentials. We may thus speak of the mUltiplet 
{m l,m2 J of potentials for a given energy level Ek • 

For the bound states of a given energy Ek 
= -!(2k-I)<0 allowed for k=k1 -k2, k 1 -k2 -1, 
... >!,ma andmb rangeoverk,k + l,k + 2, .... See Fig. 2(a), 
where the axes are drawn for m 1 and m2• The set of dots 
constitute the so(2,2) multiplet; each dot in the first quadrant 
is associated to a given potential, the second quadrant being 
a reflection through the m2 axis of the first. The m I = 0, 
m 2 = 2k potential has a minimal (negative) core s = - 1; 
shifting along the lattice boundary with K! we increase both 
the repulsive core over positive values of s, and the trough 
parameter c to ever more negative values. The lowest al­
lowed state in the first potential remains the lowest allowed 
one in all potentials of the "boundary" of the lattice in Fig. 
2(a). Moving into the lattice we deepen the trough and 
thicken-to a lower degree-the core. Our energy Ek eigen­
state will have more bound states below it, one for every 
nested layer we cross. 

For the scattering states of a given energy Ek = -! 
(2k - If> 0, k = ! (1 + iK), K;"O, only the integer represen­
tations ~2(1- k) of the conjugate sp(2,R ) are allowed. The 
so(2,2) multiplet is shown in Fig. 2(b). Points in the first 
quadrant (including the axes) represent Poschl-Teller poten­
tials. The multiplet may be traversed on diagonals by means 
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m, 
o 

(8) 

FIG. 2. (a) The so(2,2) multiplet of 
Piischl-Teller potentials corre­
sponding to a (bound) energy level 
Ek <0. (b) The so(2,2) multiplet cor­
responding to a (free) energy level Ek 
>0. 

. of the shift operators (4.7). Potentials along the m2 axis 
(m, = 0) have a c = ~ bump and all others a c<O trough, 
while those along the m, axis (m2 = 0) have as = - ~ weak 
attractive core, and all others a true s> 0 core. Potentials 
lying above the diagonal in the first quadrant have a trough 
deep enough to hold bound states. 

This is the situation on the (2,2) hyperboloid H3. We 
would like to be able to include other Poschl-Teller poten­
tials with different values of the c and s parameters, in parti­
cular the null potential Voo(x). 

The coefficient c of the sech2 X well, we saw, vanishes 
for m, = ± ~ (k, = M) and the coefficient s of the csch2 X 
core for m2 = ± ~ (k2 = M). But note, only integer m's are 
allowed on H 3. This situation may be remedied for the well 
and managed for the barrier in the following way. 

The three-dimensional hyperboloid space H 3(O, ;,X) 
projected on ; = ;0,;0 + 1T is a two-dimensional space: a 
one-sheeted hyperboloid; the coordinate which circles it is O. 
The 0 = 0o, 0o + 1T subspace, on the other hand, is two­
sheeted hyperboloid circled by;. We may cover the original 
H 3 hyperboloid n times in 0 to a space of constant curvature 
(0, ;, X), where (}e[0,21Tn), 1}6e[0,21T),xe[0, 00), with the prop­
er identifications, including 0 =0 mod 21Tn. In the double 

covered three-hyperboloid W, M'2 = - i af) may have in­
teger as well as half-integer eigenvalues m ,. The zero-trough 
Poschl-Teller system m, = ± ~ may be thus placed in the 
same multiplet with other potentials with half-integer m,'s 
and integer m2's. Note that we may not do the same covering 
using;, so the barrierless potential Voo(x) cannot be realized 

on W, nor partake in a multiplet belonging to a self-adjoint 
representation of so(2,2). 

In Ref. 24 we took up the barrierless case through work­
ing with so(2, 1) instead of so(2,2). In that case, only the one-
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sheeted two-hyperboloid space H2(O, X) is used, the algebra 
so(2) generated by M34 leaves an inversion "so(l)" group 
which in turn allows the unfolding of X to the fullIine, where 
only coreless Poschl-Teller potentials are allowed. The shift 
operators (4.7) become a single pair which lead to the scatter­
ing matrix, as detailed there. 

In the full so(2,2) case followed here we note that up to 
this point we are consistent in having + m, and - m, half­
integer (i.e., k, and 1 - k, quarter-integer) describing the 
same potential constant c = - ~ [mf - 1] and the same ei­
genfunctions (3. 15c). The question of allowing the core pa­
rameter s to vanish is more delicate. On a pedestrian level it 
would seem that one could "analytically continue"" the M34 
eigenvalue m2 to half-integer values, in spite of the fact that 
the hyperboloid coordinate; allows no covering. In fact, we 
may do just that provided we realize that the resulting repre­
sentation of the algebra so(2,2) will no longer be self-ad­
joint,36 since, as we shall see below, the action of the shift 
operators does not leave the space of square-integrable wave 
functions invariant. Such representations of the algebra are 
not integrable to representations of the group. The results of 
Basu and WoIf2' on sp(2,R) Clebsch-Gordan coefficients 
which provide the explicit eigenfunctions (3.14) and (3.15) 
continue to be valid for any real k2 > 0 (m2 > - 1) since they 
were built out of the algebra, not the group. 

The continuous-spectrum wave functions for the null 
POschl-Teller potential (c = 0, s = 0) may be found from 
(3.16a) and (3. 16b) and are, as expected, 

tp'/2,O(O, ;,X) = ~211Te~f)+ ,,6)12 sin KX, (4. lOa) 

tpk '12,°(0, ;,X) = ~211Te~ - fJ+ f»/2 cos KX , (4. lOb) 

and similar ones for m, = -~. Both (4, lOa) and (4, lOb) are 
solutions to the same, null potential Voo(x) but they are obvi­
ously not the same. If X were extended to the full real line, 
they would be the odd and even solutions of the free SchO­
dinger equation for energy ~~. If we repeatedly apply K! to 
tp:/2,O we find through (4.8) tpf2,O, tp ~2,O, etc., which coincide 
with the functions on the hyperboloid built with Vff/4,'/4), 
Vfzt4,7/4), etc. See Fig. 3. Applying K! to tp:/2,O we obtain (K12 
times) tpk 112,0. Ifwe apply K! tOtpk 112,0, generating tpk 312,0, 
tp k '/2,0, ... , we find as expected that these functions are ob­
tained out of Vfk - 114, - 114), Vfk - 3/4, - 3/4),... . The surprising 

o o~ 

~---" ----~-
m, 

, ... --- ---~--------.-

FIG. 3. The so(2,2) shift operators acting on a multiplet of Piischl-Teller 
potentials (in a level of positive energy) which includes the null potential 
Voo(x)=Oatm J = ± ~,m2= ±~. 
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element in this construction is that while tfJt,·k,) and 
VIi - k,.1 - k,) are solutions to the same potential, they are the 
two independent solutions. Recall that (3.15b) holds only for 

integer 2k2• For m2 >~, tfJt,k,)(x) - 0 is the "good" solu-
"'_00 

tion, while its companion mi = - m2 < -~, Vlt,·1 - k,)(x) 

_ 00 is the "bad" solution to the same potential. For mi 
x-oo < - 1 (k2<0) it is not even square-integrable. 

Bases for algebra representations built out of "good" 
and "bad" (i.e., non-square-integrable) functions are known 
in other contexts36•

37 in which the wave functions to raise 
and lower are, for instance, the Bessel functions J m (x). 

We make use now of the so(2,2) shift operators in order 
to obtain algebraic relations between the asymptotic expan­
sion coefficients aZ'k, and /3 Z,k, in (3.17) for different values 
of kl and k2' in particular, to relate them to those of (4.10). 
This will lead to the reflection and transmission coefficient 
of the coreless Poschl-Teller potentials. 

To this end we examine the asymptotic form of the shift 
operators (4.7) and recall that, as x- + 00, tanhX-l and 
coth X-I. We define 

KJ (00): = lim KJ = ~ei(8+ ~)[ =Fa", - i(a8 + a~) ± 1] , 
x-co 

(4.11a) 

K}(OO): = lim K} = !ei(-8+ ~)[ + a", - i( - a8 + a~) ± 1] . 
x- oo 

(4.11b) 

Next, we propose the asymptotic form of the so(2,2) basis 
wave functions (4.5) to be 

lim tp~"mV), !,6,X) = e'lm,8 + m, ~ )(A ~am·eiKx + B ~am.e - iICX) . 
x-oo 

(4.12) 

Now, consider (4.8) with the appropriate labels ma or m b , 

and its limit as X- 00. The left-hand side entails applying 
(4.11) to (4.12), while the right-hand side retains the square 
root factor and (4.12), with the replacement ma ~ ma + 1 
or mb ~ mb + 1. This yields the following recursion rela­
tions between neighboring coefficients through the phase 
factor: 

F(k,m) = [F(I-k,m)]-1 = [(I-k+m)/(k+mW/2 

= exp[ -! arg{k + m)] , (4.13) 

viz. 

A ma + I.m. = F(k )A mam. k ,ma k , 

Bma+l.m.-F(l_k )Bmam• 
k - ,ma k , (4. 14a) 

A m .. m.+ 1_ F(I _ k )A mam. 
k - ,mb k , 

B m .. m. + I - F (k )B mam. 
k - ,mb k , (4.14b) 

Once the appropriate replacements are made, namely ma 
= kl + k2 - 1, mb = - kl + k2, it may be seen that the 
coefficients in (3.17b) and (3.17c) obey (4.14). Finally, the 
asymptotic coefficients in (3.17) are found when we start the 
recurrence (4.14) from the Voo(x) eigenfunctions (4.10), 
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where 

A :f.a = - ifiii = - B }f2.0, 

A~-1I2= lIfiii =B~-1I2. 

(4.15) 

We may thus identify thea's andA 's, and the/3 's andB 'so In 
this way we derive the asymptotic behavior, the "good" as 
well as the "bad" solutions to the Poschl-Teller potential 
using only algebraic techniques. 

Scattering through a csch2 X core or well does not make 
sense since the X> 0 and X < 0 regions of the Schrodinger 
equation are uncoupled. We may remain with X > 0, but we 
cannot in general impose an arbitrary asymptotic behavior 
on the wave functions so as to make them "incoming" or 
"outgoing" without receiving a linear combination of 
"good" and "bad" solutions. We can speak about scattering 
for the coreless class of potentials, however. These, we saw, 
lie at m2 = ±!, and for them it is the full real line which 
makes sense in the scattering process. From (3.16) or (4.5)­
(4.10) it is obvious that the basis functions (m l,m2) = ( ± !,!) 
are odd in X and (±!, -!) are even. Use of the X parity 
changing shift operators (4.7) shows that all m2 =! (k2 =~) 
basis functions are odd, and all m2 = -! (k2 = 1) ones are 
even. Since we may cover the H 3 hyperboloid any number of 
times, this is also true for real ml (or k l). 

For a fixed, real trough parameter we may build the 
general wave function for the system with energy Ek as a 
linear combination: 

tfJt,)(x): = u
l
tfJ;,·1I4)(x) + u3tfJ;,,3/4)(x), 

luI 12 + lu312 = 1 . (4.16) 

The asymptotic behavior of this at X- ± 00 is obtained 
from (3.17) and the parity of the two summands. Denoting 
a l. = a k,.114 /31. = /3k,.114 a 3 • - a k,.3/4 and/33. - /3k,.3/4 . k ,. k,·- k' .- k , 

we have 

!/It')(r) - (ula l + u3a3)eikX + (ul /3
1 + ulP)e - ikX , 

x-+ 00 

(4.17a) 

tP~')(x) (ul /3
1 - u3/33)eikX + (ul a

l - u3a3)e-ikx. 
x-- 00 

(4. 17b) 

Now, a scattering state for that potential and energy is a 
wavefunction which represents a flux of particles incoming 
far from the right (ae - iKX), part of the wave reflecting back 
(beiKX), and part of it transmitting towards the left (ceiKX), i.e., 

t/tk(x) beiICx + ae - iICX , (4. 18a) 
x-+ 00 

(4.18b) 

When this behavior at X- - 00 is imposed on the general 
solution (4.16), it implies u~ 1= u:J33 and this in tum fixes 
the coefficients a, b, and c. The transmission T and reflection 
R amplitudes38 are then found to be 
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c 1 ( a
l 

a
3
). • T:=-=- ---- =IC(kl,K) smh 11"K , (4. 19a) 

a 2 (a l )* (a3 )* 

R: =.£. = ~ (~+ ~3 ) = _ C(kl,K) cos 211"kl' 
a 2 (a)* (a)* 

(4. 19b) 

where 

C(kl,K) = ~ r(iK~ r(2kl - ~ - iK) 
11" r( -IK) 2 

xr( - 2kl + ~ - iK) . (4. 19c) 

These results agree-as expected-with those of Ref. 39, 
once we replace k ~ K andj ~ m l - ! = 2kl -~. They are 
here obtained as a consequence of the form of the asymptotic 
coefficients (3.17). 

v. CONCLUSION 

We have worked with the 2N-dimensional real sym­
plectic algebra sp(2N,R ) so as to have an N-particle configu­
ration space in its oscillator representation. This may be re­
duced with respect to its sp(2,R ) ED so(n,m) subalgebras. Their 
conjugate Casimir operator is then the system's Hamiltonian 
with a Poschl-Teller potential. Seen as a sp(2,R ) Casimir 
operator, the spectrum of this Hamiltonian becomes the 
Clebsch-Gordan series of sp(2,R ) which has a mixed spec­
trum. Seen as an so(n,m) Casimir operator, the Poschl-Tell­
er SchrOdinger Hamiltonian becomes the Laplace-Beltrami 
operator in the so(n) ED so(m) reduction, i.e., a Klein-Gordon 
equation on a space with constant curvature. In either case 
we worked specifically on so(2,2) which has already the es­
sence of the properties on any more general so(n,m). 

We devoted little space to mention the reduction 
sp(2N,R ) :> sp(2,R ) ED so(N), where instead of a hyperboloid 
we have a sphere. This is the trigonometric Poschl-Teller 
potential of the first type, which contains only bound states 
and no continuum. The constraining of the sphere-a point 
rotor-yields the familiar quadratically increasing eigenval­
ues (2.7) associated with angular momentum. In so(4), in par­
ticular, we have the rigid rotator system which belongs to the 
canonical reduction so(4) :> so(3) :> so(2), while the trigon­
ometric Poschl-Teller potential belongs to so(4) = so(3) ED­
so(3) :> so(2) ED so(2). 

Beyond so(4), we have so(3, 1), which is real, semisimple, 
and has not been treated explicitly here, but which can be 
shown to correspond to Hamiltonians built as Casimir oper­
ators with a spectrum given by the Clebsch-Gordan series 
~ X ~, which decompose21,22,31,32 into an infinite set of 
quadratically decreasing values (for the full discrete series), 
plus a continuum of positive-energy "scattering" states. We 
did not pursue this line further since, as shown in the work of 
Basu and Wolf, the Hamiltonians-which are indeed of the 
Poschl-Teller type but with a strong attractive core well­
have the additional feature of being multichart operators 
[i.e., the index uin (3.8) can no longer be fixed by a parabolic 
subalgebra representation] and both charts must be coupled 
properly.21 Multichart operators with these kind of wells 
and non-lower-bound spectra do not make for attractive 
physical models. The inverse (reciprocal) of the spectrum, 
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however, shifted by 1, is the full spectrum of the hydrogen 
atom system, so it may well be that a good description of this 
system will lead to the ~ X rtf Clebsch-Gordan series and 
coefficients in the parabolic basis. 

We worked here with the general case so(n,m) which 
leads to the ~ + X ~ - coupling to a mixed spectrum with a 
finite number of bound states. It must be mentioned that one 
may also effect the reduction so(2,2):>so(I,1)EDso(1,1), as a 
particular case for so(n,m) :> sol p,q) ED so(r,s) (p + r = n, 
q + s = m) leading to the last sp(2,R) representation cou­
pling,21,22,31,32 ~ X ~ which has the same reduction as 
~ X ~, doubled by parity, and possibly containing one ex­
ceptional representation. Unfortunately, the resulting 
Poschl-Teller Hamiltonian is a three-chart operator, and no 
attractive physical interpretation can be attached to it. Be­
yond these reductions, one has the nonsubgroup reductions 
ofWintemitz and collaborators40 which probably lead to the 
periodic potentials studied in Ref. 11. We intend to pursue 
their inclusion in this scheme to provide a unified sp(2,R )­
based description of mixed and other spectra. In any case, we 
hope to have made the point that Poschl-Teller systems are 
quite general with a clear-cut geometric interpretation. 
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