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We consider a new Lie-algebraic framework for the Poschl-Teller potential, in which a sin-

gle [sp(2, R) Casimir] operator has both bound and scattering states. This approach allows

the determination of the Smatrix by purely algebraic means.
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Symmetry methods have been successfully ap-
plied in a wide variety of systems in physics. Sym-
metry and dynamical algebras (and their groups)
have proved useful tools in the analysis of bound-
state problems, ranging from exact solutions, as in
the Coulomb' and harmonic oscillator2 potentials,
to algebraic models of physical systems, such as the
interacting-boson-model description of collective
states in nuclei. 3 In contrast, little has been done in
the application of algebraic methods to scattering,
with the exception of the Coulomb system, where
the bound and scattering states have been analyzed
separately in terms of the groups SO(4) and
SO(3,1), respectively. In that case, one may also
imbed the two into a SO(4, 2) dynamical group. 4

In a recent series of papers, 5 7 Alhassid, GCirsey,
and Iachello have shown that bound and scattering
states of certain one-dimensional potentials can be
related to unitary representations of a certain group
and its analytic continuation to a noncompact
group, respectively. s 7 These ideas are illustrated
on the Morse and Poschl-Teller potentials, where
the reflection and transmission coefficients (or the
S matrix) are evaluated by obtaining the explicit
wave functions and studying their asymptotic
behavior. In these cases the relevant group chains
are U(2) DO(2) for bound states and U(1,1)
D O(1,1) for scattering states. This procedure
seems to provide a fruitful pathway for the study of
continuous spectra as the analytic continuation of
bounded spectra.

We deem it desirable, however, to study a dif-
ferent formulation for systems with mixed spectra.
The objective of this Letter is to present one such
alternative applied to the Poschl-Teller potential, s

which emerges in connection with diverse physical
systems, such as completely integrable many-body
systems in one dimension, 9 the soliton solutions to

with Casimir invariant J2= J2 —12—Jy2. This alge-
bra has the realization

J„=—i (x By+y B„), Jy ——i (x B, +z B„),

J, = —i(x By
—y B„).

(2)

With the introduction of polar hyperbolic coordi-
nates x = r coshp cos8, y = r coshp sin&, z = r sinhp,
and the similarity transformation by 0' 2, where
0 = coshp is the weight function in the hyperboloid
measure on (r =const, p, 8), the Casimir invariant
and J, take form

1 = —
B~

—sech p( —Be ——,')+ —,',2 2 2 2

J, = —i Be.
(3)

At this point we use the twofold cover of the hyper-
boloid, allowing 8 to range over [0,4n ) and thus 1,
to have half-integer as well as integer eigenvalues.

We now build the simultaneous, normalized
eigenfunctions (km) of J2 and J„4 classified by

the Korteweg-de Vries equation, 'o and in the Har-
tree mean-field equation of many-body systems in-

teracting through a 8 force" among others. This
approach has two attractive features: (i) Both the
bound and the scattering states belong to represen-
tations of the same group and (ii) the S matrix can
be determined by purely Lie algebraic -manipula-
tions, with no need for the explicit form of the
wave functions.

We start our discussion by considering an
sp(2, 8) [= so(2, 1)]4 algebra generated by opera-
tors J„, 1», and J„satisfying the well-known com-
mutation relations4

[J,Jy] = —iJ„[J„J„]=iJy, [Jy,J,] = iJ„, (1)
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their eigenvalues:

J21 km) = k(1 —k) I km), J, I km) = m I km).

The unitary nonexceptional representations' of sp(2, R) may be divided into a continuous series C and a
discrete series D. The Bargmann index' k and the so(2) content m follow:

C: k= 2+iv,
~ pin C'ii4
~ &/2in 4'&&4

K~O,

K)0,
m=0, +1, +2, ...,

m= +-, , +-, , ...,1 3 (Sa)

D: k= —,, 1,—, , 2, ...,1 3
in Dk+:

in Dk '.

m = k, k+ 1,k+ 2, ...,
m= —k, —k —1, —k —2, . . . .

The Casimir operator has thus a mixed spectrum which, as we show below, corresponds to the full sPectrum

of the poschl-Teller (PT) potential. The wave functions in (4) have the form

Ikm) = u" (p) ei™e (6)

where u" (p) satisfies the equation

[ —B,' —sech'p (m' ——,')]u" (p) = —(k ——,')'u" (p),

which is a PT Schrodinger equation where the depth of the well is given by the so(2) eigenvalue m

group So(2,1) [twice covered by Sp(2,R)1 generated by the above algebra was called "the potential grouP"
in Ref. 6, but is properties were not examined further.

We see that (5b) together with (7) correctly describe the bound energy spectrum of the PT p«enti»,
since for a fixed m (i.e., for fixed potential) they imply

E„=—(k ——,
' )', k = —,', 1,—', ,", I m I

Our main interest in this Letter, however, is to consider Eq. (7) for the C representation series. Since now

k = —,
' + i~, with m being either integer (in Ãe) or half-integer (in 4'i2), Eq. (7) now reads

[ —B,
—sech'p ( m' ——,

' ) ]u" (p) = K'uk (p) .

This is the scattering PT equation. To obtain the transmission and reflection coefficients or, equivalently,

the S matrix, we proceed as follows. Using (2) in the covered hyperbolic coordinates, we define the raising

and lowering operators

J+ = (iJ„+J~) = ie +-' [ + Be+ tanhp ( + —,
' —i By) ];

J~Ikm) = [(—,
' + m —i~)( ——,

' + m —iK)]i 2Ik m +1).

Noting that lime ~ tanhp= +1, we define the asymptotic operator

J+ = lim J+=ie' [ —Be+ —,
' +i Be].

P e +OO

(An operator J t — ~ may be defined similarly. ) We write the sp(2, R) asymptotic basis functions as

) = lim Ikm) =a e' ee'"e+c~e' e

(10)

(12)

(13a)

Ip+) = lim Ikm) = b~e' ee'"e
P~ +OO

These are related to the PT asymptotic wave functions through

(13b)

' 'I0'-).
P~ &OO

(14)
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a~+~= i

1———m —lK2

1—+m —iv2

am (16a)

bm+i = I

1—+m —lv2

1—
2

—m —lK
bm (16b)

Cm+1

1

2 +m —Il&

1——, —m —Ix
(16c)

Finally, since the PT potential with m = —, in (7)
corresponds to the free wave system, we see that
ati2= bli2, cti2=0. Equations (16) can be solved
to give the transmission and reflection coefficients,

bm

am

I'( —,
' + m —i ~) I ( —,

' —m —i ic)

r (1- I K)I ( IK)

am

(17a)

(17b)

for m half-integer. These expressions have been
obtained with use of only the Lie-algebraic proper-
ties of sp(2, R). Once T~ is known for all half-
integer values of m we can analytically continue
(17a) to real m. This can be readily justified. '3 It
then follows from the unitarity and symmetry of
the Smatrix, '~ which in this case is

R T
Sm= Tm m,

that

I (IK)I (— in lK)I ( + in iK)
~m=

1 1I'( —ii~)I'( —, —m)I ( —, + m)
(17c)

for real m. For half-integer in we recover of course
(17b).

It should be emphasized that the new viewpoint
presented here is the association of the sp(2, R)
Casimir operator of an algebra with the Schrodinger

Now, the limits of (12) and (13) yield

lim (J ~km))=J +-~p+-), (15)p~ goo

which lead us directly to the following recurrence
relations obtained from (11):

PT Hamiltonian. We quote here the work of Basu
and Wolf, " which identifies the spectrum of this
system with the Clebsch-Gordan series of a certain
class of sp(2, R) couplings and the wave functions
with Clebsch-Gordan coefficients. We have dealt
with sp(2, R) since an N-particle sp(2N, R) formula-
tion of the most general PT system is yet to be
completed. " This should be relevant for N-body
systems describing scattering processes in atomic
and nuclear collisions.
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