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St~rting ~rom the oscillator representation of the three-dimensional Lorentz algebra so(2,1), we 
?Ulld a .Lle algebra of s~cond-order differential operators which realizes all series of self-adjoint 
Irreducible representations. The choice of the common self-adjoint extension over a two-chart 
function sp~ce d~termines whet~er they lead to single- or multi valued representations over the 
correspondmg L~e group. The diagonal operator defining the basis is the parabolic subgroup 
generator. The direct product of two such algebras allows for the calculation of all Clebsch­
Gordan coefficients explicitly, as solutions ofSchrodinger equations for Poschl-Teller potentials 
over one (.9x.9'j, two (.9 X '6"), or three ('6"X '6") charts. All coefficients are given in terms of up 
to two 2FI hypergeometric functions. 

PACS numbers: 02.20.Sv 

I. INTRODUCTION 

The reduction of the direct product of two self-adjoint 
irreducible representations (SAIR's) of a Lie algebra into a 
direct sum of SAIR's of the same algebra is a problem of 
fundamental importance in applications of both compact 
and noncom pact algebras and groups in physics. In view of 
the Wigner-Eckart theorem, the keystone of many practical 
calculations, it can be considered among the central prob­
lems, on par with the classification and explicit construction 
of the SAIR matrices or integral kernels. 

After the classification and construction of the unitary 
irreducible representations (VIR's) of the three-dimensional 
Lorentz group SO(2, 1) was solved by Bargmann,1 many 
authors considered the Clebsch-Gordan (CG) problem for 
the corresponding algebra so(2, 1). This problem consists of 
two parts. The first is the determination of the CG series, and 
the second is the explicit evaluation of the Clebsch-Gordan 
coefficients (CGC's) which effect the reduction. The SAIR's 
of so(2, 1) can be classified-following Bargmann's nomen­
clature-into discrete (..@') and continuous ('tff) series, which 
in tum divide into various types: (positive and negative) dis­
crete D t , nonexceptional and exceptional continuous C: 
whose precise definition is given in the Appendix. The essen­
tially distinct direct products to be considered are D + X D + , 

D + X D - , ..@' X 'tff, and C(J X C(J. The CG series for these four 
couplings changes nontrivially as one goes from case to case 
(they are listed in the Appendix). This structure, neverthe­
less, has an intrinsic meaning in that it does not depend on 
the particular choice of basis in the Hilbert space of represen­
tations. The CGC's, on the other hand, are manifestly basis­
dependent. 

The Clebsch-Gordan problem for so(2, 1) was investi­
gated by Pukanszky,2 Holman and Biedenharn,3,4 Ferretti 

-IWork performed under financial assistance from CONACYT, Project 
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and Verde,5 Wang,c' and by Mukunda and Radhakrishnan7 

among others.8 Pukanszky confined his attention essentially 
to the structure of the CG series for the 'tff X 'tff couplings. 
He started from the realization of the VIR's ofSO(2,l) in the 
Hilbert space of functions on the unit circle, decomposing 
their tensor product and restricting attention to the subspace 
for which the total magnetic quantum number is zero. He 
did not attempt the problem of explicit evaluation of the 
CGC's and of their orthonormalization. This aspect of the 
problem was considered by Holman and Biedenharn (HB) 
and by Wang. HB based their investigation on the funda­
mental recurrence relation satisfied by the CGC's in the 
compact subgroup basis. Their first paper3 was mainly con­
cerned with the coupling of two discrete-series representa­
tions and analytic continuation properties with the rotation 
group CGC's, while all coupling cases were considered in 
their second paper4 in the same basis. The results are given in 
terms of 3F2 generalized hypergeometric functions of unit 
argument. The problem is mathematically much simpler 
when the SAIR's coupled belong to one of the discrete series; 
the CGC's [in the elliptic so(2) basis] for this special coupling 
problem are well known, and their symmetry properties 
have been thoroughly investigated. The complexity of the 
problem progressively increases as one goes from the dis­
crete to the continuous nonexceptional and to the exception­
al types of SAIR's. Nonnormalized CGC's for the coupling 
of the continuous nonexceptional VIR's were derived by 
Ferretti and Verde.5 Their method was based on the formula 

d kJ ()dk2 () 
mimi Z mim2 Z 

(1.1) 

where the d 's are Bargmann's SO(2, 1) VIR functions,l the 
C's are the CGC's, and S denotes the summation over dis­
crete and integration over the continuous series. The expan­
sion is obtained by the use of the Burchnall-Chaundy9 for­
mula, followed by a Sommerfeld-Watson transformation. 
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The results of Ferretti and Verde formed the starting point of 
the investigations by Wang, 6 who attempted to orthonorma­
lize the CGC's by adopting a summation prescription origin­
ally due to HB. [It should be noted that this apparently leads 
to a divergent expression in one case: Eq. (2.46) of Ref. 4 for 
~ X ~ ; the convergence criterion for 3F2( 1) is not fulfilled.] 

All these authors used the maximal compact subalge­
bra basis for the evaluation of the CGC's. More recently, 
Mukunda and Radhakrishnan 7 have made a departure from 
this in evaluating the CG coefficients in the noncompact 
hyperbolic so(I,I) basis. A very attractive feature of their 
treatment is that they relate the CGC's with the VIR's of 
SO(4), SO(3, 1), and SO(2,2) in various compact and noncom­
pact bases, some of which require evaluation, and followed 
by Mellin transformation and composition. [Equations 
(5.4a), (5.4b), and (5.8c) for g X ~ in Ref. 7c and (5.8b) for 
~ X ~ in Ref. 7d also exhibit divergent ~2(1)'s. These re­
sults cannot therefore be regarded as final.] 

The purpose of the present paper is to give a compre­
hensive evaluation of the Clebsch-Gordan coefficients in the 
parabolic (or horocyclic) iso( 1) basis, for all couplings. With 
the choice of this new basis the CGC's have especially simple 
forms: They are in general expressible in terms of single, real 
Gauss ~1 hypergeometric functions, or at most a sum of two 
of them 

The plan of this article is as follows. We start in Sec. II 
reviewing the oscillator realization of the so(2, 1) algebra 10 

[Eqs. (2.1)]. This realization is unique in that it consists of 
second-order differential operators, rather than first-order 
ones, as Lie algebras of transformation groups do; as a result, 
the operator domain problem is not as trivial as it may ap­
pear at first sight. On y2(R ), the SAIR of this algebra ex­
ponentiates to an integral-transform VIR of the metaplectic 
groupll Mp (2,R) [the fourfold covering ofSO(2,1) or two­
fold covering ofSV(I,I):::::SL(2,R ):::::Sp(2,R)]. These are the 
linear canonical transforms. 12-14 In this paper we remain 
within the Lie algebra, however, so Secs. III and IV are de­
voted to building-through coupling-the SAIR's of the 
discrete and continuous nonexceptional series. This con­
struction is important, even though it yields only the SAIR's 
of so(2, I) which exponentiate to single-valued VIR's of 
Sp(2,R ) and does not include the exceptional continuous se­
ries, since it leads us to the consideration of y 2-Hilbert 
spaces of functions on a space Y = I - I, + 1) XR +, i.e., 
containing two R + charts (which can also be viewed as two­
component vectors I4.15). There, the so(2,1) generators have 
the form (4.14). In the ~ -series they are Schrodinger Hamil­
tonians corresponding to harmonic or repulsive oscillators 
with a strong centripedal singularity at the origin. Singular 
potentials on a two-chart space is a feature not too familiar 
for physicists. Section V explores all common self-adjoint 
extensions of this algebra of operators in y2(y), leading to 
all SAIR series of so(2, 1), g as well as Ctf. 

The distinct usefulness of the parabolic basis is that the 
defining subalgebra generator J _ = Jo - J 1 on Y is O'r 12, 
0' = ± 1 [Eq. (4. 14e)], and its eigenfunctions are thus Dirac 
o 's on Y. The general CG problem of coupling two SAIR's 
is thus set up in Sec. VI as an eigenbasis problem in y2(y2) 
where the coupled-basis Casimir operator is diagonal. The 
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space y2 is parametrized into six charts, up to three of 
which are needed for anyone coupling. In every chart, the 
Casimir operator eigenvalue equation takes the form of the 
Schrooinger equation for a Poschl-Teller potential l6

•
17 of 

the first or of the second kind, with strong or weak barriers 
or wells at the end points. The solutions of these equations 
are given in terms of Gauss ~1 hypergeometric functions. 
When a coupling requires more than one chart, a cancella­
tion of the boundary Wronskians must take place. The par­
ticulars ofthe computation of the CGC's for D + XD +, 

D + XD -, g X ~, and ~ X ~ couplings are given in Secs. 
VII, VIII, IX, and X, respectively. We omit inessential cal­
culationallabor, but give some details on the construction of 
multichart Kronecker- and Dirac-orthonormal solutions to 
the Casimir operator eigenfunction problem, which in Secs. 
IX and X has both point and continuous spectrum. Section 
XI, finally, presents some concluding remarks and offers 
some directions for further work. 

Some convenient notational minutae: We denote by R 
the real line, by R + the interval [0, 00 ), by Z the integers, and 
by Z + the subset 10,1,2, ... J . In order to write compactly that 
some SAIR index k belongs to the continuous nonexcep­
tional representation [i.e., k = (1 + iK)/2, KER. +], we write 
kEC, and to the continuous exceptional type [i.e., 
k = (1 + K)/2, KE(O, 1)] we write kEF:. It is thereby under­
stood that the multivaluation index € (see the Appendix) 
ranges in the appropriate intervals, and kE~ is meant to 
stand for (k,€). Similarly, kED ±means that the representa­
tion k belongs to the upper- or lower-bound discrete series. If 
the latter distinction in unimportant, we write kEg and im­
ply(k, ± ) when writingk. Effecting the product of aD + and 
C representations, and extracting from the direct sum a cou­
pled D + representation is indicated as D + X C-+D + . D 0+ 

stands for the lower-bound oscillator representation D IJ4 
+ D 3J4' The Clebsch-Gordan coefficients in the first two 
sections are denoted as in (3.15) or (4.10); later, as the need 
for full generality arises, they are denoted as in (6.19). 

II. THE OSCILLATOR REPRESENTATION 

2.1: Consider the three formal differential operators in 
the real variable xER., 

J01 =.!..(_~ _X2) 
4 dx2 

' 

. (d 1) 
J'2 = - ~ x dx + '2 ' 

J o 1 ( d
2 2) 0=4' - dx2 +x , 

and their linear combinations 

JO+ =Joo +J"I = -..!..~ 
2 dx2 ' 

J"_ =J'O - J 1 = !X2
, 

(2.1a) 

(2.1b) 

(2.1c) 

(2.1d) 

(2.1e) 

among which we find the Schrodinger Hamiltonians for the 
harmonic (2.1c) and repulsive (2.la) oscillators and the free 
particle (2.1d). The set of operators (2.1) exhibits the commu­
tation relations of the generators of so(2, 1): 
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[II' J2] = - i Jo, [lo.Jtl = il2, [J2.JO] = i J I. 

(2. It) 

The Casimir operator is a mUltiple of the identity: 

QO = (J';)2 + (J 2)2 - (J o)2 = -h 1. (2.1g) 

The generators (2.1) are also known to have a unique com­
mon self-adjoint extension 18 in the Hilbert space .,2P2(R ), 
whose defining inner product is 

(f,g)R = f: '" dxf(x)*g(x). (2.2) 

2.2: The realization (2.1)ofso(2,I)in .,2P2(R )iscalled the 
positive oscillatorlO representation D 0+ • It is not an irreduci­
ble representation, but in fact consists of the direct sum of 
two SAIR's, D jj4 and D 3J4' The Bargmann eigenvalue of 
(2.2), q = k (1 - k ), has the value -h for both. In order to dis­
tinguish between the two direct summands, we may use the 
eigenvalues L of the inversion operator I:f(x) = f( - x) 
= Lf(x). The even (odd) harmonic oscillator wavefunctions 

belong to the eigenvalues J.L = E + n, neZ +, E = (2 - L)/4, 
under J 0' for k = 1 (k = a). These functions form a complete 
orthonormal basis for .,2P~(R ), the space of .,2P2(R ) functions 
with that parity. They also define common self-adjoint ex­
tensions of the algebra operators (2.1) in .,2P2(R +) with 
boundary conditions given by the vanishing of the function 
or of its derivative, respectively, at the origin. 

2.3: The operator whose eigenbasis we want to exploit 
in this paper is J _, given by (2.1e). Such a Dirac-orthonor­
mal generalized eigenbasis, complete for .,2P2(R ), is 
{ 8 (x - p), pER J, with eigenvalues p2/2eR +. The spectrum 
of J 0_ thus covers R + twice. The decomposition according 
to the irreducible components of D 0+ is easily accomplished 
through demanding definite parity. Thus 

¢!/4(X) = (2p)-1/2[8(x - p) + 8(x + p)], (2.3a) 

¢!/4(X) = (2p)-1I2[8(x - p) - 8(x + p)], 

xeR, peR +, (2.3b) 

constitute Dirac bases for even (L = + 1) and odd (L = - 1) 
functions, respectively. They have been chosen orthonormal 
in the Dirac sense: 

(¢~,,¢~,)R =PI- 18(PI -P2) = 8(pU2 -pU2), (2.4a) 

for k either 1 or l Orthogonality in the upper index also 
holds, but will not be used. They are complete in the sense 

So'" d (p2 /2)¢~ (x)*¢~ (x') = 8(x - x'), (2.4b) 

where the right-hand side is the reproducing kernel in the 
space of the corresponding parity L. The operators (2.1) with 
these domains will be indicated, respectively, by J ~4 and 
J3j4 (a = 1,2,0, +, - ). In particular, the generalized spec­
trum of J k_ , k = lor a, is now simple: A single eigenfunction 
¢~(x) corresponds to each eigenvaluep2/2eR +,peR +. 

2.4: The negative oscillator representation D 0- of 
so(2, 1) is obtained from the D 0+ representation seen above 
by means of the outer automorphism of the algebra 
A:J~f--+J~ - , where 
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J~- = -J~, J~- =J~, 

Jk- = _ Jk Jk- = _ Jk (2.5a) o 0' ± ±' 

for k = 0, or 1, a after decomposition into its irreducible com­
ponents. The Casimir operator does not distinguish between 
positive and negative representations: 

Qk- = Qk = Qo = -h 1 (k = M). (2.5b) 

In this way we produce the D i/4 and D 3/4 SAIR's out of the 
D t ones. The spectrum of J ~ changes sign under the auto­
morphism A, and so does the spectrum of J k_ which is now 
- p2!2eR - ,peR +, still simple, and withgeneralizedeigen­

functions formally identical to (2.3a) and (2.3b). 

III. THE OSCILLATOR COUPLING TO THE DISCRETE 
SERIES 

In this section we consider the direct product of two 
irreducible components of the oscillator representation, de­
composed into a direct sum ofSAIR's D k+ belonging to the 
positive discrete series. 

3.1: Consider the two sets of so(2, 1) generators, mutual­
ly commuting, given as in (2.1), in terms of two independent 

variables xj,j = 1,2, and denote them by J~)a (j = 1,2, re­
spectively, a = 1,2,0 + , - ; kj = 1 in the space .,2P2+ I (R ) of 
even functions in xj , and kj = a in the space .,2P~ I (R ) of odd 
functions in x j ). Out of these we build the two-variable oper­
ators 

J k,k, - J k, + J k, 
a - (I)a (2)a' (3.1) 

These operators will have a correspondingly unique self-ad­
joint extension in the Hilbert space .,2P~"" (R 2) = .,2P~, (R ) 
X .,2P~2 (R ), with inner product 

(f,g)R 2 = f:", dXlf:", dXJ(X I,x2)*g(XI,x2) 

= So'" rdr f~1T dOj[r,O]*g[r,O], (3.2) 

where we have introduced polar coordinates in the plane: 

x I = r cos 0, X 2 = r sin 0, reR +, 0 =0 (mod 21T). 
(3.3) 

All functionsf(x l ,x2) in the domain of J~"k, have parity Lj 

under inversions xj +-+ - Xj when kj = 1, a as above. The Ca­
simir operator (2.2) corresponding to the factor operator set 

J ~)a will be denoted by Q tj), and that of the coupled setJ ~"k, 
will be denoted by Q k"k,. 

3.2: We shall define the product states as the general­
ized eigenfunctions of the four commuting operators 

Q k, Qk, J k, J k, (34) 
(I), (2)' (I) - , (2) - • • 

The first two operators are here identically -h 1, while the 
second pair determine the product states to be 

¢~::;~(XI,X2) = ¢~:(Xtl~~(X2) (3.5) 

in terms of(2.3), with eigenvaluesp~ /2 andp~/2, respective­
ly. From (2.4) they are Dirac-orthonormal and complete: 

(,I,k"k, ,I,k"k,) = 8(p2!2 _p,2/2\$;(p2 /2 -P2,2/2). 
'f'PloP2 ,If' pj,P2 R 2 1 I JV 2 

(3.6) 

Orthogonality for the indices k l ,k2 also holds, but will not be 
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needed. 
3.3: The coupled states are defined as the generalized 

eigenfunctions of the four commuting operators 

Q k, Q k, Q k,.k, J k,.k, 
(I)' (2)' , -, (3.7) 

in the same space ,Y~,.L' (R 2). Again, the first two operators 
are n 1 while the last one may be written in terms of the polar 
coordinates (3.3) as 

Jk,.k, _ J k, + J k, - x2/2 + x2/2 - -2/2 (3.8) _ - (1)- (2)- - I 2 -r . 

The generalized eigenfunctions of(3. 7) will therefore include 
a factor t5(r /2 - p2/2) so that they be Dirac-orthogonal ei­
genfunctions of J k~k, under (3.2), with eigenvaluep2/2. This, 
in turn, will produce a selection rule p~ /2 + p~ /2 = p2/2 in 
the CGC. Finally, the coupled Casimir operator Q k,.k, may 
be written in terms of(2.I), (2.2), (3.1), and (3.3) as 

Q kt.k2 _ Qkt + Qk2 + 2(Jkt Jk2 Jkt Jk2 k t k2 
- (I) (2) (1)1 (2)1 + (1)2 (2)2 - J (I'PJ (2'P) 

1 1 a2 

=4+4 a()2 . (3.9) 

Since the spectrum of a 2/a() 2 on ,Y2(Sl) (the Hilbert 
space of square-integrable functions on the circle) is negative 
(and discrete), we are assured of having coupled representa­
tions belonging to the discrete series. Whereas the product 
states separate in Cartesian coordinates. the coupled states 
separate in polar coordinates. and consequently may be writ­
ten as 

If/Z:;,k'(r.()) = t5(r/2 - p2/2)FZ,·k,(()), 

with FZ,·k,(()) a solution of 

Q k"~FZ,·k,(()) = k (I - k )FZ,·k,(()), 

(3.10) 

(3.11) 

properly normalized in 'y2(Stl and such that it satisfies the 
parity properties of the space of functions. 

The ()-dependent factors FZ,·k,(()) of the coupled states 
must be of the form exp(im()) with m integer [so that it is 
periodic] and k (1 - k) = (I - m2)14, i.e .• k = (I + Imll/2. 
As functions of () = arctan (X2/Xtl they must be even (odd) 
under X I - - XI' ()-11" - () when kl = i (kl =~) and even 
(odd) under x 2- - X 2• ()_ - (). These requirements are 
met. as a selection rule. when performing the inner product 
with the product states (3.5), but it is illuminating to impose 
them on the coupled state. What they imply is that: (i) The 
(k l ,k2) = (i,i) coupling may only contain cos m() with m 
even; (ii) the (M) coupling. only sin m() with m even (exclud­
ing thus m = 0); (iii) the (M) and (M) couplings, only sin m() 
and cos m(), respectively, with m odd. An elementary analy­
sis involving the Jo eigenvalues will confirm these selection 
rules. The choice of phases for the product and coupled 
states has been made out of simplicity. 

3.4: The normalized coupled states are thus built out of 
(3.10) with 

F 114,114 () _ 11". 
{ 

(2 )-112 

k ()- 11"-1/2cos(2k-I)(). 
k=~, 

k = M,.... (3.12a) 

Ff4.3/4(()) = 11"- 1/2sin(2k - I)(), k = ~'~"'" (3.12b) 
F !/4.3/4(()) = 11"-1I2sin(2k - I)(), k = 1,2,. .. , 

Fi/4.1/4(()) = 11"-1/2cos(2k - I)(), k = 1,2,. .. , 

and satisfy 
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(3.12c) 

(3.I2d) 

(
IT, k,.k, IT, k,.k,) 1: 1:( 2/2 12/2) 
r k,p .r k',p' R' =uk.k'u P -p . (3.13) 

Again, orthogonality in k I and k2 indices is present but will 
not be used. 

3.5: The normalization coefficient 11"-1/2 in (3.12) is triv-
ial to obtain from integral tables or through a number of 
elementary analyses. We would like to present here, howev­
er, the method which will be used. especially in Sees. IX and 
X. for more complicated point-spectrum eigenfunctions. 
Write Fd()) = Ck fd()) and Fr(()) = cd/(()). eigenfunctions 
ofQin(3.9)witheigenvaluesk (1 - k )and/(I -l),respective­
ly./d()) = sin(2k - I)() or cos(2k - I)(). and ck to be deter­
mined. Then, the integral over any interval (a,b) CR may be 
put, through multiplying the eigenvalue equation off! by Ir 
and vice versa. and taking the difference, in terms of the 
boundary Wronskians as 

[ d() f! Ir = [4(/ + k - 1)(/- k)] -I W(f!.Ir) I: 
= [4(/+k-l)(/-k)]-I[f!'1r -f!fi] I~. 

(3.14a) 

where the prime indicates differentiation with respect to the 
argument (). The boundary term on the right-hand side van­
ishes when b - a = 211" and k = 1 + integer, assuring the 
orthogonality ofany eigenfunction pair. Now, Eq. (3.14a) is 
true even whenlr (and/orfk) is not a periodic function in () 
under the period b - a. i.e .• when 21 - 1 is not an integer. 
For the normalization problem at hand. we may choose for a 
a point where the boundary term is zero. such as a = 0 and 
for b some other point where the term is easily evaluated. We 
thus write 

r21T 
d() 1 fd() W = 2lim r d() f!(() )Ir(()) Jo r~kJo 

= [2(2k-l)]-1 :1 W(f!.Ir) IO=1T,1=k' 

(3. 14b) 

In the cases exemplified here, the limits and valuations may 
be manifestly exchanged, and the result is 11"; it follows that 
Ck = 11"-112. as given in (3.12). This method will be used when 
fk andlr are given hypergeometric functions. whose normal­
ization constants are not easily evaluated by other means. 

3.6: The inner products between the product and coup­
led states constitute the standard definition of the Clebsch­
Gordan coefficients: 

(
k 1,k2;k) .J'/< C = ('fIo··k, If/k,.k,) , 
PI,p2;P P,.P,' k.p R 

r1T12 
= 2( PI P2)-1/2 Jo d() t5( P cos () - PI) 

X t5( P sin () - P2)FZ,·k,(()) 

= 2(PIP2)-1/2t5(pf!2 +pi/2 _p2/2) 

X FZ,·k'(arctan( P2/ptl). (3.15) 

We have used the matching symmetry properties in () of the 
product and coupled states to reduce the ()-integration to the 
first quadrant and finally express the results in terms of the 
solutions (3.12) to (3.11). 
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Noting that 

arctan(p2/PI) = arcsin(p2/p) = arccos(pl/P), (3.16) 

we can write the expressions in terms of Chebyshev polyno­
mials of the first and second kinds (Ref. 19, Eq. 22.3.15). The 
CGC for the D v+ XD v+ _D t couplings are thus 

cO ' A: !)=8(,oi/2+pi/2-p2/2)(!1TPIP2)-1/2, 
\PI' P2, P (3.17a) 

cO ' A ; k)=8(,oi/2+PV2-p2/2)1T-1/2PI-1i2P2-1/2 
\PI' P2; P 

X T2k _ I (,ol/P)' k = M"", (3.17b) 

cO ' ~ ; k)=8(,oi/2+pi/2-p2/2)21T-1/2PI-1i2pY2p-1 
\PI' P2; P 

X U2k _ 2 (,ol/P), k = M"", (3.17c) 

cO ' ~ ; k) = c(~ , ~ ; k), k = 1,2, ... , (3.17d) 
\PI , P2; P \PI , P2; P 

C(~,A ;k)=cO,A ;k), k=1,2, .... (3.17e) 
\PI , P2 ; P \PI , P2 ; P 

cos(v arcsin z) = F( - v/2,v/2;!;r), IRe zl < 1, (3.18a) 

sin(v arcsin z) = vz(1 - r)1/2F( - v/2 + l,v/2 + 1;~;r), 
(3.18b) 

we can write the CGC's for D d+ XD u+ -D t in terms of 
hypergeometric functions 2FI' 

Through application of the outer automorphism A to 
both product and coupled states, we find the same values for 
theD v- xD v- -D k- CGC's as those given in (3. 17) with the 
simple changes k_k - . In the parabolic basis we do not have 
to observe the Bargmann phase convention [Ref. 1, Eqs. 
(6.23) and (7.10)] which introduces a factor of ( - 1 r to the 
sO(2)-classified eigenbasis. 

3.7: The description of the CG series and the evaluation 
of the coefficients, as presented in this section, could have 
been made also using the completeness relation of the Four­
ier series on .!f 2(S I) with the proper parities, therebyexpand­
ing the product of Dirac 8's on the plane (3.5) in terms of a 
Dirac 8 on the radius, times the limit of the Dirichlet kernel. 
This method has been implemented before for the integral 
transform group in projecting out the k-radial canonical 
transform3b belonging to the D t VIR, out of the 
Mp(2,R ) X Mp(2,R )oscillatorintegral transform VIR. Here, 
we have not left the algebra level. The completeness state­
ments for the Poschl-Teller Schrooinger equation solu­
tions-to be seen in Secs. VI-X-are more difficult to make 
than those for Fourier series. 

3.8: As a preparation for Secs. V -X, we now project the 
coupled operators (3.1) on a definite D t SAIR space 
(k = !, I,p, .. ·) using the fact that in this space the coupled 
Casimir operator Q k,.k, has a definite eigenvalue k (1 - k ). 
We perform a similarity transformation by rl/2 so that the 
resulting operator be manifestly symmetric in .!f2(R +) with 
inner product 

(j,g)R ~ = 1'0 dr f(r)*g(r). (3.19) 

Thus 
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1/2( a2 + az ) -1/2 r -- --r 
ax~ axi 
= rI/2(.!!...... + r-I~ + r-2[4Qk,.k, _ 1])r-112 

ar ar 
a2 r 

= - - -, r = (2k - 1)2 - A> - A. ar r 
We obtain hence for the D k± SAIR 

1 ( d
2 r ) J ~ ± = ± 4' - dr + r - r , 

(3.20) 

(3.21a) 

(3.21b) 

(3.21c) 

(3.2Id) 

(3.21e) 

(3.2It) 

Of course, for r = 0 we are formally back at (2.1), although k 
is from here on taking a range of values which excludes this 
case. 

The Casimir operator of the so(2, 1) algebra (3.21), cal­
culated as in (2.2), yields here 

Q k = qI, q = k (1 - k) = - r/4 + t\< - A. (3.22) 

In the next section we shall describe the domains where the 
operators (3.21) have self-adjoint extensions. Here we would 
only like to point out that if II and 12 are the inversion opera­
tors along the two axes, the space .!f~ (R ) X .!f~ (R ) will 
have eigenvalue 1= /112 under the product inversion 

1= / 112, Vnder the projection to a definite Q k,k2 eigenvalue 
in (3.20), this information is lost. We may keep, however, the 
Jo-spectrum starting point €j = (2 - Ij)/4 defined in subsec­
tion 2.2, in order to associate with the domain of (3.21) the 
index € = €I + €2 = I - (II + 12)/4. The spectrum of J~± 
will be contained in I € + n,n€Z ). It is immediate to see that 
€ = 0 when k is integer, and € = ! when k is half-integer. In 
fact, thus €=k (mod 1). 

IV. THE OSCILLATOR COUPLING TO THE 
CONTINUOUS SERIES 

We consider now the coupling of a positive and a nega­
tive oscillator representation, and their decomposition into a 
direct integral of SAIR's belonging to the nonexceptional 
continuous series. 

4.1: Consider two sets of generators, J ~'): and J ~); , 
the first belonging to the D k~ summand (k I = ! or i) of the 
positive oscillator representation and the second set, ob­
tained through (2.5) from the first, belonging to the D k--: neg­
ative oscillator representation. Out of these we now build, 
vis-a-vis (3.1), the two-variable operators 

J kk Jk++Jk,- J k, +rJk, 
uP '= (I')a (2)a = II)a a (2)a' 

r = - 1 for a = 1,0, + , -, r a = 1 a 

(4.Ia) 

fora = 2, 
(4.Ib) 

also self-adjoint with respect to the inner product (-,')R' in 
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(3.2), in the space of functions .2";,." (R 2) = .2";, (R ) 
X .2";, (R ). 

In particular, the diagonal operator Jk~k2 is the differ­

ence, rather than the sum of J ti) _ and J ~ _ . It is thus con­
venient to parametrize the R 2 plane in hyperbolic coordi­
nates (a,r,O), aEl - 1, + 1 J, rER, ()ER. given by 

forlxtI>lx2 1: a= +1, xl=rcoshO, X 2 = rsinh 0, 
(4.2a) 

forlx l l<lx2 1: a= -1, XI = rsinh e, x 2=rcoshe, 

(4.2b) 
disregarding the cone Ix II = Ix2 1. (The fact that we are using 
in this section the letters rand 0 to denote the hyperbolic 
radius and angle should lead to no confusion with the former 
section, where they stood for the polar radius and angle. The 
ensuing uniformity of notation-with the ranges specified­
will be seen to be quite economical.) Note that each value of a 
in (4.2) defines one coordinate chart, and both a = + 1 and 
a = - 1 charts are needed to cover R 2. 

We may express, correspondingly, the (-,')R' inner 
product (3.2) through 

(f,g)R 2 = "f:± I f~ 00 Irldr f~ 00 dOlla,r,e J*gla,r,O J, 
(4.3) 

where I I a,r,O J = I(x 1,x2) uses the hyperbolic parametriza­
tion. We may think of f(r,e) as a two-component function 
with components labeled by a = ± 1 or included them-as 
we do here--as a coordinate. 

4.2: As before, we define the product states as the gener­
alized eigenfunctions of Q tl') , Q til , J ~') ~ and J til = in 
.2";"" (R 2) as in (3.5)-(2.3) with the difference that their ei­
genvalue under the latter operator will be - p~ /2, P2eR +, 

instead of + p~ /2. Whenp I > P2 the product state is nonzero 
only over the a = + 1 chart, while whenpi <P2' it is nOnze­
ro over the a = - 1 chart. The orthogonality relation (3.6) 
continues to hold. 

4.3: The coupled states, again, are defined as the Dirac­
normalized generalized eigenfunctions of Q ~')' Q~), Q k,.k, 
and J ~.k, in .2";,." (R 2), as in (3.7) et seq., except that we find 
it best to express them in terms of hyperbolic coordinates 
(4.2). Corresponding to (3.8), we have the coupled generator 

Jk~k2 =J~')_ -J~)_ =xi/2 -xV2 = ar/2, (4.4) 

the change of sign due to (2.5). The essential spectrum of(4.4) 
thus covers R. Corresponding to (3.9), we have 

Q k,.k, _ Qk, + Qk, 
- (I) (2) 

+ 2( - J~')IJ~)I + J~')2J~)2 + Jtl')oJti)O) 
1 1 a2 

=4-4 a02 . (4.5) 

Since the spectrum a 21 ao 2 on .2"2(R ) is negative, we are as­
sured of having coupled representations in the nonexcep­
tional continuous series (the point k = ! will be subject to 
further discussion). The coupled states separate in hyperbo­
lic coordinates and may be written as 

1JI~:T~·k2 - (q,r,O) = 8(qr/2 - rp2/2)Ek,.k'(sgn r)F~:r+ .k, - (0) 

= 8".T8(r /2 - p2/2)E k,.k'(sgn r)F~:/ .k, - (0), (4.6) 
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which is generalized eigenfunction of Jk~.k2 with eigenvalue 

rp2/2eR and of Q k,.k2 with eigenvalue k (1 - k I>! provided 
(3.11) holds (with OER now). This last equation for 

FZ:T+ .k2 - (e) has solutions exp(iKO) for KER, corresponding 
to k (I - k) = (1 + ~)l4, i.e., k = (1 + iK)/2. The represen­
tations ofthe continuous series with K and - K (k and 1 - k ) 
are equivalent I so we shall restrict ourselves to KER +. Note 

that IJIZ:T~·k2 - - (q,r,O) is zero for a = - 1 when its eigen­

value under Jk~.k2 is positive, and is zero for q = + 1 when 
its eigenvalue is negative. 

We still have to see it, explicitly, that the parities of the 
product states are the same as those of the coupled states. (i) 
The (k l ,k2 ) = (1.1) product states are even under Xl~ - XI 
and under X2~ - X2, i.e., even under r~ - r and even under 
O~ - 0, implyingE 1/4.1/4( - 1), and that only a term cos kO 

may be present inF~.'/ .k, - (0). (ii) the (M) product states are 
odd in both X I and X 2, hence even in r and odd in e, so 
E3/4.3/4( _ 1) and only a term sinKe may be present in (4.6). 
(iii) (M) product states are even in XI and odd in X 2; for 
q = - 1 they are odd in r and even in O. (iv) (M) states, odd in 
XI and even in X 2 are, for q = + 1, odd in r and even in 0, 
while for q = - 1 they are odd in both rand O. In all of these 
cases, the spectrum of Jo is contained in {E + n, nEZ J, 
E = EI - E2 = (12 -IIl/4. 

4.4: To sum up, cases (i) and (ii) (which from theJo eigen­
value content we know belong to the C ~ representations) are 
even functions of r, and cases (iii) and (iv) (belonging to the 
C !/2 representations), are odd in r. We may hence write 

E k"k'(sgn r) = (sgn r)2., E = /kl - k2/' cut the range of r to 
R + and henceforth attach the index E in front of the repre­
sentation index k = (1 + iK)/2 to distinguish between the C ~ 
and C !12 SAIR's. The inversion operator 
I!(x l ,x2) =/( - XI' - x 2)haseigenvaluel = 1112 = 1 - 4Ein 
each E-labeled irreducible space, but is no longer related to k, 
as it was in (3.23). 

The coupled eigenstates are thus, explicitly, 

IJIk, + .k, - (q r e) = 8 8(r/2 _p2/2)Fk, +.k2 - (0) 
E,k,'T,p , , 0'.1' €.k~T' 

where 

F ~::': .1/4 - (0) = 1T- 1I2cos Ke, K>O, 

F~::':·3/4-(e) = 1T- 1/2SinKe, K>O, 

F :~~.t. .~/: - (e) = Fi~~.t. :!/: - (0) = 1T- 1/2sin KO, 

(4.7) 

(4.8a) 

(4.8b) 

K>O, 

(4.8c) 

F~~i.t. ~/:- (0) = F :jU -21: - (e) = 1T-1/2cos KO, K>O, 
(4.8d) 

which are generalized eigenfunctions-we repeat for clar­

ity--ofthe coupled Q k,.k
2 with eigenvalues q = k (1 - k I>!, 

k = (1 + iK)/2, KER +, and form a basis for the continuous 
nonexceptional C: representation series, E = Ik) - k21, and 
of the coupled Jk~.k2 with eigenvalues rp2/2ER. The Dirac 
orthonormality condition which is the analog of (3. 13) holds, 
with 8k.k, replaced by 8

T
,,,, 8 (K - K'). 

4.5: Again, as in subsection 3.5, we would like to present 
a method for finding the Dirac-normalization coefficient 
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17- lIz present in (4.8), with the purpose of following the same 
line of computation in Dirac-normalizing more difficult 
functions in later sections. Consider Fk(O) = CJ'k(O) and 
FI(O) = cJ;(O) with/dO) = sin KO or COSKO, 2k - 1 = iK, 
21 - 1 = iA. with support on a single q chart. Equation 
(3. 14a), stemming from the Casimir operator equation (4.5), 
holds, with a change of sign obtained through replacing 
4(1 + k - 1)(1 - k )-+(A + K)(A - K), and since the functions 
involved have definite parity, 

~ f~L dO/dO)· /t(0) 

= 2 lim [(A + K)(A - K)] -IW(fr,/t) I~ 
L--+co 

= lim [ sin(A - K)O += sin(A + K)8] I 
L--+co A - K A + K (J = L 

= 1T{c5(A - K) += c5(A + K)] = l7c5(A - K), (4.9) 

the upper or lower signs holding for the sine or cosine func­
tions. The += c5 (A + K) summand may be discarded on the 
grounds of the range of the representation indices. The be­
havior at infinity, being that of the Dirichlet kernel for Four­
ier transforms, determines the Dirac normalization constant 
of(4.8) to be l7- I/Z. The existence ofa limit in the mean will 
also serve to find the proper linear combination coefficient 
for the two independent solutions of the Casimir eigenvalue 
equation so that they form a Dirac-orthonormal set. 

4.6: The CGC, finally, is obtained as the inner product 
between the product and coupled states, as in (3.14). The 
chart which supports the four c5 's in the product state is given 
by q = sgn (Pi - p~) = T, and thus in tum yields 0 = arc­
tanh (PZ/PI) = arcsinh(pz/p) for q = + 1 and 0 = arccoth 
(PZ/PI) = arcsinh(pl/p) for q = - 1. We thus arrive at the 
general expression ce l + ,kz - ;Ek) = (.I,k l + ,k, - qtk l + ,k, -) , 

'I" PloP, 'E,k,T.P R 
h P2 ;T,p 
= 2(pIPz)- I/Zc5(Pi/2 -pV2 - Tp2/2) 

XFk,+,kz-(arctanh[(p /PlrJ)· E.k,-r, 2 (4.10) 

Comparing the above expression with its D + xD -
counterpart (3.14), we see that the difference arises in the 0-
dependent function [Eqs. (4.8) here vs (3.12) before], where 
now 2k - 1 = iK and the angle 0 is a hyperbolic one. Since 
arsinhx = - iarcsin ix, we may use (3.18) in order to ex­
press (4.10) as hypergeometric functions of p~ / p2 or pi/ pZ. 

For the D I XD - coupling we have thus 

cO + d - ; O,k) = c5(pi/2 -p~/2 _ Tp2/2) 
\PI ,P2 ; T,p 

[
k - 1,1 - k p~ ] 

X217-I/ZPI-1I2PZ-1/2F \'1 ; -7 ' 

cO + d - ; ~,k ) = cO + d - ; ~,k ) 
\PI ,P2 ; + 1,p \PI ,P2 ; - l,p 
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k-,O, 

(4.11a) 

(4.11b) 

= cO + d - ; O,k ) , (4.11c) 
\PI ,Pz ; + 1,p 

cO + d - : !,k ) = cO + d - : !,k ) 
\PI ,Pz ,- 1,p \PI ,P2 ,- 1,p 

=cO+ d- ;O,k ), (4.11d) 
\PI ,P2 ; + 1,p 

where 

{
Pz: PI > P2 i.e., T = + I} . ( ) (4 11 ) Pm = = mm PI,p2 . . e 
PI: PI <Pz, i.e., T = - 1 

4.7: Note in particular that for k = ~ (K = 0), the repre­
sentation which belongs to the nonexceptional continuous 
series C?/4 is obtained from the couplings D iJ4 xD i/4' It 
does not appearinD 3;;4 xD 3/4 [Eqs. (4. 11 a) vs (4. llb)], For 
E = ~, the point k = ~ (K = 0) belongs, instead, to the D t'72 
SAIR's. That these discrete representations occur among 
the D 0+ X D 0- direct integral decomposition is evident from 
(4.11c) and (4.11d), and in fact can be seen from (4.8c) and 
(4.8d): the coupling D 3;;4 xD 1/4 contains D 1;;2' but not 
D I12' while the reverse is true for D 1;;4 X D 3/4' The fact that 
a discrete series representation appears (and no spurious 
E = ~, k = ~ C-representation) is shown by the J _ eigenvalue 
of the coupled state being purely positive in the first cou­
pling, and purely negative in the second. This is the signature 
of a discrete-as opposed to a continuous-SAIR. 

4.8: The CGC for the D 0- XD 0+ coupling may be ob­
tained from the D 0+ X D 0- ones displayed above, through 
the application of the algebra outer automorphism A de­
scribed in (2.5). The effect of A = A IAz is to invert the sign of 
the spectra of the factor and coupled states under the J _ 
operators, so that T++ - T through (4.11). This operator 
leaves .Y~"" (R 2) invariant and is unitary under the inner 
product (4.3). It follows that 

c(k l - ,kz + ;E,k) = c(k l + ,kz - ;E,k), (4.12) 
PI' pz ;T,p PI' P2 ;T,p 

for all CGC's. 
4.9: As a preparation for Sees. V-X, we shall now pro­

ject the coupled operator on a definite C: SAIR space, using 
again the fact that there the coupled Q k"k, is a multiple of the 
identity. Following (3.19) and (3.20), we use a similarity 
transformation: 

r1l2(L _ L)r- I/z 
axi ax~ 

= qrI/2(~ + r-I~ + r- 2[4Q _ 1])r- 1I2 
ar ar 

=~:~ -~). Y= (2k - W -! = -~ -!~.~3~· 
This allows us to write the so(2, 1) generators as operators on 
the hyperbolic coordinates u = ± 1, rER + (retaining the in­
dex E related to the eigenvalue L of the inversion operator). 

The expressions are 

J~'k=: (- :; +~ -r). (4. 14a) 

(4. 14b) 
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(4.14c) 

(4.14d) 

(4.14e) 

These operators are self-adjoint on the space of two-chart 
functions 13d.14 in ,y~ ~ 1 (R +) X ,y~ ~ _ 1 (R +) with inner 
product 

(f,g)y = ,,~± 1 LX> dr f(O',r)*g(O',r), 

Y={-I,+IJXR+. (4.15) 

The automorphism A exchanges charts 0'++ - 0' and is uni­
tary under (4.15). 

The index E, as before in (3.21), seems to be absent from 
the right-hand sides of (4.14). As will be seen in full detail 
below, it continues to exist as a specification of the domain of 
the operators: It indicates that we are considering the com­
mon self-adjoint extension of(4.14) in which the spectrum of 
J ~,.k, is contained in { E + n, neZ J. In the discrete series case, 
for k> 1 there is a unique self-adjoint extension, and the in­
dex E could in principle be dropped. The above operators, on 
the other hand, for r < a (including r< - A here) have a one­
parameter family of such self-adjoint extensions. 

4.10: In each chart, the operators J~'k, JEl, and r': 
represent SchrOdinger Hamiltonians with a strongly singu­
lar behavior at zero,20 due to the terms r/r for r< - A. We 
would like to study the features of such singular operators in 
'y2(R +), on a single O'-chart, in particular, give a short ac­
count of the one-parameter family of self-adjoint extensions 
of J~'k, and their spectra, both for kefiJ and keC(!. Then we 
shall do the same for the two-chart inner product (4.15), and 
thus make precise the applicability oft 4.14) for both D + , Cas 
well as for the exceptional continuous representation series 
E (~< k < 1), which does not appear in the decomposition of 
the product of two oscillator representations. Operators 
with an unbounded spectrum are not commonly used in 
physics, and the sharper tools of analysis must be brought to 
bear on the subject. From our knowledge of the so(2, 1) repre­
sentation series, we do expect that Jo in our case (4.14) and 
(4.15) will have a spectrum given by E + n, neZ. 

V. THE GENERALIZED OSCILLATOR ALGEBRA 

The purpose of this section is to study the generalized 
oscillator realization of the so(2, 1) algebra given by the sec­
ond-order differential operators (4.14) [including (3.21) as a 
particular case] and to show how, through an appropriate 
definition of the function domains on two charts, these pro­
vide for all self-adjoint representations of the algebra. 

5.1: To this end, we consider first the eigenvalue 
equation 

K V) ~ (1') = f.ltP ~ (1'), reR +, (5.1a) 

where K k is J~ as given by (4.14) on the single chart 0' = 1: 

485 

K =- - -+-+r k 1 ( d
2 r ) 

4 dr r ' r = (2k - 1)2 - AeR, 

(5.1b) 
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representing the Schrooinger Hamiltonian of a harmonic os­
cillator with a centrifugal barrier (r> 0) or centripedal well 
(r<O). The solutions to Eq. (5.1), which vanish at infinity, 
are given by the Whittaker functions (Ref. 19, Eq. 13.1.33): 

tP ~(r) = c~ [F(k - Jl)F(1 - k -Jl)]1/2r-1/2WI'.k_1I2(r) 

= tP ~ - k(r), (5.2) 

where the F-function factor has been chosed for conve­
nience. Note that the functions tP ~ (1'), being invariant under 
k++ 1 - k are real for all kefiJ, (k > 0) or keC(! 
[k = (1 + iK)/2, KeR +]. 

5.2: The behavior of tP ! (1') near l' = 0 is given by 

tPk(r) _ ck IF(I-2k)[F(k-f.l)/F(I-k-Jl)]1/2r k-l12 
J.l r--+O+ /-l 

+ F(2k - I)[F(1 - k - f.l)/F(k - f.l)] 112,.- 2k + 312l. 
(5.3) 

(i) When k> I the first summand is locally square-inte­
grable but the second is not, unless f.l = k + n, neZ + , when 
the F function in the latter's denominator makes the sum­
mand vanish. The pole in the coefficient of the first sum­
mand is an artifice of the F factor, and is cancelled by an 
appropriate normalization coefficient c~. Hence tP ~ 
e'y2(R +). It is, in fact, a Laguerre polynomial in r of degree 
f.l - k and order 2k - 1, times rk - 1/2exp( - r /2). The 
spectrum of K k for k> 1 is thus f.l = k + n, f.leZ +: equally 
spaced and lower-bound. 

(ii) When 0 < k < 1, i.e., k is in the exceptional interval, 
both summands in (5.3) are locally square-integrable, and no 
quantization condition onf.l follows from 'y2(R +) alone. 
For! < k < 1 the first term has a locally square-integrable 
derivative (and the second term must be eliminated with 
f.l = k + n, neZ +), while when 0 < k <!, the same is true if 
we exchange the first and second terms, and keep f.l = k + n, 
neZ +. These correspond to Laguerre polynomials as above, 
including the case k = ! when proper normalization is 
applied. 

(iii) When keC [k = (1 + iK)/2, KeR +], then for allJleR 
(5.3) is in 'y2(R +). Its derivative does not have this property. 

5.3: AlthoughK k formally appears to be symmetric, we 
find that, under the usual 'y2(R +) inner product (3.19), 

(KktP~,tP~)R+ - (tP~,KktP~)R + = !W(tP!*,tP~) 100, (5.4) 

where W (f,g) is as before the Wronskian of! and g. The 
boundary term vanishes at infinity, while at zero it can be 
evaluated from (5.3). The cases for keC and k real differ 
slightly but lead to the same result. The 'y2(R +) inner prod­
uct of tP! and tP ~ can be thus obtained as 

(tP ~ ,tP ~)R + = [2v,t - v)] -I W(tP ~*,tP~) Ir-+O 
= c~ *C~1T CSC(21Tk){ [F(1 - k - f.l)F(k - V)] 112 

F(k - f.l)F(1 - k - v) 

_ [F(k - f.l)F(1 - k - V)]1I2} . (5.5) 
F(1 - k - f.l)F(k - v) 

For each fixed k> 0, (5.5) vanishes whenf.l = k + m, 
meZ +, and v = k + n, neZ +, andK k is self-adjoint then in 
the Hilbert space whicq has {tP ! J as its denumerable basis. 

D. Basu and K. B. Wolf 485 

Downloaded 28 Jun 2011 to 132.248.33.126. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



This Hilbert space is unique when k> 1, but for the excep­
tional interval 0 < k < 1 it is merely one of a family of Hilbert 
spaces: that whose denumerable basis functions have square­
integrable derivatives. [This also holds for k = ! in spite of 
the apparent singularity of (5.5).] The common feature of 
these domains is that the spectrum of K k is lower-bound and 
equally spaced, signifying that we are in the discrete series 
Dk+' 

5.4: In order to give a common Hilbert space domain for 
all generators ofso(2,1) [(4.14) for fixed k and 0- = + I], it is 
necessary to know whether a proposed domain with basis 
! ¢ t 1 is invariant under the action of a generator basis. We 
are using the spectrum of K k = J ~ + to specify such do­
mains. When we construct the raising and lowering opera­
tors J r I = J I ± il2 and apply them to any ¢ ;, /1- in the spec­
trum of K \ we may employ the usual algebraic argument to 
show that J r j ¢; should be an eigenfunction of K k with ei­
genvalue /1- ± 1. Unless /1- ± I is in the spectrum of K k when 
/1- is. the rest of the algebra generators will not leave the 
domain invariant. 

Lower-boundedness is no problem since it is elementary 
to show that J j ¢ ~ = O. but a necessary condition to be able 
to specify a common self-adjoint extension of all operators in 
so(2.1) is that the domain be such that the spectrum of K k be 
equally spaced. 

5.5: The domain in which K \ for k in the exceptional 
interval. has a lower-bound equally spaced spectrum. how­
ever. is only a particular self-adjoint extension of the opera­
tor. IS As said before. this is specified through the vector 
space on which K k is to act. This domain can here be in turn 
described as those ,j"'2(R +) functions fwhose boundary 
Wronskian W(J.¢I"o) 10 is to vanish, thus setting the bound­
ary term in (5.5) to zero. This is equivalent to imposing that 
/1-0 be a point in the spectrum of the operator. 

It can be shown that. for k in (!.I). the spectrum of each 
self-adjoint extension of K k has a lower bound, but this mini­
mum eigenvalue has itselfno lower bound, so that extensions 
can be found where this minimum is as negative large as we 
please. For kEG the spectrum has no lower bound. Two more 
general results 18 are that the union of all self-adjoint exten­
sions provide spectra which cover the real line. No eigenval­
ue /1-0 can belong to the spectrum of more than one self­
adjoint extension of K k. 

Given thus some /1-0' finding the rest of the spectrum is 
an exercise in solving for v the transcendental equation 

F(k - v)/F(1 - k - v) = T(k - /1-o)/T(1 - k - /1-0)' 

(5.6) 

which puts to zero the last expression in (5.5). As a numerical 
example. if for k = ~ we choose /1-0 = - 1. the spectrum of 
K k will be (up to three decimal places) ! - 1.0. 1.046.2.097. 
3.123.4.141.5.153.6.163.7.170.8.176.8.179.9.182 .... ], 
while if for k = ~ + i we choose /1-0 = O. the spectrum will be 
! .... - 8.881.0.0. 1.449.2.619.3.727.4.806.5.869,6.921. 
7.965 •... ). These eigenvalues tend asymptotically toward 
equal spacing; but the spectrum is not linear. and the domain 
specified by /1-oER. for /1-0 - k not a positive integer, is there­
fore not fit to serve as a common invariant domain for a set of 
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operators which are to be elements of a Lie algebra. 
5.6: We shall now see what the choice of self-adjoint 

extensions is for the two-chart operator J~.k in (4.14c) with 
inner product (4.15). The eigenvalue equation to be solved 
now has two forms. one in each chart 0- = ± 1. Since 
J ~k = o-K \ the equations are 

K kl/l: (0- = + l.r) = /1-I/It (0- = + l.r). (5.7a) 

- K kl/l: (0- = - I.r) = /1-~ (0- = - l.r). (5.7b) 

The difference with (5.1) appears to be slight. We can set 

~(o- = + I.r) = ¢ ; (r). 1/1;(0- = - l.r) = a;¢ ~JL(r). 

(5.7c) 

with a; a constant to be determined. We now repeat (5.4) 
under the inner product (4.15): 

(J~~,I/I~)y - (I/I;,J~~)y 

=!W(¢!~ ¢~) 1,=0 -!a!·a~W(¢k-.!'JL' ¢k_JL) 1,=0' 
(5.8) 

Upon performing the necessary algebra with (5.5), we can see 
that whenever /1- - v is an integer. a full cancellation of the 
boundary terms occurs for a; = 1 = a~. The normalization 
constant c; of the constituent functions (5.2) may be found 
along the lines of subsection 3.5, or directly through integral 
tables (Ref. 2, Eqs. 7.6114 and 8.365.9). If we denote 
/1- = E + n, EE( - !,!), nEZ, c; depends only on k and E [this 
feature determined the T-function choice in (5.2)]. It is 

c; = CEk = 1T- 1[2sin 1T{k - E)sin 1T{k + E)] 1/2 

(5.9) 

If kEG, the functions tP:.k(o-,r) are the eigenfunctions of the 
self-adjoint extension of the operator J ~k with spectrum 
/1-E{ E + n, nEZ J. This extension may be labeled through the 
index EE( - !,!], which generalizes the previously used ho­
monym index EE(O,!) to multivalued representations of the 
group. 

When E = !, the limit k = (1 + iK)/2, K-G, results in CEk 

becoming zero. For ~ ( + l,r), /1- = !,k" this zero is com­
pensated, however, by a matching pole from the T functions 
in (5.2); similarly, only the 0- = - 1 component of ~(o-,r), 
J1- = -~, - ~'"'' is nonzero. These functions therefore be­
long to the discrete series of SAIR's, having a single-chart 
support. 

5.7: The algebra generators (4.14) belong to the excep­
tional continuous SAIR series E when 0 < k < 1 ( -l<r < a 
twice). The domain is that labeled by E, with lEI < min 
(k,1 - k) so that the radicand in (5.9) is positive. Since reflec­
tion symmetry k~ 1 - k holds, we may reduce to ! < k < 1 
and lEI < I - k. The spectrum of J ~k is in this case again 
given by /1-E! E + n. nEZ }. 

We shall now examine the boundary of the exceptional 
series region (Fig. 1), I E I = min(k, 1 - k ), which gives rise to 
the lower- and upper-bound discrete series D f in the inter­
val 0 < k < 1, including the two direct summands of the oscil­
lator representation. There is an interplay between the zeros 
of CEk in (5.9) and the 4>-function poles in the factor of (5.2). 
Consider the 0- = + 1 component and see Fig. 1. When 
o <E = k<! or 0> E = k - 1> -!, the only nonzero func-
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FIG. I. The exceptional interval. The shaded region indicates the range of k 
and E for the continuous exceptional series, lEI < 1- k, where the k .... 1 - k 
symmetry is used to reduce k to H,I). The boundary corresponds to the 
discrete series. The points 0 < E = k (for 0 < k<!) and 0 < E = I - k (for 
! <k <1) lead to eigenfunctions 1/1;. with spectrum ! E + n, neZ + I, while 
O>E=k-1 (for !>k>l) and O>E= -k (for O<k<!) lead to 
(E+II+I,neZ+l· 

tions with ft = E + n, neZ, are those with ft = k,k + 1, 
k + 2,.·· while when 0 > E = - k> - !or 0 < E = 1 - k<!, 
the only nonzero functions with ft = E + n, neZ, are those 
with ft = 1 - k, 2 - k, 3 - k, .. ·. As an example, E = i, 
k = i, and E = i, k = i characterize the same self-adjoint ex­
tension in the even positive harmonic oscillator state space, 
while E = - i, k = i and E = i, k = i characterize the odd 
oscillator state space. The operator K k, is, of course, the 
same under the exchange k_l - k. The above arguments, 
however, lead us to drop this symmetry and adopt kEtO, 1) as 
the sole indicator of the self-adjoint extension of the algebra 
meant for the discrete series in the exceptional interval, as 
was done in point (ii) early in this section. 

The same reasoning holds for the a = - 1 chart of the 
wavefunctions "'~ (a,r), under the exchangeft- - jl, leading 
to basis functions for the upper-bound negative discrete se­
ries D k- • For k> 1 we are left, thus, with a description of the 
discrete series in terms of a direct sum of two function 
spaces, where ~(a,r) withjl = k,k + 1, .. · has only a 
a = + 1 chart support, and withjl = - k, - k - 1, .. · has 
only a a = - 1 chart support. These constitute single-chart 
SAIR bases for D k+ and D k- , respectively. 

The outer automorphism A effecting (2.5a) may be 
properly defined on functions of Y through 

AI(a,r) = I( - a,r). (5.10) 

It exchanges the lower- and upper-bound discrete SAIR 
spaces and leaves invariant the continuous series SAIR 
spaces. 

5.8: As a conclusion to the last four sections, we should 
like to restate that the so(2, 1) algebra realized through the set 
of formal second-order differential operators given in (4.14) 
for any real y, on spaces of functions on 
y = { - I, + 1 J XR + with self-adjoint extensions in 
,2"2(y) specified through the index E in the manner brought 
out above, accommodates all the SAIR's ofthe algebra. We 
have devoted some space to show that this is true for the 
continuous 'If series, and justified that the more naive treat­
ments found in the literature for the ~ case are also appro-
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priate. In the next section we proceed to generalize the con­
struction of the COC's for general SAIR products. 

VI. THE COUPLING OF TWO GENERAL 
REPRESENTATIONS 

The tactics seen in Secs. III and IV provide us now with 
the strategy for coupling any pair of so(2, 1) SAIR's as de­
scribed in Sec. V. 

6.1: We shall have two sets of operators (4.14) in two 
independent sets of variables a., r.EY and a2,r2EY generat­
ing ~ and/or 'If representations. The factor operator sets 

J~~a,j = 1,2, will refer to these variables, while the coupled 
operators will be, as before, 

Ja = J~')a + J~)a' a = 1,2,0, + , - . (6.1) 

The labels kj are assumed to contain all the SAIR informa­
tion, appearing as kj ± for ~ and Ej ,kj for 'If. The domain 
of the operators will be the set of two-variable functions 
which belong, as functions of each, to the Hilbert spaces 

specified in the last section, where the spectrum of J~),o is 
contained in I Ej + n, neZ} understanding that for D +, 

E/==.kj , modulo unity. The defining inner product may be 
written as 

(~,X)y, = L ("" dr. ("" dr2 ~ (a.,r.,a2,r2)* 
<7.,<7, = ± • Jo Jo 
Xx(a.,r.,a2,r2). (6.2) 

We recall, finally that when one or both of the factor SAIR's 
belong to D ±, the support of the functions will be the 
aj = ± 1 chart only. 

6.2: The product states 

."kl,kz (a r a r) - 6 6 (PIP )-./2 
'f'T.oP.o'Tz0P2 l' H 2' 2 - U.,TI 0'2.TZ 2 

X6(r. - p.)6(r2 - P2) (6.3) 
are the generalized eigenfunctions of the following set of 
commuting operators: 

(i) Q ~.) and Q~) (realized as multiples of the identity) 
with eigenvalues q. = k.(l - k.), q2 = k2(l- k2). 

(ii) J ~.) _ and J ~') _ with eigenvalues T. pi /2 and 
T2Pi/2,respectivelY(TjEI-l,I},pj ER +,j= 1,2).ForDk~' 
Tj is identically + 1, and for D k~ , Tj = - 1. 

(iii) The common domain of the above two-variable op­
erators is taken to be the space described in the last section, 
specified by E.,E2. A denumerable basis for this space is 

"'=: (a.,r.)"'=~ (a2,r2) with ± jljEI kj + n, neZ +} for D ± 3 kj 
=Ej (mod 1) andjljEIEj + n, neZ} for kjEC(f. In the special 
case when E .,E2 are in I O,~} the product states can be alterna­
tively placed in the domain where the inversion operators/(.) 
and /(2) have eigenvalues '. and '2 in I - 1, + I}. The pro­
duct states (6.3) are Dirac-orthonormal under (5.2): 

(."kl.kz ."kl,k2 ) _ 6( 2/2 ' '2/2) Of'1",oP,,1"2oP2 Of'1"joPj,1""p, y' - T. P. - T.P. 

X6(T2P~/2 - Tipi212). (6.4) 

6.3: The coupled states, denoted by I/IZ:~~, are the gen-
eralized eigenfunctions of the commuting operators: 

(i') Q ~.) and Q til with eigenvalues q. = k.(1 - k.), 
q2 = k 2( 1 - k 2) as before. 

(ii') ofthe parabolic subalgebra generator 
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J_ =J~')_ +Ji,- =(7Ir7/2+(72~/2=(7r/2 (6.5) 

[where in the last expression OE { - 1,1 J and reR + will be 
properly defined below] with eigenvalue rp2/2 (re{ - 1,1 J 
peR +). Again, ifthe coupled SAIR belongs to D ±, the ei­
genvalue will be in R ±, so only r = + 1 or r = - 1 is al­
lowed, while if it belongs to C(J it will be in R. Generalized 
eigenfunctions of (6.5) will thus have a factor 
o ((7r/2 - rp2/2) = o",To(r/2 - p2/2) as in (4.6). 

(iii') The spectrum of the compact generator 
Jo = Jtl\O + Jt2)O as seen in Sec. V defines the self-adjoint 
extension domain. Here it is Il = III + 1l2' Modulo integers, 
this implies that the coupled SAIR space is characterized by 

E=EI + E2 (mod 1). (6.6) 

Again, in the case when E I ,E2e { o,~ J we may make use of the 
inversion operator 1 = 1(1/(2) with eigenvalue L = L I L2, im­
plying (6.6). This restricts the coupled SAIR's in a form anal­
ogous to the familiar rotation group coupling between vector 
and spinor VIR's. 

(iv') of the coupled Casimir operator Q, built as in (2.2) 
out of the coupled generators Ja , with eigenvalue 
q = k (1 - k). The explicit form ofQin terms of the y2 space 
variables ((7I,rl,(72,r2) is 

Q = (JI)2 + (J2)2 _ (JO)2 = Q ~') + Q ~2) 

2 [J k, Jk2 J k, Jk2 J k, Jk2 ] + (1)1 (2)1 + (1)2 (2)2 - (1)0 (2)0 

=..!. [(71(72(r l J!..- _ (71(72r2 J!..-)2 
4 ar2 ar l 

( 
(71(72r7 ) ( (71(72r7 ) ] 

-YI 1+~ -Y2 1+~ +1 . 

(6.7) 
6.4: We shall now parametrize the space y2 in a man­

ner which encompasses the polar and hyperbolic coordi­
nates used in Sec. III and IV. Only the case (71 = (72 appeared 
in Sec. III, and only (71 = - (72 in Sec. IV. On account of the 
two dichotomic indices (71,(72' we have four coordinate 
charts. In attention to the defintion in the last equality in 
(6.5), in accordance with rl~r2' two of these charts will be 
reparametrized, so that we have a total of six charts as 
follows: 
(i) P ± -charts: 

for (71 = ± 1 = (72' r l ,r2eR +; 

r l = rcos fJ, r2 = rsin fJ, 

(ii) H ;= -charts: 

for (71 = ± 1 = - (72' r I > r 2; 

r l = r cosh fJ, r2 = r sinh fJ, 

(iii) H ~ -charts: 

for (71 = + 1 = - (72' r l <r2; 

r l = r sinh fJ, r2 = r cosh fJ, 

(7 = ± 1, respectively, 
reR +, fJe[O,1T/2]. 

(6.8a) 

(7 = ± 1, respectively, 
reR +, fJe[O,oo). 

(6.8b) 

(7 = ± 1, respectively, 
reR +, fJe[O,oo). 

(6.8c) 

To this list we should add two more charts for the line mani­
folds (71 = - (72' r l = r2 but, since these are oflower dimen­
sion we may disregard them in what follows. 
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A single function t/J ((7I,rl,(72,r2) over y2, when the co­
ordinates of y2 are expressed in terms of(r,fJ ) in chart C, will 
be represented by a function t/J C (r,fJ). The set of six such 
functions {t/J c, C = P ",H: ,H':: , (7 = ± 1 J constitutes the 
original t/J in the new coordinate system (C,r,fJ). 

We have found it useful to depict the six charts as in Fig. 
2, considering the product (7jrj as ifit were a coordinate for 
R. The D + xD + coupling (Sec. VII) will require only one 
chart: the first quadrant P +, since (71 = + 1 = (72' in com­
plete analogy with Sec. III, had we halved r to R + through 
parity. The D + xD - coupling (Sec. VIII), having 
(7] = + 1 = - (72' will require the two charts, H ;; and 
H :; , in the fourth quadrant. In Sec. IX we treat the D + X C(J 

coupling, where (7] = + 1, (72 = ± 1, so that the right half­
plane of Fig. 2 is needed and will be covered by the three­
coordinate charts P + , H ;; , and H :; . Finally, the C(J X C(J 

coupling in Sec. X requires all six charts. The joint consider­
ation of the required number of charts is important since the 
product and coupled operators will continue to be self-ad­
joint in the corresponding space (6.6) only if the formal re­
placement of variables ((7I,r l ,(72,r2)-+(C,r,fJ) through (6.8) is 
made on the appropriate union of charts. The form of J _ in 
(6.5) has been tailored to that purpose. 

6.5: The Casimir operator (6.7) has the three following 
forms in each of the charts (6.8): 

(i) in P ±: 

Q=..!. [ d
2

2 
-Ylsec2fJ+Y2Csc2fJ+ 1], (6.9a) 

4 dfJ 

(ii) in H ;=: 

Q =..!. [_ d 22 _ y lsech2fJ + Y2csch2fJ + 1], (6.9b) 
4 dfJ 

(iii) in H ~: 

Q =..!. [- d
2

2 
+ y lcsch2fJ - Y2sech2fJ + 1], (6.9c) 

4 dfJ 

generalizing thus (3.9) and(4.5). 
6.6: The inner product (6.2) defining the Hilbert space 

will be expressible as 

"" [ P" P" H" H" (t/J,XLy, = ~ (t/J ,X )p + (t/J >,X »H 
,,~± ] 

+ (t/JH':'XH':)H]' (6. lOa) 

a,r, 

FIG. 2. The six coordinate charts in y2. 
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f'" [12 
(a,/3)p = )0 r dr 0 d() a(r,() )*/3 (r,()), (6.1Ob) 

(a,/3)H = fo'" r dr fo'" d() a(r,() )*/3 (r,()). (6.10c) 

Although each of the formal operators (6.9) may be separate­
ly self-adjoint under (6.1Ob) or under one of (6.10c) in some 
appropriate one-chart Hilbert space, Q itself, as represented 
by all three forms (6.9), will have the proper spectrum only 
when placed in the full inner product (6.10), and only there 
will the orthogonality of the expected eigenfunctions hold 
consistent with (6.6). When a subspace off unctions is identi­
cally zero in some charts (as in theD + XD + case where the 
support lies entirely in the P + chart), the inner product may 
be reduced to a subset of the summands [to (6.1Ob) alone, 
withu= + I in theD +XD + case]. 

6.7: Since the coupled states are eigenstates of J _ with 
eigenvalue rp2/2, they will contain, as discussed above, a 
factor of 8ur 8 (~/2 - p2/2). The Kronecker 8 restricts the 
support ofthe function to the upper (0" = T = + I) or lower 
(u = T = - I) diagonal half-planes in Fig. 2; the Dirac 8 
restricts the support further to a constant value of ~. as 
shown in the figure, this is a quarter-circle in the P 17 ~chart, 
and a quarter-hyperbola in the H ~ and H':: charts. 

As before [cf. Eqs. (3.10) and (4.6)], we write the product 
state as 

'/Ik,.k"CU(r ()) = 8 8(~/2 _ p2/2)FC (()) k,r.p' (7'.1' k,'T , (6.11) 

the index C 17 standing for a specification of the chart. The 
requirement that they be eigenfunctions of the Casimir oper­
ator(6.9) with eigenvalue k (I - k) leads to the following dif­
ferential equations for the ()-dependent factor: 

(i) on the P-charts, ()E[O,rr/2]: 

[ 
d 2 2() 2 ] P 

- d()2 + rlsec + r2csc () F k.r(()) 

= (2k _1)2Ff.r(()); (6.12a) 

(ii) on the H> -charts, ()e[O, 00 ): 

[ - :()22 _ r 1sech2() + r 2csch2() ]F~;(()) 
= - (2k - 1)2FH>(()). 

k~T , 

(iii) on the H < -charts, ()E[O, 00 ): 

[ 

d2 
- d() 2 + r 1csch2() - r 2sech2() ]F~;(()) 

(6. 12b) 

= -(2k-IfF~;(()). (6.12c) 

We recall that rj = (2kj - W -! for all cases, so that rj 
:> -! ~or kj~!P, and rj < (1 - 21Ej If -! for kjE'?:, and the 
exceptlonal1Oterval 0 < k < I corresponds to -l<r. < 3. 

Equation (6.12a) is the Schrodinger equation for a P6schl­
Teller pote~tiaP6 of the first kind, while Eqs. (6.12b) and 
(~.12c) (wh~ch only exchange rl++r2) are Schrodinger equa­
tlOns for Poschl-Teller potentials of the second kind. The 
singul~rities ofthe potentials [() = 0 and rr/2 in (6. 12a), and 
() = 010 (6.12b) and (6. 12c)] are ofthe inverse-quadratic 
type, and in Fig. 2 can be seen to lie on the coordinate axes: 
The value of kl provides the coefficient rl of the singularity 
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on the rl = 0 axis (() = rr/2 in P, () = 0 in H < ), and k2 the 
coefficient r2 of that on the r2 = 0 axis (() = 0 in P, () = 0 in 
H». 

In the two H cases, the potential tends exponentially to 
zero at ()~ 00. As we shall see in detail in the following four 
sections, when the support of the functions F k •r (() ) is further 
restricted by a discrete-series factor SAIR D ± through the 
values of 0"1,0"2 to a quadrant or half-plane in Fig. 2, the 
region is delimited: A strong barrier21 (i.e., an inverse-qua­
dratic singularity with coefficient rj >a) or a weak barrier/ 
well (of coefficient - !<rj <i) appears at the edge, according 
to whether k> 1 or 0 < k < 1. For continuous series factor 
SAIR's, when two charts must be "joined" through the can­
cellation of the boundary Wronskians, the potential singu­
larity which lies at the "common boundary" is a strong 
welf l (i.e., of coefficient rj < - !) or a weak barrier/well ac­
cording to whether kjEC or kjEE. 

A strong barrier at ()o imposes a choice of one of the two 
solutions of(6.12) through requiring that it be locally .!f2. A 
weak barrier/well singularity exhibits two locally .!f2-solu-
tions, and allows for a choice: The solutions with locally .!f2_ 

derivativ~s are to be taken for fiJ . A strong well at ()o also has 
two solutIons, but no naturally distinguished ones. The 
proper cancellation of the boundary Wronskians will deter­
mine-up to constants in some cases-the total multichart 
solutions where the Casimir operator is to be self-adjoint and 
which must match (6.6). We shall defer further discussion on 
this aspect to Secs. IX and X, where this is done in detail for 
the cases at hand. 

Lastly, the sign of the "energy" eigenvalue (2k - 1)2 
should be noticed on the right-hand side of Eqs. (6.12). For 

c.ontinuous-series coupled SAIR's, FH> and FH < are "posi­
t~ve-energy" free states, while for kEfiJ they appear as "nega­
tive-energy" bound states in the well of the Poschl-Teller 
potential. For the P U-chart, (6. 12a), the roles are reversed 
and the discrete-series coupled SAIR's appear as positive­
energy quantized states between potential barriers in the 
D + XD + coupling. In the D + X C(f and ((J X C(f couplings, 
the P U-chart must be matched with one or two H-charts so 
it should not come as a surprise that in the P-chart the c~n­
tinuum C states appear under the D states. The k = ! level 
corresponds to zero "energy," and may in principle belong 
toD i72 or Cr/4 (E~~). Couplings to the exceptional continu­
ous SAIR E can only appear as levels between values 0 and 
- 1 of the H-chart "energy" - (2k - 1 )2; they may be rec­

ognized through seeing that lEI < min(k, 1 - k ). 
6.8: The general solution for the Poschl-Teller Schro­

dinger equations (6.12) can be written as a linear combina­
ti~n oftw? of the fundamental solutions of the hypergeome­
tnc equation. In order to use uniformly the nomenclature of 
Ref. 19, p. 563, we may define, in each chart, the variable e 
as: 

(i) P-charts, ()E[O,rr/2]: 

e = 0, sin e = sin () = r2/r, cos e = cos () = r1/r; 

(6.13a) 

(ii) H> -charts, ()e[O,oo ): 

e = i(), sin e = i sinh () = ir2/r, 
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cos e = cosh 0 = rl/r; 

(iii) H < -charts, ()e[0, 00 ): 

e = iO + 1T12, sin e = cosh 0 = r2lr, 

(6.13b) 

cose=-isinhO= -irl/r. (6.13c) 

The solutions of (6.12) can now be written in terms of the 
Gauss hypergeometric series expansions around 
e = 0,1T12, 00: 

Wk,.k,.k(",,) _ WI - k,.k,.k(",,) _ Wk,.k,.1 - k(",,) 
1(0) 0' - 1(0) 0' - 1(0) 0' 

= Icos e 12k, - 1121 sin e 12k, - 112 

F[k l +k2-k,kl +k2+k-1 . 2 ] 
X 2k2 ;slO e , 

Wk,.k,.k(",,) _ Wk,.1 - k,.k(",,) 
2(0) 0' - liD) 0' , 

k!.k2.k(",,) _ k!.1 - k2.k(",,) _ k!.k2.1 - k(",,) WIll) 0' - WI(I) 0' - WI(I) 0' 

k,.k!.k(Q 12) =wI(O) ¢±1T 

I 
Q 12k! - 1121' Q 12k2 - 112 = cos¢ SIO¢ 

(6.14a) 

(6.14b) 

xF 'cos2e [
kl + k2 - k,kl + k2 + k - I ] 

2kl " 

Wk,.k,.k("" ) _ WI - k,.k,.k("" ) 
2(1) 0' - 1(1) 0' , 

Wk,.k,.k(e) = Wk,.1 - k,.k(e) = S 2k, - IW I - k,.k,.k(e) 
1(00) 1(00) C 1(00) 

= S c k, - k, + kw~r~)'k(e ± 1T12) 

I Q 12k! - 1121' Q I - 2k! + 2k - 112 = cos¢ SIO¢ 

F [k I + k2 - k,k I - k2 - k + 1 2] 
X 2 _ 2k ;csc e , 

(6.15a) 

(6.15b) 

(6. 16a) 

Wk,.k,.k(e) = WI - k,.1 - k,.1 - k(e ) = S 2k, - IWk,.k,.1 - k("" ) 
2(00) 1(00) C 1(00) 0' • 

(6. 16b) 

In the last two equations, Sc = + I for C = H> ,H < , while 
Sc = - 1 for C = P; the multivaluation is due to the Gauss 
function being evaluated on the branch cut (these cases will 
not be used, however). An identity due to a Kummer trans­
formation (Ref. 19, Eq. 15.3.4) is 

Wk"k,.k(O ) - Wk,.k"k(O ) n - 1 2 
n(oo) H< - nloo) H,' -" (6.16c) 

between the hyperbolic cases, which exchanges cosh O~ 
sinh 0 in the first two factors, and l/cosh20~ - l/sinh20 in 
the Gauss function argument. The absolute value of cos e 
and sin e has been placed on the first two factors of (6.14)­
(6.16) in order to have real solutions for the CC - cases. If2kl, 
2k2, and/or 2k are integers, one of each pair of solutions is 
degenerate, and the logarithmic solution should replace it 
(these cases will also never be used). 

In the P-charts (€Je[O,1T12]) the argument of the hyper­
geometric functions in (5.16) ranges, for wn(OP n = 1,2, over 
[0,1], and for wnll )' over (1,0]; for wnloo ) however, the range is 
( 00,1], which lies on the branch cut ofthe Gauss function. 
The latter pair of solutions, therefore, will be avoided in de­
scribing solutions in the PeT-chart. Similarly, and for the 
same reason, in the H> -charts (€Je[O,i 00 )) we shall avoid the 
wn(l) functions, and in the H < -charts (€Je[1T12, 1T12 + i (0)) 
we avoid the Wn(l) functions. 

Elementary properties of these solutions which will be 
used time and again are their behavior near the expansion 

t . k!.k2.k(",,) ca 2k2 - 112 fi "". n+ k!.k2.k(Q) cen ers. WIlD) 0' -¢ or O'~ 'WI(I) ¢ 
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-(1T12 - e )2k! - 1/2 for e-+1T12-, and w~t~)'k(e) 
-lee 12fk - 112 for e = iO or iO + 1T12 when 0-+00. The be-

havior of w~(~rk(e) can be obtained through exchanging 
kz~l - k2' kl~l - kl' and k~l - k, respectively. 

6.9: In the following sections we shall use the above 
solutions to build the properly normalized product state 
through the condition that they be (Dirac-) orthonormal un­
der the inner product (6. lOa): 

(if!Z:~~,if!Z':.~.P' ) . .1'" = 8T.",8(pZI2 - p'ZI2)8[k,k'], (6. 17a) 

{

8k ' k ' , k,k'eD, 

8[k,k ']= 8(K - K'), k = (I + iK)/2eC or k = (I + K)/2eE, 

0, otherwise. 

(6.17b) 

The factorization (6.11) placed in (6.10) and the above re­
quirement lead to the (Dirac-) orthonormality condition 

(Fk.T,Fk"",)s' = 8T,,,, 8 [k,k '], (6.17c) 

where we define the reduced inner product over 0 to be 

(f,g)., = (fP ,gf')p + (fH> ,gH»h + (fH<,gH<)h' (6.18a) 

(".IZ 

(a,b)p =)0 dO a(O )*b (0), (6.18b) 

(a,b)h = Loo dO a(O )*b (0). (6.18c) 

Here again, jC (0 ) (C = P q,H: ,H':: ) gives the three forms 
of a single functionj over the support of the coupled state 
(i.e., the line O'lri + O'z~ = O'r in Fig. 2). The inner product 
h·)s' will thus in general involve integration over more than 
one 0 range. 

6.10: In essence, the solution ofEqs. (6.14)-(6.18) is the 
solution of the Clebsch-Gordan problem for so(2, 1), for once 
the proper F f.,. (0) are found, the CGC's are obtained as the 
inner product between the coupled states (6.11) and the 
product states (6.3). The latter have support on a single point 
in the plane yz of Fig. 2, which due to (6.5) lies on the line 
support of the coupled state. The CGC's are thus 

(
kl' k2 'k) C '- (.I,k!.k, if! k!.k, ) 
7 P 7,p ''"'P - 'f'T!,p!.T2,P2' k.T,p Y' 
l' I' 2 2,1, 

= 8(71 pi /2 + 72PV2 - 7pzl2)(pl P2)-lf2Ff,T(T), 
(6.19) 

where C refers to the chart where (71,pp72,p2) lies, according 
to (6.8a), and Tis then given by 

pT-chart: T= arcsin(p2/p)= arccos(pJp), (6.20a) 

H: -chart: T = arcsinh( pz/p) = arccosh( PI/P), 
(6.20b) 

H:' -chart: T= arccosh(p2Ip) = arcsinh(PI/p), 
(6.2Oc) 

6.11: One obvious symmetry relation between the 
CGC's comes from the automorphism A = A IA2' whose role 
is to invert all l1's. Because of the factors 8eTj'Tj and8q ,,. in (6.3) 
and (6.11) and the unitarity of A under (6.10), it follows that 

c(kl, k2 ;k) = c(kl, k2 ;k ) 
71,p1t72,pZ;7,p - 7 1,p1' - 72,pz,; - 7,p 

(6.21) 
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for all SAIR couplings. A special case of this symmetry was 
noted in (4.13). We shall henceforth reduce ourselves to the 
calculation of CGC's inequivalent under this relation. 

VII. THE COUPLING D+ x D+ 

The coupling of two lower-bound (or upper-bound) dis­
crete-series SAIR's into a direct sum of representations of 
the same type, constitutes the simplest application of the 
general method outlined in the preceding section. 

7.1: Given the range of the ..9"2 variables (ul = 1, 0"2 = 1 
and hence 0" = 1) the coupled function Fk,"'(() ) in (6.11) will 
have support only in the P + -chart (6. 8a). For kj ., 1, in the 
D + SAIR's outside the exceptional interval the POschl-Tell­
er potential Schrooinger equation (Fig. 3) exhibits strong 
barriers at the interval ends, and the square-integrable solu­

tions to (6.12a) are W~(~~2,k(()) [Eq. (6. 14a)) and w~li~2,k(()) [Ect. 
(6.15a)] at each of the P-chart endpoints. They represent the 
same solution only when - k, - k2 + k is zero or a positive 
integer, and this determines through (6.6) that only discrete­
series SAIR's appear in the reduction of D ;:; XD k: . The 
hypergeometric function in the solution is a polynomial in 
sin2

(), and is easily converted into a Jacobi polynomial (Ref. 

19, Eq. 15.4.6)P~~;' ~2:: -"(cos2()), mUltiplied by powers of 
cos () and sin () as required to provide an orthogonal set of 
solutions. 

When k I and/or k2 lie on the exceptional interval (0,1), 
the strong barrier at () = 11'/2 and/or 0 becomes a weak bar­
rier/well, and any linear combination of W~ii:)'k(()) and 
w~l;;rk(()) [N indicating the end point at which such a weak 

I 

, 

/ 
\ ) 

'-., 

----- () 

0 '1f/2 

FIG. 3. Ptischl-Teller potential of the first kind for the coupling of 
D + X D +. The "energy levels" represent the direct summands in the 
product. 

singularity occurs] would provide square-integrable solu­
tions, thereby destroying the unique quantization of k. 
Equation (6.6), however. fixes the self-adjoint extension of 
the operators and hence the spectrum of the POschl-Teller 
Schrooinger equation to k = k I + k2 + n, nEZ +. For all 
k > 0, hence, the solution vanishes at the end points, and its 
derivative is square integrable. The proper normalization 
constants for the solutions are easily found (Ref. 19, Eq. 
22.2.1), and the rest of the program proceeds through (6.19) 
and (6.20a). 

7.2: TheCGC's for D + XD + -D + can be thus written 
as 

C (kl' k2 1 ;k 1 ) = c5( p~ /2 + p~ /2 - p2 /2lPZ"k'P~lt, - Ip~k, - Ipi - 2k, -lk,p ~~ k, ~2t,' - 1'( [p~ _ pi ]/ p2) 
+ loP" + oP2; + oP 

[
k + k - k k + k + k - 1 ] = c5( p~ /2 + p~ /2 - p2/2)cZ"k'Prk, - Ip~k, - Ipl -lk, - 2k,F I 2 '1

2k2 
2 ;p~ / p2 , (7.1a) 

where the normalization coefficients are 

pZ"k, = [2(2k - I)F(kl + k2 + k - l)r( - k, - k2 + k + 1) ]I/2, 
F(k, - k2 + klF( - k, +k2 + k) 

(7.1b) 

CZ"k, = _1_ [2(2k - l)r( - k, + k2 + k )F(k, + k2 + k - 1)]112, 
F(2k2) F(k, - k2 + k)F( - k, - k2 + k + 1) 

(7. Ie) 

and where the range of the coupled SAIR's is 

k=k, +k2+n, nEZ+. (7.1d) 

Note that if we set k, and k2 to be! or~, we obtain the 
D 0+ XD 0+ coupling coefficients (2.18). 

For the D - XD - coupling the developments are the 
same, except that now 0"1 = - 1 = 0"2 and hence 0" = - 1, 
so we are in theP - -chart. Through (6.21) we obtain cac's 
identical to the above ones. 

VIII. THE COUPLING D+ X D-

The coupling of a positive and a negative discrete SAIR 
follows the general pattern of Sec. III. Here, the decomposi-
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I 

tion yields a direct integral of continuous nonexceptional 
representations plus, depending on whether k, > k2 or 
k 1 < k 2, a finite sum of positive or nelative discrete-series 
SAIR.'s. 

8.1: As now 0"1 = + 1 and 0"2 = - 1 we have functions 
with support on the lower-right quadrant of Fig, 2, i.e., on 
the union of the H ; and H ~ coordinate charts. Further­
more, depending on whether PI >P2 or PI <P2. the support 
lies entirely within one or the other. We have thus to satisfy 
Eqs. (6. 12b) or (6.12c) separately. These are two SchrOdinger 
equations for Poschl-Teller potentials of the second kind, 
shown in Fig. 4. The singularity coefficient at the origin of 
the equation belonging to the 0" = + 1 chart depends on k2' 
and that of the 0" = - 1 chart, on k I' When kj ;;> 1, as in the 
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figures, the potential has a strong barrier at the origin. When 
one or both kj lie on the exceptional interval, one or both of 
the two equations will present a weak barrier/well at the 
origin. In every case, a continuum of "free" generalized ei­
genfunctions exists. 

When kl > k2 > ~ (Fig. 4), there is a minimum in the 
U = + 1 chart potential. When this happens, the quantum 
system exhibits a finite number of bound states. When either 
k2<~(foru= + l)orkl<~(foru= -l),theminimum 
shifts into the weak well at the origin, which continues, nev­
ertheless, to have a finite number of bound states. The "nega­
tive-energy" bound states correspond to discrete-series 
coupled functions since their eigenvalue under J _, i.e., 
up2/2, is purely positive (k I > k2) or purely negative (k I < k2), 
telling us they belong to the D k+ or D k- SAIR's respective­
ly. When kl = k2, the H:; and H : chart equations are 
identical. No minima exist. In the continuum, the "energy" 
eigenvalue in (6.Sb) and (6.Sc) is positive, i.e., - (2k - 1)2>0 
so that the coupled states built with these solutions belong to 
the continuous nonexceptional series k = (1 + iK)/2, K> O. 
The zero eigenvalue will be subject to further scrutiny. 

8.2: We begin with the coupling to the continuous series 
in theH :; chart,PI >P2' The solutions w~(O~,·k(O) in (6. 13b)­
(6. 14a) are the appropriate ones, for they vanish at the origin 
when k2> 1 and have locally ,2"2 derivatives when k2 lies in 
the exceptional interval, as required by the function domain 
of the operators. Since these solutions oscillate at infinity, 
the Dirac-normalization constant may be obtained through 
a process parallel to (4.9), so that (6.17) may be satisfied. The 
rest of the program follows through (6.19) and (6.20b). 

The CGC's for the D + XD - -+C coupling are thus 

C> (k l, k2 :Ek )=8(P712-pi/2-p2/2) 
+ 1,p., - 1,p2, + 1,p 

X c~,·k'pik, - .pik, - 2p. - 2k, - 2k, 

XF[k. + k2 -- k,kl + k2 + k - 1 ; -pi/p2), (S.la) 
2k2 

where we have indicated thatp. >P2 through the" >" subin­
dex, which will be henceforth used for similar cases, and 
where 

C~,·k2 = [1Tr (2k2)] - • 
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X[Ksinh1TKr(k. +k2 -k)r( -kl +k2 +k) 
Xr(k. + k2 + k - 1)r( - k. + k2 - k + 1W'2. 

(S.lb) 
I 
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As usual, we have used k = (1 + iK)/2 and we imply that 

E=EI + E2==kl - k2 (mod 1). (S.2) 

We remind the reader that, for the discrete series, as detailed 
in Sec. VI, EI=k. (mod 1) in D k-+; and E2= - k2 (mod 1) in 
D k~ . The sign is irrelevant only when the E/S are 0 and/or!. 
Finally, if we set kto k2 =! or ~ in (8.1), we reproduce exactly 
the CGC's for the coupling of two oscillator representations 
given in (4.11). 

When PI <P2 we are in the H : -chart with u = - 1. 
This case leads to a similar differential equation-(6.12b) vs 
(6. 12c)- with k. and k2 exchanged, as well asPI andp2-
(6.13b) vs (6. 13c)-in all the ensuing developments. We thus 
find immediately 

C (k l, k2 ;Ek ) 
< + 1,p1' - 1,p2; - 1,p 

= C (k2, k. ;Ek ) . 
> + 1,p2' - 1,p.; + 1,p 

(8.3) 

8.3: We turn finally to the discrete series present in the 
decompositionofD + XD -. Consider first k. > k2, when the 
potential has a minimum in the H :; -chart, as in Fig. 4(a). 
There is a unique self-adjoint extension of the operator in 
(6.12b) determined by (8.2) and, consequently, unique quan­
tization. Analysis of the asymptotic form of the solution in 
(6. 13b)-(6.14a) shows that w~('6~,·k(O) decays exponentially 
for k = kl - k2, kl - k2 - 1, .. · >! (i.e., down to 1 or ~ when 
kl - k2 is an integer or half-integer). When k = ! (i.e., for 
kl - k2 half-integer) w~(O~,·k(O) tends asymptotically to a 
constant and hence is not in ,2"2(R +). We conclude that a 
finite number of discrete representations occur for this range 
of values of k. Since u = + 1 in theH :; -chart, and no corre­
sponding bound states appear for u = - 1 in the H :; -chart, 
we confirm (S.2) in that the representations belong to the 
D + -series. The bound and free states in the H :; -chart are 
orthogonal. A Kummer transformation on (6. 13b)-(6. 14a) 
for k - k. + k2 = - n, nEZ + , informs us that the hyper­
geometric function is a Jacobi polynomial of degree n in 
- sinh20, Oe[O, 00). We may use Bargmann's hint [Ref. 1, 

Eq. (10.26)] to evaluate the proper normalization coefficient 
and finally express the resulting series in terms of a Jacobi 
polynomial in 1 - 2tanhOe[ - 1,1]. We follow with (6.19) 
and (6.20b). 

The CGC's for the D + XD - -+D + coupling are thus 

(8.4a) 

(S.4b) 

(S.4c) 

(S.4d) 
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a () 

b () 

o 

FIG. 4. Poschl-Teller potentials ofthe second kind representing the cou­
pling D + XD - in (al the H ;; chart and (bl the H ~ chart. The arrows 
indicate the coupling to the continuous series, while the discrete levels in (al 
indicate the discrete-series summands in the coupling (a finite setl. 

The powers and hypergeometric function in (S.4a) and (S.Ia) 
are the same, as can be seen through a Kummer transforma­
tion. The normalization coefficients are different, however. 

When kl < k2' the "bound states" appear in the H ~­
chart, with a = - 1, and the same arguments which we 
used for (S.3) apply here. We thus conclude that the D k­

SAIR's occur with CGC's related to the above through 

(
kl' k2 ;k ) 

C < + 1,p1' _ 1,p2; - 1,p 

_ C (k2' kl ;k ) kl < k 2. (S.5) 
- > + I,p2' - 1,p1; + 1,p , 

8.4: We would like to clarify now the appearance of the 
k = !SAIR'sintheD + XD - coupling. They did not appear, 
we saw, among the "bound states" producing (S.4). The nor­
malization coefficient (S.lb) appears to be zero when 
k = (I + ;'(')12, K-<J; there is a cancelling pole, however, 
when either kl + k2 =! or when kl - k2 =! [the 
kl - k2 = -! case appears through (S.3)]. The former case 
applied to both a-charts exhibiting e==E I + E2==kl - k2 
(mod 1), EE( - !,!), while the latter cases exhibit E = ! for 
0'= + 1 only and E = -! for a = - 1 only. Hence 
k I + k2 = ! represents a nonzero coupling to the continuous 
series C r/4 for EE( - M) (belonging to the continuum of Fig. 
4), while kl - kz = !, a coupling to D 1~2 belonging to the 
discrete series. The latter appeared, we recall, in D ~+ X D ~­
of Sec. IV. 

IX. THE COUPLING !!fl X ~ 

The analysis of the coupling of one discrete- and one 
continuous-series representation requires a more careful 
analysis: it involves three of the charts in Fig. 2, two of them 
joined as described briefly in Sec. VI. 

9.1: WeanaIyzefirst theD + X Crf case, where 0'1 = + 1 
and 0'2 = ± 1, so the relevant portion of Fig. 2 is the right 
half-plane constituted by the P + -, H ;; -, and H ~ -charts. 
The r I = 0 axis carries a strong potential barrier (for k I> 1) or 
a weak barrier/well (for 0 < kl < 1) in the associated Poschl-
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Teller potentials; the r2 = 0 axis carries a similar singularity 
depending on k2 : a strong well for k 2EC and a weak barrier/ 
well for k2eE. 

As described in Sec. VI solutions in the P + - and 
H ;; -charts must join through the cancellation of the bound­
ary Wronskians, while the solutions in the H ~ -chart re­
main disconnected, as shown in Fig. 5. 

92: We treat first the latter case [Fig. 5(a), where the 
H ~ coordinates are (6.Sc), the inner product is (6.lOc), and 
the Poschl-Teller potential is (6.12c), exhibiting only "free­

state" solutions w~t~~"k(O ) given by positive - (2k - 2)2> 0, 
which represent couplings to the C-series and vanish, or are 
locally ,yz at the origin]. These elements and boundary con­
ditions were present in the derivation of the D + X D - cou­
pling in the same H ~ -chart, in the last section. The result, 
Eq. (S.3), yields theD + X Crf .... C CGC's, which we write ex­
plicitlyas 

C < (kl' E2,k2 :E,k ) = ~(PU2 _ p~/2 + p2/2) 
+ l,pp - I,p2' - I,p 

k"k, 2k, - I 2k2 - I - 2k, - 2k2 + I 
XCk PI P2 P 

[
kl + k2 - k,kl + k2 + k - 1. _ 2 I 2] (9 1 ) XF , PIIP , .a 

2kl 
c:"k, = [1rr (2k l )] -I [K sinh 1rK 

Xr(kl +k2 -k)r(kl -k2 +k)r(kl +k2 +k-l) 

Xr(kl - k2 - k + Ilf/2, (9.Ib) 

E=E I + E2==kl + E2 (mod 1), (9.1c) 
where again k = (1 + iK)/2, but with the addendum that 
k2 = (1 + iK2)12 for k2EC or k2 = (1 + K2)/2,0 <K2 < 1 for 
kzeE [thus Ez in (9.1c) replaces k2 in (S.le).] The normaliza­
tion coefficient (9.1b) is, of course, real. 

9.3: The new feature which the!!fl X Crf coupling intro­
duces over previous cases is the form ofthe solution in the 
a = + 1 region, constituted by the union of the P + - and 
H ;; -charts. The inner product will contain the first two 
summands in (6. lOa), where the coupled states will have one 
form in each chart, eigenfunctions of the Casimir operator, 
itself having forms (6.9a) and (6.9b) in each of the two charts, 

a () 

1 
1 
.1 

b () ~ (J 0 
.Y2. 

/ 

p' \ 
/ 

: { 

II 

FIG. S. The fP X'?f coupling in (al the H ~ chart and (bl in the region 
composed of the P + and H ;- charts. The former contains only coupling to 
the continuous series, while the latter includes both continuous and discrete 
series. 
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with a single eigenvalue k (1 - k ). 
The two Poschl-Teller potentials are shown in Fig. 5(b). 

They do not join, but the two parts of the figure have only 
been placed so that the boundary Wronskians at adjacent 
points are indicated to cancel [see Eq. (9.4) ahead]. We shall 
consider first the D + X C(,f ----+D + coupling to the discrete se­
ries, which corresponds to bound ("negative-energy") states 
in the H ;- -chart potential, joined with a "positive-energy" 
state in the P + -chart potential, due to the difference in the 
sign of the right-hand side of (6.12). The barrier due to the 
D k; factor closes the system from the left, while on the right 
the potential rises exponentially to zero. A strong well or 
weak barrier Iwell due to the C:

2 
factor lies at the join of the 

two regions. The cases when kl and/or k2lie in the excep­
tional interval are important, but constitute minor modifica­
tions of the basic construction. In the H ;- -chart, the rising 
potential imposes one constraint and reduces the solution 

there to bel::>(()) = C:>W~t~)'k(()), with an as yet undeter­

mined constant C: > . A second constraint in the P + -chart 
comes from square-integrability at ()p = 0, and similarly for 
the derivative, reducing the solution there to/f(()) = C f 

k"k2,k(()) . h h C P 
Will) , WIt anot er constant k' 

The inner product (6.1S) of such two-chart functions, 
corresponding to eigenvalues k (1 - k ) and 1(1 - I) can be 
evaluated, as was done in (5.S), in terms ofthe boundary 
Wronskians: 

(lk,It)?- = (/{J/\ + (/:>J~»h 
= [4(k + 1- 1)(1- k)] -I [Cf*CfW(w~,~)mw;'ld 1~/2 

C H>*CH>W( k* / ) 100 ] (9.2) - k / W 2{00 I'W21 00) 0 • 

This expression should equalok,/, and thus it must be zero 
for k i= I; the two nonzero boundary values at () P = 0 and 
() H = 0 musttherefore be equal in order to cancel. The rela­
tiv; minus sign between the Wronskians is due to the sign 
difference in the eigenvalue in (6.12), Since (Ref. 19, Eq. 
15.3.6) 
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k"k"k(() ) _ A k"k"k(()) + A- k"k2'k(() ) 
Will) - kWl(O) kW2(0)' 

Ak = F(2ktlr( - 2k2 + 1)IF(kl - k2 + k) 

XF(kl - k2 - k + 1), 

Ak = Ak (k2++1 - k2), 

J. Math. Phys., Vol. 24, No.3, March 1983 

(9.3a) 

(9.3b) 

and (Ref. 19, Eq. 15.3,7) 

W~i';';)'k(()) = BkW~io~,·k(()) + BkW~i'6~"k(()), (9.4a) 

Bk = F(2k )F( - 2k2 + I)1F(kl - k2 + k) 

X F ( - k I - k2 + k + I), 
Bk = B k (k2++ 1 - k2), (9.4b) 

we may evaluate the boundary Wronskians explicitly. We 
note that for k 2EC the two summands in (S.3a) are complex 
conjugates, and similarly in (8.4a), while for kEE they are all 
real. One obtains thus 

k / --
W(wII~) ,Will) )1 0 •• 0 + = 2(2k2 - I)(AkA, - AkA/), (9.5a) 

p 

k / --
W(W21~),W2100)) 10", ->0' = 2(2kz - I)(BkB, - BkB/). 

(9.5b) 

When the ratio ofthe latter two is asked to factor into 

(C f I C: . ). (C f I C~·), one finds that this does not generally 
happen. The requirement may be imposed only when k - 1 is 
an integer. The domain restriction (9.1c) implies then that 
k = E,E + I,E + 2, ... and similarly for I. Hence, one finds 

CUC:> = 1T- I [sin1T(k2 + E2)sin 1T(k2 - E2W/2 

XF(2krIF(2k)F(kl +k2-k) 

XF(kl - k2 - k + 1). (9.6) 

From (9.lc), this ratio is real. We also note the close resem­
blance between the radicands in (9.6) and in (5.9). Indeed. it 
tells us that when k2EE is such that ± E2-+k2• the ratio (9.3) 
develops a zero or a pole, so that the P- and H> -function 
pieces become independent and reduce each to the D + X D + 

or D + XD - couplings seen in Sees. VII and VIII. 
The last step is to normalize the function/k so that 

(/kJk); = 1. This is done on (9.2) in the manner of(3.14), 
which essentially reduces to obtaining the derivative of the 
two boundary terms with respect to 1 and valuate at 1 = k. 
(The boundary terms cancel for k - I integer, but lead sepa­
rate lives for all other I - k; hence the derivative of the 
boundary term difference is not zero.) The resulting f/; func­
tions combine to form trigonometric ones, and the result 
simplifies drastically. Use of(6.20a) or (6.20b) for the corre­
sponding chart leads to the CGC's as in (6.19). 

The CGC's for the D + X C(J ----+D + coupling are thus 

(9.7a) 

(9.7b) 

(9.Sa) 

(9.Sb) 
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where it is implied that (8.1c) holds, and the subscript" > "of 
the CGC menas that PI >P2' 

9.4: It should be noted that for a > k2 > 1 the Casimir 
operator Q has a negative spectrum k (1 - k ) and nonvanish­
ing "wavefunctions," even though the Poschl-Teller poten­
tial in the H :; -chart [Fig. 5(b)] is purely positive. Of course, 
the joined P + -chart must also be considered, but this remark 
only underlines the fact that a physicist's intuition on Schro­
dinger equation solutions may go astray for two- and three­
chart such operators. 

In contradistinction to the matching of solutions in 
Schrodinger equations with finite discontinuous potentials, 
where the two sides of a single wavefunction and its deriva­
tive across the discontinuity are made equal, here we must 
only cancel the boundary Wronskians of a pair of functions 
on two charts. The functions themselves at 0-0+ behave as 
AkO 112 + iK, + AkO 112 - iK" iK2 = 2k2 - 1. They are real, tend 
to zero, but their derivative is not defined at the boundary. 
The boundary is thus not simply a point where the potential 
has a discontinuity/singularity as Figs. 2 and 5(b) might sug­
gest at first sight. 

9.5: We now examine the next case: the D + X C(f--C 
coupling to a continuous-series representation. The proper 
function on the P + -chart continues to be w7ii~,·k(O), with 
boundary Wronskian (9.5a). In the H :; -chart, however, we 
may have any linear combination of Wk"k"k(O ) and Wk •. k,.k(O ). I( "") 2(00)' 

I 

the former behaves asymptotically as exp(iKO ) and the latter 
as exp( - iKO ). It can be verified that when the solution fam­
ily is taken in the linear combination 

1:>(0) = CkW~(';!rk(O) + crw~(,;!),k(O), cr = CI _ k 

(9.9a) 

[the second summand being the complex conjugate of the 
first: see Eq. (6. 16b)], the Wronskian of any pair offunctions 

I: >, I~ > in the family behaves asymptotically as the Four­
ier transform Dirichlet kernel, representing 21TICk 12 
X [t5(A - K) + t5(A + k I]. This is analogous to (4.9) and pro­
vides the Dirac normalization. 

The cancellation of the pair's Wronskian at OH> -0 
with the companion P-chart Wronskian (9.5a) over a con­
tinuousrangeofk and/requires thatl:> (0 ) have, in terms of 
solutions around zero, the real form 

1:'(0) = aAkw~(·6~,·k(0) + a-IAkw~('6~,·k(O), (9.9b) 

with a an as-yet free parameter, independent of k, subject 
only to the restriction 1 a 1 = 1 for k2EC and a = a* for k2EE. 
This freedom is allowed since the boundary Wronskian [Eq. 
(9.5b) with Bk-aAk and iik-a-IAk] is quadratic in the 
coefficients of (9. 9b) and independent of a. We may write the 
coefficients Ck in (9.9a) in terms of those in (9.9b) through 
(Ref. 19, Eq. 15.3.7) 

r(2k-l)F(2kl) [Sin1T(k-kd a+a- I cos1T(k-kl) a-

2

a- I ]. 
Ck =Cr k = +--.;......-~----

- r(kl - k2 + k )F(k l + k2 + k - 1) sin 1Tk2 2 cos 1Tk2 
(9. lOa) 

The condition to fix a turns out to be the necessary orthogonality between the continuous-k "free" generalized eigenstates and 
the discrete-k "bound" eigenstates seen before. Indeed, the Wronskians of two functions, each in one family, at Op = 0 and 
o H > = 0, cancel only when 

a = [sin 1T(k2 - E2)/sin 1T(k2 + E2j]1f2. (9. lOb) 

Replacing this into (9. lOa) and taking (9.1c) into account, we find the proper normalization constants for the two-chart 
functions. Finally, we use (6.19) with (6.20a) and (6.20b) for the rest of the process. 

The CGC's for the D + X 'C --C coupling are thus 

C (kl' E2,k2 ;E,k ) = t5(p2/2 + 2/2 _ 2/2)Ck,.k2 2k, - 1 2k2 - I - 2k, - 2k2 + I 

+ 1,p.,+1,p2;+ l,p 1 P2 P k,PPI P2 P 

[
kl + k2 - k,kl + k2 + k - 1 ] 

x.F ;p2/p2 
2kl I, 

C~~:2= [17P(2kl)]-1[!Ksinh1TKr(kl +k2 -k)r(kl -k2 +k)F(kl +k2 +k-l)r(kl -k2 -k+ 1)] 
X sin 1T(k2 + E2 )sin 1T(k2 - E2 )/sin 1T(k + E)sin 1T(k - E)] 1/2, 

and 

(
kl' E2,k2 ;E,k ) 

C> 1 l' 1 =o(Pf!2 -pV2 _p2/2) 
+ 'PP- ,P2, + ,P 

X k,.k2 2k, - I 2k2 - I - 2k, - 2k2 + IF I 2 'I 2 • 2; 2 (k 1 k) 
{ [

k + k - k k + k + k - 1] } 
Ck.HPI P2 P 2k2 ,-P2P + 2++ - 2 , 

k,.k2_( l)k,-E, r(2k-l) [I . h r(kl +k2 -k)r(kl -k2 -k+ 1) sin1T(k-E)]1I2 
CkH - - ¥"sm 1TK , 

. 1T r(kl-k2+k)r(kl +k2+k-l) sin1T(k+E) 

I 

(9.1la) 

(9.l1b) 

(9.12a) 

(9.12b) 

where, again, (9.lc) is implied. 
The expressions for the r = 1 CGC's follow from (6.21). 
9.6: We have given in some detail the considerations 

which allowed the introduction of the parameter a in (9.9b). 
Some further remarks may place its origin in a different con­
text: The CGC's are being found, basically, as the solutions 
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to a single differential equation [Eqs. (6.12)] written in terms 
of a single complex variable e [Eqs. (6.13)] along three line 
segments in the complex plane. The two-chart D + X CrfJ cou­
pling seen in this section requires the two segments [0,11"/2] 
and [O,f 00 ) which meet at e = 0, at the common boundary 
suggested by Figs. 2 and 5(b). The potential barrier at e = 0 P 

= 11"/2 fixes the solution to be w~li~2.k(e). Ifwe take seriously 
the idea of analytic continuation of the solutions from one 
chart to another, through the L-shaped contour in the com­
plex e-plane (thus automatically cancelling boundary 
Wronskians), the same w~i'i~2.k(e) solution ought to continue 
into theH > region up along the contour. As was pointed out 
after Eqs. (6.14)-(6.16), however, w~I'i~2.k(e), €JEiR + lies 
along the branch cut of the hypergeometric function, namely 
[1,00). Moreover, as a closer examination will reveal, al­
though our solution (9.9) on the H> -chart has the appropri­
ate coefficients to reconstitute precisely W~(i~·k(i8), the rela­
tive constant phase factor is undetermined insofar as the 
Riemann sheet of the function is not specified. Finally, as 
one can again verify, if we choose anyone Riemann sheet, 
the obtained W~I'i~2,k(iO ) will not exhibit the appropriate 
asymptotic behavior (9.9a) to allow for Dirac orthonormali­
zation of the function set, Through linear combinations of 
the functions on various sheets, nevertheless, we can pro­
duce this behavior. This freedom in the choice is equivalent 
to the introduction of the constant a in (9.9). We may con­
clude that this parametrized multivaluation of the two-chart 
Poschl-Teller eigenfunctions is a feature associated with the 
branch cut of the Gauss hypergeometric function. The prop­
er value of a was found in (9 . lOb) through the requirement of 
orthogonality between the discrete and continuous spectrum 
eigenfunctions. 

These considerations will apply to all cases in the next 
section-involving three charts. 

X. THE COUPLING CrfJ X CrfJ 

This section examines the coupling of two continuous 
series SAIR's to SAIR's belonging to the discrete, continu­
ous and-if both factor SAIR's are exceptional-a single 
SAIR of the exceptional continuous series. 

10.1: When two continuous-series SAIR's couple, as 
both a l and a2 may be ± 1, all six charts of Fig. 2 enter into 
the picture; three of them in the upper-right half-plane for 
the total a = 1, and three in the lower-left half-plane for total 
a = - 1. In each case, the H < , P-, and H> -charts involve 
strongly welled (and/or weakly barriered/welled) Poschl­
Teller potentials of the first and second kind, as shown in 
Fig. 6. The total Casimir operator eigenfunctions have three 
forms, one in each chart. Under the total inner product [Eqs. 
(6.18) with either a = + lor a = - 1] the solutions should 
be orthonormal, in the ordinary or generalized sense, ac­
cording to whether the coupling is made into the iiJ or CrfJ 
SAIR's, corresponding respectively to bound or free states of 
the H-chart potentials. Furthermore, they must be mutually 
orthogonal. 

102: Again, we consider first the coupling 'Tfi X CrfJ -iiJ 
to the discrete series SAIR's, where - (2k - 1)2";0 corre-
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FIG. 6. The 'tf X (Iff coupling in the region composed of the H : , p +, and 
H .; charts. Both continuous- and discrete-series summands are obtained. 

spond to the "bound" states of Fig. 6. The asymptotic behav­
ior of a normalizable solutionh must be the exponentially 

decreasing w~t~)'k (OH> ) in the H> -chart, and similarly for 
the H < -chart. Keeping (6.16c) in mind, we set 

1:>(8) = C:>w~i~)'k(8), 1:«8) = C:<w~~)·k(8), 
(10.1) 

and leave 1 {(8) free and subject to adjustment so that, in 

(fk>J;)~ = (f:<,J7<)h + (I{,J/Jp + (f:>,J7»h 

= [4(k+l-l)(k-l)]-I[c:<·c7<W(w~::)'k·,w~f::),I) to 
- W(I p$ 1 PI I rrl2 + C H>·C H> W(Wk,.k2.k$ Wk,.k2,/) 1 00 ] 
- - k, I 10k I 2(00)' 2(00) 0 , 

(10.2) 
the "adjoining" Wronskian boundary values [at 8H < = 0, 
8p = 11"12 and at Op = 0, 8H = 0, as suggested by Fig. 6] 
cancel. At 8H -00 and 8H '-00 they vanish exponentially 

< , 

due to the solution choice. 
The condition of pairwise Wronskian cancellation 

should provide the expression fori {( 0 ) in terms of W:t~(·k( 0 ) 
kkk hI' ffi' . or of w":jl( (8), n,m = 1,2, t ere atlve cae Clent ratio 

among the solutions in the three charts, and the quantization 
condition (k - I integer). It will be observed that the branch 
cut of the hypergeometricfunctions in w:i~),k(e), n = 1,2, as 
given by (5.16) now falls on the P-chart 8 range. For this 
reason we may expect, as in the iiJ X 'Tfi -CrfJ case ofthe last 
section, certain multi valuation features for the solution 
functions in this interval. 

We proceed as in the last section, exploring the behavior 
k k k 8 ,1'\+ Th" . ofthe fixed functions w2i;,,)' (8) near H> --..v. IS is given 

by B J: 0 2k2 - 112 + jj J: 8 -- 2k2 + 312, where B J: and jj J: 
= B J: (k2~ 1 - k2) are found from the z~ liz linear trans­

formation formulas (Ref. 19, Eq. 15.3.7) between Gauss 
functions, and given in (9.4b) as Bk • When k 2EC, the second 
summand is the complex conjugate of the first, while when 
k2EE they are both real. The boundary Wronskian is given in 
(9.5b). A similar expression holds for the function in the 
H < -chart, with kl and k2 exchanged, and ~fficients which 
we shall denote by B k = B J: (kl~k2) and B k = 
B k (k 1+-+1 - k). We may now write the general solution in 
P-chart as 

f{(O) Q B > k,.k2.k(O) + {3- B- > k,.k,.k(8 ) = Pk k w1(O) k k W 2IO) 

B < k,.k2.k(O) + - B- < k,.k"k(O ) = rk k wJ(ll rk k W2(1 ) , (10.3) 
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which lead to real I tt() ) when Pk = /3 r for k2eC or /3k, Pk 
real for k2eE. The expressions of w~(o) (()) in terms ofthe 
w~l)(()) leads to the following relation between the y's and 
the/3's: 

Yk = [sin 217"k2] -1 [/3ksin 1T(kl - k2 + k) 

+ Pksin 1T(k l + k2 + k)], (lOA) 

and Yk given by the above expression exchanging 
kl++1 - k l • For k 1eC, Yk = 11 while for k 1eEboth Yk and 
Y k are real, i.e., the y's have the same properties as the /3 's 
only exchanging kl and k2. 

Now, the boundary value of W(f :*,f/) at ()p-+o+ 
may equal that of W(w~i"co"w~(co,) at ()H -+0+ only when 
Pk131 = /3kPI for all values of k and 1 in;' discrete range. The 

normalization constants in (10.1) will then relate as C ~ ~ 
= If:JkPk)1I2. The same statement holds true at ()p~1T12-

- - H - liZ and ()H< -+0: YkYI = YkYI and C k < = (YkYd . If the con-
ditions on the /3 's and the y's are to hold simultaneously, the 
relation (10.4) implies that k -I must be an integer, i.e., 
k = £ + n, "neZ + , are the allowed values of the spectrum, 
withE=E I + Ez (mod 1) as given by (6.6). The overall norma­
lization of the three-chart functions Ik' ke9 , then follows 

where the subscript ~ implies thatpl~2' 
The CGC's for the C(j X C(j ~D - coupling are obtained 

through (6.21) from the above expressions. 

I 

10.3: There is one exceptional solution (1O.1HIO.3) 
which falls outside the limitations of our previous quantiza­
tion of keD, and this is obtained when B k = 0 = B { due to 
a pole of one of the r functions in (9Ab) at the value 

k = ko = k I + kz - 1. (10.10) 

This solution is hence present only when two exceptional 
continuous SAIR's are coupled to a total k. Since 
£ = El + Ez is in general different from ± ko, we conclude 
that it belongs to the exceptional continuous type ofSAIR's. 
It is thus only present when! < ko < 1, i.e., for ~ < k) + k2 < 2 
or, for"L = (1 + .!5 )/2, 2 < K I + Kz < 2. In that case, lJ k:. 
= 1 = B:;' and Bico = Ylco is an arbitrary constant. In fact, 
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from (10.1) upon letting I~k, and reasoning in analogy with 
(3.14). It yields 

(/k,ft)?-

= [2(2k - 1)] -I [(2k2 - 1)B: lJ :/3kPkaklnlf:JkIPk) 

+(2kl-1)B{lJ{rkYkakln(rkIYd]. (10.5) 

It should be noted that one choice of /3 's (and corresponding 
y's) is 

13k = sin 1T(k2 + E2)} {rk = sin 1T([k l + £.1 + [k - E]) 
- <=> -13k = sin 1T(kz - E2) rk = sin 1T([k l - Ed - [k - E]). 

(10.6) 
The required orthogonality oflk , ke9, withft, le~, as will 
be seen below, further restricts 13k IPk and rklYk to be con­
stants independent of k (for k = E + n, neZ +). The choice 
(10.6) turns out thus to be essentially unique-up to con­
stants which are compensated by normalization-for the 
orthogonality of the full eigenfunction set. 

Incorporating (10.6) into (10.5) and into the constants in 
(1O.1a) and (10.3), we find the CGC's of the C(j X ~ ~D + 

coupling through (6.15), (6.19), and (6.20). The results are, 
for the po, H> -, and H < -charts, 

(1O.7a) 

(1O.7b) 

(1O.8a) 

(1O.8b) 

(10.9) 

since one of the upper parameters of the Gauss function is 
zero, the nonnormalized solution is simply 

I" (@)=Ck .. k'lcos@ 1-2k,+312lsin@ 1-2k,+3/2 JI<" ko.c C c, 
(10.11) 

valid in the three charts C = H < ,P, H> with @c as in (6.13). 
The ratio of the normalization coefficients C Z~:? in each pair 
of "adjoining" charts may be found through requiring that it 
be orthogonal to any other Ik' keD. This requirement leads 
to 

Cko.HJCko.P = If:Jk/Pk)I/Z, CkoHJCIco•P = (rk1rk))/Z, 

(10.12) 

which in tum demands that 13kliik, k = E + n, neZ +, be 
independent of k - E, or a periodic function of k with period 
unity. This property is satisfied by (10.6). The norm of the 
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exceptional-series state may not be calculated through (10.5) 
since the process l-ko is invalid here [it would give a ficti­
cious infinite norm to the exceptional state (10.11 )). It may be 
obtained directly, however. Once the normalized solution is 
found, the rest of the program follows. 

The CGC's for the coupling E X E_E are thus found: 

C (EI,kl' E2,k2;E,ko ) = 8(1"1 pV2 + 1"2P~/2 _ p2/2) 
1"1,p1' 1"2,p2; + l,p 

(lO.13a) 

where we have written an expression valid for all three 
charts; the normalization coefficient is 

C~:,:~ = (21T)1/2(r( - 2kl + 2)F( - 2k2 + 2)r(2ko - I) 

X [sin 1T(2kl - I)sin 1T(kl - E.)sin 1T(k2 + E2) 

+ sin 1T(2k2 - l)sin 1T(kl + E.)sin 1T(k2 - E2) 

+ sin 1T(2ko - I )sin 1T(k I - E I)sin 1T(k2 - E2)J] -1/2. 

(lO.13b) 

For total 1" = - I, (6.21) may be used. 
10.4: The last case to be analyzed pertains to the cou­

pling of two continuous-series SAIR's to SAIR's in the con­
tinuous series. Corresponding to each eigenvalue 
- (2k - 1)2> 0, there are two independent generalized solu­

tions to the eigenvalue problem. The solution functionsfk 
may be given the following forms in each of the three charts: 

f~>(O) = G k,'Pw7i~l'k(0) + G k,'PW~i~rk(O) 
= a D Wk"k,.k(O) + a - Ifj Wk,.k,.k(O) (1O.14a) 

> k.'P 110) > k.'P 2100) , 

f P(O) = D Wk,.k,.k(f) ) + fj Wk"k,.k(O) 
k k.'P 110) k.'P 2(0) 

- m wk,.k,.k(f)) + m - IWk,.k,.k(O) 
- Tk 1(1) T k 211} , (1O.14b) 

f~«f)) = a < qJkw710~,·k(f)) + a:: IqJ k- IW~IO~,·k(O), 

= G ~'PW7(~i'k(0) + G ~'PW~I~i'k(f)). (10.14c) 

Our starting point will be the "common" boundary 
between the H < - and P-charts in Fig. 6, where we propose 
f ((O) in (9. 14b) to be a linear combination of the two solu­

tions w~t;~2.k(0), n = 1,2, with a free parameter qJk' The 
choice of real solutions requires that IqJk I = I when klEC 
and qJk = qJ t when klEE. All other coefficients in (9.14) ex­
cept the a's are to depend on the choice of qJk' When klEE is 
such that ± E .--+k I' the D X C(J coupling of the last section 
will be recovered in the limit qJk _ 00 (the overall normaliza­
tion constant will ensure that only the W~(I) term ~anishes, 
with no other singularity present). The Dk.'P and Dk.'P are 
uniquely determined in terms of qJ k through the z..,..l - z 
transformations ofthe Gauss functions as in (9.3) and its 
k l..,..1 - kl replacement. Givenfr(f)) at 0 = 0 and 1T12, the 

forms (1O.14a)-(1O.14c) off~>(O) and F~ «0) atf~ «0) at 
OH = 0 and f)H = 0 are determined up to coefficients a> 

and a < If the bo~ndary Wronskians of any two solutionsfk 
and};, k,/EC are to vanish, the a's must be independent of k 
and I. Their role is thus the analog of the a introduced in 
(9.9b). When kIEC, la< 1= 1, while when k1EE, a< = a~; 
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similar conditions hold for a> in terms of k2 • Now, ortho­
gonality offk' kEC to};, lED, requires that a , = (jjk/13d I/2 

- 1/2 . ~ -
and a < = (Yk/yd ,and hence the ratios 13k/13k, Yk/Yk 
mustbeindependentofk (whenk = E + n, nEZ +). This con­
dition is compatible with (10.12) and satisfied by (10.6), 
which also exhibits the corresponding reality properties. 
Orthogonality to the exceptional state fko in (10.11) is auto­
matically assured. 

The last constants to be determined in terms of qJk are 
the coefficients of the w~(oo)' The z..,..l/z transformation of 
the Gauss functions-the inverse of (9.4) and its k..,..1 - k 
replacement-yields 

G k.'P = [sin 1T(k2 + E2)sin 1T(k2 - E2)]-1/2 

X {sin 1T[ - (k l - Ed + (k - E)] C (k l,k2,k l<Pk 

+ sin 1T[ - (k l + EI) - (k - E)]C(I - k l,k2,k)qJ k- I J, 

G ~'P = [sin 1T(kl + E.)sin 1T(kl - E.))-I/2 

X [sin 1T(kl - EI)C(k l,k2,k )qJk 

+ sin 1T(kl + EI)C(I - k 1,k2 ,k)qJ k 1], 

G- < - G < - (G < )* k.'P - 1 - k.'P - k.'P' 

where 

(1O.15a) 

(1O.15b) 

(1O.16a) 

(1O.16b) 

C(k l ,k2,k) = r(2k l )r(2k - I)/r(kl - k2 + k) 

Xr(k l + k2 + k - I). (10.17) 

The equalities (1O.15b) and (1O.16b) [compare with (9.9a)] are 
the ones which insure that two solutionsfk.'P' };.'P' k,/EC may 
be subject to Dirac normalization though their cross-W rons­
kians at f) H _ 00 in the manner of (4.9). The overall normal­
ization of(10.14) will then be 

Ck.'P = [21T(I G k.'P1 2 + IG~'P12)]-1/2. (10.18) 

Similarly, two solutionsfk.<p andfk.¢ will be orthogonal when 
the two cross-Wronskians cancel. This happens when qJk 
and 1/1 k are such that 

( 1O.19a) 

A special choice of mutually orthogonal solutions, labeled 
by qJ + and qJ _, may be built demanding 

G < - ± (G > )* k.'P ± - k.'P ± • (1O.19b) 

When the conjugation properties in (10.15) and ( 10.16) are 
used, (1O.19b) yields an algebraic expression for (qJ ± )2. Al­
ternatively, (1 0.19a) embodies the Schmidt orthogonaliza­
tion process for generalized functions whereby afk.rf may be 
found which is orthogonal to any givenfk.~' For k lEE, final­
ly, the choice of f/J-oo yields a preferred C(j X C(j _C CGC 
coefficient, which upon ± E.--+k l , yields the D X C(J_C 
CGC's seen in the last section. 

Unfortunately, when (10.15)-(10.19) are substituted in 
(10.4), no significant algebraic reductions seem to take place 
in the final expressions, which would merit their explicit dis­
play. For the C(j X C(j _C coupling we may thus write 
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C'" (EI ,kl , E2,k2; E,k) = 8(p2 /2 _ 2/2 _ 2/2)c 
> 1 + _ 1 . + 1 I P2 P k.", ,pI' ,p2, ,p 

X G > 2k, - I - 2k, + 2k - I - 2k + IF I 2 , I 2 • _ 2; 2 + (k~ 1 _ k) 
{ [

k + k - k k - k - k + 1 ] } 
k.",PI P2 P 2 _ 2k ' P P2 , (lO.20a) 

c'" 1> 1> 2' 2, , = 8(p2/2 + 2/2 _ 2/2)c (
Ek Ek'Ek) 

+ 1 + 1 . + 1 I P2 P k.", ,pI' ,p2, ,p 

{ ( 
2k,-1 2k2-1 -2k,-2k2+IF [k l +k2 -k,kl +k2 +k-l. 2; 2]) + -I(k 1-k)} 

X qJ PI P2 P 2k
l

;P PI qJ I~ I, (lO.20b) 

C'" (EI ,kl , E2,k2; E,k) = 8( _ 2/2 + 2/2 _ 2/2)c 
< _ 1,p1' + 1,p2; + 1,p PI P2 P k.", 

X {G < -2k2+2k-1 2k2-1 -2k+ IF[kl + k2 - k, - kl + k2 - k + 1. _ 2; 2] + (k~1 _ k)} . 
k.",PI P2 P 2 _ 2k ' P PI (lO.2Oc) 

For 7' = - 1, (6.21) may be used. 

XI. CONCLUDING REMARKS 

The explicit construction of the Clebsch-Gordan coef­
ficients for an algebra is but one of a set of related problems 
whose complete elucidation for so(2, 1) is of interest in math­
ematical physics. This algebra is, after all, the simplest of all 
noncompact semisimple Lie algebras. The symmetry, com­
position, and asymptotic properties of the so(3) CGC's have 
been fruitfully exploited, but their so(2, 1) counterparts have 
not yet received a comparable coverage. Composition prop­
erties such as (1.1) entail special-function relations between 
confluent and Gauss hypergeometric functions; the Plan­
cherel measure22 and the SO(2, 1) UIR matrix elements23 in 
the parabolic and other bases are known, and now the CGC's 
are available. The same remarks apply for the orthogonality 
and completeness relations for the CGC's, as well as a deeper 
study of their analyticity properties3 with respect to the 
SAIR indices k l,k2,k, extended to indecomposable, finite­
dimensional, and other non-self-adjoint representations of 
the algebra. 

CGC's in bases other than the parabolic basis may be 
computed and compared with the existing results. This in­
volves integrating the coefficients with the overlap functions 
between the iso(I) basis used here, and the so(l,l) or so(2) 
bases. 23 The former requires a triple Mellin transform of our 
results over PI,P2, andp and summation over the range of 7"s 
to compare with the results of Mukunda and Radhakrish­
nan7

; the latter a triple Laguerre and/or Whittaker trans­
form to compare with Holman and Biedenharn's work.4 In 
relation with the former-a still practical calculation-~me 
may obtain independently the matrix elements of Sot 3.1) 
and SO(2,2) in various bases. 

Perhaps the nearest task of interest is the analog of Sec. 
V, the study of all common self-adjoint extensions of a sec­
ond-order differential operator algebra. as applied to the N­
dimensional symplectic algebra sp(2N.R ). The oscillator re­
presentation of the latter is well known. 12 and certain special 
cases of the "radiallhyperbolic" reductions 
sp(2rspSp(2r) + sols - t,t) have been subject to scrutiny,24 
in particular sp(4):::::so(3,2). Finally. one may realistically 
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hope that the CG and representation problems for the four­
dimensional Lorentz, Poincare, and conformal algebras may 
simplify in their analog of the parabolic basis, as it did here, 
for so(2.1). 
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APPENDIX 

The self-adjoint irreducible representations of the 
three-dimensional Lorentz algebra so(2, 1). with generators 
J I • J2, Jo satisfying the commutation relations (2. It), may be 
classified l

•
25 through the eigenvalue q of the Casimir opera­

tor Q = J ~ + J ~ - J ~, and either a "multi valuation" index 
EE( - !.!] or a sign T = ± 1. The latter two indicate the com­
mon self-adjoint extension of the algebra generators as de­
tailed in Sec. V; E is given by the spectrum { /-l} of the elliptic 
subalgebra generator Jo, modulo unity. When unique, T 

specifies the sign of the parabolic subalgebra generator 
J _ = Jo - J I • The representations are conveniently labeled 
also by a parameter k which relates to q through 
q = k (1 - k ). The equivalence under k~ 1 - k is used in the 
CtJ -series (below) to reduce its range to Rek>!. 

The classification of the SAIR's of so(2, 1) is as follows 
[R + = [O,oo).Z+ = (O,1,2 ... ·)]: 

Continuous series (CtJ): 

C: Nonexceptional (C:): 

q>;\ [i.e .• k = (1 + iK)/2. KER +], EE(l - M] 

with the exception of q = ;\ [i.e., k = !, 
K=O], E=!. 

E: Exceptional (C:): 

O<q < Hi.e .• k = (1 + K)/2. KE(O.l)], lEI < 1 - k. 

In both subcases: /-lE( E + n, nEZ }. TE( - 1. + I}. 
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Discrete series (£t7) 

D +: Positive discrete series (D k+ ): 

k>O [i.e., q<i], E==k (mod 1), 

/Lei k + n, neZ + J, T = + 1. 

D -: Negative discrete series (D k-): 

k>O [i.e., q<i], E= - k (mod 1), 

/Lei - k - n, neZ + J, T = - 1. 

The k++ 1 - k symmetry can be upheld in the excep­
tional interval -£t7 , 0 < k < 1 if we ascribe E = ke(O,!] to 
1 - kElP) and keep 0 <E<!, while for ke(!,l] we take 
O>E=l-k>-!. 

The Clebsch-Gordan series2
,4 are written below. We 

use the following conventions: 
(i) All sums are direct and range overinteger-spaced k 'so 
(ii) Direct integrals, as written, do not exhibit the Plan­

cherel measure. 22 

(iii) In all cases E = E. + E2 (mod 1), with Ej = ± kj 

(mod 1) for kj e£t7. 
(iv) The numerals in brackets indicate the formulae in 

this article where the corresponding CGC's are given. 

£t7 X£t7: 

D ±XD ± = ~ D ± k, k, ~ k , [(7.1)] 
k= k, + k, 
Ik,-k,1 i D k~ XD ~ = L D~gn(k,-k,1 + C: [(8.4),(8.1)] 
1/2 <k kEC 

+ (D~~~(k, - k,l when Ik. - k21 = ~); 
[(8.1 )] 

£t7 X C(f: 

D ± xC E, = ~ D ± + iCE, k, q, ~ k q, 
k=E kEC 

[(9.7),(9.1 )-(9.8)] 

C(f X C(f: 

CEI XC E2 = ~ D + + ~ D - + 2 i C E 

ql q2 ~ k ~ k q 
k=E k=E kEC 

[( 10.7)-( 10.9),( 10.20)] 

+ (C: [k = k. + k2 - 1] for k.,k2,keE). [(10.13)] 
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