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We consider the problem of finding the unitary transformation which intertwines
a self-adjoint quantum hamiltonian operator /2P? + V(Q) in L’-type function spaccs
with a local weight function, to its phase-variable form —id/dt, self-adjoint in a sec-
ond Hilbert space. This can be done in the context of the Heisenberg-Weyl algebra
only for the free fall case. Within the s/(2, R) algebra one may consider potentials
V(Q)=8Q* +yQ? for all real g, v, corresponding to harmonic or repulsive oscilla-
tors, or a free particle, with a centrifugal barrier or centripetal well. This treatment ex-
haust the class of hamiltonians for which the problem of quantum canonical transfor-
mations to phase variables may be solved entirely within the framework of group
theory. The results naturaly agree with the ones obtained from the Mello-Moshinsky
equations, except that the spectra are here automatically matched through the (in
general nonlocal) measure in the second Hilbert space. The present treatment does
not require, thus, the introduction of the Moshinsky-Seligman ambiguity group. The
algebra s/(2, R) replaces the quantum phase space associated to the Heisenberg-Weyl
algebra. Furthermore, we examine in detail a range of singular potentials —those
which include a strong centripetal well— where the hamiltonian has a one —parameter
family of self-adjoint extensions, and where the discrete spectra are neither unique
nor lower bound. Finally we find a set of new generating relations for Whittaker
functions.

I. HISTORICAL PERSPECTIVE AND INTRODUCTION

The hamiltonian formulation of classical mechanics [1] affords a deeper
understanding of the structure of the theory through according equal
status to various selections of coordinate and momentum variables (g;, p]-),
(q;,pj), .1, 7=1,2, .., N, describing a system. If one such variable set is
understood to be L,anomcal under the P01sson bracket {q,,p]} 6 he
transformation q; = ¢; = q; (95 Py ). Py -*p] p] (g;, py) is termed canom-
cal if the brackets are preserved as {q; (q, p), p; (q,p)}= ,,- so that
(q,, p]) constitute a second canonical variable set. In one-dimensional sys-
tems, if p(q, p) is the hamiltonian, the time variable is g(g, p). When the
transformation is inverted to ¢ —q(q,p),p—p(q,p) the motion of the

* Dedicated to Professor Marcos Moshinsky on his 60th birthday.
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system is explicitly obtained as the initial conditions ¢(g,.p,)= 0.
P(qo,Po) = E are substituted. )

Quantum mechanics, in its Dirac-von Neumann presentation [2-4], re-
places observables by self-adjoint operators in a suitable Hilbert space
L2 (RY) and Poisson brackets by commutators. This scheme applies to
the coordinate Q and momentum P operators, which in conjuction with
their commutator I —a third operator— close into the three-dimensional
nilpotent Heisenberg-Weyl algebra

[QP] =il [QI]=0, [PI]=0 (1.1)

In L2(R), I is a multiple h of the identity operator 1 (we set h=1i), while
Q and P may be always brought by means of a unitary transformation to
their Schrodinger realization [4, 5]

QNg) = qflq) , (1.2a)
. df(q)

P = e 1.2b

(P (q) l di ( )

on a domain dense in [ 2(R).

The quantum mechanical anologue of the hamiltonian formulation
would at this point seem reasonably straightforward. Indeed, within a
couple of years of the beginning of the new theory [6, 7], Jordan and
London had published papers in this direction [8, 9]. But the canonical
transformation to hamiltonian and time observables remained elusive. The
quantization-scheme problems associated with ¢(q, p) and p(g, p) had not
been fully explored; Born and Jordan [6] had given one practical rule,
Dirac’s rule [2] was not self-consistent, and shortly thereafter Weyl [7]
and Mc Coy [10] proposed theirs. Furthermore, the Stone-von Neumann
theorem and a simple argument [11] on the possible spectra of Q and P
showed that (1.2) is essentially the only realization of the Heisenberg-Weyl
algebra of use, and that it covers the real line R. As we shall show in sec-
tion 2, unitary canonical transformations within L 2(R) thus allow only
for the solution of the free-fall system. We thus exhaust this class of
transformations.

The interest in canonical transormations in quantum mechanics waned
when it was realized that these were unnecessary for the solution of the
many systems studied in the following decades; a satisfactory historical
account of this change of focus is still to be given. Dirac’s classic book [3 ],
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to be sure, includes a section on this problem, but it is geared towards
finding the unitary operator in [ 2(R) such that

| =
Q~> Q =FQF! = P, P-F+ P = FPF! =Q |, (1.3)

and leads to the momentum realization of quantum mechanics. This
operator F is shown to be the Fourier integral transform on [ 2(R):

oo

(EA(q) = f dq [(2m) %" P9] f(g) (1.4)

The work of Marcos Moshinsky on canonical transformations in quan-
tum mechanics started in 1970 in collaboration with Christiane Quesne.
The first results were presented at the XV Solvay Conference on Physics
[12] and were published in two contiguous articles [13] in 1971. They
analyzed the question of the symplectic group of transformations generated
by the dynamical algebra of the N-dimensional harmonic oscillator from
the point of view that this is a canonical transformation of phase space.
The problem of unitary operators generating linear transformations be-
tween Q and P and their integral transform kernels, to be sure, had been
discussed previously by Infeld and Plebanski [14] for the problem of
coherent states, by Weil [15] from the point of view of representations of
the metaplectic group, two-fold covering of Sp(2N, R), and as an example
in a short article by Itzykson [16]. These authors seem to have been una-
ware of each other’s work. Weil’s article has generated overlapping lines of
research among mathematicians [ 17-19 . Moshinsky’s formulation, on the
other hand, has had impact among physicists working with him in group
theoretical methods in quantum mechanics and in nuclear physics.

The interest in canonical transformations to action-and-angle variables
(or phase variables, as we shall call them here) was present early in the
program [20], but the basic problem —hamiltonians having spectra in gen-
eral different [21] from that of P in (1.2b)— prevented further progress in
this respect. Various treatments for phase-and-angle [22] and phase-and
time [23] operators had been given in the literature showing that these
were not simple reductible to canonical transformations from canonical
pairs (1.2).

In the teeth of these precedents, Moshinsky, Seligman [24-26]and De-
enen [27] re-examined the problem of action and angle variables, noting
that even classically this mapping is not globally bijective. Classical phase
space motion may be subject to a discrete group A4 of transformations



296 WOLF

called the ambiguity group (which in some cases may be only the identity)
such that g _,qg, ps Pg, & € A, leaves the hamiltonian and time variables
invariant: q(q pP)= q(qg,pg),p(q pP)= p(qg,pg) Another discrete ambi-
gulty group A may exist for the second phase space, such that under
75 qg 05 pg ,& €A, ordinary phase space is left invariant: g(g, p)=
q(qg, pg) p(g,p)= p(qg, pg) A bijective mapping is nevertheless establi-
shed between the manifolds II=R? X 4 and II=R? X A, R? being the
ordinary phase-space plane (g, p) and R7? the region classmally covered by
the energy and time variables (q,.p), the latter connected in a way such
that R? X A covers one or more times the full plane.

In reference [24], the first of a series of three articles, this construc-
tion was undertaken for the repulsive oscillator (4 =2,, A =id., Z, being
the group of integer translations modulo N), the free particle (4 =2,,
A=2Z,), and the harmonic oscillator (4=id., A=Z, n Z_=D_, the
dihedral group of integer translations and invertions). The authors then im-
plement the Mello-Moshinsky [28 ] unitary transformations between Il and
I, i.e. between [ ? -spaces of |4 | —component functions (in configura-
tion ¢ or momentum p realization) and |4 kcomponent functions (in
time g or energy p realizations) where the hamiltonian or the action (or
their absolute values) are diagonal. A second conjugate time or phase
operator may be constructed such that in closes into a Heisenberg-Weyl
algebra with the first. The basic problem when the hamiltonian spectrum
is discrete and lower-bound (as for the harmonic oscillator) is here solved
restricting functions of II to those belonging to an irreducible representa-
tions of A. The second article of the series [25] deals with the three-dimen-
sional Coulomb problem, whose spectrum is mixed, and where the bound
and free orbits are associated with different ambiguity groups. The last
article [27] gives an elegant review of the definition and general solution
of the problem for essentially arbitrary potentials whose spectrum may be
discrete, continuous or mixed. The examples included are the free-fall and
the Morse potentials.

In the present paper, the approach to the problem of defining canonical
transformations to hamiltonian and ‘time’ operators is different. It stres-
ses the dynamical algebra of the system instead of the Heisenberg-Weyl
algebra associated to quantum mechanical phase space. The three “oscilla-
tor systems’ named in the title share s/(2, R) as their dynamical algebra.
They are the systems with potentials

V@) = % (B2 + ;;—’—] >0, (1.5)
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for all real values of § and 7. Through changes of scale § can be brough to
the values +1 (harmonic oscillator), —1 (repulsive oscillator) or O (free
particle). The o /r? term represents a centrifugal barrier (Y>> 0) or a cen-
tripetal well (y >0) at the origin. These systems are restricted to the po-
sitive half-axis R* : »> 0. The case of lower-bound spectra for the oscilla-
tor case was considered in [29];in [30] the unbounded spectrum case was
given, but the concomitant phase problems and features associated with
the multivalued and exceptional representation series were not satisfac-
torily analyzed.

In section III, here, we pose the problem in the more precise Hilbert
space terms which are necessary when the hamiltonians have a one-para-
meter family of self-adjoint extensions (for vy <3/4). Finding a quantum
canonical transformation to phase variables means to find a unitary trans-
formation to a new Hilbert space such that the hamiltonian operator is
realized as —id / d¢, ¢ being the phase variable. The new Hilbert space must
be such that this operator have the spectrum of the hamiltonian of the
original system. A phase operator “{” is not assumed to exist. Rather, the
full sI(2, R) dynamical algebra of the system is mapped onto the Barg-
mann realization of the same algebra on the circle. This is detailed in sec-
tion IV so as to place emphasis on the non-local inner product measure
which is required so that the representations be self-adjoint.

Sections V, VI, and VII contain the intertwining canonical transform
integral kernels for the harmonic oscillator + v /r? potential case, the
pure v / r? potential, and the repulsive oscillator — v /r? case. All YER
in (1.5) are considered here, requiring all self-adjoint representations of
the algebra. We particularize the results to those formerly obtained [29]
and to the ordinary (y=0) oscillator systems. We refer to the Mello-
Moshinsky method [29] as an alternative method of solution, pointing
out the advantages of using generating functions for the unambiguous
determination of phases. This needs a generating relation for Whittaker
functions which is given in the appendix, and which appears to be new.

The formulation given here to the problem of canonical transformation
to phase variables is plainly group theoretical, and is intended to avoid
the use of the Heisenberg-Weyl algebra in the treatment of oscillator sys-
tems. We explicitly disclaim that this method be applicable to all systems
subject to quantization, since most of them do not possess a natural dyna-
mical algebra. For the class of one-dimensional oscillator systems, however,
we pose a concrete task and give what appears to be its complete solution.
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II. THE (ONLY) HEISENBERG-WEYL ALGEBRA CASE:
THE FREE-FALL SYSTEM

Consider the free-fall [ie. linear potential V(g)=¢] quantum hamilto-
nian operator P given by [31]

1

P=5P2+ Q=CPC!, ie PC=CP (2.1)

o

defined on a domain dense in L ?(R), and written as the similarity trans-
form C of P in (1.2b). It is immediate to verify that the only operator
with which P can close into a Heisenberg-¥eyl algebra (1.1) is

Q0 =-P=0QC" , is QC=0C0Q , 22)

so that I = I. The map C is said to be canonical. since it maps the Heisen-
berg-Weyl algebra basis Q, P and I into a similar basis for the same algebra. -
Making use of the relation

exp [iflQ)]P exp [-if(Q)] = P —f'(Q) (2.3)

and (1.3), we may write the canonical transformation operator C as

- 3 . 3
C = exp <—l%)F = Fexp(ﬁéQ ) : 24)

The action of C on L2(R) functions is the (canonical) integral transform

C — = -
ST = €HE) = f dq C(3,9Y@) , (2.52)

with a kernel which can be found from (1.2)—(1.4) to be
C(@.q) = 2m)"V?* exp (—ilgq +¢*/6])) . (2.5b)

The transform inverse to (2.5) may be found to be
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T = = o
f@)— flg) = (C'f)q) = [ dqC7'(q,q9) f(q) (2.6a)

with kernel
Clx y) = Co, x)* (2.6b)

confirming that C is a unitary operator in [2(R), consequence of the
unitarity of F and self-adjointness of Q and P on that space.
The generalized eigenfunctions of P = —id/dq are

A@ = @ V2exp(iNg) , NER , 2.7)

with Dirac normalization. From these we may find the generalized eigen-
functions of P using (2.1b):

@) = (CHQ) =I dq C(q, 9)f\(q)

= 2'3A;(2"3[g —1\]) , AER, (2.8)

which are also Dirac-normalized in L?(R).

We have been able to find the canonical transform (2.5) and its inverse
(2.6) due to the ease with which we were able to write C in (2.4) in terms
of known operators. This is an exceptional case.

The Mello-Moshinsky differential equation method [28] finds the inte-
gral kernel of the canonical transform when only (2.1) and (2.2) are pre-
scribed. Since we are within a Heisenberg-Weyl algebra in [ 2(R) we may
allways resort to the Schrodinger realization where Q and P are given by
(1.2). Application of these equations on (2.5a) —with C(g, ¢) to be found—
and integration by parts when derivatives appear under the integral sign,
yields a pair of coupled partial differential equations for the kernel within
an integral, in company with two arbitrary L2(R) functions. As only the
null function is orthogonal to all of L 2(R), these expressions are valid for
the integrand itself, i.e.

L iglc@g =i 2-cq o (2.9a)
- af[z q q aq q.9) -Ja

DO =

i % @ q) = ¢C@ O - (2.9b)
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The second equation applied twice (to yield 82C/ 9g?) replaced in the
first one yields a first-order ordinary differential equation whose solution
is (2.5b), up to a factor function of g, which (2.9b) determines to be a
constant. This constant, finally, is found through the unitarity condition
C'C =1 up to a phase.

A third method to find the integral kernel of canonical transformations
taking P to P can be used if we know the eigenfunctions of both opera-
tors, fy () and f, (g). The kernel is built as a generalized generating func-
tion between (2.7) and (2.8):

c@.q) = f T oM @ f, @F (2.10)

)

where |w(A) =1 is a phase function of A\. Because of (2.8) and the in-
vertibility of the Fourier transform, we recover (2.5b) when w(A)=1.
Equation (2.10), by definition, satisfies (2.9a) for general w(\). Eigen-
functions, even when normalized, are defined up to a phase, and the func-
tions f, (g) and f,(q), as given, already imply a choice of phase. Other
choices allow the introduction of an arbitrary unimodular function w(X)
into the generating function representing an operator intertwining P and
P as in (2.1). This would not necessarily intertwine Q and Q as in (2.2)
unless (2.9b) is satisfied. This is a second condition on (2.10) and sets
w(M) = 1. Emphasizing these points about (2.9) vs. (2.10) will serve us in
the following sections.

Lastly, it should be noted that, whatever other C we take, (2.1)-(2.2) is
basically the only quantum canonical transformation bijectively [32] lead-
ing to a hamiltonian-type operator P = 1/2 P? + V(Q) element of a Heisen-
berg-Weyl algebra. The 1/2 P? term is produced by the similarity trans-
formation (2.3) followed by a Fourier transform, and fixes f(Q) to be
—Q3 / 6; the potential Q arises from the original Heisenberg-Weyl genera-
tors, and is thus also fixed. The free-fall potential seen in this section is
thus the only bona fide quantum system whose transformation to energy-
time coordinates may be based on the Heisenberg-Weyl algebra. It has
been given by Deenen, Moshinsky and Seligman as an example [27, ap-
pendix]. Having exhausted this class of systems and collected some nota-
tion, we now turn to oscillator systems.

III. CLASSICAL AND QUANTUM SYSTEMS WITH s/(2, R)
DINAMICAL ALGEBRA

Consider the following classical quantities
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A =%<p2+r2 + r—Z) (3.1)
3 =—411‘<p2 e ;Z—) : (3.1b)
I, = % o, (3.1¢)

= I+ 1, =%<p2+—:—’2—> , (3.1d)

1 = 10_11 = r2 s (310)

Among these, we recognize the hamiltonians of systems with a v / r? cen-
trifugal (y > 0) barrier or centripetal (y < 0) well at the origin, /_ in (3.1d),
plus a harmonic or repulsive oscillator potential, 2 I, in (3.1a) or 2/ in
(3.1b), respectively. Under the Poisson bracket [1], (3.1) constitute a Lie
algebra:

{]1,12}:_‘107{[2)[0}:115{105[1}:12: (3-2)

which we recognize [33] as so(2, 1) ~su(1,1) ~sl(2, R) ~sp(2, R). The
value of the Casimir invariant is I?= I? + 1?3 —I2=—v /4, but no
Hilbert space structure has been introduced.

The classical quantities (3.1) may be turned into first-order differential
operators on phase space through associating [34, 35 Sec. V.A.2]

9z 3 _dz 9
2, p) — Zop T 3 o dpor’ (3.3a)

so that

Xop Yopl = &, ¥}op - (3.3b)

The action of exp(t hop) on a function f(r, p) yields a new function
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fri(r,p), p,(r.p)) where r, and p, trace the classical trajectory of r and
p under a hamiltonian %(r, p). Alternatively,we may proceed constructing
the quantities canonically conjugate to the I’s:

I
{o = arctan —= (3.4a)
]] 2
1
¢, = arctanlr —, (3.4b)
Iy
§+ = ;:f, (3.4¢)
satisfying
{$e- 1, =1, a=0,1,+ & [Egs.(3.2)] ; (3.4d)

and hence qualifying for time or phase variables [1] in the system governed
by a hamiltonian /. The explicit solution for r = r(fa, I),p=pE,. 1)
yields the classical transformation to phase variables.

We now turn to quantum mechanics. The Dirac-von Neumann prescrip-
tion [2-4] allows us to associate unique self-adjoint operators x(Q) and
»(P) on a domain dense in L%(R) [c.f. (1.2)] to the classical functions
x(g) and y(p) on the full phase-space plane ¢, p € R. The classical expres-
sions written above, however, present several difficulties in this respect.
(i) When ¥ # 0, the hamiltonians 2/,, 2/, and I, in (3.1) exhibit a singu-
larity at » = 0. Related to this, (ii) the straightforward replacement p? = P2,
2 - Q*2 yields operators whose self-adjunction properties on [ *(R) or
L2(R™*) are quite nontrivial, as will be seen below. Finally, (iii) the consis-
tent quantization of the ¢, in (3.3), at least for =0, + , with (3.4d)
holding, is impossible due to the Jordan argument [11], since the (genera-
lized) spectra of the quantum conjugate hamiltonians for « =0 and + are
not R. As stated in the introduction, we choose to take point (iii) as an
interdiction, and abandon the effort to produce quantum operators of
phase. The first two difficulties can be met through defining the operator
domain carefully [36].

We consider the formal differential operators

_ 0 d_2 2 4 X .
10—4Pm2+r+ﬁ], (3.52)
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=gl d& P 2
Ji = 4 [ o + 7 +r2 ] y (3.5b)
I, = —% [’c% + %:' ‘ (3.5¢)
and their linear combinations
el bl =Z|-£ 42 (3.5d)
ok T 0 1 2 er r2 ) .
=01, =52, (3.5¢)

acting on the space F of functions f(o, r) of an underlying space

S = {O’r}ﬁ OE{*la_‘_l}s r€R+:(0’°°) ’ (3'6)

twice-differentiable in ». On this space F, (3.5) close under commutation
into a Lie algebra s/(2, R):

Ui, 3] = —iJ,, [quJO]:iJh[Jo»L]:[Jz > 3.7)

and the Casimir operator is a multiple of the identity

P=1P+73 -1 =c¢, (3.8a)
c=X 432 _ra_w. (3.8b)
4 16
On F we define a sesquilinear inner product
fe)g= . J drf(o, r)*g(o, 1) . (3.9)
g =+1 0

restricting first F to those functions with finite norm under (3.9) and
completing then to define the Hilbert space which we call [ 2(S).
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We shall now recount the nature of the self-adjoint extensions of the
operators (3.5) with domain L 2(S) [37. 38] with particular emphasis on
the spectrum of Jy, since this allows us to readily recognize the Self-
Adjoint Irreducible Representations (SAIRs) of s/(2, R) [39, 40] which
the operators realize, and the domain restrictions which make these repre-
sentations irreducible.

The cigenfunction of J, in [ 2(S) corresponding to the real eigenvalue
wis ([38,40] Egs. (3.5) and (4.5))

=142
\pf'ﬂ(o, F)y = (—o)u-¢ [% Dk + o)(1 — k + op):!

X pi2 W“”k_l/z(rz) , (3.10)

(o

with k& related to the Casimir operator eigenvalue ¢ through (3.8b), € to be
defined below, and WH‘K(x) being the Whittaker function ([41], Eq.
13.1.33).

(1) When y=23/4 (¢ <0,k=1), J, has two sclf-adjoint extensions,
distinguished by €=+ k and ¢= — k. The spectrum of J in the first case
is ne (k. k+1,k+2, ...} with \I/L"k (0, ) having support only on
o=+ 1, and in the second case it is pu& { -k, k-1, k- 2,...} with
\Ifé* -k (o, r) having support only on o = —1. Since the raising and lowering
operators (J, =1J, *iJ,) map this space onto itself irreducibly. functions
in [ 2(S) with support on ¢ =+1 —denote them by [3(S)=L*(RY)—
define a common domain where (3.5) realize the D; “discrete”-series
SAIRs of sl(2, R). Similarly, the space [2(S)= L2(R* ) defined as those
functions in L 2(S) with support on 0= —1 serves as a common domain
where (3.5) realize the D SAIRS of s/(2. R). When vy < 3/4, there exists
a one-parameter family of self-adjoint extensions [36] in Hilbert spaces
which are common invariant domains parametrized by © as follows.

(ii) In the exceptional interval —1/4 <y <3/4 (1/4=c¢>0, 1/2 <
k> 1) we have for e=*k € £[1/2, 1] the coninuation of the (i)-cases:
the domains L7 (S) leading to the Dy SAIRs, where j, has spectra p €
{xk. 2k + 1), #(k + 2), ... } and the functions have support on o = *1. This
self-adjoint extension is the Friedrichs extension [36]. For €= (1 — k)€
+ (0, 1/2), the spectrum of Jy is u € {£(1 — k), =(2 — k), ...} and L*(S)
also provides a common domain where (3.5) realize the Dk' SAIRs, formal-
ly for k&(0, 1/2), again with the property that the support of \lfﬁ' *k (o, 1)
is o0=*1. The function domains for these extensions are thus also
L3(S)= L*(R™). Up to this point, we have all and only the discrete series
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SAIRs. In particular D} would be exhaustively realized [42]ona L *(R*)
function space, where 0 = +1, and where (3.10) is given by Laguerre poly-
nomials ([38 ] Egs. (4.8), [41] Eq. 13.6.9).

The continuous series C§, however, requires both 0 =+1 and 0= -1
values, and here appears for le <1 —k (1/2 <k <1, ic. specifically
excluding k =1/2). Each value of € contained within a symmetric subin-
terval of (—1/2,1/2) determines one common self-adjoint extension of
(3.5), where the spectrum of J, isuEl+n, n € Z} (Z is the set of inte-
gers), so (3.5) realize the exceptional continuous series SAIRs C§ ([38],
Sect. 5). The function domain L f:(S) is defined as the vector sum of the
subspace of functions f€ [2(S) such that (\I/ké €, Ng =0, with the one-
dimensional space of multiples of \Ilkg' € itself. It is a Hilbert space. (The
cases k = 1/2, ¥ *k areincluded in the non-exceptional continuous series,
below.) The structure of the operators in the exceptional interval is thus
completely described.

(iii) When v<1/4 (c > 1/4, k=(1 +ik/2), k€[0, >)) we define the
Hilbert spaces L2€ (S) as the vector sum of the subspace of functions
FE LA(8) such that (¥k &, g =0 with W5 € itself, for ei(— 1/2,1/2],
excepting only *e= k= 1/2 which serves as a domain for the realizations
of the Df/z SAIRs. In this domain, the spectrum of J, is uE{e + n,n € Z},
i.e. equally-spaced ([38], Sect. 5) and hence invariant and irreducible
under all the operators (3.5) which realize the nonexceptional continuous
series CE SAIRs of sl(2, R).

The spaces L 28(3) in (i) and (iii) leading to C¢ SAIRs require functions
with support on both values of the dichotomic variable o. If only [ 2(R*)
were used for any of them, the spectrum of J, in any self-adjoint exten-
sion (other than the cases leading to the discrete SAIRs) would 7ot be
equally spaced ([38], Sect. 4) and hence this domain would not be invariant
under the rest of the s/(2, R) generators.

Having thus specified the possible domains L E(S) of (3.5) (the lablel ¢
standing for the continuous SAIR C§ or for + or — in the discrete SAIR
D,Jf ), the properties of the functions (3.10) may be restated to be

TogRE = pgh e pez(o, kL) (3.11)

i.e. for u in the spectrum of J,, for definite values of k and €. These func-
tions were built so that they are orthonormal

(B W9 =8, . wr€ZUo, ki L) , (3.12)
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and are complete on ng(S ). Furthermore, the phase of \Ifkf (o, r) was
chosen according to Bargmann’s convention ([39], Eqs. (6.22)-(6.26),
(7.10)-(7.11) and (8.10)-(9.15)) i.e. such that the matrix elements of the
raising and lowering operators be positive:

wwhe =y kehe oy =, 20, (3.132)
Yo = k(1 k)2 (3.13b)

To sum up this section, we may say that the formal operators (3.5) in
the domains [*(S)=L*(R*) and [ X(8) as specified above constitute the
proper quantization of the classical observables (3.1) in configuration
space. For y € R they realize all SAIRs of s/(2, R). Such quantization
“problems” are seldom encountered in physics due to he fact that the ac-
tual energy spectra are allways bounded from below, normally precluding
the C£ SAIR series from appearing as such. Ours is a group-theoretic
problem, however, and we aim for the complete solution. In the next sec-
tion we present the phase-variable realization of the same algebra, and
then proceed to intertwine the two.

IV. REALIZATIONS OF s/(2, R) ON THE CIRCLE

The realization of the group SO(2, 1) as a group of multiplier transfor-
mations on the space of functions on the unit circle leads to the following
realization [43] for the generators of the Lie algebra so(2, 1) = s/(2, R) on
the space of differentiable functions on the unit circle ¢ € S5 :

=i d ; d
_ —igp, ;G iep — ;. 4 y
Ko e ( ld¢)€ ld¢+g, (4.1a)
K, =i ’M(cosd)d(Zs — k sin ¢)e'€? | (4.1b)
K, =i —-igo : d ico .
, = ie (smgbdd) + k cos ¢)e . (4.1¢)

whose Lie brackets under commutation are identical to (3.7) with K,
replacing J, and whose Casimir operator K> = K} + K3 — K§ is a multiple
c=k(l — k) of the identity operator as in (3.8). Parallel to (3.5d)-(3.5¢)
we construct
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K, =K, +K, = _ieT'EP[(1 — cosd))‘;—fp + Kk sin ¢Je'c | 4.1d)
K =K, -K, = —ie”"e°[(1 +cos¢>)%ZS — ksinglet? . (4.1¢)

As will be brought out insections 6 and 7, changes of variables will allow. al-
ternatively, for K, or K, to be realized as —id / d§ or —id / dn. respectively.

As stated in the introduction, the aim of this paper is to construct the
intertwining operator C such that

J, = CK,C'', a=0,12.+ -, (4.2)

which will realize the quantum canonical transformation between a hamil-
tonian operatorJ, (a= 0, +, 1)and translation operators —id / d¢, — id | d&
or —id /dn. This is the direct generalization of (2.1). In this section we
present the o= 0 oscillator case, with the set of K realized as (4.1). We
shall ask this transformation C to be unitary, and so we must specify the
inner product and function domain underwhich (4.1) arc to be self-adjoint.
In particular the spectrum of K, in Eq. (4.1a) must be equal to the spec-
trum of J,, as described in the last section.

On the space of square-integrable functions on the circle, [ 2(S,), de-
fined through completion with respect to the usual inner product

(f. 8)s =I dp f($)* g(¢) (4.3)

the operator K, is self-adjoint, and its spectrum is {m + ¢ m € Z}. This
space can thus only accomodate the continuous series representations Cf.
Further, since it can be verified that K, and K, are symmetric under (4.3)
only for k= (1 +ik)/ 2, kK € R, only the nonexceptional continuous series
may be obtained. In fact, Bargmann [39] used L2(S,) for this only pur-
pose. In [29] we constructed a k-parametrized family of non-local inner
products on S, such that in the Hilbert spaces thus defined [44], K, had
the lower-bound spectrum characteristic of the discrete series Df. The
nonlocal measure was found asking for (K, +iK,)" = (K, ¥iK,) to hold.
This led to an inhomogenecous differential equation of which only the spe-
cial (non-homogeneous) solution is retained (129] Eqgs. (2.21)-(2.22)).
Here we present a parallel method (indicated in [29] and developed in
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([45], Sec. 3.16) valid for all representation scries of s/(2, R). To this pur-
pose, let us first construct representation bases for (4.1) where K, is diag-
onal [i.e of functions XX-5 (¢) v ¢/"? m € Z, for all representation serics
of the algebra, and then build appropriate inner products where these be
orthonormal, as a necessary condition for the K to be self-adjoint.

With the values of ¢ as specified below Eq. (3.10), it is clear that all
Xk & (¢) may be reached, through application of the raising or lowering
operators

K, = K, +iK, = ic ‘e " [%iik] e (4.4)

acting on the m = 0 state, which is a constant conveniently chosen as
X2 € (g) = 2m)V? . (4.5)
Indeed,
KixXE ) = 24 x5 @), (4.6)
with 7{“' given by (3.13b) leads through iteration to

—1/2
k+m-1 m -k

Xee @) = M (ctr) I (%)) K)"xEq9) . @7
v=~k v'=1-k

where for complex & the running index in the product is meant to take
intecger-spaced values, i.e.

K+m—1

I1

v K

(ctv) = (ctK)(et[k+ 1D .. (cEtlk+m 1)

=Dk +mt )
m F(Kig)

= (1" (k £ ¢) (4.7b)

where (a),, =al@ +v)...(@a+m — 1)=I(a +m)/ I'(a) is the Pochhammer
symbol, and k isk or I — k.
Now (4.4) and (4.5) yield the functions
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k, ¢ — ke timo _ 5 !
Xe. m(¢) = &y e .om = 0.1,2, .. (4.84)
172
(k£e), ]
L E — m~ -2 - . 4. |
O/;.m (— 17" (2m) (1 ,,/\-i{)m (4.8b)

and in particular 0‘?8 =Q2m) "2 from (4.5). It is important to underline
two properties of the purported bases {Xﬁ;}, L First. they should provide
orthonormal bases for all SAIRs of the algebra. For the continuous non-

. . * 5 - - ~
exceptional series & =1 — k& so a’lf"; Is a phasc: |ozi*:, |=1: for real k,
ail_‘"; is real. In the exceptional interval, the D) representations are con-

sidered for e=+k, 0 <k <1 and similarly for the D, representations. For
D/T oz’};"sz =0. Second, the phase of the functions (4.8) is the necessary
one for J, in (3.13) to be mapped onto KI in (4.6). It is basically irrele-
vant that we use the Bargmann phase convenction or any other one, as
long as the same convention is used for both. This guarantees that the
canonical transformation (4.2) will intertwine the three algebra generators
properly.

We now construct an inner product where, for each (k, ¢), i.e. for each
“sl(2, R) representation, (4.8) constitute an orthonormal basis. This is easi-
est to do in the Fourier coefficient basis for functions on the circle S, ,
where

fm = (Fm,f)S, . Fm (¢) = (27)—1/2(’i"1¢ s (49)
proposing
(f 8, e = Z Bl W (4.10a)
me Zk, £)

with Z(k, £+ k)=1{0,£1,+2, ... }for (k, e= + k) a discrete series D,i(r re-
presentation, Z(k, €)= Z for (k, £) a continuous scrics CE representation.
The coefficients w*.", 0=+*1,m € {0,1.2,.. 1 may be found from
(4.8b) to be

m -k (e + ou)
‘e e yoty (1 —k+a,
Wy =) g = = P | "G00 |- (4.10b)
I (c+ ov') m

V' =k
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In particular, wh® = 1.
Making use of Fourier series of (generalized) functions on the'circle, we
may also write (f. g); - as a non-local inner product on the circle:

(S &), ¢ I—gdﬂ/s‘cldf(qﬁ)*ﬂk (¢ — 0')8(¢)

= {f Qk,ég)s, 4.11a)
where £, _is a convolution operator with integral kernel
Qo) = QM7 D whiEem (4.11D)

meZkk,€)

We shall now give the explicit forms of the weight factors (4.10b) and ker-
nel (4.11b) for all representation series, thereby defining the (Hilbert)
spaces where (4.1) are self-adjoint.

For the discrete series Df, e=*k, k> 0, the weight function in the
Fourier-coefficient inner product form is

Joeko (1) _m/ '2k)

m (21\,)’” = I‘(2k+m) R m

=05 15 2,00 (4.12)

Note that for k> 1/2 (resp. k= 1/2 and 0 <k <1/2), w’;’ik > 1 (resp.
=1 and <1). Spaces of functions on the circle with only nonnegative
Fourier coefficients are boundary values of functions analytic in the unit
disc !z 1< 1 for z = pe'®. Their L2(%, )}-norm (the Hardy-Lebesgue norm)
majorizes their (k, ¢ = k)-norm (4.10) for k> 1/2, while for k= 1/2 the
latter is the L 2(S, )-norm. When 0 <k < 1/2, (4.12a) isbounded by m / 2k
so the (k, == k)norm of a function with Fourier coeffients f,, is finite
provided f,, < m %% for § > 0. Norms of this type were discussed by
Sally [46]. We shall call L(Z,\.,i %,(S1) the Hilbert spaces obtained through
completion with respect to the inner product (4.10). The non-local inte-
gral form of the inner products (4.11) for L(zk’i x)(Sy) has a (nonlocal)
weight function given by the Gauss hypergecometric function

D i) = (ZA T F (1,1 52k 2™ ") . (4.13)
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This serics is absolutely convergent for A > 1. When & =1 then (141, T
15.1.3) (4.13)is2m) ' In(1 — ¢* )/ e 7 displaying a logarithmic singu-
larity at 0 — 0. In fact, for 0 <k <I. (4.13) behaves sineularly near
0=0 as ([41]. Eq. 15.3.6) ~ 02 2 This singularity is intcgrable for
1/2 <k<1:for k= 1/2 itis the Cauchy representation (471, Sees. 7.4.5-
7.4.6) of a Dirac & under integration with a continuous function in the
Hardy-Lebesgue norm., e Lzl/2 v 1 = L3(S,) for functions with
nonnegative or nonpositive Fouricr cocflicient support. For 0 <<k < 1/2
additional smoothness conditions are required which are imposed on the
Fourier cocfficients as 1/, 12wbk <m=0+0 §>0. In ([29], Lgs.
(A.3)-(A.5)) we have shown that the nonlocal inner product on the circle
with weight function (4.13) is identical with Bargmann's local inner pro-
duct on the unit complex disc (1391, Eq. (9.9)) with z = ¢ef®, ¢ < 1.

For the continuous series €/ there are two cases to consider, the excep-
tional [1/2 <k <T1.l:1<1 — kland the .1()ncxuptional[/\ =(1+ik)/2
k=0, € (- 1/2.1/2]] representations. For the former, wh ;1 in (4. ]Ob)
cannot be simplificd beyond its last expression in that tormula since
k> 1 — k in this interval, however, it is clear that u;, o <1 and in fact
these coefficients behave asymptotically as (141, Eq. 6.1.47) ~ Im |12
with —1 <1 — 2k <0. The (k, ©)-norm on the circle is majorized by the
L*(S,) norm, and the Hilbert space thus defined by completion will be
denoted by L o, (S) in the appropiate (k, o) range. The nonlocal integral

form (4.11) m thc exceptional continuous series has thus a weight func-
tion (451, Eq. (3.406))

Q. (0) = Qm) ' LEF (LT —k+ eik+ ey
+,F, (0,1 —k—cik—e:e7®) - 1], (4.14a)
with an innocuous integrable singularity at 0 = 0. For the special case of
the single-valuced representations of the SO(2, 1) group, «= 0, calculated

by Bargmann (1391, Eqgs. (8.7), (8.9). and (8.11)) the series (4.14) may be
summed (148 ], Eq. 3.631.8) and yic]ds Bargmann’s result

Q ,0) = 27K DRI (k= 1/2) T —cos0) 1 (4.14b)
Finally, for the nonexceptional continuous representation serics, w,",'; f=1

as we remarked before, and hence

Q (0)=68(0) ., k=(+i)/2, kE[0, =), (4140
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so that for this representation series L(Zk, £) (S,)=L%S,) .

Two more particular cases which are of interest are the two weight
functions for the reducible oscillator representation irreducible compo-
nents, namely D}, and D3,. These are given by (4.13) which for
e=k = 1/4 and 3/4 yield trigonometric functions. In fact, ((41], Eq. 15.1.6)

_ arcsin €2
3/4(0) ”7T 6'0/2 [1 i0 ]1/2 (4'153)
and [41, Egs. 15.1.6 and 15.2.4]
1 1 4 arcsin ¢ 9/2
_ i 0/2 _
91/4(0) i 27T l o C;i() [1 +CZ ' [1 eiO]l/Z]
_ 1 __1__ + ei0/2Q (6) (4 15b
- 1 *el‘O 27 3/4 ’ ’ )

These expressions will be used in the next sections.
Reproducing kernels for L(Zk‘ 5 (S1) may be constructed as linear func-
tionals Kk, (o, ¢") with the property

Ky e (. 0 Dy o = f(8) (4.16)

for all f& L(zk‘ e)(S1) continuous at ¢'. Indeed, written in terms of its
Fourier coefficient inner product (4.10a), the following series has the
required property:

Koo 9) = 3 X fe@) xbide)”

meZ(k, €

= QmT D (WhHTmO) =Kk, (o) . @417

me Zk. €)

This expression is analogous to £ (¢ —¢') with (wf: 97! in place of
k € which allows an abbreviated derivation of results. For the discrete

series Dk, e= tk, the reproducing kernel for L(,(’J_r k)(S1) is simplified:

Ki . k(0) = QM FoQk;e) = @ (1 —e* )2k | (4.18)
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as found in ([29], Eq. (2.27)). For the continuous series we need only
exchange £k < 1 — & to relate (4.17) through (4.10b) to (4.11b), i.c.

Ky (0) = Q4 ¢(0) (4.19)

in the exceptional and nonexceptional interval cases. As expected. for the
latter we have the Dirac delta in [ 2(S,). In all other cases the reproducing
kernel has a singularity ~ 0“2 at 9 =0.

We thus end our description of the inner products and domains under
which the s/(2, R) algebra realization (4.1) is self-adjoint, leading to all
SAIRs.

V. UNITARY CANONICAL TRANSFORMATIONS
TO PHASE VARIABLES: THE HARMONIC
OSCILLATOR + +/r* POTENTIAL CASE

Consider a given SAIR (k, ¢) of sl(2, R), its realization by self-adjoint
operators J, (3.5), in the corresponding domain [ 25(3) as described in
Sect. III, and by its realization by similar operators K_, (4.1), in the do-
main L(Z,\.. ¢y (S1) as described in Sect. IV. Consider an arbitrary function
f(¢) € Lf,\.. £)(S1) and its C-transform function f (o, r) € Lé(S ), obtainced
from the former through an integral transform with a kernel Cy elo.r.¢).

Il

flo.n =)o r = (Ck (o, 15 -)"‘,j?)k,E

= (Cg,el0, 15 +)%, Qk,Ef)S:

= f d¢f d¢' Sy o (& — ¢)Ch (0, 73 8) f(8)) (5.1a)
s, s,

The operator C is to intertwine the two Hilbert spaces, and should be such
that

Ky =0.€ (5.1b)

hold on the appropiate domains dense in the above Hilbert spaces, and
finally, the statement of unitarity of C is to be made through the Parscval
equality

.2 = (Fr2)ee - (5.1¢)
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The integral form (5.1a) of the C-transform implies that C is a linear
operator. The conditions (5. 1b) tell us that if f is the C- transform off
then Jf is the C-transform of Kf for all elements of the algebra J = Zc_J,
and K=2c K,. Finally, (5.1c) implies that the C-transform maps an
orthonormal basis in one space onto an orthonormal basis in the other.

While Eqs (5.1b) lead to the determination of the canonical transform
kernel C,\ o, r; ¢) as the analogue of (2.9) i.e. two Mello-Moshinsky-type
simultancous partial differential equations, we shall see that Eq. (5.1¢)
leads to its alternative determination as a generating function, in analogy
with (2.10). The results we presented in the last two sections were geared
to allow us to follow the second procedure. Indeed. given that we know
the two normalized eigenbases of J, and K, {\If‘f’ “}in (3.10) and {XS‘E}
in (4.8), we may use the generating series for Whittaker functions obtained
in the appendix to find

Cpelor¢) = Z vheE (o, ")X,,,+E (¢)*
me Z(k,€)

1/2

:{:ﬂ'“ <_F(l _']”L—GE)> 518 Z 0" Wo(erm), k- 12 (VZ)CI'”‘P:I
W T e me Z(k,g) I'(l — k+ ole + m))
T(l — & + o¢) 1/2 ¢ .
= _ gc P\ ok - - , . r
~|:< 27{m> <§>2 meﬂlw ¢ (9) Itrgo% I exp (IEtan‘7 z)]
12
= [(M) rzk—l/ze[(k'E)Q’(pi‘k((ﬁ)(] +Oei¢)‘2k

ml'(k + o¢)
PR A
X exp <2— ——— (5.2a)
1 + ge' ’

where we have abbreviated trg, , =cos and trg_, =sin, tan? = tan or cot
according to whether 0 = +1 or —1, and used the phase function

1 for 0 = +1
o (9) = (5.2b)

gl Seng for 0 = —1

Il

The general result (5.2) simplifies considerably in two cases: D,f and the
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monexceptional Cf. For the lower-bound Dy SAIR series (= k > 0) we
have a single component o = +1 to consider. where we may write

Cy x(+1.r:9)

) ) 2 Ll
=[x I‘(:k)]-l/Zer-l/Z(l +(,—1¢)—2kexp <—’:2— ; +Zi¢> , (5.3)

and compare with previous results [49 ], For the nonexceptional continu-
ous CE SAIRs (k=[1+ik]/ 2. k ER™, e€(--1/2, 1/2]), the ratio of Ga-
mma functions in (5.2a) is an overall phase which may be discarded. We
write

Cr, (o, r:¢) = T2rV > exp [(k +i {1 —2e))p [2] D517 (g)

X(1+ ae"“”)‘““‘ exp<—f,—2 _o;c"’_) ; (5.4)
2 1+

and also compare with previous results [50]. For the exceptional continu-
ous series the result (5.2) isnew and covers all cases with a single expression.
The ordinary harmonic oscillator subcase has interest by itself: Eq. (3.5)
with v =0 and r ranging over R. This case is a direct sum of D}, and D3,
SAIRs, which on R may be distinguished by parity under space reflections
r< —r in the single 0 =+1 component of the configuration-space wave-
functions (3.10). The latter reduce to even- and odd-order Hermite poly-
nomials. We must therefore double the phase variable space to two sepa-
rate circles, one for each irreducible representation, and consider functions
f= {fe,f }on Z, X S,, which on the first circle are f (¢). transformed
through the k= 1/4 - trodnsform kernel (5.3) to even functions on r, and on
the second circle are f,(¢) which through the k= 3/4 -transform kernel

map on odd functions of . The 0 = +1 component of (5.1a) becomes

70) = (C)(r) = ([Cori ) P, + (Colri ) Fo)ua (5.52)

where we use the inner product (4.11) denoting (* ., *); by (*, *); with
nonlocal measures (4.15) for k= 1/4 and 3/4. The canonical transform
kernels are
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1
Cer;9) = 5 [Craya(FL15 8) + Cp 1 (+1,-759)]
2 —i¢
_ . -34 —ipy-1/2 _rrl—-e
771 +e %) exp ( 3 ]+e—l¢>’ ; (5.5b)

1
Co(r;¢) = _2_ [C3/4,3/4(+ 1, r;¢)— C3/4, 3/4 (+1,—r;9)]

= 2V2p(] + e'i‘z’)_lCe(r; ®) (5.5¢)

The C-transform maps, thus, two-component functions on the circle [with
an inner product constructible as a sum of L (4 1/4)(Si)and L, 34,(S;)
inner products ] onto the space of [ *(R) functions on the real line.

In this paper we have determined the transform kernel (5.2) as a gener-
ating function. We would like to examine briefly the construction pro-
blems which must be encountered if we follow the Mello-Moshinsky
method [28]. For each of the generators J, in (3.5) and K, in (4.1),
a=0,1, 2, the caononical transform (5.1b) must have the property, acting
on any function f € L% ¢(S,),

(CK )0, r) = J,CH)or , a=01,2. (5.6a)

Due to (5.1a) we may write this as a (k, e)-inner product on the circle.
Now, while J, as an operator on S acts on the transform kernel, K, is

self-adjoint in L § ¢,(S;) so

(Ko Cr, e (0, 73 )%, Pie = B Cr (0, 7 -)"‘,Jg)k,8 (5.6b)

for arbitrary ]a in this space. A sufficient condition for this to hold are the
set of partial differential equations

Ko (#)Cy e (0, r; 9)* = I, (0, N)C e (0, r;9)* (5.6¢)

which are the Mello-Moshinsky equations for the oscillator systems. Of
the three equations, two are algebraically independent. The K, are all
first-order differential operators [c.f. (4.1)], while out of the J, we have
second-order ones (a=0, 1, +), first order («=2) and zeroth order
(= — ). The latter is the first-order ordinary differential equation
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a4

[ (1 +cos ¢))(~1’d¢

i 1
o) tiksing — 507 1C; (o, r:)* =0 . (5.7a)
whose solution is of the general from

Crc(o,r:9)* = Kexp[i® (e k, ar?/2.0) ] rV? cos 2 %d) emee
. I 2 I
X explizor® tan 5 ¢) . (5.7b)

The normalization coefficient K> 0 is (4m) V2 for L 2(S,). but is more
difficult to determine for the other L(zk’i:)(Sl ) spaces. Most important,
there is a nontrivial phase function (e, k, 0 r? /2, 0) which must be
determined from an equation (5.6¢) for another a# —. In [30] for the
nonexceptional continuous series, we chose this second equation for a= 0,
expressing the kernel as the Fourier series in (5.2a) and adjusting the phase
of the Fourier coefficients WX £ (o, r) to follow Bargmann’s convention.
The singularity of the equation (5.6d) at ¢ = 7 must be paid special at-
tention, and it should be borne in mind that the kernel is not to be mul-
tivalued in ¢. The final result in (5.2), obtained here through the alterna-
tive generating-function method, indeed solves (5.6d) and manifestly
keeps track of the correct normalization and phase for all representation
serics.

[t is interesting to note that the Mello-Moshinsky equation (5.6) for
a=0 is formally the time-dependent Schrodinger equation for the system
with hamiltonian J,. One solution is the Green’s function for that system,
which in turn is the (A, e)-canonical transform kernel ([40], Scc. 2)
Cif,(','f)(o. r;+1,0) of the SL(2, R) subgroup generated by J, and parame-
trized by time ¢. We have to be careful about the initial conditions, though.
Whereas the (k, ¢)-canonical transform kernel is built such that at ¢ =0 it
be § . 6(r —1'), the C-transform kernel to phase variables (5.2a), solution
to the Mello-Moshinsky equations, has no otherwise meaningful property
as a function of r at the point ¢ = 0, except that derived from the gener-
ating function (5.2) itself: that it behave as ~ "~ V2_[n the particular
case of the ordinary (y=0) harmonic oscillator, k= 1/4 and 3/4, the
transforms (5.5) correspond to initial conditions ~r° and r'. Except for
the point ¢ =0, thus, (5.5a) is proportional, as regards r-dependence to
the canonical transform kernel for the J,-generated elliptic orbit [S1]and
(5.5b) to a linear combination involving its 7-derivative.

The inversion of the C-transform (5.1)-(5.2) is
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F@) = ©11)@) = (G- 19), g

=tz

- Z lf der, E(Ur r; ¢)*T(O, r) 5 (58)
7 0

and the Parseval identity (5.1c) holds. Unitarity of the transform implies
the relations

(Ck, e (0, 23], G, o0’ s 7' -))k,g

= fd«» fd¢'szk,g(¢—¢') X G d0, 15 )*Cr. e (075 8')
A S,

= By,80 1) (5.92)
<Ck,€(' s * 7¢)5 Ck,g(' 5 ° ’¢,>S

B E .[ dr X G c(o,1;0)*Cc(0,7;0") =Ky (9, 0)* ., (5.9b)

g=+*1 ()

where K ¢ is the reproducing kernel in L (zk, ey(S1) given by (4.17). In the
Mello-Moshinsky approach, the unitarity conditions in r, (5.9b), fix the
normalization constant K in (5.7) but yield no information on the phase.
Morevover, the unitarity conditions in ¢, Eq. (5.9a), will fail unless the
proper inner product is taken with the in general nonlocal measure. The
ordinary [ %(S,) measure is correct for the nonexceptional continuous
series only. |

We would like to close this section with a comment on the way in which
the Moshinsky-Seligman ambiguity group [24-28] re-appears in our group-
theoretical framework. The group SL(2, R) has a Z_ -homotopy group,
i.e. it is infinitely connected. This fact is displayed upon expressing real
2 X 2 matrices in terms of pseudo-unitary ones ([391], 45 Sec. 3.4) as

1 O T ot G
= - 2\-1/2 : (5.10a)
cd ~f —i '(1 Lax pe® e/ \—i —i o

pEC IpI<1l, ¢ = ¢modNm , (5.10L)
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where N=1 for SO2, 1)=SL(2,R)/ Z,, N=2 for SL(2, R)=SU(1, 1)=
Sp(2, R), N= 4 for the metaplectic group Mp(2, R) which covers Sp(2, R)
twice, and N = for the universal covering group SL(2, R). When the
spectrum of J, modulo unity is M / N (M and N relatively prime integers)
the representation is single-valued for a group G such that G /SO(2, 1) = Z,,.
For the harmonic oscillator +v / r? potential systems, the time-evolution
canonical transform kernel (Green’s function) is [40] Cgif)(r, 0) along a
line parametrized by ¢ and given by (5.10a) with p =0, with the same
multivaluation properties in ¢ as the C-transform kernel to phase variables
(5.2), which as remarked above, differs from the former only in the initial
conditions. For all ¢ =Kw, K integer, C;f(;) (r,0) is a phase multiple
exp(2miK / N) of the unit operator, and this characterizes the motion as
cyclic. It is a ‘weak’ type of cyclicity, however, meant in the sense of
having a non-unity phase for K # N.

Time inversion, the normal subgroup of the ambiguity group, is de-
scribed through the outer automorphism of SL(2, R) given by ([39], Egs.
(9.16) and (9.21))

a b P a —b
< >—_>( > ie. p—p* o—> -4, OV
—C d/,

which effects J, & —J,,a=0, 1, and J, & J,, and thus inter twines the
D{ and D, representations (inverting the spectrum of J,), leaving in-
variant the Cf representations. Since Moshinsky and Seligman identify the
action with the absolute value of the position operator ([27], Egs. (3.4)),
t is an element of the D_ ambiguity group. In the present paper, the ambi-
guity group does not play a role as central as it does in the Moshinsky-
Seligman approach: it only describes the origin of the apparent multi-
valuation in ¢ of the C-transform integral kernel (5.2), and does not
include the time-reversal operation ¢ in (5.11) which would invert the
spectrum.

VI. THE PURE v/r? -POTENTIAL SYSTEMS

The realization (4.1) of 51(2, R) suits the harmonic-oscillator since the
elliptic operator (4.1a), K,, is the operator expressed as a single derivative.
We shall obtain a similar form for the parabolic operator K, corresponding
through J, to the pure centrifugal/centripetal potential. In the D,f series,
the generalized spectrum of this operator is R*, and is R for C¢. This can
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be manifestly seen in the form or? / 2 for J_ in (3.5¢), and the latter is
obtained through rotation from J,.
Indeed, a change of variables in (4.1) given analytically by

i 1 +e°
3 g i

ip — = ;
= £+i P ¢®

= —cot3g, 6.1)

and a further similarity transformation of the algebra generators and Hil-
bert space

L, = UpeK U , =0,1,2; (6.2a)

-k (1
E2+1) <S+i> 1%

(U, cNE) = Up, e (1)
= Isin 2 Preicof(Ee)) . (6.2b)

yields the s/(2, R) realization equivalent to the former one in (4.1) suited
to our purpose. Explicitly, it gives

L, = —i% (fz “f'l)?;i—E — ikE (6.3a)
Lo=iz (@ —l)é’g +ikE (6.3b)
T
L, = —if d ik , (6.3¢)
L =L, +L, = 4
e (6.3d)
L =L,—L, = it ;—E 2ikk | (6.3¢)

where L, in (6.3d) has the required form. This realization exponentiates
to the conformal action of SL(2, R) on the line with a unitarity-preserving
multiplier [52].

The same transformation (6.1)-(6.2) applied to the functions in the
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inner product (4.11) tells us that (6.3) belong to a definite SAIR (k, €) in
a Hilbert space L(k E)(R) This is defined by an inner product ( * )(”
given in terms of ( * , * )g, the ordinary [ *(R)-inner product of (* )(0
the inner product on the circle as

o

L OP = (URf Uit ee)® = (7.6
= (f, Uk cURle )5, = (F» Ty b
- f d f dE'T, (& E)FEEE) | (6.42)

where functions of ¢ € S| transform to functions of £ € R as
&) = (U, . NE = U, (O 6(5) . (6.4b)

The metric operator Ty o = U ;l’ ;Qk, Uy 'e has for its kernel
T g = B L) G 67 66) - 6 ) U @)

= 2 1VE* =1 g2 k-1fE—0 E+iye
AE D 0 (g B

o) -0y (E—i E +i
NI CORAGH _<§Ti éii ’ (6.40)

where Qk. o depending on the angles ¢, ¢' through expli(¢ — ¢')] replaces
this arcument as shown. In particular, for the nonexceptional continuous
series (4.14c¢), Tk A8 8 = 76(2 £') and the inner product (6.4a) be-
comes local, so L(k ey (R)= L*(R) in this case.

In L(k E)(R) tms+ —id / chré is self-adjoint and has a simple generalized
spectrum covering R~ for Dy, the usual R for the local inner product for
the nonexceptional C¥ series, and also for the nonlocal LXLLpthHd] series
inner product. In ([ 79] Egs. (A.6)-(A.7)) we showed for the Dk series
that this inner product is identical to Gel’fand’s local inner product in the
complex upper half-plane ([52], Vol. 5, Chapter VII), as will be shown
below.
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The quantum canonical transformation to pure centrifugal/centripetal
phase variables is thus shown to be, from (5.1) and (6.4), the.integral
transform

flo,r) = (Dg e f N0, 1) = (D e (o, ri)* YL
- f «’éf dET (5 Wy (0. 1B ) . (6.50)
with integral kernel given in terms of (5.2)

Dy (0, r:8) = U e ()*Cy e (0, 71 0(8) ) . (6.5b)

which may be further particularized to (5.3) or (5.4). We note that. when
C,\,. < depends on ei® (6.1) is used. and sgn ¢ = sgn &. The transformation
is obviously such that

DieLly =J3uDge. a=0,1,2, +.— . (6.5¢)

The inverse transform follows from (5.8) and is written

f®) = DTFHE) = Dy o (.8 g - 6.6)

The unitarity conditions (5.9) are similarly verified with the appropiate
reproducing kernel in L ¢ (R).

Although we will not rederive the kernel (6.5b) as a generating function
as done for the D,: series in ([29], Sec. 2.¢), it is worthwhile to look at the
information contained in such a construction. In the D} series the general-
ized eigenfunctions of J,, Eq. (3.5d), are basically Bessel functions of order
2k — 1 in the variable pr (1401, Eq. (3.1)) corresponding to eigenvaluc
p € R*. The generalized eigenfunctions of L,. Eq. (6.3d). are ~ explipé]
again for eigenvalues p € R*. Finally. the transform kernel (6.5b) is the
generating function built as the product of these two cigenfunction sets
(the second complex conjugate) integrated over p, i.e. the Fourier trans-
form of the former in p. Now, Fourier transforms of functions with sup-
port on R* are entire analytic functions in the lower complex g-half-plane,
and there its growth is bounded by a decreasing exponential ([47], Sec.
7.4.2), and hence so is the transform kernel in the D case. The Dy, series
kernel will be analytic in the upper £é-half-planc. The functions in the space
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L& &)(R) are Uy ~transforms (6.4b) of functions in L% (S, ). which we
remarked are boundary values of analytic functions on the disc z = {ef®
¢ <1. The change of variables (6.1). setting e/® =z, maps the disc 1z <1
onto the half-plane Im £>> 0. The space L ¢, (R) for the D SAIR series
consists hence of entire analytic functions in the upper half-planc, with
growth bounded by a decrcasing exponential in Im &, as in Gel'fand’s con-
struction |52] quoted above. For the Dy series anlogous remarks apply
underz © —z, §© &

In the C£ SAIR series, the cigenfunctions of J, arc expressible as cylin-
der 'or Whittaker functions of complex areument ([401 Eq. (4.2)), with
cigenvalues p € R. The C-transform kernel to phasce variables will be the
complete Fourier transform of these functions ~ explipél. since the L,
cigenfunctions arc again the Fouricr kernel functions for p € R.

The main difficulty in both the direct generating-function method for
deriving the canonical transform kernel to phase variables, as well as for
the Mello-Moshinsky differential-cquation method to the same purpose, is
a problem of correct choice of phases. The former method has no way of
assuring what the p-dependent phase factors for the J, and for the K,
cigenfunctions may be so that they are consistent with the rest of the al-
gcbra, ie. that D, K, =1, D; . for the a# + indices as well. This pre-
caution was not taken in ([29], Sec. 2.B) since the phase liberty may only
rotate the s/(2, R) algebra (3.1) around the o= + parabolic axis, and such
cquivalences were deemed unimportant there. The Mello-Moshinsky dif-
ferential equation (5.6) with C— D for a= + is the Schrodinger equation
for the hamiltonian (3.5d). It gives the solution up to a multiplicative,
complex constant, as indicated in (5.6)-(6.7). A second equation (say, for
a=2) yiclds the phase and, lastly, unitarity (5.9b) must be brought into
the picture to fix the absolute value of the constant. Unitarity (5.9a) under
integration on £ is not present, and does not hold (except for the nonex-
ceptional C2) unless the appropiate nonlocal or Gel’fand measures are used.

The phase problems secem to be the least severe when we follow the
eenerating-function method for the J, and K, cigenfunctions, as done in
the last section, and then implement the similarity transform U, ¢. The
explicit results for the oscillator case are. following their discussion in
(5.5).

D, (r:§) = 27V2g™3%e7V2exp(ir? | 2¢) , (6.7a)

D,(r;§) = 5 n3%rg ¥ 2explirt | 2§) , (6.7b)

9| =
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where for § <0 we must take arg § = —7 since, as we mentioned above,
the transform kernel Dy (0. r: §)is an analytic function in the lower com-
plex &-half-planc. The Mello-Moshinsky differential equation for a= + is
the free-particle Schrodinger equation and has (6.7) for its solutions: (6.7a)
is the Green's function for time £ and (6.7b) its r-derivative, or its Green’s
function for odd solutions. However, being a parabolic differential equa-
tion, it does not specify the phase of £ when § <0. Moreover, while the
Schrodinger Green’s function (6.7a) is unitary under integration over con-
figuration spacc (the r variable), and yields a Dirac 6 in the time variable £,
no unitarity property is ascribed to this function under time é-integration.
This situation is analogous to heat diffusion, which is not unitary for time
translations under the [ %-inner product, but may be made unitary if a
nonlocal inner product, or local product over the complex plane, is pro-
posed [53]. Here.the unitarity in the phase variable £ is obtained under the
nonlocal inner product (6.4) and the results of Scct. V, especially (5.5a).

VII. THE REPULSIVE OSCILLATOR + v /r?
POTENTIAL CASE

We now scarch for a realization of s/(2, R) where the hamiltonian 2J,
in (3.5b) is mapped to the simple translation operator —id / dn. The re-
quired change of variables is between ¢ € S, and a pair of real lines {7, 7}
€Z, XRwherer€ [-1.+1}landn €ER

; | —iren 1 + ie'®
¢ = I'—,T . Tl = ——— (7.1)
1 +ite” 1 — iel®

Here 7=+1 for the half-circle 1¢/<w/2 and 7=-1 for l¢|>m/2;
¢—(m/2) ismappedonn—=> —°°, 7=%*1 and¢ > (-7 / 2) onn = + oo,
7= *1. We define a similarity transform V, . given by

M, = Vi K Vi, (7.2a)

«

(Vi, Nxm) = Ve, Az, n)

1 +ire”

5 e"+i\e | _
= sechfn <i—>t fr.n) = lcospl¥e “¥fGi n(e)) . (72b)
whereupon we obtain the s/(2, R) algebra in the realization

M, = it(cosh nd—‘{n + ksinhn) | (7.3a)



TRANSIFORMATIONS IN QUANTUM OSCILLATOR SYSTI MS 325

; d R
M, dn (7.3b)
M, = i7(€inhn—d*+kcoshn) (7.3¢)
Z ’ dn ‘ ) :

as well as My which can be obtained from them. but are not of particular
interest here.

We define the Hilbert spaces L ,(Z, X R) through the inner product
(*. ) under which (7.3) are sclf-adjoint. This is obtained from the
results in Sect. 1V, and appears as

(0)

1 o o
(fg)l(\lu = (V/\gf V/Hg) = (/.2

1 —q% —i 1 ! 1
= A Ve Qp e Vi e 8)g, = F Py 8)

z, XR
I ‘”’ZJ dn'dg  (romir ') [ (n () . (T4a)
r=+*1 T= +] =
Here again (+ . )%, is the inner product of Sect. V. (* )¢ the

L2(S, »inner product, and (*.*), , , is the ordinary [ (R Hnnu
1 /: X R
product of two-component functions. As in last section,

1

flron) = (Vy .?)(T» ) = Vi (s, n)]o'(d>(7, n)) (7.4b)

arc the transformed function on Z, X R, and the metric operator
P =Velo Qo VI hasforits kernelin L (Z, X R)

de(r, m) d¢(r n')
dn dn’

P (1, m7, ) = Vi o(r,m)7'*

X Q. c(o(r,n) —¢'(7'.n'))  Vie(r.m)!

1 —ire" 1 +it'en )

= 717" sech! "k;z'
e — i Tel +i

_ s n +.r)n'
| —ite™ 1 lT(’>. (7.4¢)

1 +ire™ 1 —it'e"

X g<exp {ilo(r, ) — ¢'(', 7]} =
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The cases (4.13) and (4.14) for the discrete and continuous series give
corresponding Hilbert spaces whose inner product is in general nonlocal
over Z, X R; in particular for the nonexceptional continuous series
by (.7’ n') =8 8(n—m') so in this case L{ ¢ (Z, XR)=
L*(R) + L*(R).

The differentiation operator M, in (7.3b) has R for its generalized spec-
trum in Dy, and twice R in C£ In the latter case it is easy to see that the
generalized eigenfunctions of M, are ~ expliAn ] with cigenvalue A, once

for 7=+ 1, and once for v = —1, so cach cigenvalue is doubly degenerate.
In D the spectrum of M, is nondegenerate, however, and hence a rela-
tion should exist between the + =+1 and 7= —1 valucs of the cigenfunc-

tion. In order to find this recall that for Df, L § ¢, (S,) is the space of
boundary values of analytic functions in the unit disc z = ¢ef?, & <1. If
we replace in (7.1) z for ¢i® and em for 7 en. n will be an analytic function
of z where the unit disc Iz <1 is mapped onto the strip 0> Im n> 7,
the right-half circle | w1 <s /2 onto the real line corresponding to 7 = +1,
and the left half-circle 191> 7/ 2 onto the line R — im, corresponding to

7= —1. The spaces Lf,\.. )(Z2 X R) for D must consist thus of analytic
functions in that strip, and hence f(7= —1.n)=f(r=+1.n —im). In
particular, the generalized M, cigenbasis functions are ¢/M for 7= +1 and
e AmeiAn for + = 1, with no multiplicity.

Finally, the quantum canonical transformation to the phase variables of
the repulsive oscillator + v / r* potential system is found from (5.1) and
(7.4) to be the integral transform

o r) = (B N0.7) = (B (o, , )% L

= 1
= Zj dn'®; (1. n;7,0') E(o,r; 7, 0)f (7, 7') . (7.52)

T=11
with kernel
Ep c(o,rimon) = Vi (1, )*C (0, rid(7,m) ) (7.5b)
obtained from (5.2). It is such that
Er, M, = JoEge . (7.5¢)

and its inverse follows as
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1

flrm) = (EL F)r.n) = (Eg o (-.-:m.n). g . (7.0)

The unitarity conditions (5.9) arc verified, and we can make the same
remarks as we did in the last section following (6.6). The generating-func-
tion approach is here more difficult since the cigenfunctions of J, are given
in terms of Whittaker functions of the first kind along the imaginary axis
([40] Eqgs. (3.4) for D} and (4.4) for C}). The analiticity propertics of the
transform kernel in the strip 0 <Imn <7 arc hidden here. However, a
slightly different realization of s/(2, R). related to (7.3) by a rotation of
7 /2 around the M axis. puts M, into a —id / dn form which is morc
amenable to the construction of a generating function. This is so since the
J, generalized cigenbasis is the Mellin transform kernel ~ ¢ V4% 2% (1401
Eq. (3.3) for D,:T and (4.3) for C5). The Fourier transform (i.ce. integration
with e " over ) of the latter should yield (7.5b). Again, however, the
phase problem is serious and one should adjust a A-dependent phase to the
integral transform (7.5a) so as to map the two other generators of the al-
gebra appropiately.

For the ordinary repulsive oscillator (y = 0) we may follow (5.5), (7.1)
and (7.5b) to write

E r;m.n) = 7% "2 e \ ir? ze" |
e + 1 PN e+ ) (7.7a)

) q34 n/2 3/2 ir2 ze — |
E,(r.7,m) = 2V2 <—(—— Fexp l—:— =1 (7.7b)

e + 1 = 7" + 1

We note that in these expressions the terms in brackets reduce to hyper-
bolic functions sech or —csch, tanh or coth inn / 2, according to whether
7=+1 or —1. This substitution would make the phase of the first paren-
thesis indeterminate for 7= 1, n> 0. Keeping the term 7 7 explicit and
following the analiticity arguments above tells us that we should take
functions of n analytic in the stip 0 <Im n <m and hence the phase of
7=—1is taken as e* ™,

The results of this section can be derived from those of last scction
through the change of variables

soll A
(,n = m E = I_(__]. " (78)

B =1 ° e — |

and a similarity transformation replacing V. o in (7.2) by Wy . =
V, - Ul where
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Weotrnm = |3 [V —re™™ 17 = 1211k . (19)
In particular, the Mello-Moshinsky differential equation method meets
with the same normalization and phase difficulties. Indeed, it was with the
aim of surmounting thesc mostly technical problems that we chose the
harmonic oscillator phase-variable casc to develop the canonical transform
intertwining kernel as a generating function, in Sect. V. In retrospect, we
see that the phase problems for the D series are not serious —witness Eq.
(5.3)— and only for the generally unphysical continuous series C¢ is extra
care required.
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Hlavaty is visiting IMAS under CONACYT contract ICCBCHIE 790373.

APPENDIX
GENERATING SERIES FOR WHITTAKER FUNCTIONS

Generating series for Whittaker functions of the type

Z Amwm+8,k—1/2(r2)zm (A.1)

meZz

seem to be absent form the better-known tables of special functions [54 ]
except for the cases € =k, #(1 — k), where the Whittaker function re-
duces to an expression in terms of Laguerre polynomials ([41], Egs.
13.1.33 and 13.6.27)

Weam, ko120%) = GO m 1 r™ o= 12 LEEDG2) L (A2)

The case € =1 — k in 1/2 <k <1 follows from (A.2) setting k < | — k
and, since (2k — 1)< —(2k — 1,)recalling that W#‘ 5 Y= W‘u’_K (x).
(Lf;;‘) (x) is defined for & > —1). The generating function for the Laguerre
polynomials is well known ([40], Eq. 22.9.15):

oo

wm+k,k—1/2(r2)zm 2k -2k P2 1—2
mZ:O Tm + 1) =y (1+z)2exp<—7 1+z_>

,zI<1 . (A3)
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This relation leads to the canonical transform kernel to phase variables for
the lower-bound discrete series ([29], Eq. (2.32)).

We shall find here a generating series for the more genceral case (A1)
where ¢ is free, the summation extends over all m € Z and z is evaluated
on the unit circle for z =¢® . In fact for k, r? fixed and g = the asymp-
totic behaviour of the Whittaker function is ([41], Egs. 13.1.33-13.5.16):

PV, L0 AT 20+ 1/4) cos(mu — 2rpt'?) (A.4)

k -

We may expect summability only if 4,, <[I'm+ ¢ +1/4)]17" . This
much is assured by the form of (5.2). Due to the presence of an infinite
set of negative powers in the serics, however, the series may converge only
for points on the unit circle.

An integral representation of the Whittaker functions may be found in

(1481, Eq. 3.718.6, 64 Sect. 6.11.2, Eq. (13)),

W_u.:(vﬂ)/ 2(’.2)
O +u+v/2)

Iof EXpwfs 1 I 1
=7l2 do cos”§6 cos(fr2 tan 507;10) . (A5)

0

This integral has the restrictions 2> 0and u+v /2% 1, -2, ... Itis
also restricted to Re »> —1 due to the behaviour 6" of the first cosine
factor at 0 =(m — &), 8 > 0% the second cosine factor oscillates with
period ~ & ! there, and summation over u =m + ¢ Will produce sign can-
cellations in the neighborhood of 6 = 7. We may thus surmise that (A.S)
can be manipulated formally and set v = —2k. We next note that since the
integrand in (A.5) is even in 0, we may double the integration interval to
(—m, m): a similar (null) integral with the second cosine factor replaced by
a sine, times —, summed with (A.S) yields

wu,k—l/z(rz)
I'(1+ k4w

-\ 2k T i
= 717; (%) f db cos"zkl—e expli %rztun i—@)e”'“e . (A.6)

Writing now u=m + ¢, the left hand side is displayed as the mth Fourier
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coefficient of the factor of e ¥™? in the integrand, i.e. we have the gener-
ating function
3
wm +€, k—1/2(r ) _imo

mez T(1—k+m+¢e)

1
:(ir)zk TIEP o5 2 %d)exp(i%ﬁtan%d))

] ) 2 ] _ Ll
— 2k Jip(k-€) ip -2k 11—
re [1 4] exp ( 3 l +ei¢) , (A.7)

which is used in (5.2) to compute the canonical transform kernel to phase
variables. When ¢ =k, Eq. (A.7) reduces to a sum of nonnegative-m terms,
and reproduces neatly the generating function of the Laguerre polyno-
mials, Eq. (A.7) for z = ¢/?.

As (A.3), (A.7) exhibits an essential singularity in z=¢'® at ¢ = *m,
(z= —1). For € ¥ k, moreover, a multivaluated factor el® ~ €) appears;
our derivation, however, makes it clear that it is the segment (—m, m) con-
taining ¢ =0 which must be considered. This has to be borne in mind
when we inquire into the generating function needed in the text of section
V. which requires a sum of the type (A.7) with a extra factor (—1)". and
which is a simple translate @ = ¢ * 7 of the left-hand. side.

In the right-hand side this “‘sheet-preserving” translation of multivalued
functions on the two open half-circles ¢ € (—m, 0) U (0, 7)is F(¢) = F(¢ —
7 sgn ¢) so that the value of the former at # — 6§ and at —7# + 86 (6 > 0*)
becomes the value of the latter at —6and +06, respectively. Hence
tan ¢/2 - —cot ¢/2, but cos ¢/2 = Isin ¢/2 | (this factor is positive
over the circle), and e 7® > expl—ie(¢ — 7 sgn ¢)].

When the functions are of bounded variation we may asign the value at
the midpoint of the discontinuity —if any—as is the case with Fourier
series due to the Dirichlet theorem ([47], Sec. 4.2). With the extra factor
(—1)™ (A.7) thus becomes

(1 Win e, k-1 %)
'l —k+m+ ¢)

im ¢

meZ

- (%,) * exp(—ie[¢ — wsgng]) | sin%(bl—zkexp(—f %rzcot%w

2 . / 3 i®
= rKexpli[k — e]ld — wsgng])(1 — e®) Fexp (zL %‘%).(A'S)

For € = k this agrees again with (A.3) after the transformation z - —z.
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RESUMEN*

Consideramos el problema de encontrar la transformacion unitaria que entrelaza un operador
hamiltoniano cuantico autoadjunto 1/2 P? + V(Q) en espacios de funciones del tipo [* con una
funcion de peso local, a su forma de variable fase — i d/d¢, autoadjunto en un scgundo espacio de
Hilbert. I'sto puede hacerse en ¢l contexto del algebra de Heisenberg-Weyl solo para cl caso de
caida libre. Dentro del algebra sI(2, R) pucden considerarse potenciales V(Q) = Q° + yQ * para
toda vy real correspondiente a osciladores armdnicos o repulsivos, o una particula libre con barrera
centrifuga o pozo centripeto. Este tratamicnto agota la clase de hamiltonianos para los cudles
¢l problema dec transformaciones canonicas cudnticas a variables fase puede ser resuelto enteramen-
te dentro del marco de la teoria de grupos. Los resultados concuerdan con aquellos obtenidos de
las ecuaciones dec Mello-Moshinsky, excepto que los espectros estan conjuntados automadticamente
a través de la (en general no local) medida en ¢l scgundo cspacio de Hilbert. El presente trata-
miento no requiere. por lo tanto, la introduccion del grupo de ambigiiedad de Moshinsky-Seligman.
'l algebra sl(2, R) reemplaza cl espacio de fase cuantico asociado al algebra de Heisenberg-Weyl.
Ademas, examinamos en detalle un conjunto de potenciales singulares —aquéllos que incluyen un
fuerte pozo centripeto— donde ¢l hamiltoniano tienc una familia uniparamétrica de extensiones
autodajuntas, y donde los espectros discretos no son ni tnicos ni acotados por debajo. Finalmente
encontramos un conjunto de nucvas relaciones generadores para funciones de Whittaker.

* Traducido del inglés por la Redaccion.



