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1. INTRODUCTION 

The complete classification of the Unitary Irreducible 
representations (UIRs) of the three-dimensional Lorentz 
group SO(2, 1) and of its twofold covering group SL(2, R ) 
were given by Bargmann in his classic 1947 article,1 where 
one can find the UIR matrix elements-rows and columns 
classified by the UIRs of the compact subgroup SO(2)-in 

L2 

explicit form. This group, its covering groups SO(2, 1)~ 

1 00 ----

SUr 1, 1)~Sp(2, R );:::; SL(2, R ) ~ SL(2, R ) and its represen-

tations were further studied by Barut and Fronsdal,2 Pu­
kanski/ Sally, 1r.,4 and in a book by Lang.5 

The study of group representations in different bases is 
of interest both from the mathematical and the physical 
point of view. The intimate connections between the repre­
sentations of Lie groups and the special functions of math­
ematical physics have long been recognized and treated in 
textbooks.6 In physics, subgroup reductions corresponding 
to different bases of the Lorentz and other groups lead to 
various ways to correlate or interpret data, as in the descrip­
tion of the high-energy scattering dynamics,7 which requires 
the reduction SO(2, 1):J SOt 1, 1) among others. This interest 
coincided with the investigations ofMukunda,R-11 Barut,2.12 
Lindblad and Nagel, 13 and others, who analyzed this chain 
in some detail and computed the generalized representation 
matrices (or integral kernels) of one-parameter subgroups 
and found the coupling coefficients. 

In the study of the role of canonical transformations in 
quantum mechanics, the work of Moshinsky and 
Quesne l4.15 started from linear transformations between co­
ordinate and momentum observables and lead to the oscilla­
tor (metaplectic) representation ofSp(2, R ). In contrast to the 
realizations given by Bargmann 1 and by Gel'fand et ai., 16 in 
which the group acts as a Lie transformation group on func­
tions of a coset manifold, the group actions in the construc­
tions of Moshinsky, 14.15.17 Seligman, Wolf, IR-23 Burdet, Per­
rin and Perroud,24 and present in the work of others, 25-27 is 
an integral transform realization ofSL(2, R ) on y2(R ) Hil­
bert spaces. This group of integral transforms has been 
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called canonical transforms. IX.2X It is unique in that the asso­
ciated Lie algebra is an algebra of second-order differential 
operators on a dense common domain in these Hilbert 
spaces. The action is thus distinct from-although unitarily 
equivalent20.2 1 to-the SL(2, R) action as a Lie transforma­
tion group on coset spaces, of the Lie-Bargmann multiplier 
representations29 on the unit circle or disk. 

The canonical transform realization has provided a de­
gree of uniformity in the treatment of the discrete series l

'! of 
UIRs on the one hand and the continuous series21 of UIRs 
on the other. In this article it has enabled us to evaluate, in a 
straightforward and unified way, the UIR matrix elements 
and integral kernels of finite SL(2, R ) elements. In contrast 
with some of the previous investigations, this approach deals 
with the general SL(2, R ) group element, rather than with 
specific one-parameter subgroups. Although Bargmann's 
results on UIRs ofSL(2, R ) in the compact subgroup basis30 

are well known, it is also true that other continuous noncom­
pact and mixed-basis reductions have so far not received 
uniform consideration2.9.lo.12,31-13 and are scattered in the 
literature. The discrete series ofUIRs in all subgroup reduc­
tions was undertaken by Boyer and W 01(,4 using canonical 
transforms. We repeat their results here since the journal is 
not generally available and the article contains some errata. 
The mixed-basis matrix elements of the continuous series 
were treated by Kalnins,31 who gave expressions for one­
parameter subgroups in terms of Whittaker and Laguerre 
functions of the second kind. 35 All our expressions are given 
in terms of confluent and Gauss hypergeometric functions, 
and have uniformity of notation, normalization, and phase 
conventions. The purpose of this paper is to give a compre­
hensive derivation and listing of all subgroup reductions. 

The plan of the article is as follows. In Sec. 2 we display 
the needed formulas from the theory of canonical transforms 
for the general method of construction and, since we want to 
describe all VIR matrix elements and integral kernels, we 
organize the notation properly in due accordance with Barg­
mann's conventions. In Sec. 3 and 4 we give the results for 
the discrete and continuous (nonexceptional and exception­
al) representation series. The first subsection of each lists the 
subgroup-adapted basis functions, the second treats the 
mixed-basis expressions, while the third subsection treats 
the subgroup reductions, i.e., the cases when the row and 
column variables refer to the same subgroup. These are ex-
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pressed as Gauss or confluent hypergeometric functions 
and, alternatively, as cylinder and Whittaker functions3o

•
37 

of the three independent SL(2, R ) parameters. Certain cases 
of interest are pointed out in a further subsection. Compari­
son with alternative derivations available in the literature is 
pointed out whenever we are aware of such results. 

The representation matrix elements for the compact 
subgroup chain were obtained by Bargmann as solutions to 
differential equations38 with boundary conditions imposed 
by the group identity. We come to the evaluation of an inte­
gral as the last step to the same end. We make use of a meth­
od by Majumdar and Basu32 on hypergeometric series Mel­
lin expansions to solve three of the six chains in each series. 
In the special case of the continuous series in the compact 
subgroup reduction, such an integral (a Gaussian of imagi­
nary width times two Whittaker functions, one with a res­
caled argument) is not available in the literature. Through 
Bargmann's result this is evaluated. 

In Sec. 5 we point out that the six different mixed-basis 
and subgroup-reduced representation matrix elements con­
stitute six families of SL(2, R ) integral and discrete trans­
forms, as well as series expansions, of which the set of ca­
nonical transforms is but one. The Appendix summarizes 
some information about the groups SU(1, 1), SL(2, R ), and 
their UIRs as classified by Bargmann. Throughout this arti­
cle Z and R stand for the set of integers and real numbers. 
Boldfaced symbols indicate vectors or matrices. For brevity, 
we shall speak ofUIR matrix elements encompassing both 
the ordinary and generalized (i.e., integral transform kernel) 
cases. 

As a general observation, we should remark that the 
canonical transform realization ofSL(2, R ) can be regarded 
as a complementary alternative to Bargmann's treatment of 
the same group. The latter is simpler in certain respects, 
particularly when dealing with the compact subgroup chain, 
while the former seems to be most appropriate for noncom­
pact subgroup chains. 

2. CANONICAL TRANSFORMS 

A. The construction of SL(2, R) representations 

The determination of representation matrices (or inte­
gral kernels) for group elementsgEG may proceed as follows: 
Provided (i) one has a Hilbert space JY of functionsj(r), r in 
some carrier space X, endowed with a sesquilinear positive 
definite inner product h')' where the action of G is well de­
fined and onto, 

(2.1) 

(ii) one has a complete orthonormal, or generalized Dirac­
orthonormal basis for JY, I ifJ). (r) l)'EA (A being the range of 
the label specifying the basis vectors uniquely), one can build 
a representation D: G_HomA as 

(2.2a) 

(2.2b) 

The completeness of the (possibly generalized) basis function 
set will then guarantee the representation property 
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where the symbol SA 'EA stands for summation in the case of 
proper, and integration in the case of generalized, bases, The 
unitarity and irreducibility properties ofD follow from simi­
lar requirements for the action (2.1) on JY. 

The reasons for which this straightforward program of­
ten fails to provide a definite result have to do more with 
knowing the "best" choice of basis functions! ifJ). (r) l AEA and 
the problem of explicit computation of the integral in (2.2b), 
than with matters of principle. The bases are usually chosen 
as the eigenvectors of one or more operators in the Lie alge­
bra-so that subgroup reductions result-while the space 
JY' is an !f 2(X) space on a coset manifold X = G / H (or 
H \. G) with some convenient subgroup He G. A closely re­
lated approach to part (ii) of evaluation of (2.2b) calls for 
(ii') finding these functions for various one-parameter 
subgroups of G as solutions of differential equations ob­
tained from the subgroup generators, subject to the bound­
ary conditions D(e) = 1 at the group identity eEG. 

The group G which we consider here is SL(2, R ): 

{g = e !)la,b,c,dER, det g = I}. (2.3) 

Starting with Bargmann I a number of authors have imple­
mented the program (i)-(ii) or (i)-(ii'), using for the support­
ing space X the coset space provided by the I wasawa decom­
position NA \.NAK = SI (i,e., the circle) and Bargmann's 
multiplier action. 29 This is unitary in !f2(SI) for the continu­
ous non exceptional representation series29

; for the continu­
ous exceptional and discrete series it is 'y 2

n c(SI) and 
y2 n o(Sd with non local measures39.40 n C and n D, The lat­
ter is equivalent20 to a space of analytic functions on the unit 
disk29 or on the complex half-plane. 10 These realizations are 
very appropriate for finding the SL(2, R ) representation ma­
trices reduced with respect to the compact SO(2) subgroup, 
since, the ensuing analysis makes use of Fourier series on 
y 2(S I) for UIRs belonging to the continuous class, or Hardy 
spaces for those belonging to the discrete series. 39 When one 
makes use of the same action and spaces for the reduction 
under a noncompact subgroup, calculations become 
awkward. 

The Hilbert spaces and SL(2, R ) action we use in this 
article have been developed in Refs, 9, 15, 19,21, and 22 for 
Sp(2, R )=SL(2, R ), as well as the oscillator representa­
tion 14,18 ofSp(2N, R ) on an N-dimensional carrier spaceR N. 

As we shall see in implementing part (ii) of the program out­
lined above, these techniques are best suited for noncom pact 
subgroup reduction. 

B. The discrete series Df 

The oscillator representation of the subgroup 
SO(2) X SL(2, R ) ofSp(4, R ), restricted to a given one-dimen­
sional UIR M ofSO(2), MEZ, generates the conjugate SL(2, 
R) representation 15,19.22.27 belonging to the discrete series 
D t with k = (1 + 1M I )/2. When the two-dimensional car­
rier space R 2 is parametrized in polar coordinates, this repre­
sentation is realized as an integral transform group on the 
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radial variable rER + and defines the k-radial canonical 
transform on the Hilbert space o?2(R +). The inner product 
is thus the standard one, 

(f, h ) = LX> dr f(r)*h (r), (2.4) 

and the action of the group element g is given by 

[e~ l1(r) = i= dr'C;(r, r'if(r'), g = e !), (2.5a) 

where the integral kernel C; (r, r') is given by an imaginary 
Gaussian times a Bessel function: 

C;(r, r') 

= e- i"kb -1(rr')1/2 exp(i[dr + ar'2]/2b ).12k _ I (rr'lb), 
(2.5b) 

2k - 1 = 0,1,2, ... , i.e., k =~, 1,~, 2, .... (2.5c) 

When g is a lower-triangular matrix (b = 0) one finds from 
the asymptotic properties of the Bessel function41 that Eq. 
(2.5a) becomes the multiplier action 

[ek G a~ I)f ](r) = (sgn a)2k lal- 1/2 exp(icr/2a)f(r/lal)· 

(2.5d) 

We shall write ek (g) for e; whenever g is displayed as a 
matrix. The k-canonical transform (2.5) is unitary under the 
inner product (2.4) and a Parseval relation (f, h ) 

= (e;f, e;h) holds. 
The Lie generators of e; are second-order differential 

operators42 given by 

(2.6a) 

=-- r-+1 J y i (d ) 
2 2 dr 2' 

(2.6b) 

J y 1 ( d 2 r ') 
0 =- - -+-+r 

4 dr r2 ' 
(2.6c) 

on a space dense in 12(R +), and r is related to k through 

r = (2k - 1)2 -1, (2.7) 

so that r = - 1, ~, ¥, .... These generators close into a Lie 
algebra sl(2, R ) under commutation. We shall also come to 
use 

(2.8a) 

(2.8b) 

The Casimir invariant of sl(2, R ) is a multiple of the identity: 

Q = (Jff + (Jrl2 - (Jl{f = qt, (2.9a) 

q = - 1r + t; = k (1 - k ), (2.9b) 

i.e., q = 1, 0, -~, - 2, .... 
The association of (2.6)-(2.8) with the one-parameter sub­
groups of SL(2, R ) is as follows 

exp(iaJI)>-+MI(a) 

(
cosh al2 

- - sinh al2 
- sinh a/2) 
cosh a/2 ESO(I, 1)1' 
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(2.lOa) 

(
COS( r/2) 

exp(irJo)t--+Mo(r) = sin( r/2) 

exp(~ 12))ESO(I, lho 
(2.lOb) 

- sin( r/2)) 
cos( r/2) ESO(2)o, 

(2.1Oc) 

(2.lOd) 

(2.lOe) 

All nonequivalent one-parameter subgroups ofSL(2, R ) are 
present in (2.10): the compact rotation elliptic subgroup 
SO(2), the noncompact Euclidean parabolic subgroup E(I), 
and the boost hyperbolic subgroup SO(I, 1). For the latter 
two we have the following equivalence relations between the 
equivalent pairs (2. lOa)-(2. lOb) and (2.lOd)-(2.lOe): 

S = 2- 1/2C - 1) 
1 ' (2.11a) 

( 0 1) . 
F= -1 0 =S-2.(2.11b) 

The spectrum of J I{ in (2.6c) for r>~ in y2(R +) has a lower 
bound given by its corresponding k> 1. (For k = ! or 
r = - ! this is also the case for the self-adjoint extension 
specified in Sec. 3) The k-radial canonical transforms (2.5) 
thus belong to the lower-bound UIRs D k+ of SL(2, R ). 

The UIRs D k- are obtained from the D k+ ones through 
the sl(2, R ) outer automorphism43 

JI{<c->- - JI{, 1\ <c->- - Jf, JI<c->-Jr, J\ <c->- - JY± . 
(2.12a) 

This exchanges the raising and lowering operators with a 
change of sign: 

(2.12b) 

The automorphism acts on the SL(2, R ) group elements44 as 

-b) =g1 d . (2.12c) 

The D k- matrix elements can be thus expressed in terms of 
the corresponding D t ones, as will be detailed for the var­
ious subgroup reductions, at the end of the next section. 

C. The continuous nonexceptional series C; 

The oscillator representation ofSp(4, R ) can also be re­
duced with respect to an O( 1, 1) X SL(2, R ) subgroup 11.21.22 
by making use of hyperbolic coordinates on the plane. The 
resulting reduction, on being restricted to a definite 
UIR (p, 2s) of 0(1, 1),p = ± 1, sER, yields a conjugate re­
duction of SL(2, R ) to one of the continuous series of UIRs 
C:. The case of vector (e = 0) and spinor (e = !) representa­
tions correspond to even (p = + 1) and odd( p = - 1) par­
ity representations ofO( 1, 1) with q = l + S2>!. Since hyper­
bolic coordinates require two coordinate patches to cover 
the plane, the "hyperbolic radial" carrier space will be 
X = R + + R + and the Hilbert space correspondingly atwo­
component y2 space of functions 
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fir) = (/1(r) ) = 1I.I;(r)ll, j = I, - I, .I;(r)E2"2(R +). 
I-I(r) 

(2.13) 

The inner product in this Hilbert space 2";1 (R +) 
= y2(R +) +- 2"2(R +) will be 

(f, h) = j=~ I fX> dr .I;(r)*h;!r). (2.14) 

Calling k = ! + is, this reduction leads to the (E, k )-hyper­
bolic canonical transform 

[C~,k f]j(r) = j';± I f" dr' [C~k]j,j'(r,r').I;.(r'), (2.ISa) 

The 2 X 2 matrix integral kernel C:,k(r, r') is given by a Gaus­
sian times Hankel and Macdonald functions of imaginary 
index. For 2k - 1 = 2is, sER,po = I,P1/2 = - I, we can 
write45 

[C~,k L. (r, r') = GgJJ' (r, r')H jf( - rr'lb ), (2.ISb) 

G. (r, r') = (21Tlb 1)-I(rr') 1/2exp(i[djr + aj'r'2]12b), 
gJJ (2.1Sc) 

H~',7(s) = P.H'!I, _ I (s) = p.Hr',7( - s) = Hr:: -k(S) 

= i1T[e -1rsH~li~(S + iO+) - p.e1T'H~~~(s - iO+)] 

= 2i1T( - sgnS)2'[ - gl/2 _ ,(k )J2I,(ls I) 
+ i g,(k )Y2i' (Is I)]. (2,ISd) 

Hr'," i (s) = p.H·'\ds) = p,H~:k_ I ( - s) = p.Hr:i_-/(s) 

= 4( - sgnS f'g.(k )K2i,(ls I), (2.1Se) 

{
k - ~ = is, 

€= 0: -
k - ~ = a, 

s;;.o . {COSh 1TS 
, go(k) = sm 1Tk = . o < a < ~ cos 1Ta 

- (2.1 Sf) 

E = ~: k - ! = is, S> 0, g I o(k ) = icos1Tk = sinh1Ts, 
(2.1Sg) 

In the last two equations we are defining the function g, (k ) 
for values of k which will make it applicable to the exception­
al continuous series discussed in the next subsection. Note 
that for S < 0, arg(s ± iO+) = ± 1T, so (2.1 Sd) valuates H ~ii~ 
above the branch cut of the function (placed along the nega­
tive real half-axis), and H ~~I, is valuated below the cut. 

When gin Eq. (2.3) is lower-triangular (b = 0), as for the 
oscillator radial case (2,5), one finds from the asymptotic 
properties of the cylinder functions that Eq. (2.1 Sa) becomes 
the multiplier action 

[I[;" C aa~ 1) f](r) = (sgn a)2·l a l-1/ 2exp(ijcr/2a).I;(rllal)· 

} (2.ISh) 

The (E, k i-hyperbolic canonical transform is unitary under 
(2.14), and a corresponding Parseval relation holds. 

Here too, the Lie generators of the integral transform 
action are second-order differential operators, but arranged 
in 2 X 2 matrix form. In terms of the formal operators (2.6) 
they are i 1,2 i 

192 

(
Jr 

JY -
1- 0 

(
Ji 

JY -
2 - 0 

o ) = IljtS.JrJl, 
J 1" JJ 

- 1 

0) = IltS.Jrll, JY JJ 
2 
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(2.16a) 

(2,16b) 

o ) = II jtSjJ'JI; II, 
-JI; 

o ) = II jtS.J 1'+ II. _ JY }J_ 
± 

(2.16c) 

(2,16d) 

Again y is related to k through (2.7), but now as k is in the 
range (2.ISf) and (2.ISg) [instead of (2.Scll, we have y<. - a. 
As the subgroup assignments (2.10) are representation-inde­
pendent statements, they continue to hold here as well. The 
Casimir invariant ofSL(2, R ) is now q;;.1, corresponding to 
the continuous nonexceptional series ofUIRs. The one point 
we must clarify in this regard (See the Appendix) is that for 
spinor representations (E = !) the hyperbolic canonical 
transforms (2.15) do not include the point k = ! (i.e., s = 0 or 
q = !). Indeed, from (2.ISe) we can verify that for k = ! + is, 
s-+O+ the off-diagonal kernel elements (j=ff) vanish and 
hence the two j-component spaces uncouple. The diagonal 
elements are now -Jo(s), that is, they are the D 1;;2 (k = ~)­
radial canonical transform kernel for the upper component, 
and the D 1/2 one for the lower component, as is clearly sug­
gested by (2.12a)-(2.16). 

D. The continuous exceptional series c:; 
The oscillator representation of Sp(4, R ) does not con­

tain the exceptional continuous representation series of any 
of its SL(2, R ) subgroups. However, there exist unique self­
adjoint extensions46 of the generators (2.16) in Yil (R +), 
which enable us to reach this series by analytic continuation 
in the variable k in (2.ISf) to values off k = !. in the range 

~ < k < 1 (i.e., 0 < 2k - 1 = 2a < I), fort = 0 (P. = 1). 
- (2.17) 

For these UIRs -! <y <~, i.e., 0 <q <i. 
The features one must check are that the integral ker­

nels corresponding to these values of k continue to map 
fil (R +) functions into functions in the same space, and 
that the representation property (2.2c) holds. That this is the 
case follows from the integrability properties of cylinder 
functions in the range ( - 1. 1) of the index, in particular 
their behavior at zero and infinity, and from the complete­
ness relations for the similarly extended basis functions, to 
be seen in Sec. 4. 

Again, as for the € =!, k = ! + is, s-+O+ case seen 
above, when € = 0 and k-l - the integral kernel matrix 
(2.13) becomes diagonal and the twoj components uncouple. 
In the limit, the upper and lower-diagonal components be­
come proportional to J 1(s), and belong to the D 1+ and D 1-

representations. 
We have assembled in the last subsections the tools for 

the calculation of the matrix elements ofSL(2, R ) in point (i) 
of our program. In the next two sections we shall implement 
point (ii) for the discrete and continuous UIRs. 

E. Notation 

A word about notation: we shall use the eigenbases of 
J 1 a = 0 1 2 + - generating the discrete UIRs D ,,' . 
Vv': denot~ tl~ei~ eig~nfu~ctions by "CP ~ (r), A being a function 
of the eigenvalue. When J;; is in the elliptic orbit (a = 0) the 

D. Basu and K. 8. Wolf 192 

Downloaded 28 Jun 2011 to 132.248.33.126. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



eigenvalue set of JI;' is discrete and we shall denote its eigen­
valuesA by m. The range will be understood by the context. 
When J~ is in the hyperbolic orbit (a = 1,2) or in the para­
bolic orbit (a = +, -), its eigenvalue set is continuous. In 
the first case A will be denoted by IlER, the eigenvalue under 
J \.2 being Il. In the second case A will be called pER +, the 
eigenvalues of J Y± beingp2/2. Eigenbases for the D k- UIRs 
will not be needed separately. In the continuous series C; 
the eigenbases of J ~ will be similarly denoted by a\fl~.k(r), 
these are two-component functions with elements al/l~'J, 
j = I, - 1. We use m again for A, the eigenvalue underJ!;'. 
The multiplicity of the eigenvalues of the generators in the 
hyperbolic and parabolic orbits is now doubled, however. 
For the former we use for A the pair (K, Il), K = ± I, IlER, 
and for the latter (sgn p, Ipl) = p,pER, the eigenvalues being 
again Il and p2/2 under the respective J Y's. 

The representations D(g) constructed in (2.2) have their 
matrix elements 

".{3D k (g)_(Gcpk Ck{3cpk)_ [{3.GDk (g-I)]* 
A,A' - A ,~ A' - A ',A , 

(2.18a) 

G,{3 D "k (g) _ (G\fI,.k C"k (3 \fI"k) _ [{3,G D "k (g - I)] * 
A,A' - A' II A' - A ',A , 

(2.18b) 

in the appropriate inner product. When a = f3 we write aD .. 
for G.a D.. . The cases a i= f3 and a = f3 in (2.18) will be called 
mixed-basis and subgroup-reduced UIR matrix elements. 
We shall work mostly with the D k+ UIRs and use (2.18a). In 
Sec. 3D, when we express the D k- UIRs in terms of the D t 
ones, we shall writeD ~ I - I andD ~ I + I to distinguish be­
tween them. 

3. THE DISCRETE SERIES Of 

In this section we present the evaluation of the matrix 
elements (or integral kernels) of finite SL(2, R) transforma­
tions for the UIRs belonging to the discrete series D k± • The 
first subsection gives the E(I), SO(I, I), and SO(2) subgroup­
adapted eigenfunctions, while the second and third subsec­
tions provide the explicit evaluation of D t mixed-basis and 
subgroup-reduced cases respectively. The last subsection re­
lates these results to those of the D k- representations. 

A. The subgroup-adapted eigenfunctions 

i. E (1) C SL (2, R ). The two operators generating conjugate 
E( 1) subgroups [c.r. Eqs. (2.lOd) and (2.lOe)] are, as given by 
(2.8a), and (2.8b),JY+ andJY_ . They are unitarily equivalent 
through the Hankel transform (2.11 b). 

The eigenfunctions of JY+ in Sf2(R +) are, for 
r = (2k - 1)2 -!, 
+</>~(r)=eirrk(pr)1/2J2k_l(pr), pER+, k=!,I,~, ... , 

(3.1) 

with eigenvaluep2/2ER +. The phase has been chosen so that 
the phase of the -cp ~ functions, below, be as simple as 
possible. 

A more convenient operator in the E( I) orbit is J ~ , as 
its eigenfunctions are simply 

-CPp(r)=D(p-r) = [c; +</>~](r), rER+, (3.2a) 
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with eigenvalue p2 /2. These are Dirac-orthonormal and 
complete: 

(-CPp' -CPp') = D(p - p'), 

(3.2b) 

andindependentofk. 

ii. SO (I, 1) CSL (2, R ). Here again we have two operators 
generating conjugate SO(I, 1) subgroups [c.f. Eqs. (2. lOa) 
and (2. lOb) and (2.lla)]: Jf and JI, as given by (2.Sa) and 
(2.Sb). The latter is the simpler one, and its eigenfunctions 
are 

with eigenvalue Il. They are Dirac-orthonormal and 
complete: 

(3.3a) 

ecp 1" 2cp 1'.) = D(p. -Il'), f: 00 dll 2</> I' (r)* 2</> I' (r') = 6(r - r/j, 

(3.3b) 

and independent of k. The expansion in terms of them is-up 
to a factor-the positive Mellin transformation,47 so an ap­
propriate phase choice has been made. 

The J f Dirac-normalized eigenfunctions may be found 
from (3.3a) and (2.11a) to be 

ICP;(r) = [c~ 2CPl' ](r) 
= Ckeirrk12r-'/2M.. (- ir) 

I' II'.k -- 112 

= C k rlk - 1/2eir/2 F [k - ill. _ ir] (3.4a) 
I' I I 2k' , 

C; = eirrk/22ill1T-1/2errll12r(k + ill)/r(2k). (3.4b) 

and where M., (.) is one of the Whittaker functions.48 They 
correspond to eigenvaluell under Jf, and are Dirac-orthon­
ormal and complete as in (3.3b). 

iii. SO (2)CSL (2,R ). The compact SO(2) subgroup is generat­
ed by J I;' as given in Eq. (2.6c). Its normalized eigenfunctions 
are given by 

0cp ~ (r) = [2n!/(2k + n _ l)l]'/2r k - l12e - r/2L ~k - II(r) 

= [2(2k + n - 1)!/nl(2k - l)l]'12r -'/2M m ,k_'12(r) 
= [2(2k + n - 1)!/nl]'/2[(2k - l)l]-lr k - 1/2e - r12 

X IFI[2~n;r], 
m = k + n, n = 0, 1, 2, ... (3.Sa) 

with eigenvalue m = k, k + 1, .... The phase of these func­
tions has been chosen following Bargmann's convention,49 
namely, such that the raising and lowering operators 
J f ± iJ r have real, positive, matrix elements. They are orth­
onormal and complete (dense) in Sf2(R +): 

(oCP ~, oCP~. ) = 15 m,m', f o</> ~ (r)* 0cp ~ (r') = 6(r - r/). 
m=k 

(3.Sb) 

B. The mixed-basis matrix elements 

i.E(I)CSL (2,R PSO(2).ForallgESL(2,R )wemayperform 
the Iwasawa decomposition 
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o ) (COS () /2 
ii - I sin () 12 

- sin () 12) 
cos () 12 ' 

(3.6a) 

where 

ei8 = (a - ib )I(a + ib), ii = (a2 + b 2)1/2, ii c = ae + bd. 
(3.6b) 

Application of C; decomposed as above, multiplies the J 1; 
eigenfunction by eim8, followed subsequently by a multiplier 
Lie transformation, Eq. (2.5d). Thus 

[C; o(/> ~ ](r) = [(a - ib )I(a + ib )]m(a2 + b 2)-1/4 

xexp(ir[ae + bd ]!2[a2 + b 2]) 

X°(/> ~(r/[a2 + b 2]112). (3.7) 

Since the J Y_ eigenfunctions are simple Dirac deltas, we 
immediately obtain 

-.OD~m(: !) = (-(/>p, CkG !) o(/>~) 
= [Ck

(: !)o(/>~](p)= +'OD~m(~a :b) 

= [0. -D ~p ( ~ e ~ b) ]* 
= (a - ib )m [ 2r (k + m) ] 1/2 (a2 + b 2) - k 

a + ib (m - k )! r (2k ) 

Xp2k -[ 1/2 e( xp( -k p; ~; :~]) 
- m-) p 

X IFI 2k ; a2 + b 2 . 
(3.8) 

The overlap coefficient between the E(1)_ and SO(2)0 
subgroup chains is obtained by setting g = 1, i.e., a = 1 = d, 
b = 0 = e in Eq. (3.8). This is o(/> ~ (p), i.e., this change of 
basis is basically the Laguerre series expansion of functions 
of peR +. 

ii. SO(I, I)CSL (2, R ):JSO(2). This mixed basis element is 
essentially the Mellin transform ofEq. (3.8), and is given bysO 

2,oD k (a b) 
I'm e d 

= (2(/> 1" C
k 

G !) 04) ~ ) 

(
2- 1/2(a-e) 2-1/2(b_d)) _ 1,0D k 

- I'm 2-1/2(a+e) 2-1/2(b+d) 

=2k il'[ r(k+m) ]112 r(k-Ijt) 
217'(m - k)! r(2k) 

X (a + ib ) - m(a - ib t - k + il'(d _ ie) - k + il' 

[ 
- (m - k ), k - ljt 2 ] 

X 2FI ; ------
2k (a - ib )(d - ie) 

= ( - l)m - k2m - il'[217'(m - k )!r(k + mll - 1/2r(m - iii) 

X (a + ib ) - m(a - ib )il'(d _ ie) - m + il' 

X 2FI [ - (m 1- k), 1 -. k - m ; Ha _ ib)(d _ Ie)]. 
- m + Iii 

(3.9) 

In all power-function factors, the principal branch of this 
function is to be taken in an obvious way. The hypergeome-
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tric function is a polynomial of degree m - k = n so no mul­
tivaluation problems occur on its account. 

The overlap coefficient between these two chains in the 
discrete series is obtained by setting g = 1. Using an identity 
for the hypergeometric functionS I we find 
(2(/> o(/> k ) = 2,oD k (1) 

Ii.' m J-lm 

= ( _ l)m - k 2k - il' T(m - iii) 
[217'(m - k )!r(k + m)] 1/2 

X F [ - (m - k ), k + Ijt. _ 1] (3. lOa) 
1 I 1 + . , . -m Iii 

Correspondingly 

(I(/> k o(/> k ) 
lJ.' m 

= 2,oD k (2 - I/l( 1 1)) = e - im1T12(2(/> o</> k ) 
I,m _ 1 1 I' , m , 

(3. lOb) 

which may be compared with prior results. 52 

iii.E (I)CSL (2,R ) :JSO (1,1). TheapplicationofC; t0 2(/>ll in 
Eq. (3.3a) is up to a factor the Mellin transform of the k­
canonical transform kernel (2.5b) with respect to the second 
argument r'. Although integrals of this type appear in the 
standard tables,53 if we want to have expressions valid for all 
group parameters, positive as well as negative, care must be 
taken to choose the appropriate parameter products and ra­
tios so that the ensuing complex power function be evaluated 
in a definite way: We choose here the principal sheet (with 
the branch cut along the negative real axis). Following the 
general method of finding the Mellin transforms of hyper­
geometric functions due to Majumdar and Basu,39 which 
will be explained in some detail in the next section, we find 
the value of the integral to be 

-,lD ~I' e !)= ( -</>P' C
k e !) 2</>1' ) = [Ck 

(: !) 24)1' liP) 

= e- i11'k2 - k + il'17'-1/2 r(k + Ijt) 
r(2k) 

X b - 2k ( _ ial b ) - k - il' 

Xp2k - 1/2 exp(idpl/2b ) 

X F [k + iii. - ip2 ] (3.11) 
1 I 2k ' 2ab . 

The complex-power function argument - ialb lies, for all 
signs of a and b on the imaginary axis. 54 Valuation on the 
principal sheet means that the phase of - ialb is - 17'12 for 
sgnab = 1 and 17'/2 for sgnab = - 1. 

The overlap coefficient between these two chains may 
be obtained as the limit g-+1 in Eq. (3.11), or directly, as 

(- (/>P' 2(/>1') = -,2D ~I' (1) = 17'- 1/2p - 1/2 + 2il', (3.12) 

which is47 21/2 times the positive Mellin transform kernel, of 
argument 21i, between a function of peR + and its transform 
function of lieR. 

c. The matrix elements in the subgroup bases 

i. E (1) C SL (2, R ). In this generalized basis the integral kernel 
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is the simplest to obtain, as no integrations need be 
performed: 

_ k (a b) (_ k (a b) _ ) k (a b) , D pp' cd = if>p'C cd if>p' =C cd (p,p) 

= e - hrkb -!(pp')! /2exp(i[dp2 + ap'2]!2b ).12k _ I (pp'/b) 
= 2(2ib) - 2k [F(2k)] -I /Pp')2k - 112 

[
2k - 1 2in'P'] 

Xexp(i[dp2 - 2pp' + ap'2]!2b) IF! 4k _ ~; -~- . 

(3.13) 

For gEE( 1), the subgroup generated by JY_ [c.f. Eq. (2.lOe)], 
the kernel becomes diagonal. In fact, it is diagonal for the 
two-parameter subgroup generated by the first-order differ­
ential operators, for which (2.13) converges weakly to 

- D ~p' (: a~ I) = (sgn a)2k lal- 1I2 

X exp(icp2/2a)o( p' - p/la I). (3.14) 

From this form it is manifest that - D ~p' (1) = o( P - p'), the 
unit operator in 'y2(R +), while - D ~p' ( - 1) 
= ( - 1 )2kO( P - p'). The composition property is satisfied, 

i.e., Eq. (2.2c) under f R + dp .. , as under this measure the 
eigenbasis is Dirac-orthonormal and complete. 

The matrix elements between the J Y+ eigenfunctions 
can now be immediately computed: 

=-D k ,( d 
pp -b (3.15) 

The matrix elements (3.14) and (3.15) are manifestly unitary. 
This is a direct consequence of the unitarity of the canonical 
transforms. 

The E( 1) reduction shows in particular that the Bessel 
functions in + if> ~(r) are self-reciprocating55 under the k-ra­
dial canonical transforms,- i.e., the C; -transform of + if> ~ 
may be written as a multiplier function times a function of 
the transformed argument: 

[Ck 
(: !) + if> ~ ](r) 

= [Ck
(: a~!) exp( - iba-IJ~) +if>~ ](r) 

= lal- 1/2exp( - ibp2/2a)exp(icr/2a) +if>~(r/lal). 
(3.16) 

Here we have made use of the decomposition of g as a lower­
triangular matrix times M+(b fa) [c f. Eqs. (2.lOd) and 

2Dk (a b) -f"" d H2Dk (0 
".,,' c d - _ "" p. ".,," - 1 

1) 2 k (- c o D ,,".,,' a 

(2.lOe)]; the latter factor gives rise to the phase 
exp( - ibp2/2a) while the former is the point transformation 
as given by Eq. (2.5c). Similar self-reciprocation formulas 
hold for other subgroup-reduced matrix elements through­
out this article. 
ii.SO (1, I)CSL (2,R ). This matrix element56 is essentially the 
Mellin transform ofEq. (3.11) with respect to the argument 
p. Again, as the general method for evaluating Mellin trans­
forms of hyper geometric functions39 is presented in the next 
section, we simply quote here the result: 

2 D k ,(a b) = (2if> , Ck (a b) 2if> ,) 
"" cd "cd" 

= I D k ,((a - b - c + d )/2 (a + b - c - d )/2) 
"" (a - b + c - d )/2 (a + b + c + d )/2 

= e - i1Tk 2ilJl' -,,) F (k - ip.)F (k + ip.') 
21TF(2k) 

( 
_ ia ) - k - i,,' ( _ id ) - k + i" Xb -2k __ __ 
b b 

F [k - ip.,k + ip.' . _1_] 
X 2 ! 2k ' ad . (3.17) 

As in (3.11), we give this expression in terms of complex 
power functions, taking care that these variables be evaluat­
ed for points along the imaginary axis, in the principal sheet 
of the power functions, where the cut is chosen along the 
negative real half-axis. 57 An alternative expression in terms 
of the absolute values of a, b, and d may be written through 

b - 2k ( _ ia/ b ) - k - i,,' ( _ id I b ) - k + i,,' 

= (sgnb )2kexp(i!1T[k + ip.']sgnab) 

X exp(i!1T[k - ip.] sgnbd )Ial - k - i,,' 

XlblilJl'-")ldl- k + i". (3.18) 

One can obtain from these expressions the diagonal and anti­
diagonal cases 

2D;",(~ a~I)=(sgna)2klal-2i"o(JL_p.')' (3.19) 

2 k (0 1) 
D ",,' _ 1 0 
= e - i1Tk 2 - 2i" [F (k - ip.)/F (k + ip.) ]o(JL + p.') 

=exp i( - 1Tk - 2p.ln2 + 2arg[k - ip.])O(JL + p.'). (3.20) 

From (3.19) we verify that 2Dk( ± 1) = (± 1)2k 1, while 
(3.20) is the Fourier-Hankel transform in the Mellin basis. 
The representations are unitary in all cases. The direct evalu­
ation of (3.20) allows us to give alternative forms for (3.17) 
through 

= e - i1Tk2 - 2i"[F(k _ ip.)/F(k + ip.)] 2D k_ ,( - c 
"," a 

~d) 
-a). =e - i1Tk 22i

,,' [F (k + ip.')/F (k - ip.')] 2D;. _".(! 
-c 

(3.21) 

iii. SO (2)CSL (2,R ). This matrix element is the inner product ofEq. (3.7)with 0cp ~. The resulting integral in available from the 
tables. 58 It is 
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°D ~m-(: ~) = (0(1) ~, Ck 
(: ~) O(l)~.) 

= 22kF(m + m')[F(k + m)F(l - k + m)F(k + m')F(l - k + m')]-tl2 

X [(d - a) - i(b + c)]m-k [(a - d) - i(b + c)]m'~k [(a + d) + i(b - c)]-m-m' 

F [ 
- (m - k), - (m' - k). a2 + b 2 + c2 + d 2 + 2 ] 

X 2 I , 2 2 
1 - m - m' a + b + c2 + d 2 - 2 

= (- l)m-kF(m + m')[F(k + m)F(l - k + m)F(k + m')F(l - k + m')]1/2 

Xao - m - m'fJ m - kfJ Om' - k F [ - (m - k), - (m' - k) . EE]. 
2 I 1 _ m - m' , IfJI 2 

(3.22) 

In the last expression we have given the SL(2, R ) representa­
tion matrix elements in terms of the complex SUI 1, 1) param­
eters of Bargmann through (A3). The hypergeometric func­
tion appearing above is actually a polynomial of degree 
minim - k, m' - k). One also checks easily that 
°nk 

( ± 1) = ( ± 1 )2k 1 and that the representation matrix is 
unitary. 

The expression (3.22) for the UIR matrix elements gives 
the value of the group unit at the point at infinity of the 
hypergeometric function. We can bring59 (3.22) to coincide 
with the form given by Bargmann,60 which values the group 
unit at the zero of the hypergeometric function, taking care 
to distinguish the cases m;;.m' from m<m'. 

D. The Dk- representations 

The discrete representation series D k- is obtained from 
theD k+ series through the group automorphism (2.12c), i.e., 
nk ( - J(g) = nk ( + J(gA ). The basis functions a(l) ~ (r) are now to 
be taken as eigenfunctions of the algebra generators ifaJ~, 
whereifa = -Ifora=O, 1, +, - andifa = Ifora=2, 
with eigenvalue if a times the eigenvalue of the J ~ represen­
tation generator. In addition, for the SO(2) subgroup chain, if 
we are to follow Bargmann's phase convention49 of having 
the raising and lowering operators represented by matrices 
with positive elements, (2.12b) implies that the phase of the 
basis functions 0(1) ~ (r) must be mUltiplied by a sign factor 
r;; = ( - I)m - k [recall (3.5b)). For convenience we set r:; 
= 1 for all other a #0. We can then write all D k- mixed-

basis and subgroup-reduced matrix elements in terms of the 
D k+ expressions given above in this section as 

-b) 
d ' 

(3.23a) 
I 

{
I, 

(7'a = -1, 
a=2, +, -
a =0,1 

A { 1, a = 1,2, +, 
(3.23b) T -

a - (_ l)m -~ k, a = ° 
4. THE CONTINUOUS SERIES ~ 

In this section we follow the same general strategy in 
finding the unitary irreducible matrix elements (or integral 
kernels) corresponding to the continuous series C:. The dif­
ference is that here we use the hyperbolic canonical trans­
forms of Sec. 2e, rather than the radial ones employed 
above. The function space has now two components, the in­
ner product is given by Eq. (2.14), the group action by (2.15), 
and the subgroup generators by Eqs. (2.16). The noncompact 
subgroup generators J_ and J 2 ofE(1)_ and SO(I, 1b are 
just as simple as those in the last section-although their 
spectra are doubly degenerate. The eigenfunctions of J o and 
J 1 are in general less simple: linear combinations of the first 
and second solutions of the confluent hypergeometric differ­
ential equation. Although the J o eigenfunctions sum up to a 
Whittaker function,61 the J 1 eigenfunctions do not. 

A. The subgroup-adapted eigenfunctions 

i. E {l)CSL (2,R ). The simplest operator in the parabolic or­
bit, as for its discrete counterpart, is J _, given by (2.16c). Its 
generalized eigenfunctions are 

p;;'o 

~) -'III pi (r), p < 0, 

(4.1a) 

with eigenvalue (sgn p) p 2/2. The spectrum of J _ in the con­
tinuous series UIRs thus ranges over R, rather than over R + 

as in the discrete ones. In (4.1a) a definite choice of phase has 
been made. The set off unctions (4.1a) is Dirac-orthonormal 
and complete in 'ziI(R +): 

(4.Ib) 

From Eqs. (4.1a) and the hyperbolic inverse Fourier canonical transform [Eqs. (2.15) for F- 1 as given in (2.11 b)} we find 
the JY+ generalized eigenfunctions to be 

+ Ek _ (pr)1/2 r::~~1 ( -prj ) _ ((21T)-1IZ[e - i1l"/4WO.2k_ 1 (2ipr) + Peei1l"/4Wo.2k -1 ( - 2iPr)]) 
'lip (r) - -- k - 1/2 ' p;;'O, 

217' e_ 1.1 ( - prj (2/17') Pege(k) WO,2k _ 1 (2pr) 
(4.2a) 
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+\TIEk(r) = (I plr)1/2 ( H~~ - dpr) ) =p (0 1) +'IIEk (r) 0 
Tp 21T \HE~ 1,- dpr) E 1 0 Ipl' p<. , 

where the H;J(t) are given in (2.15d)-(2.15e). We have ex­
pressed the Hankel and Macdonald functions in terms of 
Whittaker functions61 of argument phase 0 and ± 1T/2. As 
in (4.1a), (4.2) correspond to the eigenvalue (sgn p) p2/2ER. 
Recall that for the continuous nonexceptional series 
2k - 1 = 2is, s;;;.O for E = 0 ands> 0 for E =~, while for the 
exceptional interval E = 0, 2k - 1 = 2(}", 0 < ()" < ~. 
ii.SO (1, I)CSL (2,R). The simplest operator in the hyperbol­
ic orbit is J 2, as given by (2. 16b). Notice that the signs of the 
entries are the same. The spectrum of J2 covers R once in 
'y2(R +), while that of J 2 does so twice in .YiI(R +). The 
normalized eigenfunctions 2'11 K,1l (r) thus require an extra di­
chotomic index K = ± 1, and are 

2'11K,Il(r) = (21T)-1/2C)r-I12+2ill, K = ± 1,J.lER, 

(4.3a) 

belonging to the eigenvalue J.l under J 2• The dichotomic in­
dex K has been introduced by Mukunda and Radhakrish­
nan II; it can be seen as the eigenvalue of 2'11 K,1l (r) under a 
transformation in .YidR +) given by A:!j(r)-! _j(r), which 
may be represented62 as 

The statement of Dirac orthonormality and completeness is 

(2'11K'Il' 2'11K'.Il') = oK,K'o(P - J.l'), 

K~ I f: 00 dJ.l2qtK,Il)r)* 2qtK,lll(r') = ojJ'o(r - r'). 

(4.3b) 

The eigenfunctions 1'II!:;(r) of Jr [Eq. (2.16a)], on the 
other hand, using (2.11a) are given by63 

I qt E.k .(r) K,Il,j 

= [C~k 2'11K,1l ]j(r) = ( - 1)2E(21T)-3/22ill + IgE(k) 

X [e - ijrrjk + W2{PE G ;,j(r) + G ~,j k(r)} 

+ Keijrrjk + W2{G ;,j(r) + G ~.j k(r)}], (4.4a) 

G Z,j(r) = r (1 - 2k)r (k + iJ.l)rk - leijr'/2 

X IFI(k - iJ.l; 2k; - ijr). 

They are obtained from Eqs. (4.17)-(4.18), below. 

(4.2b) 

(4.4b) 

iii. SO (2)CSL (2, R). For the continuous series C: ofUIRs 
belonging to the nonexceptional or exceptional series, the 
eigenfunctions of the compact generator 
J!; are given by 

DqiE,k(r) = gE(k) 
m 1Tr1/2 

X (( - l)m-E[2r(k - m)r(1 - k - m)]1/2Wm ,k_1/2(r)) 

[2r(k+m)r(l-k+m)]1/2W_ m ,k_1I2(r) . 

(4.5a) 

These eigenfunctions belong to the eigenvalue m under J!;. 
We have chosen the phase in accordance with Bargmann's 
convention,64 i.e., such that the raising and lowering opera­
tors have positive matrix elements, They are orthonormal 
and complete in Yil (R +): 

" OqtE,k.(r)* 0qtE,k, (r') = o,o(r - r'). L m.J m,l ).} (4.5b) 
mEZ 

B. The mixed-basis matrix elements 

i.E(I)CSL (2,R PSO (2). Application of(:::k decomposed as 
in (3.6) gives 

[CE,k DqiE,k](r) = (a - ib )m(a2 + b 2)-1/4 
K m j a + ib 

(
ijr[ac + bd]) xexp 
2[a2 + b 2] 

Xoqt~~j(r/[a2 + b 2]1/2). (4.6) 

This formula displays the Whittaker functions (4.5a) as self­
reciprocating under the corresponding hyperbolic canonical 
transforms.65 Since the J _ eigenfunctions are simple Dirac 
deltas, we obtain66 

( )m_E(a-ib)m gE(k) (p2[a-ibSgnp ][d-iCsgnp ]) = - sgnp -- exp 
a+ib 1Tlp11/2 2(a2+b 2) 

X r(1-2k) p [{ [ 
2r(k-m ) ]112 [ p2 ]k 

r(l-k-m p ) a2+b 2 

[
k - m p2]} ] X IFI p; 2 2 + {k++ 1 - k} , 

2k a +b 

mp = m sgnp. (4.7) 
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The overlap coefficient between the E(I)_ and SO(2)0 sub­
group chains is easily found from (4.7) for g = 1 and is 
°'l'~~sgnp (I pl). This change of basis thus represents basically 
the Whittaker series expansion (mE Z) of a function of pER. 

ii.SO(I,I)CSL (2,R ):JSO(2). The evaluation ofthis mixed­
basis matrix element will be given in some detail because the 
method presented here has been used to obtain all the matrix 
elements carrying SO(I, 1) reductions, both in the continu­
ous and in the discrete series in the last section, where its 
discussion was postponed. The method32 essentially consists 
of a Taylor expansion of [C~ OW~k ](r) followed by a Mellin­
Barnes transformation. 

The Taylor expansion of the Gaussian and ,F, func­
tions appearing in (4.7) [for I pl>---+r and sgn p>---+Jl yields, after 
an exchange of summations which allows us to recognize one 
of them as a 2F, series, 

[C~ OW~k]j (r) 

= (_ Jr-·(a - ~b)m g.(k) [2F(k _ jm)F(l _ k _ jm)] 1/2 
a + lb 1T 

X [X{ +X~ -k]' (4.8) 

where 

j _ ( qj)I12-
j
m ( r )112 X k - -- -

t lal 

00 (- l)nF(l _ 2k _ n)( _ q.,z)k - 112 + n XI J 
n=O n!F(l- k -jm - n) 

F [k - jm, 1 - k - jm. qj] 
X 2 1

1k
, ,1 + - , 

- -Jm - n t 
(4.9a) 

and where we are using the abbreviations from (3.6b) for a 
andc, and 

qj = - (1 - ija C)/2a--2, t - l/az, j = ± 1. (4.9b) 

The terms in the sum over n are now recognized as the resi­
dues,atz=zn= -k-n, -1+k-n,(n=O,I,2, ... )of 
the following meromorphic function: 

-.J 

2.0 D ,.k (a b) 
K.!J.;m e d = (2'1'K'!J.' CE.ke !) O'l'~k) 

(
2- 1/2(a - e) 2- '12(b - d)) 

= 1.0D E•k 

K.!J.;m 2-1/2(a+e) 2-1/2(b+d) 

X(z) = - -.!... _r_ ( _ q.,z) - 112 - z ( 
q. ) 112 - jm ( ) 112 

t lal J 

X F (k + z)F (1 - k + z) 
F(1 +z-jm) 

[
k- j m,l-k- j m. qj] 

X 2FI 1 . , 1 + - . 
+z-Jm t 

(4.10) 

Since for fixed {;, F (e) - I 2FI (a, b; e; (; ) is an entire function of 
the parameters, Xj(z) is a meromorphic function falling to 
zero rapidly as Izl- 00 in the region Re Z < 0. The singulari­
ties of Xj(z) are simple poles arising from the Gamma func­
tions in the factor F (k + z)F (1 - k + z) and are located at 
the points z = Zn' 

For the nonexceptional UIRs, k - ! is pure imaginary 
and the poles lie symmetrically with respect to the real axis. 
For the exceptional UIRs k is real, but no two pole pointszn 

are coincident. 
If we now choose a closed contour ~ consisting of the 

infinite semicircle .Y on the left, and the imaginary axis, we 
obtain 

1 f 00 -. dzX(z) = I Res[x(z)].= -k-n 
2m .(,' n =0 

+ ! Res [X (z)].= -I+k-n' (4.11) 
n=O 

The first and second terms on the right-hand side, by our 
previous analysis, are respectively equal to X{ and X~ _ k 

and hence the integral in (4.11) vanishes on .Y, as can be 
easily verified. We obtain 

X~ +X~ -k = _I_I'" dA x( - iA). (4.12) 
21T - '" 

This expression, replaced in (4.8), represents the solution of 
the problem of finding the integral of 2'1' K.!J. (r) with it, since 
the latter integral is essentially the Mellin transform of(4.8), 
integrated over r for the value - J-L; we note that (4.12) is 
expressed as an inverse Mellin transform of the coefficient 
(function of A ) of the r - 112 + 2i,.\ factor in (4.10). The value of 
this coefficient for Z = - J-L and summed over the two j com­
ponents will be the inner product O[2'1'K.!J. with (4.8). We thus 
obtain67 

= g.(k )1T- 312F(k - iJ-L)F(1 - k - iJ-L)(a + ib) - m - i!J.(a - ib r - i!J. 

"( .)m_EII-J1I2 [F(k-jm)F(I-k-Jm)]1/
2 

X ~ -J K 
j=±1 F(1-iJ-L-jm) 

X 2FI [k - iJ-L, .1 - ~ - iJ-L; !(a _ ijb )(d - ije)]. 
1 - 1J-L - Jm 

The overlap coefficient between these two chains68 in the continuous series is obtained by setting g = 1: 

[F(k -J'm)F(1 - k - Jm)] 1/2 
(2'1'K.!J.' OW~k) = gE(k )1T- 3/2F(k - iJ-L)F (1 - k - iJ-L) I (- j)m - 'KII -j1/2 ~-'----=---'----'----"--'-=--

j=±l F(I-iJ-L-jm) 

F [k - iJ-L, 1 - k - iJ-L. ] 
X 2 1 1 . . ,! . 

-1J-L - Jm 
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iii. E (I)CSL (2, R )-:JSO (1, 1). As in all cases involving E(I), the calculation here consists in applying C:·k on 2\11K.I" that is, 
performing the integral in 

[C:·k 2\11K.1' t(r) = L (00 dr'[C:·k]jJ"(r, r') 2tJ1K.l'l(r/), (4.15) 
l ~ ± 1 Jo 

of the kernel [C:· k ]j/ (r, r') with the Mellin basis function. We resort to the expansion of the hyperbolic canonical transform 
kernel in Taylor series and to the Mellin-Barnes contour deformation presented above. We obtain 

[C:·
k 

2\11 K.I' ]j(r) = A ::~'I'.j(r) + KB ::~'I'.j(r), 
where 

(4.16) 

A (a b)E.k r = K A ( - a b)E.k r = (sgnb )2EgE(k) ( - ia) - 112 - il'r1/2 ex (idr) 
Cd K'I'.I() PE c -d K'I'._I() (21T) 3/2 Ibl 2b p 2b 

X [PE{F(I - 2k )F(k + iJl )( ~b )k-1I2 IFI[k ;/Jl; ;::]} + {k++1 - k}], (4.17) 

(
a b)E.k _ ( - a b) _ (sgn b )2EgE(k) (~) - 112 - il' 1/2 (idr) 

B (r) - KPEB (r) - 3/2 r exp 
c d K.I'.1 C - d K.I'. - 1 (21T) Ib I 2b 2b 

X[{F(1-2k)F(k+iJl{ ;::r-l/\Fl[k;kiJl; ;::]} +{k++I-k}] 

(sgnb )2£+ IgE(k) ( ia ) - /fl ( ir ). . . = 3/2 - r- 1/2exp--[ad+bc] F(k+IJl)F(I-k+IJl)W_ il'k_1I2(-lrl2ab), 
(21T) 2b 4ab . 

which come, respectively, from the Mellin transforms of the 
on- and off-diagonal integral kernel elements. We remind 
the reader again that the complex power functions are to be 
evaluated inthe principal sheet. 

Since the E( 1) _ basis has simple Dirac deltas, we imme­
diately obtain69 

-.2D E•k (a b) 
P;K.I' C d ( _ Ek(a b) 2 ) = \lip, C· c d \IIK.I' 

(
a b)E.k (a b)E.k 

=A cd (Ipl) +B cd (Ipl)· 
K.I'.'gnp K.I' .• gnp (4.19) 

The overlap coefficient between these two chains may 
be obtained upon letting g-+l, or directly as 

( -\lip, 2\11 K.I') = 2 tJlK'I' .• gnp (I pi). (4.20) 

C. The matrix elements in the subgroup bases 

i. E (1) C SL (2, R ). The integral kernel representations of 
SL(2, R ) in this chain are given by the hyperbolic canonical 
transform integral kernel, which we may rewrite in terms of 
the confluent hypergeometric function as follows: 

-DE.k.(a b) = (-\II ,CE.k(a b)_\II.) 
P.Pcd P cd P 

= CE.k(a b) (I pi, Ip/I) 
c d .gnp •• gnp' 

= (sgnb )2PE (I + .gnp·)/2(1Tlb I )-lgE(k) 

X I pp/1 1/2exp(i[djp2 - 21]pp' + aj'p'2]12b) 

X [ {r (1 _ 2k) I ~ 12k - I 

F [2k - 112. 2iPP']} 
X I I 4k - l' 1]b 

(4.18) 
, ti / 
where 1] = 1 for sgnp = sgnp', and 1] = - i or sgnp # sgnp . 
In particular, for the b = 0 subgroup we have, as from Eqs. 
(2.15h), 

-DE.k.(a 0) 
p.p c a-I 

= (sgna)2k lal- 1/2exp(i(sgnp)cp2/2a)6(P' - p/la I). 
(4.22) 

In the E(2)+ reduction, as in (3.17), 

+ D E.k, (a b) = (+\IIE.k, CE.k (a b) + tJlE .. k) 
PoP cd P cd P 

= -DE.k.( d -a C). 
p.p -b (4.23) 

ii. SO (1, 1) CSL (2, R ). These matrix elements are essentially 
the Mellin transforms of (4.16)-(4.18), and can be obtained 
by the same technique32 of Taylor expansion and Mellin­
Barnes contour deformation. The Taylor expansion of, for 
example, the function (4.17) yields 

A(: !r k 

(r) 
K.I'. I 

( - sgnb )2EgE(k) ( - ir) - 112 - il' 1/2 
= (21T)3/2Ibl 2ab r [Yk +PEYI-k]' 

with 

Yk = exp(i1T[2k - l][a + P ]14) 
XF(I- 2k)F(k + iJl)lad 1112-k 

(4.24) 

X ~ (-1)" (_idr)-1/2+k+n F[-n,k+iJl._l_] 
n~o n! 2b 2 I 2k ' ad ' 

(4.25) 

where we denote for brevity a = sgn(ab ), P = sgn(bd). The 
terms in this series can be identified as the residues of the 

+ {k++1 - k J]. (4.21) meromorphic function 
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=r(k+Z)( -idr)-'/2-Z F [k+Z,k+if1,_l_] 
2b 2 1 2k ' ad 

(4,26) 

at the simple poles at Z = zn = - k - n. Through the same 
argument as in (4,9)-(4.12), we may express 

Yk =exp(i1r[2k-l][a+/3l/4)r(1-2k) 

Xr(k + if1)lad 1'/2-k_
1_foo dJ. vk( - iJ.), (4.27) 

21T - 00 

As before, the function V k (z) on the integration contour in 
(4.27) contains the kernel r - '/2 + 2i.<, so (4.27) is the inverse 
Mellin transform of the coefficient of that term in (4.26), The 
corresponding Mellin transform of B term (4.18) follows 
(4.24)-(4.27) with the same meromorphic function (4.26), but 
with different linear combination coefficients which origi­
nate from the corresponding coefficients in the two sum­
mands of(4.17) vs (4.18). We consequently find70 

2D"k (a b) 
K.I".K', 1"' e d 

= (2'11K'1" , C
k
(; !) 2'11K"I"') 

= ( - sgnb f'(21T)-2g,(k) 

X [('Tk + KK'p,'Tk-' + K'OK + KP,O k-')Tk 

+ (P,'T'_k +KK''T,-_\ +K'O'_k +Kp,O'-_'k)T'_k]' 
(4,28a) 

Tk = r(1 - 2k )F(k - if1)r(k + if1')lal- k - il l'12b lil/t' -I'l 

Id 1- k + il" F [k - if1, k + if1', _1_] (4,28b) 
2 , 2k ' ad ' 

'T k = exp(Q1T [ ( k + Iii J sgnab + (k - if1 J sgnbd ]), (4,28c) 

Ok = exp(i!1T[ - (k + if1' J sgnab + (k - if1 J sgnbd ]). 
(4,28d) 

Whereas in the discrete series we are able to express the 
2D function as a meromorphic function in b, - ialb, and 

o D "k ,(a b) = (OW"k C"k (a b) OW"~) 
m,m e d m' e d m 

- id Ib [c f. Eq, (3,19)] the corresponding continuous series 
functions do not have this property, and must be written in 
termsofpowersoflal, Ib I, and Id I, with phase factors (4,28c) 
and (4.28d). This stems from the corresponding lack ofmero­
morphicity of the hyperbolic canonical transform kernel 
(2.15d) and (2.15e), where the two Hankel functions are to be 
evaluated in the upper and lower half-planes, vis-a-vis the 
radial canonical transform kernel (2.5b), which is meromor­
phic in the group parameters. It has been pointed out be­
fore 21 that the continuous series UIRs cannot be subject to 
analytic continuation to a unitarizable representation of a 
subsemigroup of SL(2, C), such as may be done for the dis­
crete series. '9 

Finally, it is easy to verify that our result is consistent 
with the expected behavior near the identity, namely 

2D "k (a 
K.,t:K'.," 0 a~ ,) = (sgna)2'lal 2il"[)K,K.tj(p, - f1'), 

(4.29) 

which acts as a reproducing kernel when we sum over K and 
integrate over f1 as in (4.3b). The Fourier transform case is 

2D<k ,,( 0 0
1
) K·I';K I" _ 1 

= g,(lii) + Kg,(k) 2 - 2il" r(k - if1) [) ,[)(p, + ') 
p, sin(1T[k + Iii]) r(k + if1) K.p,K f1 , 

(4.30) 

Remarks similar to those made on Eq. (4.28) apply here. 
iii. SO (2) C SL (2, R ). This matrix element should be obtained 
in the same way as the discrete series case given in Eq. 
(3.25a), with the basis functions which are now 0'll~k(r) as 
given in (4.5a) [instead of the simpler ones 0<P: (r) in (3.5a)], 
and the inner product which is now the .Y;, (R +) given in 
(2.14) [in place of the y2(R +) inner product (2.4)]. The ap­
plication of the hyperbolic canonical transform C:· k to 
0'll~k(r) is the exact analog of (3.6)-(3.7), namely, these func­
tions are self-reciprocating65 under C~,k. We can thus write 

= [(a - ib )/(a + ib )]m'(a2 + b 2)-1/4j~~' L" dr °1Jl~~(r)* 

X exp(ir[ae + bd l/2[a2 + b 2]) °1Jl~~J(r/[a2 + b 2]1/2) 

= 22m'(m'!)-' [r(k + m)r(l - k + m)lr(k + m')r(l - k + m')]1/2 

X [(a + d) + i(b - e)] - m - m'[(a - d) + i(b + e)]m -- m' 

X 2F,(k-m', 1-k-m'; 1 +m-m'; -Ha2+b 2+e2+d 2-2]), m>m' 

= ( - l)m' - m22m(m!)-' [r(k + m')r(l - k + m')lr(k + m)r(l - k + m)]'/2 

X [(a + d) + i(b - e)] - m - m' [(a - d) - i(b + e)] m' - m 

X2F,(k-m,1-k-m;1+m'-m; _![a2+b 2+e2+d 2 _2]), m<.m' 

(4.31) 

The right-hand term has been taken from Bargmann's work,7' rewriting his phases and normalization constants, and using 
(A3) for the parameters. We have not been able to solve the integral in (4.31) directly: When we replace 0'll~k(r) from (4.5a), we 
are confronted with a solution ofa sum of two integrals whose integrands are each a product of two Whittaker functions, one 
of them with a rescaled argument, times an oscillating Gaussian function. This type of integral does not appear in the standard 
tables nor, apparently, does it yield easily to reduction to simpler forms. Bargmann's method of evaluation3K of (4.31) does not 
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make use of any explicit form of the basis functions 'V;k. Instead, the function ° D ;~m' (g) is shown to factorize into two 
exponentials of the first and third Euler angles, and the Bargmann-d function of the second Euler angle. The latter is subject to 
the differential relation stemming from (2.9) with J a expressed as operators on the group manifold. The condition ° D ;~m' (1) 
= 8 m.m' provides the normalization and boundary conditions. This line of reasoning applies to any operator realization of the 

group belonging to that representation and subgroup reduction. The result provided by Bargmann 71 thus evaluates (4.31) and 
gives the solution for the integral. We can set b = 0, a > 0, and r = x in thus writing72 

I Ir(~ + is - jm)r(~ + is - jn)1 fOO dx x- l exp(icxl2a)U)m.iS(X)U)n.is(xla2) 
j= ± I Jo 

( 
1T )222n Ir(~+is+m)l( + _I .)-m-n( -I+')m-n = -- - a a - lC a - a lC 

ge(k) n! r(!+is+n) 

X2FI(~+is-n,!-is-n;l+m-n; -Ha2+a-2+c2-2]), m>n 
(4.32) = 

( 
1T )22

2m I r (~ + is + n) I ( + -I ') - m - n( -I + . ) - m + n = -- - a a - lC a - a lC 
ge(k) m! r(!+is+m) 

X 2F I(!+is-m,!-is-m;l-m+n; -Ha2 +a-2+c2 -2]), m<n 

where E = Om for m, n integer (odd-half-integer), ge(k (s)) is 
given by (2.150 and (2.15g) and the range of s is, as above, 
s>O and s = - i(T, O<(T<! for E = O. 

D. The limits of continuous to discrete representations 

i. C !/2 _ D jJ2 -+- D tl2' At the end of Sec. 2C we noted that 
q~! 

the continuous series integral kernel [C!I2·k 1l (r, r'), for 
k =! + is, s-o+, uncoupled in the sense of having its off­
diagonal (ji=/) terms vanish. The hyperbolic canonical 
transform kernel becomes the direct sum of the D jJ2 radial 
canonical transform for the} = 1 component, and the D i/2 
one for the} = - 1 component. In terms ofthe E(I) repre­
sentation integral kernels, 

- D 1/2, 112 + is(g) _ 8 - D Il2lsgn p)(g) (4.33) 
p.p' s~. 'gnp,'gnp' I pI,I p'I ' 

as can be verified using (4.21) for the C !/2 representation, 
(2.5b) for the D jJ2' and (3.23) for the D 1/2 representations. 
The SO(2) C SL(2, R ) VIR matrices found by Bargmann fol­
low (4.33) (replacingp,p' by m, m', and - by 0). Indeed, 
after (4.7) we remarked that the E( 1) C SL(2, R )::> SO(2) over­
lap coefficient in the continuous series is 0'i' ;~Sgnp (I pi). From 
its functional form (4.5a) we can see that 

0'i' J~~ 112 + is(r) _ r - 11204> :';2(r), 
s~+ 

(4. 34a) 

01/1112.112 + is(r) _ 0 m = 1 + n n = 0, 1,2, .... (4. 34b) 
}m. - J 5--0+' 2:' 

The continuous series VIR in the SO(2) basis thus also 
separates in block-diagonal form into the D iJ2 and D i/2 
representations: 

0D 112. 112 + is(g) 8 ,oD 112Isg~m)(g) 
m,m' s~, sgnm,sgnm Iml.lm I . (4.35) 

The SOt 1,1) subgroup-reduced integral kernels do sepa­
rate, although not in block-diagonal form as in the former 
cases. The E( 1) C SL(2, R )::> SOt 1,1) overlap coefficient in the 
continuous series (4.20) for g = 1 are, in terms of those of the 
discrete series (3.14), 
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(-'I1p ' 2'11 K, /l) = 2'i'k. /l,sgnp (J pI) 

{
2- 1/2

(-4>IPI,24>/l)' p>O 
= (4.36) 

K2-
112

(-4>IpI' 24>/l)' p<O, 

and hence we obtain a sum of the D jJ2 and D 1/2 

representations: 

2D 112,. 1/2 ~ is(g) _ ~ I (KK')II - T)12 2D 1121;)(g), (4.37) 
K,/l,K,/l s~+ 2 T= ± 1 /l,/l 

From this and the remark following (4.18) on the bilateral 
Mellin transform, it may appear more convenient to use J 2 

eigenfunctions whose dichotomic index label functions with 
upper or lower components only, instead of those used in 
(4.3a). This may be a useful alternative in some contexts, 
such as matching the two components of the bilateral Mellin 
transform kernel. 47 In some other cases, as in the study of an 
(uncoupled) hyperbolic Fourier transform class,73 still an­
other linear combination of the two -'I1p rows proves to be 
useful, as it diagonalizes the 2 X 2 kernel matrix. 

Ii. C~ - D 1+ -+- D 1-' We also remarked at the end of Sec. 
q~ 

2D that the exceptional continuous series integral kernel 
[C::k]j/ (r, r') for k = ! + (T, (T_(!) - also uncoupled into the 
DI+ and D 1- radial canonical transform kernels: 

-DO. I12 +U() 8 -Dllsgnp)( ) 
p.P' g - _ sgnp,sgnp' IpI,Ip'I g. 

u~11I2) 
(4.38) 

The significance of this limit is the same as for (4.33), and 
equations parallel to (4.34)-(4.37) follow for all other overlap 
coefficients and subgroup reductions. In particular, 
~.I12 + U(r) vanishes as (T-m-. 

5. SL (2, R) TRANSFORMS AND SERIES 

In Sec. 2 we introduced the SL(2, R ) group of unitary k­
canonical integral transforms for all VIR series of this 
group. The ensuing developments in Secs. 3 and 4 have de­
tailed three families of bases for these spaces, associated with 
the E(I), SO(1, 1), and SO(2) families of subgroup reductions, 
and have given their overlap coefficients. These define as 
many families of integral transforms and series expansions. 
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A. The discrete series 

i.E (I)CSL (2,R ) -:JE (1). For the discrete series, wecan write 
in terms of the 'y2(R +) inner product and E(I) basis func­
tions (3.2) 

(-l/J,J) =f(r), rER +. (5.1a) 

The k-radial canonical transform may be thus implemented 
as a change of coordinates 

g 

fIr) --+fg(r) = [e~f](r) = (-l/J" e~f) 

= (e; ,-l/J,J) = L" dr'-D ~.,·(g)f(r'), (5.1b) 

from the Dirac-orthonormal E( 1) eigenbasis I -l/J, ll'ER + to a 
similar family of bases I e~ , -l/J, ll'ER + of generalized eigen­
functions of e~ ,J _ e~, for every fixed geSL(2, R ). The VIR 
matrix elements are the radial canonical transform kernels, 
as has been noted before. The transform inverse to (5.1b) has 
a kernel - D ~.r' (g-I) = [D ~.,(g) ]*. The unitarity of the 
transform implies the Parseval identity (f, h ) 
= (/g, hg ). In particular, it contains the Hankel transform 
ofg = F [Eq. (2. llb)]. 
ii. E (1) CSL (2, R ) -:JSO (1, 1). In the point of view we are de­
veloping in this section, the coordinates of! in the SOt 1,1 b 
eigenbasis 12l/J I' II'ER are 

jlp) = (2l/JI'J) 

= L" drel/JI' , -l/J,)(-l/J"f) 

= fo'" dr 1T- I /2r - 112 - 2il' fIr) 

= 21/2j~ (2Ji), (5.2a) 

wheref~ is the positive Mellin transform47 off The family 
ofSL(2, R )-similar Dirac bases I e~-, 2l/J I' II'ER defines a cor­
responding SL(2, R )-parametrized family of integral trans­
forms between 'y2(R +) and 'y2(R), 

(M)g ~ 

fIr) -- f gklp) = el/J 1" e; f) 

=(e~-, 2l/JI'J) = fo'" dr2·-D~.,(g)f(r), 
(5.2b) 

whose kernel (3.11) contains in general a confluent hyper­
geometric function, with Ji in one index and r in the argu­
ment. In particular, it contains the positive Mellin transform 
(5.2a) for g = 1. The transform inverse to (5.2b) has a kernel 
-.2D ~I' (g-I) = [2.-D ~.,(g)]* and the integration is per­
formed over JieR. An obvious Parseval identity holds be­
tween (f, h ) andjgk( Ji)*'; ~(Ji) integrated over Ji. 
iii. E(l)CSL (2, R PSO(2). The coordinates offin the 
SO(2) C SL(2, R )-similar eigenbases I e;-, 0l/J ~ I: = k define 
a mapping between 'y2(R +) and [2 + (lower-bound square­
sum mabie sequences): 

(L)g 

f(r)--+ f~.m = (ol/J ~, e~ f) 

= !C~, 0l/J~J) = Sa'" dro·-D~.,(g)f(r), 

(5.3) 
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which contains, essentially, the normalized Laguerre series 
analysis [in L ~k_-kl)(r)] off(r) for g = 1. The series synthesis 
is provided by the functions -.oD ~m (g-I) = [0.-D ~.,(g)]* 
and a corresponding Parseval identity holds. 
iv.SO(l, l)CSL (2,R PSO(2). We may also use the overlap 
coefficients between the SOIl, 1) and SO(2) bases to define 
the expansion of an y2(R ) functionj( Ji) in a series of hyper­
geometric functions of argument!, as given by (3.1Oa), or its 
generalization for any fixed argument as given by (3.9), 
through the analysis 

(Hig Jro 
j( Ji) --+ j;.m = _ 00 dJi 0.2D ~.I' (g)]( Ji) (5.4) 

and the corresponding synthesis with [0.2 D ~'I' (g) ] *, with an 
appropriate Parseval identity. 

v.SO(l, 1)CSL(2,R )-:JSO(l, 1). TheSO(I, 1) subgroup de­
composition of the discrete VIR series provides an SL(2, R )­
parametrized family of unitary integral transforms between 
<y2(R ) and itself, 

~ (F). g ~ Joo ~ 
fIJi) --+ f;(Ji) = _ 00 dJi' 2D~.I'·(gif(Ji'), (5.5) 

with a kernel involving hypergeometric functions of fixed 
argument, as given by (3.17). This is basically the Mellin 
transform of the k-radial canonical transform family (5.1). 
vi. SO (2) CSL (2, R ) -:JSO (2). The SO(2) subgroup decom­
position, finally, provides an SL(2, R )-parametrized family 
of mappings of discrete unitary transforms between [2+ and 
[2+ which repesents the well-known action of the group-­
for a fixed element g and k--on the space of sequences 

I fm I: =k' 

The SL(2, R ) D k+ VIR matrix elements of the discrete 
series thus provide six different SL(2, R )-parametrized fam­
ilies of integral or discrete transforms, or series expansions 
between y2(R +), y2(R ), and [2+ ,of which the k-canonical 
radial transforms given in Sec. 2 are but one family. 

B. The continuous series 

The same pattern of six families of transforms hold for 
the continuous series of SL(2, R ) VIRs, between spaces 
,YidR +) [extendable to y2(R) throughf(p) =i.gnp(1 pi)], 
Yil (R ) and [2. These families include the k-hyperbolic ca­
nonical transforms given in Sec. 2, bilateral Mellin trans­
forms, Whittaker and hypergeometric series and transforms. 

c. Further extensions 

Since these six families of transforms have a group­
theoretical origin and parametrization, pairs of transforms 
belonging to one or two families (with the same k ) may be 
applied in succession, respecting the mixed-basis transitivity 
properties, to give another transform of the same or of a 
different family. These are transforms which are all associat­
ed with the SL(2, R ) group and its representations, so we 
would like to close our account of these with some comments 
on further extensions to this set, which have been published 
in the literature, and to other sets as yet not fully explored. 

The first extension pertains consideration of the coverg-

ing group SL(2, R ) . Indeed, the oscillator (metaplectic) re-
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presentation is the two-fold covering of SL(2, R ) [four-fold 
covering of SO(2, 1)] provided by D jJ4 -+- D 3J4' The case 
D ;: , for real k > 0, has been described in Refs. 19,20, and 34, 
but as yet it has not been as thoroughly analyzed as would be 

desirable. The continuous series of SL(2, R) have not been 
treated, although partial results exist. The subject of com­
plex extensions ofSL(2, R ) to a semigroup of integral trans­
forms, 17.19,28 possible for the discrete series-which includes 
the bilateral Laplace, Gauss-Weierstrass (heat diffusion), 
Bargmann74 and Barut-Girardell075 transforms-and the 
extension of SL(2, R ) to W 1\ SL(2, R ) (W being the Heisen­
berg-Weyl group), has not been touched upon in this work, 
as it falls outside the scope of the title. Parts of it have ap­
peared in various articles by one of the authors,76 but the 
description of this last extension in various subgroup-and 
mixed bases is still wanting. Finally, the subject of nonsub­
group decompositions 77 in this context is still open. 
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APPENDIX: THE UNITARY IRREDUCIBLE 
REPRESENTATIONS OF SL(2, R) 

Bargmann l classified all UIRs ofSU(I, 1) 
1:2 

:::::SL(2,R ):::::Sp(2,R ):::::SO(2, 1). We give here a summary of 

the results, nomenclature, and notation followed in this 
article. 

We denote by SL(2, R ) the special linear group in two 
dimensions over the real field, i.e., the group of 2 X 2 
matrices 

g = e !). a, b, c, dER., detg = ad - be = 1. (AI) 

Due to the unimodularity condition, (AI) also satisfy g<1pgT 
= <1p ' gTbeing the transpose of g, with the symplectic met­
ric matrix 

<1 = (0 1) 
p -1 O' 

The elements of the real symplectic group Sp(2, R ) are thus 
also given by g as in (AI). The "I + I" unimodular pseu­
dounitary group SU(1, 1), on the other hand, is the set of 
unimodular 2 X 2 complex matrices u satisfying U<13U t = <13, 

U t being the adjoint (transpose, complex conjugate) ofu, with 
the metric matrix 

It is easy to show that the most general form of u is 

u = (;. :.), a,pEC, detu = lal2 -I PI 2 = 1. (A2) 

The link between SL(2, R) and SU(I, 1) matrices which 
relates the results of this article with those of Bargmann is 
given by the similarity transformation 
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e !) =w(;. P)W- 1 

a· 

(
Rea + Ref3 

= Ima + ImfJ 
- Ima + ImfJ) 
Rea - Ref3 ' 

W = 2- 1/2 (J) (J) ,(J) = ei1l"/4. 
( 

-! -I) 
- (J) (J) 

(A3a) 

(A3b) 

Other isomorphisms found in the literature are determined 
by W's such as 

and 

2- 1/2( 1 . 
-I 

2-
1/2G ~). 

- i) 2- 1/2( 1 
1 ' . -I 

- ~), 
-I 

The latter yields the complex conjugate of (A3a). The 2: 1 
homomorphism between SU(1, 1) and the Lorentz group 
SO(2, 1) is often exploited through parametrizing the former 
in terms of Euler angles, 

(;. :.) 
0) (COSh; 

eil-' sinh; 
Sinh;) (e -iv 

cosh; 0 
0). (A4) 

e'Y 

Our favored set of parameters are those in (AI), and in terms 
of those we express the UIR matrix elements. Of particular 
interest to many authors are the representations of the hy­
perbolic rotation (boost) subgroup in the middle factor of 
(A4). This is given by M 2( - 2; ) in (2. lOb). 

Out of the matrix realization (Al)-(A2) Bargmann! 
finds the sl(2, R ) Lie algebra. Without having to realize the 
algebra elements through differential operators, but only un­
der the assumption of the existence of a Hilbert space en­
dowed with a sesquilinear positive-definite inner product, 
one can find the self-adjoint irreducible representations of 
the algebra classified through the eigenvalues q of the Casi­
mir operator (2.9), and through the usual raising- and lower­
ing-operator techniques, the SO(2) representations m con­
tained in anyone SL(2, R ) UIR are found. 

The following are all nonequivalent single-valued re­
presentations of SL(2, R ). 

Discrete series q = k (1 - k) for k = l' 1,~, 2, ... containing: 

D k+ positive discrete UIRs, m = k, k + 1, k + 2, ... 

D k- negative discrete UIRs, m = - k, - k - 1, - k - 2, .... 

Continuous series 

C~ the vector nonexceptional continuous UIRs 

q = k (1 - k I>!; k =! + is, s>O, 
C~ the (vector) exceptional continuous UIRs 

o < q = k (I - k ) <!; k = ! + (T, 0 < (T < !, 
C !12 the spinor (nonexceptional) continuous UIRs 

q = k (1 - k ) > 1; k = ~ + is, s> O. 
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Values of k other than these give rise to nonunitary 
and/or multivalued representations ofSL(2, R}. 
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