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We consider the sl(2,R) Lie algebra of second-order differential operators given by the 
Schrodinger Hamiltonians of the harmonic, repulsive, and free particle, all with a strong 
centripedal core placing them in the C ~ continuous series of representations. The corresponding 
SL(2,R) Lie group is shown to be a group of integral transforms acting on a (two-component) 
space of square-integrable functions, with an integral (matrix) kernel involving Hankel and 
Macdonald functions. The subgroup bases for irreducible representations consist of Whittaker, 
power, Hankel, and Macdonald functions. We construct the operator which intertwines this 
realization of SL(2.R) with the more familiar Bargmann realization on functions on the unit 
circle. This operator implements the canonical transformation of the above Schrodinger systems 
to action and angle variables. 

1. INTRODUCTION 

The program to explore the role of canonical transfor­
mations in quantum mechanics followed by Moshinsky and 
collaborators!.' has lead to advances and applications in 
three related fields: (a) It has given a better understanding of 
the dynamical groups (as opposed to dynamical or similarity 
algebras) for quantum systems and partial differential equa­
tions,'" (b) it has brought a significant unification into the 
theory of integral transforms,s-7 and (c) it has complemented 
the study of the three-dimensional Lorentz group generated 
by algebras of second-order differential operators. 8

-
10 In this 

article, the fourth ofa series, 5.6.11 we would like to explore the 
following territory: Consider the three operators 

J
1 

= ~(_ ~_ ~_p2), 
4 dp2 p2 

(1.1 a) 

i (d I) 
J2 = - "2 p dp + "2 ' (l.lb) 

1 ( d 2 f.1 2) 1 
J/} = 4" - dp2 - p2 +p , f.1> 4' (Uc) 

which form an sl(2,R )=sp(2,R )=so(2, I) Lie algebra, with 
the well-known commutation relations 

[Jl1,J/2]= -i.JI.l' [.JJ2,Jd=iJJ
" 

[J3 ,.N 1 ]=i.JJ2 • 0·2) 

Among the algebra elements we have the Schrodinger 
Hamiltonians corresponding to a strongly attractive centri­
pedal well (J 1 +.IT 3)' and similarly welled harmonic (2J3 ) 

and repulsive (2J 1) oscillators. The algebra (l.I) constitutes 
the dynamical algebra for these systems. On calculating the 
value of the Casimir invariant of Eqs. (1.1), we find 

Q = J~ + J~ - J~ = q ll, (1.3a) 
I 

q =:"/1 + ~ = k (1 -- k) = ~(1 + A 2) > ~ (l.3b) 
4"" 16 4 4' 

k = !..(l + iA). A 2 = f.l - :.. > D. (1.3c) 
2 4 

i.e., this set of operators belongs to the continuous or princi-
pal series of representations Cq as defined by Bargmann. 12 In 
the proper function domain-so that Eqs. (1.1) be self-ad­
joint-their spectra will have no lower bound.!] The poten­
tial singularity at the origin is indicative of the rather delicate 
domain problems we would find should we meet the problem 
starting from the algebra. This has been emphasized by Mu­
kunda and Radhakrishnan,lo who also considered this 
realization. 

I n Sec. 2, we shall embed the sl(2,R ) algebra (1.1) as a 
subalgebra ofsp(4,R), reduced with respect to a "hyperbol­
ic" suba\gebra soC 1,1) a! sl(2,R ). This chain is distinct from 
the "radial" so(2) a! sl(2,R ) chain considered in Refs. 3, 6 
(Appendix B), and 14. The parameterization of the plane iII 
hyperbolic coordinate will lead to a two-component space 
YM.9i +) = y'2(.9? + ) + y 2(&fi ) of square-integrable 
functions on the half-line, as the appropriate domain for Eqs. 
(1.1), carrying both the C ~ and C ~/2 representations. 

In Sec. 3 we consider the Lie group SL(2,R )=Sp(2,R ) 
generated by Eqs. (1.1), associated with the corresponding 
group of matrices through 

. ( cosh(a/2) 
exp(laJ 1) :_ sinh(a/Z) 

- Sinh(a/2») 
cosh(a/2) , 

(1.4a) 

(exp( - /3 /2) 
exp(i/3J 2 ) : 0 exp~ /2»). (l.4b) 

. (COS(Y/Z) 
exp(ly J 3): sin(y /2) 

- sin(y/2»). 
cos(y/2) 

(l.4c) 

whose adjoint action of the algebra-which is independent of the realization-is given by 

!(a
2 

_ b 2 + c2 _ d 2»)~1) 
-- cd - ab J2 • 

_ bd - ac !(a2 + b 2 + c2 + d 2) .1 

bd-ac 

ad + bc 

alOn sabbatical leave from lIMAS, Universidad Nacional Aut6noma de 
Mexico. Apdo. Postal 20-726, Mexico 20, D.F. 

680 J. Math. Phys. 21(4), April 1980 0022-2488/801040680-09$1.00 

(1.5) 

© 1980 American Institute of Physics 680 

Downloaded 29 Jun 2011 to 132.248.33.126. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



This group of automorphisms of the algebra will induce a corresponding group SL(2,R ) of integral transforms of 
x;( (~ +). In the first paper of this series,5 the algebra whose group ofautomorphisms was studied was the Heisenberg-WeyJ 
algebra of quantum mechanics. The group turned out to be, as here, SL(2,R ), but the integral transform carried the osciIIator 
(or metaplectic) representation D ;j4 -i- D 3~4' In the second paper6 it was the sl(2,R ) algebra-as here-which provided the 
"quantum mechanics" out of which we built the group of automorphisms (1.5) carrying the discrete D / series of representa­
tions. The integral transform kernel consisted of a Gaussian times a Bessel function. Here, it will involve Gaussian functions 
times Hankel and Macdonald functions of imaginary index. In contradistinction with the previous cases/.f' this integral 
transform group does not allow a complex extension in the group parameters to a unitary semigroup of transforms. 

In Sec. 4 we build the intertwining operator (i.e., the quantum mechanical canonical transform to action-and-angle 
variables) between the realization (1.1) ofsl(2,R) and the well-known Bargmann realization (~ofthe algebra in terms offirst­
order differential operators on the circle 51: 

JJ~ = i e - i<4>(COS<jJ ~ - k sinl,b )ei<4>, 

JJ~ = i e - i<4>(sinl,b ~ + k cosl,b )ei<4>, 

( 1.6a) 

( l.6b) 

JJ( = _ie-i<"'~i<'" k=l(1 +iA) AE~ E 0 1 (1.6c) 
3 dl,b' Z ' , = '2' 

which also carry the C: representations ofthe continuous series. In the third paper of this series, " we solved the same problem 
for the D k+ case, being faced with the construction of an appropiate inner product to define a Hilbert space(5 where the 
spectrum ofEq. (1.6c) has a lower bound, 16 leading to the definition of a nonlocal measure on 51' Here the problem is simpler 
as the appropriate Hilbert space in plainly xZ(5(). 

From the point of view of the program on nonlinear canonical transformations outlined Ref. 17, our case presents a 
challenge which merits deeper study, since the classical canonical transformation to action-and-angle variables 

p",=J~, <jJ=arctan(JVJD, ( 1.7) 

[where J~ is the "classical counterpart" ( - id /dpl-+ pp) of Eqs. (1.1) and Poisson brackets replace commutators] has the 
same "ambiguity group" (6 for all f..l > O. Moreover, the interval !>f..l > - i, (0 < k < 1) is particularly troublesome, since 
various choices of boundary conditions 18 lead to representations which may belong to the lower-bounded discrete series ''lor 
to the unbounded supplementary series-a problem still to be solved for the algebra (1.1 )-which are not quite apparent in the 
formal expressions in Eqs. (1.1), and invisible in the classical Poisson-bracket construct. In establishing our results from the 
point of view of groups of integral transforms, we hope to settle some of the uncertainties which may arise in the algebraic 
approach to canonical transformations in quantum mechanics. FinalIy in Sec. 5 we outline some applications and offer some 
concluding remarks. 

2. THE CHAIN sp(4,R)=>so(1,1) Ell sl(2,R) AND 
HYPERBOLIC COORDINATES 

We consider the usual quantum mechanical operators 
of position and momentum in two dimensions 
[Qm f(q) = qm f(q) and P mf(q) = - iaj(q)/Jqm' m = 1,2] 
and out of these we build the symmetrized quadratic expres­
sions Q", Qn' Pm Pn, H Qm ,IE\ J + . These ten operators span 
under Lie commutation the four-dimensional real symplec­
tic algebra sp( 4,R ), isomorphic to the pseudo-orthogonal al­
gebra so(3,2). Let us denote the latter's generators in the 
Cartesian basis by 

M'2 =~(QIP2 -Q2 P ]),M D = -!(p]PZ +Q]Q2)' 

ThH]4 = -HQ,P2 +Q2P]), M I5 = -!(p]Pz -Q]Q2)' 

MZ:l = H P~ - P~ + Qi - QD, M24 = ~(Q] PI - Q2PZ)' 

Ml5 = !(Pi - P~ - Qi + QD, 
M34 = -l(Pi +P~ -Qi -Q~), 

M35 = l<i QI ,PI J + + f Qz,Pz j), 

M45 = !(Pi + P; + Qi + QD, 
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(2.1) 

where the metric is (+ + + - -). The set of operators 
generating the compact subgroup SO(2) ® SO(3) C SO(3,2) 
[i.e., those which have a discrete spectrum in J2(./(2)] is 
f M45 ;M12 ,M D ,Mn J. The set generating the "radial" sub­
group 80(2) ® SL(2,R ) of Refs. 3 and 6 is 
I MI2 ;M34 ,M35 ,M45 J. Here, we shall consider the set 
f MI4 ;MZ3 ,MZ5 ,M35 J generating the "hyperbolic" subgroup 
SO( 1,1) ® SL(2,R ) C Sp( 4,R ). The soC 1,1) elemen t is the Lo­
rentz boost generator in the plane, while the sl(2,R ) elements 
are built out of the harmonic (h) and repulsive (r) one-di­
mensional Schrodinger Hamiltonians lHl~l,k = 1,2 as 
M23 = HlHl~h) - H~h» and M25 = !ClHli') - lHl~», [rather than 
M45 = !(lHl\h) + lHllh» and M 14 = - ~(lHlir) +[JT~» as in the 
radial case]. The generator M35 is common to the hyperbolic 
and radial subgroups. In 2'\qf2) , thus, the eigenfunctions 
ofMz3 will be IJin,n,(q) = 1Ji~, (ql )1Ji~>(q2)[where 
1Ji~(q) = ( -1) nlJi~( - q) are the simple harmonic oscilla­
tor wavefunctions], and its spectrum will be given by 
m = !(n l - nz), nl,nz = 0,1,2, .... This set of functions will 
thus constitute a basis for the two continuous series repre­
sentations ofsl(2,R): C~ spanned by the subset with n I + n2 
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even [so that m is integer 1/1"1"' ( - q) = 1/1"1"' (q)], and C!/2 
by the subset with n, + n2 odd [m in half-integer and 

1/1"1"' ( - q) = - 1/1"1"' (q)]. 
We shall now parametrize the plane in hyperbolic co­

ordinates (p,</>,a), dividing it into two regions labeled by a as 

for qi - qi > 0: a = + 1, q, = p cosh</>, q2 = P sinh</>, 
p,</>ER; (2.2a) 

for qT - q~ < 0: a = - 1, q, = p sinh</>, qz = p coshtP, 
(2.2b) 

and disregard the cone qi - q~ = 0, as this is a submanifold 
of lower dimension. The elementsf(q) of the space offunc­
tions Jf\.'3P2) on the plane will be correspondingly repre­
sentedby pairsoffunctionsfu(p,tP), a = ± I, elements ofa 
space Jfi (.'3P) -+- Jf2_, (.'3P) which can be arranged as a two­
component vector column 

( 
f,(p,</» ) 

f(p,tP) = f _ I(P,tP) , /rip,tP) = f(q(p,tP,a». (2.3) 

The inner product in Jf2(.'3P2) becomes 

(f,g)2 = f: 00 dq, f: 00 dqz/(q"q2)*g(ql,q2) 

= af:+,f:oolpldP f:oodtPfa(P,tP)*gip,tP), 

- (2.4) 
in terms of the hyperbolic coordinates. Finally, the gener­
ators ofSO(l, 1) ® SL(2,R ) can be written as 

Ko = - 00 14 = - i ~ ~, (2.5) 

lV 00 1 - I12[ J 2 - 2 
fl., = 25 = aw - Jp2 - P 

X(~- ~) _p2]p'/2, 
4 JtP 2 

(2.6a) 

lV 00 ., -'/2 [J 1 Lllz 
fl.2 = 35 = - 1¥J P Jp + 2" r ' (2.6b) 

lV 00 ,-'/2 [ J 2 -2 
fl.) = 23 = a';p - - - P 

Jp2 

X(~- ~)+p2]pl!2. 
4 JtP 2 

(2.6c) 

The operators (2.6) exhibit commutation relations analo­
gous to Eq. (1.2). Acting on the column-vector function 
(2.3), the generators above will be represented by 2 X 2 diag­
onal matrices with operator elements, which for Eqs. (2.6a) 
and (2.6c) have opposite signs. The adjoint action of the 
group generated by Eqs. (2.6) on themselves can be verified 
to be formally identical to Eq. (1.5), as it should be, since the 
latter is a relation independent of the particular operator 
realization. For the a = - 1 components, we have a rever­
sal of the signs of a and r in Eqs. (1.4), i.e., of band c in the 
elements of the 2 X 2 matrix realization in Eq. (1.5). This 
leaves the 3 X 3 matrix in Eq. (1.5) invariant. 

The subalgebras so(I,I) and sl(2,R) generated by 
Eqs.(2.5) and (2.6) are conjugate in sp( 4,R ); the reduction to 
an irreducible subspace (irrep) of the former leads to a corre­
sponding irrep of the latter. Since for sp( 4,R ) itself we do not 
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have a single irrep space but a direct sum of two-those with 
a basis with integer and with half-integer eigenvalues m un­
der 0045 or 0023 -the corresponding reduction of the sl(2,R ) 
generators will be the direct sum of two irrep'sC~ and C !!2, 
respectively. An irrep space for lK.o within Eqs. (2.1) is pro­
vided by functions f!( p,tP ) = f!( p )exp(iAtP ), AE.'~. This 
will replace the operator - J 2/ JtP 2 in Eqs. (2.6) by A 2 and 
bring the lK.k to within a similarity transformation (by p-ll2) 
of the forms (1. 1). 

In the following sections we shall be interested in cer­
tain discrete operations on the plane in Cartesian and hyper­
bolic coordinates which are, nevertheless, elements of the 
parent Sp(4,R ) group and which can be connected to the 
identity. These will be identified using the notation of Mu­
kunda and Radhakrishnan 1o

• First, we have the full space 
inversion 

lP':(ql,qz) ---->-( - q" - q2),i.e.,lP':(p,</>,a) ---->-( - p,tP,a), 
(2.7a) 

PlK.v=lK.)l', v=0,1,2,3, (2.7b) 

(2.7c) 

i.e., it is the rotation-by-21T element of SL(2,R ) which com­
mutes with the algebra sO(2,1)=sl(2,R) and which can be 
used to distinguish the vector and spinor constituent irrep's 
C~ and C!!2 by demanding that lP' be diagonal. We use its 
eigenvalues p = ± 1 to distinguish the irrep spaces for C ~ 
through 

E=.1(I-p),i.e.,E=0(1!2) for p= +1(-1). (2.7d) 

Second, we have the inversion of the second Cartesian 
coordinate 

B:(q, ,q2) ---->-(q" - q2),i.e., B(p,tP,a) --+(ap, - </>,a), (2.8a) 

BKo = - KoB ; BKk B, k = 1,2,3, (2.8b) 

(2.8c) 

This element commutes with the sl(2,R ) algebra and with lP', 
but will intertwine the A and - A representations of so( I, I), 
and hence those of sl(2,R ). Its effect on the properly reduced 
irrep space C ~ will be to change the sign of the lower compo­
nent of the E = ! function pair. 

Third, we have the element BlP', which will not interest 
us separately, and fourth, the operator 

A:(ql,q2)--+(q2,ql),i.e., A:(p,</>,a}--~(p,tP, - a), (2.9a) 

AKj = KjA, j = 0,2; AKk = - KkA, k = 1,3, 
(2.9b) 

A = B exp(i1TM,2)' 

This element does not commute with B (instead, 
AB = BlP' A), but it commutes with lP' and Ko and is thus 
representable as a unitary transformation in each C ~ irrep 
which reverses the sign of the KJ eigenvalues. Its own eigen­
values (a = ± 1) will be used to classify the double-multi­
plicity Kl eigenfunctions. It is representable as a 0'1 Pauli 
matrix in the two-component function space (2.3). The A 
and B automorphisms are outer to SL(2,R ), while lP' is inner. 
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3. THE INTEGRAL TRANSFORM GROUP 

The integral transform action of the Sp(4,R ) group gen­
erated by (2.1) on y2(&f 2

) is known20
.21. In particular, for 

the SL(2,R) subgroup generated by Eqs. (2.6), represented 
by the matrices22

,23 

b0'3) 
dl 

, ad - be = 1, 

(1 0) 
(J' -= . , 

3 0 e--Iff 
(3.1) 

it is 

I(q) :[CMf](q) = L,d 2q'CM (q,q')f(q'), (3.2a) 

where the integral kernel is, for b #0, 

CM (q,q') = (21Tlb J) 1 exp [i(a{q;2 _ q~2} 

-2{q; ql - q~q2} + d {qf - qn)/2b ], 
(3.2b) 

while for b = 0, it is 

CM(h,O)(q,q') =0- 1 exp[ie(qi -qn/2a1 

X<52 (q'-a- 1q), (3.2c) 

For M = 1 we have thus the reproducing kernel under Eq. 
(3.2a). This integral transform group provides a vector re­
presentation24 of SL(2,R ): 

f/i' d 2q'CM, (q,q')CM, (q',q") = CM,M, (q,q"), (3.3) 

and the transforms are unitary in ,5/' 2(.99 2). 
We now introduce hyperbolic coordinates (p,¢,a) as 

given by Eqs. (2.2). The kernel (3.2b) and (3.2c) then appears 
as 

CM (p,¢p;p',¢ ',0") = CM ( - p,¢,O'; - p',¢ ',a') 
= CM (p,t/J - t/J ' ,0-; p' ,0,0-' ) 
= (21Tlb I) -I exp[i(00-'p,2 -2pp'hYPO'.a' (¢' - ¢) 

+ do-p2 )/2b ], (3.4a) 

hYPI,1 (z) = cosh(z) = - hYP_I, --I (z), 
hYPI._ I (z) = sinh(z) = - hyp _1,1 (z), (3Ab) 

and can be arranged into a 2 X 2 matrix with rows and col­
umns as the functions are represented by Eq. (2.3). We can 
display the eigenspaces of IP and Ko through the operator 

f':/(p) = ('fp,Afa)(p) =p/,:/( -p) 

= Ip 1112 0 + pIP) J: = d¢la (p,¢ ) exp( - iJ.¢ ), 

(3.Sa) 

thus allowing us to reduce the domain of the functions to the 
interval p>O. Conversely, 

i, (p,¢ ) = ('f1 f;') (p,¢ ) 

1 Joc = _jpl-l/l I dJ.f~/(p) eXPCiA¢). 
41T p7o+1 ._= 

We define an inner product in the (p,A) subspace 
Yil (&f+)P,A = Yi (&1l+) -+ y2 1 (,99+) as 

(3.Sb) 

(f,g)p.A = "'?i. 1 l'" dp/~/(p)*g~/(p), (3.6) 

683 J_ Math. Phys., Vol. 21, No_ 4, April 1980 

and note that it will relate to Eq. (2.4) through 

1 I= (f,gh = 41T p~ I ._ 00 dA (f,g)p,A' (3.7) 

The properties of 'f p,A are such that 

'fP,AIP = p'fP"\ 'fP,AK.o = 0 'fp,A, (3.8a) 

(JW,.JI~I,.JI~') = 'fP,A (lK l ,lKz,lK3) = (o-JJ 1 ,JJ2 ,a.JI3 )'fP,A, 
(3.8b) 

'fp-'lA = A'fP"\ 'fp,AB = 'fp,-,1. (3.8c) 

Equations (3,8a) only state that 'f p," indeed projects out ei­
gens paces oflP and K.o, while Eqs. (3,8c) give relations which 
will be used later on. Equations (3.8b), finally, bring the 
three algebra generators (1.1) into the picture and, besides 
telling us that the special Sp(4,R) transform (3.2) leaves the 
(p,A ) subspace invariant, allows us to calculate the integral 
transform representing the operator C~ = 'fP''''CM which 
maps Yi, (&f+)P,,1 onto itself unitarily. Since the inner prod­
uct (3.6) does not explicitly contain the labels p,A, we shall 
henceforth drop them from specifying the space ..2"i, (&f+). 

For functions/o-( p )EX'il (&f+), thus, the SL(2,R ) group 
generated by the operators .JIll, k = 1,2,3, acts as 

M 

lu (p) ----+ [C~fL (p) 

= 0" f'..!c I i oc 
dp'C~~(T,a' (p,p')!c" (p'), (:~.9a) 

with the integral kernel 

C~~",(T' (p,p/) =pI/2('fP,,1CM,a,lT' ) (p,p') 

= (pp')I/2J~ '>0 dt,b[CM,(7,a' (p,,p;p',O) 

+ pCM,(T,(T' (p,rp; - p',O) ]exp( - iArp) 

= GM,a,(T' (p,p')H~,~, (pp'lb ), (3.9b) 

where, on evaluating this expression from Eqs. (3.4) for 
b #0, we find it to be a product of a Gaussian factor 

GM,a,o' (p,p') = (21T1 b I) -I (pp') 112 

X exp U(do-p2 + ao-/p,2 )/2b ], (3.10) 

and a factor Hr::,~,(z) which contains the integration over t,b 
and which can be performed in terms of Hankel and Mac­
donald25 functions, yielding26 

H~:1(z) =pHP!I, -1 (z) 

= 4p i= drptrigp (z coshrp) cos (Arp) 

= i1Tfpe·· A ,,-;2H )l)(z) - eA1T12H )]>(z) J 
=pHP"'( -z) =HP' ,{(z) 

1.1 1,1' 

Hf:AI (z) =pHP',{I,1 (z) 

= 4Pioc dt/ltrigp (z sinhrp)trigp (Arp) 
o 

= 4(signz)2<JlYPI,p (A1T/2)K;,1 (Izl) 

=pH~:,1I (-z) =pH~:=I;'(z), 

trig + 1 (z) = cos(z), trig __ I (z) = i sin(z). 
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The case b = 0 may be obtained either from Eq. (3.11) for 
b---+O and the use of the asymptotic properties of the cylinder 
functions," or directly from Eqs. (3.2c) and (3.9), as 

C~~b~O).a.a'(P'P') = lal ~ 1/2(signa)2€ exp(iocp2/2a) 

Sa,a'S(p' -p/\a\), (3.12) 

This integral transform is unitary28 on xil~+) with the 
inner product (3.6). 

The group properties of this matrix kernel are directly 
inherited from Eq. (3,3) via Eqs. (3.5a), namely, 

I roc dp'C~~,a,a'(p,p')Cf;f"a'.a" (p',p") 
(/' ~ ± 1 Jo 

= C~~M,.a.a"(P,p"), (3.13) 

We should point out that the property which distinguishes 
the CO and C 1/2 representations is clearly displayed: q q 

CP,--AM.a.a,(p,p') = (-1)2€C~~a,a'(P'P')' (3.14) 

This is a consequence of Eqs. (3.12) and (3.13) which can 
also be seen from the explicit expressions (3.9)-(3.11), noting 
that the Gaussian factor is the same for M and - M, while 
H p,A ,( - z) = pH p,A ,(z). 

a,a Regarding th~~perator IB defined in Eqs. (2.8), the last 
equality in Eqs, (3, 12a) and (3, 12b) shows that the a = - 1 
components of the e = 1/2 irrep functions indeed consis­
tently invert their signs and that this inversion is thus repre­
sentable by a (13 Pauli matrix in the two-component 

xiI (,gr+) space, intertwining the k = !(1 + iA ) and 
k * = W - iA) representations C !!2, Eigenfunctions of IB 
with eigenvalue b = ± 1 in C !!2 can be built as functions 
with only a nonzero upper (b = + 1) or a lower (b = - 1) 
component. In Sec. 4, however, we shall gloss over this clas­
sification scheme in favor of others. In C~, IB is equivalent to 
the identity transformation. 

Having given the kernel for the general hyperbolic ca­
nonical transforms, we would like to present a peculiarity of 
the "hyperbolic Fourier transform," i,e" the transform C~A 

corresponding to the matrix M given by F = ( ~ 1 ~) 
which from Eq, (lAc) is qA = exp( - i7T.lJ~'), In the case of 
linear canonical transforms5.7 this is e - i7T/4 times the ordi­
nary Fourier transform, For the radial case6

, it is the Hankel 
transform. Here, as a = 0 = d, the Gaussian factor (3.11) is 
simply (Pp') 112 /21T and hence 

[ C~A( f ~ 1 ) ] (p) = p [ q~A 1 ( f ~ I ) ] (p) 

1 soc ( H~:1(pp') - _ d '( ,)112 
- 21T 0 P pp .pH~:"'- l(PP') 

X (fl(P') ). 
f ~ I(P') 

H~'A_I(PP'») 

pH1:1(pp') 

(3.15) 

The inverse hyperbolic Fourier transform is thus identical to 
the direct one for the C ~ irrep, while it differs by a minus sign 
for the C 1/2 irrep29. The origin of this property is the behav­
ior of the ~1(2,R) algebra under the A operator in Eq. (2.9b): 
C~AA = AC~A 1 = pC~A. For p = + 1 (e = 0) we may thus 
construct eigenspaces of A consisting of functions of even 
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and odd parity under this operator: It suffices to apply the 

unimodular matrix 2 ~ 1I2( 1 1) to Eq. (3.15) in order to 
- 1 1 

obtain through similarity a diagonal transformation matrix 
kernel with elements (H ::1 + H ::A_ I)(PP') and 
(H U - H :< ___ I)(PP'), corresponding to eigenvalues 
a = + 1 anda = - 1, respectively, under A. Each A-classi­
fied subspace is then transformed into itself under Clrol and 
consists offunctions such that f, (p) = af_ a (p), Besides 
providing a distinguishing label for the two J~I eigenfunc­
tions (Sec. 4), the operator A may be thus used to construct 
and distinguish between these two p = + 1 Fourier trans­
forms in the space where-as for the Hankel transform-the 
square of the transform is the identity. A similar construc­
tion for the C !!2 irrep yields an antidiagonal matrix kernel. 

In closing this section, it should be noted that the ana­
lytic continuation in the group parameters of Eqs. (3. I)-so 
fruitfully exploited in Ref. 14--turns out to be impossible 
here: If one applies the criterion of Ref. 20 to this matrix, one 
sees that for no complex values of the parameters does one 
have a Hilbert-Schmidt operator. This becomes intuitively 
clear as the analog of the heat diffusion transform' 
(a = 1 = d,c = O,b = - 2it) is forward in time t for the first 
Cartesian coordinate, but backward in the second one. Ex­
amination of the kernel in Eqs. (3.9) or introduction of com­
plex hyperbolic coordinates in Ref. 5 (Appendix B) corrobo­
rates this conclusion. This seems to be thus a major and 
inescapable distinction between the discrete and continuous 
SL(2,R ) representation series. 

4. THE INTERTWINING OPERATOR 

In this section we shall build the operator which inter­
twines the two algebra realizations (1.1) and (1.6) or, more 
precisely, the unitary transform kernel mapping the space 
xi, (,gr+) described in Sec. 3 onto the more usual Y 2(SJ ) 
space, in such a way that the second-order differential opera­
tors J~I defined in Eqs. (3.8b) map onto the first-order ones 
J1 given in Eqs. (1.6). This is the proper quantum analog of 
the canonical transformation to action-and-angle variables 
(1.7)30. 

Let !JIt;;.~a(P) and X~:~(p) be the (proper or general­
ized) eigenfunctions oflP' and two operators in the set.JJl!, and 
1jr,::'\c/J) and X~:)·(c/J ) for the corresponding operators in the 
set J~. We can choose the first operator to be elliptic, specifi­
cally J~ , and the second to be either hyperbolicJ 

I (J~ or J;), 
or parabolic (J~ ± J~)-specifical1y, we shall employ 
JJ~ - JJ~ . The last choice will be followed, as it is the simplest: 
The generalized eigenfunctions are Dirac {) 's while we are 
assured that the spectrum of this operator covers the real line 
once32

• The intertwining integral kernel will then be comput­
able as the generating function 

K~/(c/J,p) = L !JIf;,~a(p)*1j;::/(ifJ )exp[i<P "'(p';",m,o') 1 
m 

= fO dvX~:.~(p)*X;:A(ifJ )exp[i<PX(p';",v,u)]. 

~oc (4.1) 
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The correct choice of phase33 for cP '" and cP x is nontrivial for 
two rea!.ons. First, it actually may change the generating 
function: Assume We apply ~~Y) = exp[ir(.JI~1 - .JI~I)J to 
Eq. (4.1 )3., mUltiplying the integrand by e IYV and th~s pro­
ducing a new generating function which, as a sum, Will con­
sist of eigenfunctions OP5 CKf~y).JI~'CKf1- ri#=.JI~'. Second, cer­
tain phase requirements exist, notably Bargmann's 
convention36 for the .JI~ eigenbasis, which involves definite 
transformation phases under the operator A in Eqs. (2.9). 
However, once we have used two generators [algebraic basis 
for sl(2,R )] to determine the phases for the intertwining ker­
nel, no further requirement is imposed by the third (vector 
basis) generator, as its matrix elements are fixed by the first 
two. 

It should be clear, however, that independent of the 
appropriate choice of phases, the kernel (4.1) will intertwine 
YM.0P+) and Y 2(SI ) as 

f'(¢) = "J:± If'" dpK';/(¢,p)f',j(p), (4.2a) 

(4.2b) 

forf',j(p) andf'(¢) in the two spaces, respectively. The uni­
tarity of the transformation is guaranteed by the assumed 
Dirac orthonormality and completeness of the two eigen­
bases-including any similarity transformation as men­
tioned above-which, from Eq. (4.1) alone, implies 

J~ 1T d¢K ';/,(¢,p)K ~/'(¢,p')* = oa"'o(p - p'), (4.3a) 

<T~± 1 L'" dpK';/(¢,p)K';/(¢ ',p)* = o(¢ - ¢ '). (4.3b) 

The phase definition we shall impose will stem from the re­
quirement that iff~'(p) is the KpA transform off'(¢) then 
the K p.).. transform of(.1l1 (1)(¢ ) should be (.1l1I fl')a(P)' with J1' 
and J1 given precisely by Eqs. (3.8b) and (1.6b), respectively, 
supplemented by the discrete transformation A, as imposed 
by Bargmann's convention36

• 

The J1-basis eigenvectors are easy to obtain as they are 
solutions of first-order differential equations, and Fourier 
anaysis techniques allow us to find the correct constants for 
ordinary or Dirac orthonormality in Y 2(SI ). This is more 
difficult for those of J~l since, as will be borne out below, 
these are two-component, in general, Whittaker functions 
whose orthonormality and completeness relations certainly 
imply a careful analysis. For the parabolic operator in 
sl(2,R ), the simplest one we can choose is 

J~I - .JIJI = ~O"p2, (4.4) 
since the set of generalized eigenfunctions is readily found as 

X;,:!(p) = (21 vi) - 1/40 (p - [21 vi J 112)8a,SignvexpUcP X) 

=pIl2c5( Ivl - ~2)c5a'Signvexp(i4>X), VE~, (4.5) 

where we have left a phase factor to be determined later on. 
Note that X~(P) is a two-component function which 

has only an upper component for v> 0 and only a lower one 
for v < O. As they stand, these functions may only involve the 
representation indices (p,4 ), if at alP1, in the phase factor 
cPx(p,A,v,a). 
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Now, in Y 2(SI) the operator corresponding to Eqs. 

(4.2) for C~ is 

.11 1 JI - - i e - iE~ [( I + co~'" ) ~ - k sin¢ leiE~, (4.6) 
3 - 1- "'f' d¢ 

withq, k, and A related as in Eqs. (1.3), andp and £ as in Eq. 
(2.7d). Through the change of variables t ~ tan (¢ I~) we 
can find the generalized Dirac-normalized eIgenfunctions to 
be3H 

~.A (¢ ) = (41T) - 1/2( cos(¢ 12» -2ke - iE4>exp[ivtan( ¢ 12)]. 
, (4.7) 

The generating function (4.1) is thus readily calculated from 

the integral as 

KP.A(",,p) =pl12X
p ·A, (¢ )exp[icP X(p".t,O"p 212,0") J. (4.8) 

(T '+' ap-/2 

In order to determine the phase function, consider the orth­
onormal Y 2(S() eigenbasis for .1l~ in C:: 

f/;/:;\¢) = (7fn;A] - 1(21T) - 112exp[i(m - £)¢ J, (4.9) 

where m is the integer for E = 0 (p = + 1) and half-integer 
for £ = 1/2 (p = - 1). The phase factors 7fn;A will be those 
of Bargmann36

: 

rJkA = 1 = rJI/2(,A, (4.lOa) 

rf:;,A = ( - 1) m - € 

m - 1/2 
X II [U-iAI2)/(/+iAI2)]I12, m>l, 

l~ E + 112 

(4.lOb) 

rt:3m = (_l)m+<UAIIA j)2E1fn'.'<' m>1/2, (4.1Oc) 

where the running index in Eq. (4.lOb) takes the m - £ val­
ues I = £ + 1/2,£ + 3/2, ... ,m - 1/2. The basis vectors (4.9) 
of.!£' 2(SI ) should, upon their transformation to .2"tI(~+)' 
provide the properly normalized eigenbasis for J~I. Thus, 
introducing Eq. (4.9) in (4.2b) with the intertwining (4.8) 
(with the as yet undetermined phase), we find, under a divi­
sion of the integration range in two, trigonometric identities 
and an integration3

", that 

1JI':;.~(p) = J:1T d¢f/;/:/'(<!> )K~A(¢,p)* 
= [7fn;A] - 121/2 - iA [r (k + O"m) J - Ip - 1/2 + iA 

X Warn, _ U12(p2)exp[ - i4>X(p,4,O"p2/2,0")], 
(4.11) 

which is valid for integer as well as half-integer values of m. 
Notice that the phase factor cannot depend on m. Now, 

the (unnormalized) solutions of.1l3 lJI(p) = mlJl(p) which 
are bounded at infinity are of the form'o 
p - 112 W m, ± iAl2 (p 2); the phase factor is thus constrained to 
be p -- iA times any other p-independent phase. We can set 

cP X(p,4,O"p2/2,0") =-1 In(pI2) (4.12) 

and declare the proper eigenfunctions of J~I corresponding 
to the eigenvalue m (integer or half-integer) to be 

IJI ~u(p) = [7fn;A r (k + O"m) ] - I 

X (pI2) - l12 Wom. _ iA12(p2) (4.13) 

spanning the C; irrep for sl(2,R ). On Eq. (4.13) we can ver-
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ify immediately that we have an eigenfunction of J~', as this 
operator acts as aJ3 [see Eq. (Uc)] on the two a = + 1 and 
a = -1 components. Hance the eigenvalue is indeed m. 
Normalization under the inner product (3.6) carr be checked 
straightforwardly41. In order to support our claim that Eq. 
(4.12) is indeed an appropriate phase, we may verify that the 
action of J'± = Jl ± iJ~ on the simple functions tf/:/(</1 ), 
namely, (1f,,~ /7]~~ + I )(k ± m)tf/:/'+ 1(</1) is the same as that of 
.lJI! on If! ::",~ (p). This has to be d-;;ne separately on the upper 
and lower components as t~ = a.lJ I ± iJ2 and yields the 
same result through the recurrence realtions for Whittaker 
functions42. Finally, the transformation properties under A 
in Eqs. (2.9) can be defined explicitly, as their action on 
Yi, (~+) is to exchange the two component functions 

and it can be readily seen that A 2 = 1. From Eqs. (4.10), the 
factor in Eq. (4.14) is( -1)'" for £ = o and 43 i( _l)m+< 
X sigMsignm for £ = 1/2. The intertwining kernel can thus 
be written as 

K ';/' (</1,p) = (21T) - l/2e - I<d> (p/2) 112 + IA (cos (</1 /2» - I - 1"\ 

X exp(i~ap2tan (¢> /2». (4.15) 

The generalized eigenfunctions of the parabolic gener­
ator J~' + Jl I can be found from those of.lJ~1 - JlI in Eq. (4.5) 
through the Fourier transformation (3.15) representing a ro­
tation by - 1T around the 3-axis. Since Eqs. (4.5) are essen­
tially Dirac 8 's inp, the .11;' + J\' eigenfunctions will include 
H ~.~,( [21 vi] 112p )-Hankel and Macdonald functions of 
imaginary index-times p 112. The corresponding J~ + Jl 
generalized eigenfunctions are obtained from Eq. (4.7) sim­
ply by a rotation of 1T in the argument. These basis functions 
and their transformation properties are particularly interest­
ing, since from Eqs. (2.1) it can be seen that MZ3 + M25 is the 
Klein-Gordon operator in a two-dimensional space-time. 
We reserve some observations pertaining to this subject and 
the Kontorovich-Lebedev transform for future 
development. 

As a final calculation, let us use the preceding informa­
tion in order to find the generalized eigenfunctions of the 
hyperbolic operators .11; and J~ in 2"il(fhl+) and 2"2(SI)' The 
four functions are related by pairs by a rotation by 1T/2 over 
the 3-axis (i.e., the square root of the hyperbolic Fourier 
transform) and by the intertwining operator. The simplest of 
the four are the 2"il(~+) generalized eigenfunctions of J~l 
and A: 

YP.J. (p) = (21T) - 1/2(8 + a8 _ )p - 1/2 + ZiT 
-r,a.a a.l a, 1 , 

(4.16) 

with eigenvalues 7E~ and a = ± 1, respectively. The spec­
trum of this hyperbolic operator thus covers the real line 
twice44

• The functions (4.16) are Dirac orthonormal and 
complete with respect to Eq. (3.6) as can be ascertained 
through bilateral Mellin transformation45

• The correspond­
ing.n eigenfunctions can be found through Eqs. (4.2a) and 
(4.15) using the Fourier transform of the complex power 
functions46

• Defining the "cut" functions 
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_ {x' x;;;,O _ {a, x+ - , x_-° x<O -x, 
we find 

x;;;.O, 

x<O, 
(4.17a) 

tI;.:~ (</1 ) = (411')-12' (T - A I2lr (7])e - I<d> ( cos(¢> /2» . I·· I,{ 

X (e 'TnI12 + ae - Tn1/2) 

X [(tan (¢> /2» :;: 'I + a(tan (</1 /2» -= 71] 

= 1T - I 2 - I 12 ~ " r ( 7] ) e .. I<d> triga ( 1T7] /2 ) 

X (81,s/gnd> + a8 _ I,s/gn</> ) I sin</1 I k I tan(¢> /2) I 
(4.17b) 

where 7] = k + iT = ~ + i(T + A /2). The eigenfunctions of 
J~ can be now found from Eqs. (4.16) and (4.17), as J~ 
= exp(i!1T.lI~)]; exp( - q11' J~). This amounts to a rotation by 

1T/2 in SI : 

~:~ (</1 ) = tI;.:~ (</1 + 11'12). (4.18) 

In 2"il (£1(+) this is the 2 - 1/2 C ~) transform (3.9) of the 
chosen (J~' ,A) eigenfunctions (4.16). The hyperbolic canoni­
cal transform involves three integrals for each component47

. 

After several cancellations and factorizations, we obtain 

n ~:;,o (p) = C ~ V ~:~ e'·' mrTI2p ··112 W_ a,IA 12 Uap2) , (4.19a) 

c~ = 21/2 + iT(21T) - 3/2 r q + iT + iyl. )r q + iT - iyl. ), 
(4.19b) 

V~:~ = (Oa,1 +apOa,_1 )[2ahYPI,p().,11'/2) -i~(p-l )], 
(4.19c) 

which are indeed eigenfunctions of .JJ~1 with eigenvalue T. 

They are not eigenfunctions of A, or course; rather, A can be 
seen to map Eq. (4.19a) through a- - a into an eigenfunc­
tion of J:' with eigenvalue - T. As W:"" (z) and W _ j'-' ( - z) 
are independent solutions to the Whittaker equation, their 
relation is not simple. In fact, 

AOp,A = A exp (i111'JII )YP,,{ 
TtG 2 3 T,G 

= exp( - i11T~II)AyP,A = aCp,Afip,A (4.20) 2 ..v J I,a F T,il , 

where C~A is the hyperbolic Fourier transform as given by 
Eq. (3.15). 

5. APPLICATIONS AND CONCLUSION 

The analytic properties of the basis functions and trans­
formations belonging to the continuous series of the SL(2,R ) 
group generated by Eqs. (1.1) have been seen to be rather 
arduous. Their group-theoretic properties are, however, as 
simple as that of any other realization, and herein lies the 
advantage of using the latter to derive relations for the for­
mer. These relations take the form of integral identities in­
volving Hankel, Macdonald, Whittaker, power, and expo­
nential functions, some with imaginary indices and 
parameters, which are now endowed with a group-theoretic 
interpretation. In what follows, we outline five examples of 
applications of these concepts. 

First, of course, we have the Hankel and Macdonald 
function integral relations implicit in the kernel composition 
(3.13). Second, Whittaker functions of the kind (4.13) and 
(4.19) are displayed as being selj-reciprocating48 under hy­
perbolic canonical transforms. This can be seen in the fol­
lowing way: Consider the matrix identity 
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M = (a
e 

b
d

) = (a
y 

0 ) (cost - sint) a~, 
a-I sint cost ' 

(5.la) 

a = (a 2 + b 2 )1!2, Y= (ae + bd )/a, tant = - b/a. 
(5.1b) 

The integral transforms associated to these matrices will fol­
low suit through Eq. (3.3). Now, apply these transforms to 
the J~I eigenfunctions qt~'tcp) in Eq. (4.13), noting that the 
rightmost transform will multiply the functions by 
exp(2imt), while the second transform is purely geometric 
and given by Eq. (3.12). Their composition thus leads to the 
integral relation 

(T' ~+ 1 f'" dp'Cf;.~a,(T'(p,p') 'f/~~a'(p') = I a I - 1!2(signa)2E 

-xe2imt exp(iayp2/2a)'f/~~a(p/lal), (5.2) 

which, if written out explicitly [Eqs. (2.7d), (3.9)-(3.11), 
(4.13), and (5.1)], is rather difficult to solve by elementary 
methods. Decompositions analogous to Eqs. (5.1) can be 
made for the parabolic- and hyperbolic-operator eigenfunc­
tions seen in Sec. 4. 

Third, the intertwining operator (4.2) can be used to 
"close the fourth side of a rectangle" in applying a hyperbol­
ic canonical transform to a given function in 2'iI (~+): we 
pass to 2'2(S\), transform the function there [this is an easy 
task since the group SL(2,R ) in that space acts geometrically 
as its generators are of first order], and transform back to 
2'il (~+). Fourth, the intertwining integral may be solved if 
the functions involved are recognized to be canonical trans­
forms of eigenfunctions of SL(2,R) generators. We use for­
mulas such as Eq. (5.2) in order to transform them to the 
simplest eigenfunction of the orbit such as Eq. (4.5) for the 
parabolic and Eq. (4.16) for the hyperbolic cases, intertwine 
the resulting simpler function with the aid of the results of 
Sec. 4, and transform back in 2'2(S\). Fifth, 2'il (~+) inner 
products between basis functions such as the right-hand side 
ofEq. (5.2) may be intertwined to their 2'2(SI) counterparts 
and the simpler ¢ - integral solved. The latter is nothing 
more than a SL(2,R ) representation matrix element (same or 
mixed basis) and thus expressible in terms of 2F\ hypergeo­
metric functions49

. 

From the point of view of canonical transformations in 
quantum mechanics, we have been occupied with potentials 
which are not realistic. Our approach, however, suggests 
that any other classical-quantum correspondence method of 
solution l7 tackling Eq. (1.7) should, when extended to 
strongly centripetal potentials, lead to the results in this 
article. 

As regards SL(2,R ) representation theory, only the sup­
plementary series (0 < q < i) remains to be worked out, in 
particular, the peculiar properties of the representations at 
the values q = 0 and * of the Casimir operator. 

Finally, on the terrain of the integral transform theory, 
we have previously shown thatS

-
7 Fourier and Hankel trans­

forms are particular cases of real linear and radial canonical 
transforms and that, through complex extension, one can 
reach the bilateral Laplace, Gauss-Weierstrass, Bargmann, 
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and Barut-Girardello transforms. Hyperbolic canonical 
transforms do not seem to include any well-known particu­
lar cases, yet they come within close range: The Meijer-K, 
Kontorovich-Lebedev, and Neumann transformsso• The 
first ones, involving kernels with Macdonald functions of 
real index and related to the Laplace transform, may be 
reached if a valid analytic continuation of the kernel can be 
implemented. This may require non unitary SO(1, 1) repre­
sentations in Eq. (2.5). The second transform involves Han­
kel functions of imaginary index, where the integrations take 
place on the argument and on the index. This seems to re­
quire either a different subgroup reduction ofSp(4,R ) or op­
erators other than Eq. (3.5) in the representation decomposi­
tion. As both of these cases involve single-component 
functions, we surmise that they correspond to the A-diag­
onal Fourier transform (3.15). Lastly, Neumann trans­
forms-and, indeed, Hankel transforms as well-are sug­
gested by the analytic continuation in A of the kernel 
elements (3.1Ia), as even the Struve function contained in 
the inverse Neumann transform appears to be closely relat­
ed51 to the use of the representations of a compact subgroup. 
It is our intention to address these extensions and further the 
study of the Klein-Gordon operator elsewhere. 
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(3.12) with c = r and a = 1 = d,b = O. 
"The new diagonal operator can be found from Eq. (1.5) with the param­
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