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The finite Fourier transformation is well known to diagonalize the second-differ-
ence matrix and has been thus applied extensively to describe finite crystal lattices
and electric networks. In setting out to find all transformations having this property,
we obtain a multiparameter class of them. While permutations and unitary scaling of
the eigenvectors constitute the trivial freedom of choice common to all diagonaliza-
tion processes, the second-difference matrix has a larger symmetry group among
whose elements we find the dihedral ‘manifest’ symmetry transformations of the
lattice. The latter are nevertheless sufficient for the unique specification of eigenvec-
tors in various symmetry-adapted bases for the constrained lattice. The free symmetry
parameters are shown to lead to a complete set of conserved quantities for the
physical lattice motion.

1. INTRODUCTION

The Fourier integral transform owes its success to the well-known prop-
erty of turning differential equations with constant coefficients into alge-
braic ones, amenable to an easier solution. Similarly, the finite Fourier
transform has found use in the uncoupling of lattice and network equa-
tions as it diagonalizes the second-difference matrix. This is briefly reviewed
in section Il. In this article we find constructively the eigenvalues and
eigenvectors of this matrix. In section Il we thus find the largest class of
transformations which have this property; the usual finite Fourier transform
is only one —perhaps the simplest— unitary member of this class. In sec-
tion IV we examine the freedom in the class, relating it to the symmetry
group and eigenvalue degeneracies; this group contains the ‘“manifest”
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388 AGUILAR and WOLF

discrete dihedral symmetries of an N-point lattice. As shown in section V,
symmetry adaptation, i.e. the requirement that some dihedral operation
constitute a definite symmetry, resolves the transformation ambiguity
up to the trivial freedom of permutation and unitary scaling. Finally, in
section VI we show that the symmetry group leads us to the indepen-
dent conservation laws for the physical N-point lattice motion defined as
sesquilinear invariants in phase space.

Il. THE LATTICE EQUATIONS OF MOTION
AND THE FOURIER TRANSFORM

Consider a closed linear lattice consisting of N equal masses M, which
can be numbered in some convenient fashion modulo N and which are
pairwise connected by springs, k. being the Hooke constant of the
spring connecting masses number 7 and m. If £ is the displacement from
equilibrium of mass n, its equation of motion will be [1, 2]

_Mnfn = knnfn + n§m knm(fn _fm)
= ;n[_knm + an,m (knn+;knr)]fm

= X kpmfm n o= 1,20 N (1)

nm

Here we are allowing each mass to be connected to its equilibrium position
through a spring k& ; the last member defines the elements of a symmetric
interaction matrix K = Ik Il Sums over dummy indices extend from 1
to V.

The simple lattice case assumes that all springs connecting gth neigh-
boursareequal, i.e. thatx isa function of ¢ = In —m lonly. The inter-
action matrix K contains then at most [N/2] different elements ([r] is the
largest integer which does not exceed r) and is constant along the main
and parallel diagonals. The set of equations (1) can be written then as a
vector equation

» IN/2)
ME = —Kkf = ( 2k a5 k, >0 2)

where M = M1 for the case when all masses are equal and
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=2 1 0 0 1
1 -2 1 0 0
0 1 =2
A = (3a)
0 0 =2 1
1 0 0 1 -2

is the second-difference matrix. As

(Ap)mn = (_1)m+n—p <A_2/2___>

pt+m-—n

= (Ap)m,N-n = (AP)N-m,n ’ (3b)

the k's in (2) can be put easily in terms of the pth neighbour interaction
Hooke constants k,, ..

The task of finding the normal modes and frequencies of the simple
lattice (2) is thus equivalent to the diagonalization of (3). This can be
achived through the unitary Fourier transform matrix defined as

F=1F,,I=1 N exp(—2imn/N) || . (4)
Indeed, one has

FF1IAF = A A = 1148, ,sin* (an/N)Il (5)

as can be easily verified through the summation formula

, o . (1=x)""%(1=x"1) | x #1
x + x + i X =

(6)

)

b+1 ; x = 1
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upon lettinga = 1,6 = N—1, x = exp(—2ni[n — m]/N), and perform-
ing some algebra. The Fourier matrix F has the properties of being:
a) unitary, b) symmetric, c) expressed as (4) it is a periodic matrix
(e £, ,=F,, forms= m' mod Nand n = n' modN), d) Fos &

fF* "= F . Once we have found a transform matrix with the
mN —n N -mn

)

property (5), the lattice equations of motion (2) uncouple into N second-
order differential equations for the components of f = F 7! f:

—x f =M, K =— 3 kM n=1,2,

n n

N, (7a)

ceey

which represent N independent pseudo-oscillators, in the sense of being
mathematical entities which obey the oscillator equations of motion with
Hooke constants of k. The solutions to (7a) are

fn(z‘) = fn(O) cos(w, t) + f;(O) sin(w t)jw , w, = (K”/M)V2 ,

n=12.,N, (7b)

which formally include the case n = N (w, = 0) which represents the
free drift motion of the whole lattice as 7, () = £,(0) + £ (0)t. The
original solutions to (2) are then found as the components of f = Ff.

These are all well known facts. What we intend to do here is to find
the eigenvalues and eigenvectors of A, i.e. the matrices ® and A such that

AD = DA, A=ls Al (8)

In the process we shall be able to parametrize the freedom of this class
of matrices and point out the particularities of the Fourier matrix.

11l. DIAGONALIZATION OF THE SECOND-DIFFERENCE MATRIX

The elements of any matrix ® = ly I that is to diagonalize A are
constrained, due to (8), through the relations

~(242Jo,  +O A e =0 (9a)

’

¥ _(2+7\n) gpm,n_*_“qutl,n:()’

m—1,n
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Sol,n + SON_I’” — (2+)\n) SoN,” =0,

n=12.,N. (9¢)

The first two recursion relations [3] show that any @11, €aN be putin
terms of ¢, and @y, With coefficients which can be only polynomials in
2 +\,. More precisely, we have

“’ = U, (x,)0 . + V, _(x,)0 , > (10a)

m+1,n

X, =1 +2/2, (10b)

n

where U, (x) and V,(x) are polynomials of degree g in x, as we can easily
see replacing (10a) in (9b):

¥ 2x ¢ = ip

m+1,n n'm n m—1,n

[2Xn Um — I(Xn) - Um = 2(Xn)]sol, n
+ [2x, VvV, ,(x,) — vV, _s(x,)10 , - (11)
Comparison with (10) gives the recursion relation for U,), (X)

U (x)=2xU__(x) = U, _,(x),

m=23.,N=1. (12

and an identical one for V,,(x). The base of the recursion is found consid-
ering ¢, =19, +0-¢,  which implies Uy(x)= 1 and formally
V. (x) = 0; equation (9a) yields Uj(x) = 2x and Vy(x) = —1, while the
next step sets Vi(x) = —2x. It follows that V (x) = —U _(x). The fact
that A is a tridiagonal matrix, constant along the main and parallel diag-
onals, has constrained U, (x) to satisfy a three-term recursion relation with
coefficients independent of m. This result can be compared with the
Christoffel-Darboux formulae and base values for orthogonal polynomials.
Indeed, Eq. (12) is found to characterize precisely the Chebyshev polyno-
mials of the second kind [4]:
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U_(x) = sin(lm + 1 Jarccos x)/sin(arccos x) . (13)

Since the three-term recursion (9a)-(9b) closes in (9c), there are two
conditions we have to impose for their proper matching. These will yield
the values of x in Egs. (10)-(13). Equations (10) for m = N — 1 read
—collecting terms—

Uy 1(x,) % , — Wy _,(x,) + 119, =0, (14a)

while the equality of the two expressions for ¥y _; ,, one obtained from
(10) form = N — 2 and the other from (9¢), lead to

U, ,(x,) +1] s — WUy _,(x,) + 2xn]&PMn =0 . (14b)
The values x, for which (14) are a consistent system of homogeneous
equations will yield the eigenvalues of A. If all coefficients in (14) are zero
for a particular eigenvalue, this will be doubly degenerate as ¥, , and ¥ ,
are independent. If (14a) and (14b) have non-zero coefficients but are
proportional, the eigenvalue will be simple. In both cases, the determinant
of the system (14) must vanish:

[UN72(XN) +11* — UNfl(Xn)[UNAS(Xn) +2x 1=0. (15a)

Replacement of (13) into (15a) and some algebra involving trigonometric
identities leads to

sin0, [1—cos(NO )] =0, cos0 =x, =1+ \/2. (15b)

The roots of (15b) lie at 6 = 2mk/N for k integer. In the x -variable,
these are

x_ = cos(2mk/N) , k=0,1,2,.., [N/2] . (16)
As the distinct roots are less than N, some of these must be degen-
erate and this can be analyzed as follows: the zeros of U (x) lie at
cos(km/lm + 1]) while U (+1) = (£ 1)"(m +1). Examination of the
system (14) shows that, for N odd, £ = 1,2, ..., (N —1)/2, the coeffi-
cients are zero. The same happens for N even at Kk = 1,2,..., N/2 — 1

and, as remarked following Egs. (14), these eigenvalues must be doubly
degenerate. This leaves one missing eigenvalue for N odd: thisis & = 0,
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ie. X | & = 1 for which O n T O When N is even, the two missing
elgenvalues are accounted for by & = 0, as before; in addition, k = N/2,
i.e.x, = —1 for which By = —¢Nn.

The numbering of the elgenvalues presents us with the first freedom of
choice. It is of a trivial kind since it is common to all diagonalization pro-
cedures: if ® diagonalizes A then ®P, P being a permutation matrix (see
below), will also diagonalize A. Permutation matrices have one non-zero
unit element in each row and in each column: P~ =6 _  where p(n) is
a one-to-one function of the set of points (1, 2 N) onto itself. The
identity permutation is p(n) = n while the matrix inverse to P is P as

(Pt = = P . Permutation matrices are real and unitary.
mn p{m,;n nm
Acting on a diagonal matrix A, P"1 AP only replaces A\, by Apn)- It is

thus a simple matter to order the eigenvalues \,, stemming from (10b) (16)
according to k as

N, = 2 [cos(2an|N) — 1] = —4sin*(7n/N) ,

n
n=12 ., N, (17a)

the two-fold degenerate eigenvalue pairs being A, = Ay _,. The non-
degenerate ones are Ay = 0 and, when N is even, Ay, = —4. According
to the ordering implied by (17a), the degenerate eigenvector components
are given by (10)-(13)-(16) through

@ = B { cos(2rmn/N) + [y, — cos(2mn/N)]

m, n

X sin(2mmn/N)/[sin(2an/N)}, (17b)

e Al «pljn/&p N2 #n=1,2.,N-1. (17¢)

N

The eigenvectors corresponding to the non-degenerate eigenvalues are, as
stated before,

o n = Pun and, when Neven, ¥_ = (—=1)"¢ N N2 - (17d)

IV. DIHEDRAL SYMMETRY AND EIGENVALUE DEGENERACY

The simple lattice equations of motion are invariant under a set of
“manifest” transformations involving a renumeration of the constitutent
masses. These can be analyzed through noting that the matrix A in Eq. (3)
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is invariant under certain similarity transformations involving permutations
of rows and columns. We can easily determine those permutations P for
which P"1AP = A. The m-n element of the left hand side of this equa-
tion reads

(P7'AP) = T PIAP
ps mr

rs sn

= 2 6 [-26 + & + 6 16

ns p(m)r E s rs—1 r,s+1" s, p(n)

= 25 +38

mn T Om o1 O

(18a)

m,p~ (p(n) +1)

where all rows and columns are considered, as usual, modulo N. Equation
(18a) will equal 4~ if and only if

eitherp(n+1) = p(n) + 1 or p(n+t1) =p(n) ¥ 1 . (18b)

The first case defines rotations, while the second requires reflections, as
detailed below. The set of all permutations leaving A invariant define the
dihedral group of matrices D, . If ® diagonalizes A and D is an element of
D, then clearly D® will also diagonalize A. This involves dihedral trans-
formations between the rows of ®. The trivial permutations seen in the
last section .involved permutations of the co/lumns of this matrix.

The conditions (18b) imply that two neighbouring masses in a circular
lattice remain adjacent after the transformation. This can be achieved
under rotations of the circle or inversions through a diameter. Consider
first the rotation matrix R = |l 5, ,+1 1 which, when acting from the left
on @ will shift the rows of ® downwards by one unit, the Nth row of
® being the first of R®. All other cyclic permutations of the rows can be
produced by powers of this matrix:

0 1
RE =116 I =

m N+ k ) RV =1 (19a)

N

where 1 is the g X g unit matrix and the O’s are appropiate rectangular
null matrices. Next, /nversions can be characterized by the rows which are
left in place. If N is odd, one row must always be invariant. Thus, we de-
fine the matrices
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A

N—2k—1

0 A

=18 I =

m,N+2k—n
2R + 1

=Rf1, Rk, (19b)

where A is the g X g antidiagonal unit matrix. When N is even, then, in
addition to the kth row, its antipodal, the (N/2 4+ k)th row is also in-
variant. When N is even, we have, moreover, one more class of inversions:
those where no row is left invariant. This is accomplished through the
matrices

K, = I | =

m N+2k+1—n

= R*K,R™* . (19¢)

Through simple counting we can verify that in every case 0, has 2N
elements, meaning that for every matrix ¢ diagonalizing A, that many
distinct matrices D® can be produced. In terms of the physical lattice,
the R rotate the system through k times the inter-mass angle, the I,
reflect the system across a diameter passing through mass k, while K,
performs the same across a diameter through the midpoints of the springs
joining masses k and £ + 1, and masses N/2 + kand N/2 + k + 1.

Although the symmetries above are all the manifest symmetries of the
lattice, they are far from being all the symmetries. To see this, consider
the diagonal matrix A, which is equivalent —through the Fourier transfor-
mation— to A. Clearly, if ¥ ~and ¥ . = are two linearly independent
eigenvectors corresponding to the same eigenvalue 7\n =\y_,» twoin-
dependent linear combinations of these will also qualify to define an
eigenbasis for A. If we denote by T and N X N non-singular matrix which
has the elements of the unit matrix except for the intersections of the nth
and (N —n)th rows and columns, then T71A T, = A. Consequently,
if @ diagonalizes A,sowill @ T .

Now, each T may have four complex parameters and TT, = Tn,TI7
for n # n'. For N odd there are thus four complex free parameters for
each of the (N — 1)/2 degenerate eigenvalue pairs, while for N even, we
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have N/2 — 1 degenerate pairs. In addition, non-degenerate eigenvalues
can have their corresponding eigenvectors multiplied by any complex
number. To this end one can define T, as a diagonal matrix with 1’s
except for the N-N element, and similarly for T,,,, when N is even. The
total number of complex free parameters is thus 2N — 1 for N odd and
2N — 2 for N even. This total equals the number of free parameters in the
Fourier matrix (17b)-(17d). In fact, through products with T ’s we can
produce, out of a given @, any other A-diagonalizing matrix.

One may wonder if, for every matrix D in D, , we have a correspond-
ing product II T = T such that D® = ®T. Indeed, one can easily
find its corresponding T = & ~' Dd. What is perhaps surprising is that in
the analysis of the structure of ®T® ' one finds that the dihedral group
D, of manifest symmetries of the lattice is embedded as a discrete sub-
group in the continuous group of all IL T , which qualifies then as the
hidden symmetry group of the system. We shall not go into this here,
although the Lie-theoretical results of this observation are interesting in
their own right.

A well known property of the eigenvectors of Hermitean matrices is
that those corresponding to different eigenvalues are orthogonal with
respect to the natural sesquilinear inner product (u,v) = X u*v . Those
which correspond to the same eigenvalue, in our case A, =\, need
not be. In fact, from (17b) and the summation formula (7), we find

(w.n’w-N_;J = wM :sz N—/7(N/2)[7n7N—n _(717 + ’Yan)

X cos(2mn/N) + 1]/ sin*(2an/N) ,

Ni2#n=1,2.,N=1. (20a)

In order that the two independent eigenvectors be orthogonal, it is
necessary thaty andvy,  berelated by

Tvon = 17 cos(2un/N) —11/[Y] — cos(2mn/N)] . (20b)

Finally, each eigenvector will be normalized when (gp.n,cp_”) = 1. This
implies, through a procedure parallel to that followed in (19), that ¥,
and v, be related by '

|w/\', n

| = {(N/2)I1 + Y > — 2 Re(7) cos(2an/N)1}"'? sin(2an/N)

N2 #n=1,2,., N—1, (21a)
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while for the two non-degenerate eigenvalues, one has

¥, v = N7"? and, when N even, |#, spsl = N7V (21b)

The commonly defined Fourier transform F in (5) is a unitary matrix
which can be seen to stem from the choice.

7: = exp(—2win/N) , n=12,.,N=1)2 , (22)

and ‘P,S,, =NV2 n=1,2..,N.Itis clear that from F we can obtain
any other A-diagonalizing matrix & through right multiplication by ma-
trices T as® = FIL T .

V. DEGENERACY RESOLUTION THROUGH DIHEDRAL SYMMETRY

As we have seen, the A matrix does not lead to a unique specification
of its eigenvectors due to the degeneracy in its eigenvalues. We now search
for other matrices commuting with A which may provide the missing
labels. Although any matrix F(HHT”)F" will commute with A since I1 T
commutes with A, we are generally interested in those matrices which can
be given a clear geometric meaning, such as the subset Dy . These will
provide the eigenvectors with definite symmetry under lattice rotations
and inversions. For the former, a unique classification will be obtained,
coinciding with the usual Fourier basis. For the latter, the various bases
can serve to describe lattices with constraints: if NV is even, lattices with
two fixed masses —endpoints— or two fixed spring midpoints; if N is odd,
lattices with one fixed mass and one fixed spring midpoint. As all the
matrices (19) are unitary, their eigenvalues will be of modulus one and
their nondegenerate eigenspaces, orthogonal. The inversion matrices (19b)
and (19¢) are, moreover, Hermitean. Their spectrum can therefore consist
only of the points +1 and —1. The A-degenerate spaces will separate into
odd- and even-symmetry eigenvectors.

Consider first the matrix ¢ as defined through (8) and diagonalizing
one of the rotation operators:

R = GRF o ¢ JRE = 1ls pk)y

mn- n t

m—R, n n-omn

(23a)

Using (17) in (23a) yields, in terms of the free parameters ¥, ~and v, , the
relation '
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Y . {p(n’”Yn sin(2mmn/N) —- p(:)sin(Qw[m —11n/N)

— 7 sin(2alm — kIn/N) + sin(2alm —k —1]n/N)} =
e N (23b)
These equations for m = 0 and m = 1 yield the eigenvalues of R* as

/(]k)— exp(2mikn/N) = (k)* ) n=12.,N. (24a)

=1

The corresponding eigenvectors are defined by

Y = exp(—2mikn/N) = Y. N

n N—n ?

, (24b)

ceey

leaving the ¢, ~ free. We see that A-degeneracy is indeed lifted since the
two orthogonal vectors with the same elgenvalue under A have complex
conjugate —hence distinct— eigenvalues under R*. Only when £ = 0 or
k = N/2 when N even, does the degeneracy remain unresolved. The
reason for this is due to the fact that R® and R*? commute with all the
elements in Dy (they are the center of the group). They can be thus
diagonalized together with any other element of Dy . If we ask that the
matrix & be unitary, condition (21a) will impose ¥, | = N2 N/2 #
n # N, leaving only the N phases of the kPN’" free. It'is interesting to note
that the Fourier transform matrix can be defined up to column phases as
that transformation which diagonalizes R* for any k& that is not a non-
trivial divisor of N. If thisconditionis satisfied, there will be no degenerate
cigenvalues, and the form (17)-(24) gives the proper eigenvectors.

The matrix @ can also be defined through (8) and either of the relations

= ¢l = (k) i = ()
l,® cblk < ¢z/¢—/77, : A R ll(Sm, Y I (25a)
— OR = k(¥ K, = (¥, ,
Ko = @K, @9, =«0e K, =18 «l1 (25)

for some k or k'. The two nondegenerate eigenvectors (17d) correspond
to the eigenvalue +1 under I, and under K, to +1 and (1), respectively.
Equations (25) lead through (17) to the relatlon
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Py g {y(k) Y, sin(2mmn/N) — ,(7’” sin(2m[m — 11n/N)

—7, sin(2al¢®) — mln/N) + sin(2alg® —1—mln/N)1=0 ,

, (26

where uff/ is 2n and &) is 2k for l,, while for K they are Kf’f) and 2k + 1,
respectively.

In what follows immediately below we exclude I, from our considera-
tions. Equations (26) for m = 0 and m = 1 lead to the determination of
u(/;) =+ 1 for N ¥ n # NJ2. This shows that the eigenvalues of these
operators will indeed resolve the A-degeneracy. Correspondingly, one has

Y1) = cos(2n[ £ j2 — 11n/N)cos (n£*/n/N) (27a)
7(;1) = sin(2al &% 12 — 11n/N)sin(zE ®'nN)
N # n # NJ2 | (27b)

leaving the ¥, =~ free. The unitary condition (21a) furthermore imposes
the restrictions:

Wi | = (N12) 72 |cos (rE™/n/N) | (28a)
“P&'n = (NJ2)"""? | sin(a&™®) n/N) \ , N/2#n+*N, (28b)

leaving again only phases free. The case for I, is somewhat special.
If the eigenvalue is +1, we obtain from the preceding formulae gp(+1) =
cos(2mn/N) and Ikp(”)l = (NJ2)"V2. If the eigenvalue is —1, since the
operator leaves the Nth component in place, we obtain ap( 1) = 0 and the

ratio ¢ is meaningless. As long as we consider the product «p('”s,o(*“

to be finite, we can make sense out of (26) and obtain ¥’ 1) =€
sin(2m mn/N) with |C | = (N/2)7'"?, again leaving the phase freedom.

We conclude that any of the dihedral matrices (excepting R® = 1
and RN/?') suffices to resolve the degeneracy in the A eigenvector problem.
The requirement of unitarity further leaves only the unavoidable phase
ambiguity in each of the vectors.
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VI. SYMMETRY AND CONSERVATION LAWS FOR THE SIMPLE LATTICE

In this section we shall see how the symmetry group of the lattice can
be used in order to find constants of motion for the system. The lattice
equations of motion, Eq. (2), can be written as a first-order differential
equation in a 2N-dimensional configuration-velocity space whose elements
and transformation matrices we shall denote with a caret. Thus we write

0 1 f dff o
= — , i.e. Hf =
MK 0 ¥ dr \ ¢ dt

The first component of this equation defines f as df/dt, while the second
one reproduces (2) with this definition.

The solution of the equation of motion (29) can be written in terms of
the initial conditions (at time ¢ = 0) as [2]

(1) 0 1 } £(0)
) =exp |t )
f(t) [ ~M7'K 0 f(0) :
i.e. f(r) = exp(tH) f(0) . (30)

This leads to the definition of the time-evolution operator of the system.
We are interested here in constructing sesquilinear forms in this 2/N-di-
mensional space of the form

) E E f
E(f) = (f1 f1)

E, E, f

ie. E(f)=fTEf , (31

which are to be conserved, i.e.,are to be independent of time as fis allowed
to evolve according to (30). Equation (30), when substituted in (31), yields
the relation

exp(tI:IT)é = E exp(—tH) . (32a)
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This relation holds true if and only if the derivative of this expression with
respect to t at ¢t = 0 holds, i.e.,

AE = —EA . (32b)

Written out in N X N matrix form, this result embodies four matrix equa-
tions:

KIM'-E_ + E,M'K = 0 M'KE, —E =0

E — EMI'K =
a d

|
(aw)

E +E =0. (33

In the case of the simple lattice, i.e., when M = M1 and K is symmetric
and built as a sum of powers of A (barring accidental symmetries as, for
instance, when all gth-neighbour springs are equal and independent of g),
Egs. (33) are equivalent to the system

AE, = E,A, E, = M'KE, , (34a)
AE, =E, A, E =-E, . (34b)

In this system the submatrices E, and E, should commute with A, while
the other two are determined once the first pair is given.

The set of 2N X 2N matrices E with the property (32) forms a complex
vector space since any linear combination of such matrices will again have
property (32). We are thus interested in finding a basis for this space. In
section 1V we saw that the “manifest” symmetry dihedral matrices (19)
commute with A. Moreover, it was seen that the full symmetry group was
provided by the matrices T ~which commute with A, so it follows that
® T, &' will commute with A. The arbitrariness in the choice of ® has
no effect on this result.

The matrices T can be written as

n

T =1+ flaﬁ;ﬂ:) , n=1,2,.., (IN=1)2], (35a)
=

where 1 is the N X N unit matrix. The Tff) are matrices whose non-zero
elements are
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1 0 0 0
T, = . T )
0 0 0 1
0 1 0 =
3 ) T4 ) (35b)
1 0 i 0

placed in the intersections of the nth and (N — n)th rows and columns.
For the special cases v = N and, when N even, v = N/2, we can write T,

in terms of matrices 7/ with a single 1 in the N-N or N/2-N/2 po-
sition:

Il

s‘
Il

T, =1+ar®, =108 & |

n,v - m,v 2 (35C)
Since 1 obviously commutes with A and can be expressed as a sum of 7’s,
a basis for the matrices which commute with Ais given thus by @7{'1’) ¢!
for n =1,2,..,N (excluding double-counting and, when n = N or
N/[2 we simply disregard the index u and use (35c) for its definition).
Counting the number of degenerate eigenvalue pairs with a four-dimen-
sional matrix basis (35a) and the non-degenerate ones with a one-dimen-
sional basis (35¢), and doubling this number for the two equations in (34),
we conclude that the space of conserved sesquilinear forms (31) is
(4N — 2)-dimensional for N odd and (4N — 4)-dimensional for N even.
Note that when the coefficients g in (35) are real, the matrices are
Hermitean.

We shall now proceed to determine the physical meaning of each of the
basis vectors of this space as we let first E; run over all <I>T(") ® ! and
E, = 0, and second consider E; = 0 and E, to be the CI)T(n) o' We
recall that the vector f = & ™ f is the Fourier transform vector of f. If
& coincides with the usual Fourier transform matrix (5) or if ® is a unitary
matrix, then ft = ftd ;if not, then fl & = ff S, withs = ot being
a matrix which effects linear combinations in the degenerate eigenvalue
planes. For the sake of conciseness we shall assume below that & is
unitary. A simple substitution will yield the other cases.

Using the first set of conditions described above, we obtain the constans
of motion

E(”)(f) = ft:™Wf + M fTRe™E )
u [ r

n=12.IN2], orn=N. (36a)
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For the second case, after multiplying E, by / and changing letters for
notational convinience, we obtain

o) = i(ftrms _ ft 0
Fos) = iffe 0 — 1 emf)
n=12.,IN2], orn=N. (36b)

The first observation is that the constants of motion E(”)and F(”) involve
only the nth componets of f, while E(”) and F(")only the (N — n)th com-
ponent. The other two will involve both the nth and (N — n)th compo-
nents. The E’s have the general form of energies, involving quadratic ex-
pressions in the velocity plus cuadratic expressions in the elongation, in
fact, one has that

. F2 = (N0
MEOS) = MIF 2+ i IF 1P =MEL"™"

n=12.,N. (37)

Thus, the E’s are the energies associated to each of the Fourier partial
waves, generalized in the sense of holding also for partial waves defined
through any of the A-diagonalizing unitary matrices ®. These are N real,
positive quantities where we recall that A, < 0. Next, for u = 3 and 4,
one finds

() re) Sl ol B
EY"(f) = 2 Re(f 1, + Mkt L) (38a)

N—n

EM(6) = 2im(ff, + Mk £, ),

. nn N
n=12.,[(N-1)]2], (38b)
which are 2[(N — 1)/2] real quantities.
We now continue in the same manner with the F’s in (36b). These will

have the form of angular momenta, as suggested below. The conserved
quantities are

F(]) = 21m(f £) = FIN "))
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and
» B .:* ~ :* ~
V)= 21m(f"f, .+ £ ), (40a)
FWf=—2Re(f’f, . —fy f),n=12_,[N-1)/2]1 , (40b)

The total number of constants of motion equals the number of real
plus imaginary parts of the free parameters of ® seen in Sect. IV, namely
2(2N — 1) for N odd and 2(2N — 2) for N even.

We shall now reduce this large set of constants of motion by consider-
ing the actual physical lattice where the elongations and velocities are real
quantities and where we will have no more than the 2N constants of
motion afforded by the 2N initial conditions. To this end, consider first
the usual Fourier transform (5) and the Fourier partial waves associated
o it Singe L2, = F = Fy, . it follows that when f is a real

m‘an o ), . . .
vector, then f:: = f, ,,» and similarly for the velocities. With this res-
triction, it is easy to see that the number of independent constants reduces:
in (37), one has £V = 51'7)'”) , while in (38), one has E{:) = E@/"”) and

Ef) = —EIN=7)_ Finally, in (39), one has the relation

e = —iff, f - ff,_)=—FN=-"(), . (41)

n
This result assigns to this constant of motion the meaning of an angular
momentum in the uncoupled Fourier pseudo-oscillator planes correspond-
ing to the degenerate eigenvalues. Lastly, in (40), one has that F';’) and
FZ’) are identically zero.

We note the identity 4(E(")? = (E{" ? + (E{"”)?  valid forn = N and,
when N even, for n = N/2 as well. If none of the interaction matrix
eigenvalues k,, is zero, we see through simple counting, thus, that we are
provided with' 2N — 1 real constants of the motion when N is odd, and
2N — 2 constants when N is even. If for one or more n the interaction
operator eigenvalue k; iszero, (as in the case of the simple wave equation,
where K = —kA and k, = 0), then 4(E/™)* + (E{7)2 + (E[)? 'and we
loose that number of constants of the motion. This is due to the fact that
if we replace f-ﬁ by f% + cf-ﬁ, for any real ¢, none of the sesquilinear con-
stants of the motion is altered. This corresponds to adding to f a vector
with components CFM(Ff f')ﬁ,n = 1,2, .., N. For the wave equation
case, this is any real constant vector.

Finally, if any non-usual Fourier basis fis used, but related to the Fourier
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transform basis through f = (HnTn)?, it will effect at most linear com-
binations in the degenerate eigenvalue planes. It is easy to see then from
(36) that the new E™ s will be linear combinations of the old EZ')'S in
(37)-(38), the coefficients being sesquilinear functions of the transforming
matrices T . The same holds for the FE” ’s. In any case, though, we remain
with 2N independent constants of motion.
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RESUMEN

La transformacion de Fourier finita, como es bien sabido, diagonaliza a la matrix de segunda
diferencia y por ello ha sido usada extensamente para describir mallas cristalinas y redes eléctricas.
Al proponernos encontrar todas las matrices con esta propiedad, obtenemos un conjunto multipa-
ramétrico de ellas. Las permutaciones y los cambios de norma de los vectores propios constituyen
los grados de libertad triviales, comunes a todos los procesos de diagonalizacion. Sin embargo, la
matriz de segunda diferencia posee un grupo de simetrias mas amplio. Entre los elementos de este
grupo continuo encontramos las simetrias manifiestas de transformaciones dihedrales de la malla.
Estos Gltimos son, sin embargo, suficientes para la eleccion Gnica de una base de vectores propios
ortonormales adaptados de acuerdo a varias simetrias para las redes constrenidas. Los parametros
de las simetrias no-triviales llevan a un conjunto completo de cantidades conservadas bajo el mo-
vimiento de una malla fisica.



