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Using the method of canonical transforms, we explicitly find the similarity or kinematical symmetry group, 
all "separating" coordinates and invariant boundaries for a class of differential equations of the form 
[ao 2/oq2 +(3q%q+'Yq2 +oq+e%q+ ~ 1 u(q,t)=-i(%t)u(q,t),or of the form 
[a'(02/oq2 + iJ./q2) + (3'q %q + 'Y'q2] u(q,t) = -i(o/3t) u(q,t), for complex a, (3, .•. , 'Y'. The first 
case allows a six-parameter WSL(2,R) invariance group and the second allows a four-parameter O(2)'® 
SL (2, R) group. Any such differential equation has an invariant scalar product form which, in the case of 
the heat equation, appears to be new. The proposed method allows us to work with the group, rather than 
the algebra, and reduces all computation to the use of 2 X 2 matrices. 

I. INTRODUCTION 

A. In a recent series of papers1
-

3 we have dealt with 
realizations of Lie algebras in terms of second-order 
differential operators and their exponentiation to the 
group. In contradistinction with first-order differential 
realizations, which produce geometric transformations 
of the general form 

(1. 1) 

where Jl is a multiplier function, second-order differ­
ential operators, when exponentiated, will in general 
lead to an integral transform 

f(q)..'I.. fg(q)=j dq'Kg(q,q')f(q'), (1. 2) 

where Kg(q, q') is an integral kernel. The action (1. 1) 
has been extensively treated4 since the times of Lie, 5 

while only recently 6, 7 have forms (1. 2) been subj ected 
to intensive study. In Refs. 1 and 2, we have worked 
with the groups SL(2,C) [the group of unimodular 2x2 
complex matrices] and the associated mappings (1. 2) as 
unitary transformations between Hilbert spaces, one of 
them being L 2(R) or L 2(R+) (Lebesgue square-integrable 
functions on the real line R or on the positive half-line 
R+), and the other one, a space of analytic functions over 
regions of the complex plane a la Bargmann. ij When the 
mapping (1. 2) belongs to the SL(2,R) subgroup (of uni­
modular 2 x 2 real matrices), the "Bargmann" spaces 
collapse to ordinary L 2 spaces. We have called these 
mappings canonical transforms since they arose from 
the study of complex canonical transformations in quan­
tum mechanics. They include as particular cases the 
transforms of Fourier, Laplace, Weierstrass, Barg­
mann, Hankel, and Barut-Girardello. 

B. If H is a second-order differential operator in a 
variable q, element of a Lie algebra (which in this paper 
will be sl(2,R) or wsl(2,R)-semidirect sum of the Weyl 
and sl(2,R) algebras), the solution of the parabolic dif­
ferential equation 

()Hu(q, t)= - i :t U(q, t), (1. 3) 

where e is an in general complex constant, can be ex­
pressed as a canonical transform of the initial condition 
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u(q);;; u(q, 0), 

u(q, t) = exp(it()H) u(q). (1.4) 

Now we can subject u(q) to a general integral transform 
(1. 2) to a ug(q), and the corresponding ug{q, t) will still 
be a solution of (1. 3) and, in fact, a geometric trans­
form of u(q, t). This will be the group of symmetries, 
kinematical 9,10 or similarity 11,12 group of the differ­
ential equation (1. 3). We can further look for the in­
variant lines (boundaries) under go in the q-t plane, 
v(q, t) and thus use the generator of the said transforma­
tion to separate Eq. (1. 3) into two ordinary differential 
equations, one in v and one in t. The solution of (1. 3) 
will then have the .form of a general superposition of 
separable solutions, 13-17 

us(v(q, t), t) = exp[iS(v, t)] Vs(v) T s(t), (1. 5) 

where S (v, t) is a multiplier function (not expressible as 
a function in v plus a function in t). 

C. Our claim in this article is that we can consider­
ably simplify the process of finding these features for 
the class of differential equations (1. 3) by starting with 
a given group and pair its realization in terms of a Lie 
algebra of second-order differential operators with the 
matrix realization .of the group. Since we shall be dealing 
with real subgroups of WSL(2, C), the algebra required 
is essentially that of 2 x 2 matrices. This can be used to 
replace the rather lengthy conventional methods for 
finding separable coordinates and similarity groups 
through the solution of partial and coupled differential 
equations and the exhaustive examination of multi­
parameter ranges. 

The canonical transform method, as used here, has 
the following limitations: it applies only to differential 
equations where H in (1. 3) is of the form 

d2 d d 
H = 01. dqr + (3q dq + yq2 + oq + E dq + /;, (1.6a) 

or of the form 

(
d

2 
) d H=OI.' ~ +~ +{3'q-d +Y'q2, 

dq q q 
(1. 6b) 

for complex 01., {3, ••• ,y', i. e., it applies only to a 
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particular class of parabolic, linear, second-order dif­
ferential equations. Yet this class contains the physical­
ly interesting cases of the heat equation and the 
Schrodinger equations for the free particle or quadratic 
(attractive or repulsive) plus linear or inverse-quad­
ratic potentials in one dimension. Through a simple 
point transformation, these can be related to the pseudo­
Coulomb Schrodinger equation. 3 Our tabulated results 
are exhaustive within the group framework. 18 

D. The outline of the paper is the following. In Sec. 
II we assemble the mathematical tools: the algebra and 
group realizations in terms of second-order differential 
operators (1. 6a) and their exponentiation to the six­
parameter group, as acting on the space L 2(R) of func­
tions and its adjoint action on the algebra; eigenfunctions 
and their eigenvalues for any operator in the algebra can 
thus be found in terms of their orbit representatives. In 
Sec. III we allow for the complexification of the group, 
and phrase the solution of (1. 3) in terms of canonical 
transforms, reducing the problem of finding separating 
coordinates associated with a second operator in the 
algebra, to the manipulation of 2x2 matrices. We ex­
emplify some of these developments for the heat equa­
tion as a complex canonical transform, pointing out the 
existence of a new quadratic-scalar product-invariant. 
Some of the group-integrated features of similarity 
methods are seen in Sec. IV. The free particle and heat 
equation are used as examples. In the latter, the set of 
bounded transformations constitute a semigroup. In 
Sec. V, differential equations with operators of the class 
(1. 6b) are treated. Some connections, conclusions, and 
directions for further work are collected in Sec. VI. 

II. THE GROUP WSL (2,R) AND ITS ORBIT STRUCTURE 

A. The Heisenberg-Weyl algebra 19 UJ, of generators 
Q, P, and :n is defined through the commutator brackets 

On the Hilbert space L 2(R), it is known2o that every 
representation of UJ is unitarily equivalent to the 
Schrodinger representation 

(2.1) 

Qf(q)=qf(q), Pf(q)=-i d~ f(q), 1 f(q)=f(q), 

(2.2) 

which is densely defined and self-adjoint in L 2(R). The 
generator :n is in the center of the algebra and thus 
denoted as the identity operator to start with. 

B. We can exponentiate (2.2) to a unitary representa­
tion of the Weyl group UJ, where the elements 19 
w(x,y,z) ICC W act onf c L 2(R) as, 

[ L(x, y,z )f] (q) '" {exp[i(xQ +yP +z:n)f]} (q) 
(2.3) 

= exp[i(xq + hy +z)]f(q +y). 

Defining for convenience ~=(x,y) as a two-component 
row vector, its transpose ~T = G) and n = (~ -0

1), the 
product law in W can be written; for w(~,z)"'w(x,y,z) as, 

w(~I'z I)W(~2,z2) = w(~1 + ~2' Z 1 +z2 + t~ln~f), (2.4) 

so that the group indentity is w(O,O) and W(~,ztl 
=w(-~,-z). 
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C. Out of the enveloping algebra w of UJ, we want to 
produce other Lie algebras under the commutator 
bracket. The set of second-order expressions, 

Il=:t(p2-Q2), I2=:t(QP+PQ), I3=:t(p2+Q2), 

(2.5) 

are densely defined and self-adjoint on L 2(R), satisfying, 

[Iu I2]=-iI3, [I3,!1] = iI2, [I2,!3]=iIto (2.6) 

which we recognize as the sl(2,R)=su(1, 1)~so(2, 1)' = sp(2,R) algebra. 4 No other unitarily inequivalent, 
finite-dimensional algebra of finite-order expressions 
can be found in w besides (2.1), (2.5), and their com­
position. 21 

D. The algebra (2.5) can be exponentiated to the group 
SL(2,R) of real unimodular 2x2 matrices through its 
one- parameter subgroups, 

( 

coshta 

- sinhta 
(27a) 

(2.7b) 

.1 ) - Sl~ZY 

coszY 

(2.7c) 

C :), (2.7d) 

exp(;h,P'), G -1 b) , (2.7e) 

so that every A'" (~ ~) ICC SL(2,R) [with ad - be = 1 for uni­
modularity] can be decomposed in terms of two or more 
of the elements (2.7). Now, the representation of sl(2,R) 
on L 2(R) obtained from (2.2) can also be exponentiated 
to a unitary representation of SL(2,R) on the same space 
as 1,6,14 

[C(~ ~)f](q)=l dq'A(q,q')f(q') 
R 

= (27Tbt!l2 exp(- i7T/4) i: dq' 

x exp[(i/2b){aq,2 - 2qq' + dq2) Jf (q'). 

(2.8a) 

Notice that exp(i7T/4)CCol ~) is the ordinary Fourier 
transform. When I b I - 0, the integration kernel in (2.8) 
appears indeterminate, but can be shown to be well de­
fined and turn (2. 8) into 

(2.8b) 

Formulas (2.8) give a unitary representation of SL(2,R) 
on L 2(R). This is actually a true representation of 
SL(2,R), the covering group of SL(2,R) with respect to 
the 0(2) subgroup generated by 13; for SL(2,R) it is a 
ray representation and the possible phase differences 
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with a true representation have been discussed in Ref. 
1. 22 

E. We can join the set of generators in w and sl(2,R) 
using the derivation property of the commutator bracket, 
and in the resulting algebra we find that w is an ideal. 
We thus define wSl(2,R) ==w -a sl(2,R), where -a is the 
semidirect sum, as the collection of generators (2.1) 
and (2.5). Correspondingly, from Wand SL(2,R) we 
build the semidirect product WSL(2,R) = W ~ SL(2,R) 
of pairsg={A,w}, and its unitary representation on 
L 2(R) is given by the composition of the constituent 
actions (2.3) and (2.8) as 

(J{(~ ~), (xyz)}f](q) "'[Ce ~) Tw(x,y,z)!](q) 

== f dq' Bg(q,q') !(q'), 
R 

(2.9a) 

where the integral kernel Bg(q, q') can be found 23 from 
(2.3) and (2.8); it will not be of interest by itself, in­
deed, the usefulness of the methods proposed in this 
article hinge upon our not needing the general form 
(2. 9a), but only those transformations with b = 0 where 
the integral transform collapses to a geometric trans­
form, 

g(a, c;x,y,z) '" J{(~ .°_1), (x,y,z)}, 

which has the effect 

(2.9b) 

'ha2 _ b2 _ C2 +d2) bd-ac t(a2 - b2 + C2 _ dZ) 

- ab +cd ad+bc - ab - cd 

t(a2 + b2 _ C2 _ d2) - ac - bd t(a2 + bZ + C
2 +dZ) 

M= 

0 

Since the group parameter z does not appear in (2.12), 
the latter is a faithful representation only of wsl(2,R)/n . 
An operator H built as a linear combination of the gen­
erators of the algebra, 

H =6 8j l j = t(8 j + 83)p2 + t82(QP + PQ) + t(- ii j + 83)Q2 
j 

(2. 13a) 

will transform under the adjoint action of the group as 

H.!.. H' = gHg-1 =66 8iM;}j= I; 8JI}. 
i J J 

(2. 13b) 

G. Two elements Hand H' of the algebra are said to 
be on the same orbit under the group if there exists an 
element g in the group such that (2. 13b) holds. Such 
elements Hand H' generate one-parameter subgroups 
go(OI) = exp(iOlH) and gl ((3) = exp(i{3H') which are conjugate 
throughg, and thusgo(OI) andg j (OI) are in the same class 
in the group. Even if we perform an over-all change in 
scale H" = yH' [which is not a transformation (2.12)­
(2.13) for II'I * 11, the subgroup generated as gz(OI) 
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[g(a, c; x,y,z )j](q) 

==a-l12 exp[i(cq2/2a +xq/a +hy +z)]j(q/a +y), 

(2.9c) 

i. e., changes of scale (a), translations (y ),' multiplica­
tion by an exponential (x) and Gaussian (e), and an over­
all phase (z). Notice that the composition of two geom­
etric transforms is a geometric transform, and so is its 
inverse. Equation (2. 9a) allows us, though, to write 
the WSL(2,R) product law for g{A, w(x,y,z)}~g{A, /;,z} 
compactly as 

g{A j , I;t,zl}g{Az, l;j) z 2} 

= g{At A2 , /;tA2+/;2,Zt+z2+tl;tA201;n, (2.10) 

so that the group indenUty is g{1, 0, o} and the inverse 
g{A, I;,z}-t = g{A- j

, -I;A- j
, - z}, where we have used the 

fact that AOAT =0 and 1;0l;T =0 for AE SL(2,R). 

F. The action (2.9) of WSL(2,R) on L 2(R) induces its 
adjoint representation by automorphisms of the algebra,4 

li.!..lj=glig-1"'Adgfi =6 M;}j, (2.11) 
j 

for Ii Ewsl(2,R) denoting 14=Q, 15=P, andI6 =1. 
Through (2.1), (2.3), (2.5)-(2.7), and (2.9) we obtain 2 

t(ex - dy) t(-ax+by) 

t(- dx - cy) t(bx +ay) 
1 

- 2Xy 

t(eX +dy) t(- ax - by) t(x2 +y2) 

d -b y (2.12) 

-c a -x 

0 0 1 

I 
= exp(iOlH") = gl (1'01) = ggo (YOl) g-1 will as a whole still be 
conjugate to the subgroup generated by H. Since the 
0(2) subgroup generated by n is a trivial phase, it will 
serve us to ignore it in our analysis, so that we will 
restrict our orbit analysis to the coset space 4 

WSL(2,R)/0(2) •. In terms of the algebra wsl(2,R)/1, 
this means that operators differing by an additive term 
861 are considered equivalent. In choosing the orbit 
representatives, over-all factors will also be disre­
garded since they generate the same subgroup. 

H. The orbit structure of wsl(2,R)/1 can now be 
analyzed, 14 noting that 6 '" 8~ - iii - ii~ is an invariant 
under the transformation (2.13). As we are interested 
in operators equivalent up to over-all changes in scale 
y (for which 6" = Y6') we consider three cases: (i) 
6>0, (ii) 6<0, and (iii) 6=0. In each of these cases 
we can pick out an orbit representative operator HW, 
for each orbit w. This is simplified by noting that we 
can choose the transformation to be a geometric trans­
formation (b = 0) and that (2. 12) has a lower-left zero 
sub matrix. 

(i) 6> 0 (harmonic oscillator): 
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through 

ah == [11/(111 +113)]112, ch=1I2[8 h(81 +113)]-112, 

Xh == 28j;2[115(83 - 81) - 114112], 

Yh == 28j;2[115 82 - 84(83 + 81)], 

(2. 14a) 

(2. 14b) 

where 8~ = e = 8§ - 8i - II~ and the choice 8k = 2 leads to 
the form (2. 14a). Clearly, the transformation (2. 14b) 
is possible for all II's except when 81 =- 83• This cor­
responds to the case when H has no p2 (kinetic energy) 
term, which we can regard as unphysical. In this case, 
we can subject H to a Fourier transform, which is 
known and easy to implement, but is not a geometric 
transform. 

(ii) e < 0 (repulsive oscillator): 

further case when 84 = 0 = 11 5 , has 0 for its orbit rep­
resentative in wsl(2,R)/1 and 1 in wsl(2,R). 

To sum up: We have five orbits in WSL(2,R)/O(2)1 
generated by H W (w =h,r, l,f or m). We have found in 
each case the explicit transformation (2.12) leading a 
general operator (2. 13a) to one of the five representa­
tives, up to an over-all multiplicative constant and the 
(possible) addition of a multiple 8~ of 1 given from 
(2.12)-(2.13) as 

II~ = t(x~ - y~)81 - hwY wll2 + t(x~ +y~)113 
(2.20) 

+Yw Il4- x w85+ 86 

with x w, Yw (w =h, r, l,f, or m) as in (2. 14b), (2. 15b), 
or (2. 16b). 

I. As the operators H as given by (2. 13a) are self­
adjoint in L 2(R), their eigenfunctions will constitute a 

HT = 211 = ~(p2 _ Q2), 

through 

ar == [II T/(81 + 83) ]1/2, Cr == 112[lI r (8 1 + 03)]-112, 

Xr == 20;2[05(81 - 03) + 84112], 

(2. 15a) complete orthonormal (possibly in the sense of Dirac) 
set of eigenvectors for the space, and since the trans­
formations (2.9) are unitary, it suffices to give the 
results for the orbit representatives: 

(2. 15b) Har'monic Oscillator: These are well known 20 to be 

Yr==211;2[- 85112+114(113+01)], 

where B; = - e = O~ + 8~ - 8~ and the choice IIr = 2 leads to 
(2. 15a). Remarks as in (i) apply when Bl =- 11 3 , 

(iii) e = 0 (linear potential): 

(2. 16a) 

Here we have several cases. As 8~ + 8~ - II~ == 0 assume 
first 01, O2 , and 83 are not all identically zero. Then 
through 

al==[28/(81 +e3)]1I2, CI=[(e3- 81)/20 1]1/2, 

xI(83 + 81)112 _ Y 1(113 _ 01)112 = 205(0 3 + 01t1 12 
(2. 16b) 

we can bring H to the form HI with III a free parameter 
and II{ == III = 113, while 

(2.16c) 

The ratio p='O,;/ II I can be varied by varying 0 I, and the 
choice (2. 16a) corresponds to p = 1. We cannot make p 
vanish, however, unless to start with we have 04(83 
+ 111)112 = 05(113 - 81)1/2. We distinguish this case: 

(iii')e=O, 8~(83+01)=1I~(03-81) (jreeparticle): 

Hf=Il+13=tp2, (2.17) 

and we must add the remark following (i) in the case 
01 = - 11 3• Now we examine the cases where 111 = 112 = 113 
=0. We only have the lower-right submatrix (2.12), 
and we can always bring the operator to the form 

(iii") 81 = 0, O2 = 0, 03 = 0 (momentum): 

(2.18) 

through 

(2.19) 

applying the Fourier transformation when 05 == O. The 
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I/JZ (q) = [2nn! Ii ]-1 12 exp(- ~q2)Hn(q), 

\=n+l, n=0,1,2, 00., 
(2.21) 

where Hn(q) are the Hermite polynomials. Orthonor­
mality has the usual phrasing as (I/J~, I/J~') = ox,x' (Kronec­
ker delta) and completeness states zI!(q) = 'i 1/J~(q)(I/J~-, zI!)in 
the norm for any zl!Ee L 2(R). 

Repulsive Oscillator: The basis and spectrum of ff 
= 211 can be found 14 in terms of that of Hd =' - 212 
= i(q d/dq + t), which is on the same orbit: H r =gI2Hdgi~ 
withgI2 =W/lf) C\ j), (O)} (this is the "square root" of 
the Fourier transform, as g~2 = {COl 6), (OJ}). The eigen­
functions of Hd are found from the theory of Mellin 
transforms to be, properly normalized, 

q.=_ {

±q, q~O, 

I/J~'(q) = (27Tt! 12 q~iX-l 12, A Ee R, 
0, q 0;:0, 

(2. 22a) 

with a spectrum covering twice the real line. Using 
(2.9a) for g12, we can find zI!~= J(g12)1/J~ as 

I/J~'(q) = 2-3/4 7T-1 exp[ - (i/4)7T(iA +~)] 

x r(- i A + ~)Di\-1I2 (± 21 12 exp(3i7T/4)q) , A E R, 

(2. 22b) 

where Dv(r) is the Parabolic Cylinder function. 24 Or­
thonormality means here (Ij;~', I/J~n = 6(A - A ') (Dirac delta) 
and (I/J~" </Jxr:') = O. Completeness integrates twice over 
A ER, i. e., Ij;(q) = JRdA </J~+(q)(I/J~+' Ij;) + JR dAW(q) (zI!r-, I/J), 
Ij;E L 2(R). 

Linear potential: Again, the basis and spectrum of 
HI is easier to analyze 14 for its Fourier transform tQ 2 

- p which gives rise to a first-order differential equa­
tion whose normalized solutions are "iJ;~(q) == (27Tr1l2 

xexp(-Aq+i q3), for AER. The inverse Fourier trans­
form yields zI!~(q) through Airy's integral 25 
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(2.23) 

and the usual orthonormality and completeness state­
ments are (1/1~, 1/1~') = o(X - A') and 1/I(q) = fR dX 1/I~(q)(1/IL 1/1), 
1/IE L 2(R). 

Free particle: The basis and the spectrum of P is 

<t{(q) = (27Tt1/2 exp(iXq), XER. (2.24) 

This serves also as a convenient basis for Hi = tp2 
which in linearly, but not functionally independent of P. 
The spectrum of Hi is tX2, i. e., twice the half-line. 

The eigenfunctions 1/1", and eigenvalues iJ. of an 
operator H as given by (2. 13a) can now be determined, 
knowing the ones for the orbit representatives HW, 1/1~, 
and A (w=h,r,l orf-m). We have 

(2. 25a) 

with g W a geometric transformation of the type (2. 9b), 
with parameters given by (2. 14b), (2. 15b), or (2. 16b) 
(save the cases when a Fourier transformation is needed) 
and the 8 W determined correspondingly. Hence 

(2. 25b) 

Recall that geometric transforms are easily obtained as 
in (2.9c). 

J. Example: 

H= 2P2 + (QP +PQ) + iQ2 +Q +P+ 1:]. (2. 26a) 
=311 +412 + 513 + Q +P + n .. 

We see that 0=0, so this case belongs to (iii). From 
(2. 16b) we find al =ire;, Cl = 1/re; and 2xl- YI =t. The 
transformation 

then maps H into H' = i81P
2 + 1/re; Q + (XI + {; - 3/8)1 so 

we choose 81=1 and xl=i- {;. The spectrum of His 
then iJ. = A E R, while the basis functions are 

=[g(i, 1; i - (;, t - 2{;, Otl1/1~](q) 

=[g(2,-1;-i, (;-to)1/I~l(q) 
(2. 26b) 

= 2-112 exp i[- t(q2 +q + {; -1/8)l1/l~(iq + (;- i) 

III. COMPLEX CANONICAL TRANSFORMS AND 
TIME DEVELOPMENT OF A SYSTEM 

A. We will now allow the group parameters of g 
={A, ;,z}EWSL(2,R) (det A=l) to range over the com­
plex field. The resulting set also forms a group which 
we denote by WSL(2, C). The representation given by 
(2.3)-(2.8) and (2.9) does not follow for the whole new 
group: If f is assumed to be in L 2(R), Jf will belong to 
L 2(R) only if the kernel Bg(q, q') is bounded. This hap­
pens for the parameters in A only if Im(a/b) ;" 0 so that 
the Gaussian factor will be decreasing and, when a = 0, 
b must be real so that the kernel will be an oscillating 
exponential. For the w(x,y,z) parameters it is only re­
quired that when a = 0, x be real also. The product of 
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two bounded operators is bounded and the group identity 
is bounded as well as all real elements in WSL(2,R). 
Thus, (2.9a) represents properly a subsemigroup of 
WSL(2, C) which we denote by HWSL(2, C), following 
Refs. 1,2, and 7 which deal with the SL(2, C) part. As 
regards unitarity, those transformations in HWSL(2, C) 
which are not in WSL(2,R), are represented by integral 
nonunitary transformations from L 2(R) into L 2(R). 

B. In Refs. 1 and 2, we constructed Hilbert spaces 
of analytic functions J A such that HSL(2, C) is rep­
resented by unitary mappings between L 2(R) and J A' 

The Hilbert spaces J A are characterized by a scalar 
product performed over the complex plane, as in 
Bargmann's case, 8 given by 

(j, g)A= ~ d2iJ. (q)j (q)* g(q), 

with the measure 

(3. 1a) 

d2iJ. (q) = 2 (27TV)"1I2 exp[ (1/2v )(uq2 - 2qq* + u*q*2) 1 
x d ReqdImq, (3.1b) 

and where 

u=a*d - b*c, v =2 Imb*a > O. (3.1c) 

Corresponding to the geometric transformations 
(2.9b), where v = 0 the measure becomes singular and 
one can show that 

lim 1 d2iJ.(q) f(q)* g(q) = 1 .. ,dx exp(- UJ Ix 1 2/2)f(x)* g(x), 
v--O C ReI .... 

(3.1d) 

where UJ = 2Imc*d, and the integration contour is along 
a line in the complex ([-plane tilted with respect to the 
real axis by an angle 1/1 = - i phase of u. Finally, for the 
general complex case, the transform inverse to (2.8) is 
given by 

f(q) = 1 d2iJ.(q')A(q',q)* [Ul(q'). (3. Ie) 
t: 

With little extra labor we can build a similar scalar 
product and Hilbert spaces such that the transformations 
in HWSL(2,C) will be unitary. The only application we 
will touch upon is the one provided by the heat equation, 
and so the construction of the general case beyond (3.1) 
is unnecessary here. 

C. The action of WSL(2, C) transformations on oper­
ators H of the form (2. 13a) closely follows that seen in 
the last section, except for allowing all parameters to 
be complex. The orbit structure analyzed in I1-H sim­
plifies, in that the cases (i) and (ii) (attractive and re­
pulsive oscillators) coalesce, if we allow for over-all 
complex factors. Indeed, the well-known Bargmann 
transformation, 8 gB= {(l//2)(.) on, (O)}, bridges (i) and 
(ii), asgB l 3gil=il2 while gH= {(; }-I),(O)}, w2=_i, 
performs g HHi gil = - iHi and takes us from the free 
particle Schrodinger equation to the heat equation. 

D. The parabolic differential equations we want to 
analyze here are those of the general form 

Hu(q, t) = - i(a/at)u(q, t), 

where H is an operator of the form (1. 6a)- (2. 13a). 
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Formally, the solution of (3.2) is given by the time­
translated initial condition u(q) '= u(q, 0), 

u(q, t) = exp(t a/at') u(q, t') It' =0 

= exp(itH)u(q) '= [Htu](q). (3.3) 

The third term in (3.3) is a differential operator of 
infinite degree in q (termed also hyperdifferential op­
erator 26

) densely defined in L 2(R), whose action on 
u(q) is a time-dependent canonical transform Ht whose 
integral form is given by (2.9). Corresponding to the 
four orbits seen in the last section (excluding P), their 
four H~ time-evolution operators are represented by 

HZ=exp(it1-[p2+Q2]): ~(c~st -sint), (o,o,o)l (3.4a) 

~ smt cost 

H;=exp(it1-[p2_Q2]): ~( cosht -sinht), (O,O,O)t 

{ - sinht cosht ~ 
(3.4b) 

H: ~ exp{£t[ip' + Q ]), 1 G ~ '} H, W, - (l/6)") l 
(3.4c) 

(3.4d) 

All these expressions can be read off from (2.7), except 
for (3. 4c), which requires some extra work in ex­
ponentiating. 

For a general operator H [(2. 13a)] we can find its 
geometric transformationgw (w=h,r,l orj) relating 
it to its orbit representative. Its time- evolution trans­
form will be 

H t = exp(itH) = exp(itBs) exp(itewg-;}HWg w) 
(3.5a) 

and its solutions 

u(q, t) = H t u(q) = exp(it86) q(g~l)H 9':t q(g w)u(q). 

(3.5b) 

E. Simplest to consider, is the time evolution of the 
eigenfunctions iJ;x(q) of the operator H in (3.2), since 

(3.6) 

These are the solutions of (3.2) separable in q and t: if 
we know the expansion coefficients, Ux of an arbitrary 
function u(q)=u(q,O) in terms of the iJ;x-basis, the ex­
pansion coefficients of the u(q, t) solution of (3.2) are 
U x exp(iAt). But assume that the physically meaningful 
expansion for u(q) is in terms of a iJ;~(q)-basis, eigen­
functions of an operator H' which mayor may not be on 
the same orbit as H. Assume for definiteness that Hand 
H' are the orbit representatives of the last section, with 
(3. 4) their time- evolution transforms. Then, it is funda­
mental for our results that, at least in a region around 
t = 0, we can write 
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(3.7) 

where t' = t' (t). That is, the time- evolution transform 
Ht can be written as the time-evolution transform H;. 
for a rescaled time t'(t), times a (time-dependent) 
geometric transform qt. Finding the group parameters 
of q t and the function t'(t) is an exercise in 2 x 2 matrix 
algebra. 

F. Example: Let H be the harmonic oscillator 
Schrodinger Hamiltonian [so that Ht is HZ in (3. 4a)]. 
want to find the time evolution of plane waves [free 
particle eigenfunctions iJ;{ in (2. 24), H~.being H{,l in 
that system. We write (3.7), where only the SL(2,R) 
parameters need to be considered, as 

We 

(:::: -,::') - (:: 0\ (1 t') 
a;l} ° 1 ' 

(3.8a) 

and we find immediately, 

(3.8b) 

so, from (3.6) and (2.9), 

1/J{(q)1fl I/J{(q) = qt H{. /f{(q) 

= exp(it>.2t') q t/f{(q) 

= exp(itA2t')ai1l2 exp(ic tq2 /2a t)/f{ (q/ at) 

= (costr1l 2 exp[i tant(tA 2 + tq2) M(q/ cost) 

= exp[it sint cost(q/ cost)2M(q/cost) 

(3.9c) 

This result can be checked using the harmonic oscillator 
Green's function and performing the integration. 

A few comments on (3. gc): Although the points 
t=±t7T, ± (3/2)7T, n •• appear to be singular for some 
elements of the expression, since the transformation 
(3.7) is unitary in L 2(R), we are assured that any L 2(R) 
function expanded in the /f{-basis will exhibit no singu­
larities in its time development. Systems which clas­
sically are periodic or exhibit turning points will be in 
many-to-one correspondence with open systems. In 
Table I we give, for all pairs of orbit representatives, 
the geometric transformation which bridges them. 

G. The next point to be remarked upon is that the final 
expression in (3. 9c) is (from right to left) a product of 
a function in t'(t) times a function in v(q, t) = q/cost times 
a multiplier exp(itvz sin2t). If we follow the procedure 
of Kalnins, Miller, and Boyer 14,15 in finding coordinate 
systems v (q , t) - t such that, in (3. 2), 

(3.10) 

separates into two ordinary differential equations in v 
and t, one of such systems will be the one found above. 
The presence of the exponent in S(v, t) (specifically not 
a sum of a function in v plus a function in t), defines this 
case as R-separable, as opposed to ordinary separa­
bility, whenS(v,t)=O. It is thus that, as detailed below, 
we obtain all "separating" coordinate systems for all 
parabolic equations (3.2). We follow the procedure of the 
example in subsection III. F to read them off Table I as 
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TABLE I. Expressions for the geometric transformations between pairs of time-development operators corresponding to the 
four orbit representatives Hf=(/"t(a,c;x,y ,z)flf,'. The entry "I" means t=t' and.(/" is the identity tr~sformation. When x, y, . 
z do not appear, they equal o. The example in Sec. II. E corresponds to w =h,w' =/. The heat equatlOn follows the/-system with 
the replacement t- 2it. 

h 

r 

/ 

1 

tant' = tanht 

at = (cosh2t) 1/2 

Ct = sinh2t(cosh2t)-1/2 

tant' =t 

at =(1 +t2)1/2 

Ct = t(1 + t 2)-1/2 

x t = -t(1 +it2)(1 +t2)-1/2 

Yt=-!t2(1 +t2)-1/2 

Zt=-t,t3 

tant' = t 

at = (1 + t 2) 1/2 

Ct = - t(1 + t2)-1/2 

r 

tanht' = tant 

at= (cos2t)1/ 2 

Ct = sin2t(cos2t)-1/ 2 

1 

tanht' = t 

at=(1-t2)1/ 2 

Ct=t(l-t2)-1/ 2 

Xt=-t(I-!f2)(1-t2)-1/2 

Yt = - !t2(1 - t 2)-1/2 

Zt=-it3 

tanht' =t 

at=(1-t2)1/2 

Ct = t(l- t2)-1/2 

follows: From (2.9c) and (3.7), 

= (jtll"/-' </J( (q) = exp(iAt') (j t </Jr' (q) 

= (at)"! 12 exp{i[c /2at)q2 + (x/ at)q +Z t + txty t + At']} 

X</J( (qlat +Yt) 

= (at)"! 12 exp{i[tctatv2 + (v - h t)(Xt - CtatY t) 

+ Zt + At']}</J( (v), 
where 

(3. Hb) 

and all other parameters in ft, at, bt , ... , Zt, and t' 
depend on t only. Thus II~</Jr (q) is a separable function 
in the sense (3.10) in v and t, where the multiplier 
S(v, t) can be read off (3. Ha) and is 

S(v, t) =tcta tv
2 + (Xt - ctatYt)v, (3. Hc) 

where as stated, at,ct,xt,Yt depend on t. 

The differential equation (3.2) for H W generating II~ 
will separate in two differential equations, one of the 
form of an eigenvalue equation for H W

' in the variable 
v (q ,t) and the other, a first- order differential equation 
in t. This can be seen by writing (3.7) for t- 0, as 
ot'lot I t=o = 1; it yields 

(3.12) 

where G generates (jt and is thus a first-order differ-
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t' =tant 
at = cost 
Ct = sint 
x = t' ,y = !t'2 
z =!t'3 

t' =tanht 
at =cosht 
Ct = sinht 
x=t', y=!t'2 
Z = !t'3 

1 

t' =t 

at =l, Ct=~2 
xt=t, Yt="2t 
Zt =.t3 

/ 
t' =tant 

at= cost 

t' =tanht 

at = cosht 

C t = sinht 

at = I, c t = 0 

xt=-t 

Yt=-!t2 

Zt = -it3 

1 

ential operator in q. The part in the separable function 
which depends only on v is </J(, which was chosen as an 
eigenfunction of H W

' to start with. We have used H W
' to 

separate the variables for H W in (3.2). 

We can now see a posteriori why the factorization 
(3.7) works for all orbit representatives: They all have 
the form tp2 + V(Q) so that G will only be a function of 
Q. A disentanglement of the Baker-Campbell-Hausdorff 
type to produce (3.7) out of (3.12) will introduce the P 
and PQ + QP parts which generate the translations and 
scale transformation. In Table II we have collected the 
separating coordinates and multipliers for all pairs of 
orbit representatives. The results can be compared 
with the literature. 27 In order to describe the general 
form of the separating coordinates and to determine the 
H' to which they correspond, defining equivalence be­
tween coordinate pairs, we must present first the 
material of the next section. The general case, however, 
can be formulated as follows. 

H. We are given arbitrary Hand H', and we can 
determine the (geometric) transformation relating them 
to their orbit representatives. We are thus able to know 
their time-evolution transforms lit and II~ through (3.5). 
We can write IIt={(~a ~b), (hx,hy,hz)} with hi =hi(t), (i 

C d 
=a,b, ... ,z), where, it should be noticed, the hi(t) are 
linear combinations of trigonometric, hyperboliC, or 
power functions of t when H lies in the h, r, or l-j or­
bits. A similar construction is done for II;. with hi(t'), 
and the product with a general (jt is made as in (3.7). 
Comparison of the ratio of the 1-1 and 1-2 matrix ele­
ments gives 
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TABLE II. Expressions for the coordinate systems (v(q,t),t) which separate the equationH"'I/J=-iBtI/J into two ordinary differential 
equations in v and t, such that I/J(q, t) = eiS(v,tlV(v) T(t). The separation operator is H"". The heat equation follows the I-case with 
t- 2it. 

>r: r 
w 

v=q v=q(cos2t)-1/2 

h S=O S=tv2 sin2t 

v =q(cosh2t)-1/2 v=q 

r S = tv2 sinh2t S=O 

v = q(l + t 2)-1/2 V = q(l - t 2)-1/2 
I S = tv 2t - vt( 1 + t 2) 1/2 S=tv2t-vt(1-t2)-1/2 

v = q(1 + t 2)-1/2 v=q(l _ t 2)-1/2 

I S = - ty2t S=tv2t 

h(t) = h.(t)/hb(t) = h~(t')/hW') = h'(t'), (3. 13a) 

whereby all h;'s are known as functions of t. This is 
valid whenever hb and h~ are different from zero (this 
is not the case when H or H' is (}I2 , for example). The 
parameters in the geometric transformation are then 
found as 

at = h./h~ = hih~, 
c t :::: hJh~ - hd'h. = hd/h~ - h;jhb , (3. 13b) 

) ( r h h') (h~ - hb ) (xpYt = hx-hx, y- y -h~ h~ , 

and the separating variables and multipliers are found as 
in (3. llb)-(3.11c). 

I. These developments also apply to complex trans­
forms. Of particular interest is the heat equation, 

a2 a 
--aqru(q,t)=ai u(q,t), (3. 14a) 

i. e., in the form (3.2), HH = 2iHf. In the form (2. 25a) 
this corresponds to (}f = 2, ()~ = 0 and a scale transforma­
tion with a2 = i (subsection III. C). Better still, we can 
set (}f = 2i and Eqs. (3. 4d)- (3. 5a) then state that the 
time-evolution transform is, 

H: = HL=exp~ a7) : { G -:it) , (O)}. (3. 14b) 

The separable solutions, coordinates, and multipliers 
for the heat equation, with respect to each of the orbit 
representatives we have conSidered, can thus be read 
off the bottom row of Table II, replacing t- 2it. We have 
thus the separable solutions in terms of OSCillator, 
parabolic cylinder, Airy, and exponential functions. 28 

J. In comparing with the literature,29 we notice that 
one of the better-known separating coordinate systems, 
that giving rise to the heat polynomials3o vn(q, t) 
= (- W/ 2 Hn(-~q[- tJ-1I2 ), solutions of (3. 14a). is ap­
parently missing. We proceed to show that it is related 
to the entry in the h-orbit. 
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1 I 

v = q/ cost + han2t v = q/cost 

S=~2sin2t S = !v 2 sin2t 

+v tant(1- hin2t) 

V = q/cosht+ hanh2t v =q/cosht 

S= - ~2 sinh2t S= - !v2 sinh2t 

+v tanht(1 + !sinh2t) 

v=q v=q-W 

S=O S=-vt 

v=q+tt2 v=q 

S=vt S=O 

The Hermite differential equation can be written as 

( 1 d2 
d 1) 

DHn(q) = -"2 a;;: +q dq +"2 Hn(q) 

= (11 + 2iI2 +I3)Hn(q) = (n +~)Hn(q), (3.15a) 

so that e:::: 4> 0 and we can write g,.,Dgh l = (}"I3 = ~(}Jih 
finding g h to be a geometric SL (2, C) transformation 
given by (2.14) with (}h = 2, ah = 1, c h = i. This is a com­
plex canonical transform, so that the eigenfunctions of 
D, Hn(q) , will be orthogonal with respect to the measure 

2 
given by (3. Id) which is e-q dq and the integration per-
formed over the real line 31 as in (3. Id). The time-

deve;:::htl;~;:tr(i:xp(_ it') - sint' ), (0) l (3.15b) 

{ 0 exp(it') ~ 
and the decomposition H: = qdJ t , is possible with a 
=exp(it')=(1-4t)1I2, ct=O. This yields 

H :Hn(q) =exp[i(n + 1/2)t']q tHn(q) 

= (1 - 4t)n /2 Hn(q[l - 4t ]-1/2) = 2nv n(q, t - i), 

(3.15c) 

which is a polynomial in q and t - i. 
The separating coordinates are v = q(1- 4tr1l2 and t 

equivalent under time translation to ~q(- t)-1I2, t and 
the multiplier S(v, t) is zero. From (3. 15c) we see that 
if the temperature distribution of a conducting rod at t 
= 0 is Hn(q) = 2nvn(q, - i). it will evolve in time as 
2nv n(q,t-t) and at t=i, 2nvn(q,0)=(2q)n. It should be 
observed that the vn(q,t- t) are not elements of L2(R) 
[nor is D self-adjoint in L 2(R»). However, as remarked 
above, D is self-adjoint if we take the measure e-q2 

dq, 
and there its eigenvectors are orthogonal and complete. 
Were we looking for the separating operator which 
produces the heat polynomials themselves, as vn(q, 0) 
=qn, the operator would have been H'-iI2 • For this 
operator, however, we have h~ = 0 and the decom­
position (3.7) fails. 
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It should be observed that, since HH = - i o2/oq2 is not 
Hermitian in L 2(R), the time development operator for 
the solutions of the heat equation (3. 14b) is not unitary 
and does not preserve the orthogonality of two functions 
j(q,t), g(q,t) in L 2(R). However, if we use the for­
malism of complex canonical transforms, H: is made a 
unitary mapping between L 2(R)=Jo and spaces Jt where 
the scalar product is, from (3. 14b) and (3.1), 

(J(., t), g(., t)t=1 dReqdImq(211't)"1I2 
c 

exp[ - (Imq)2/t JJ(q, t)* g(q, t), t ~ O. 

(3.16) 

Thus we can state that the quantity (3.16) is a quadratic 
invariant of the heat equation under time translations. 
This invariant is distinct from the total heat (a linear 
invariant), and is apparently new. Indeed, any differ­
ential equation (3.2) of the type we are studying will have 
its corresponding quadratic invariant. 

IV. INVARIANCE GROUP AND INVARIANT 
BOUNDARIES 

A. Lie theory has been used to solve partial differ­
ential equations through exploring their invariance under 
infinitesimal transformations, reducing thus by one the 
number of variables and then determining the subgroup­
which leaves invariant a particular set of boundary con­
ditions. 12 These methods apply to linear or nonlinear 
equations of any order. By contrast, our procedure is 
designed for linear parabolic equations of the type 
(1. 6)-(3. 2) and solves the problem through the use of 
matrix algebra in a global rather than infinitesimal man­
ner. 

The invarianee of (3.2) under a transformation 
g E WSL(2, C) can be stated as follows: when u(q, t) is a 
solution of (3.2), then v(q, t) = JiOU(q, t), where Jit) is a 
two-variable representation of a canonical transform, 
is also a solution of (3.2). Notice that we have not said 
"if": Any such function will be a solution and the full in­
variance group of the equation will be the group WSL(2, C 
of six (complex) parameters. We will show below that, 
moreover, v (q, t) will have the form 

v(q,t)=Jit>u(q,t)=llg(q,t)u(qg(q,t), fc(t» , (4.1) 

where Ilg, qgo and 19 are determinable functions of q and 
t. We should impose the additional conditions, however, 
that if q and t are real, then qg and t.. should be also real 
and that if u is either square-integrable or real (the 
latter case in the heat equation, for example), then so 
should (4.1) be. This will reduce the acceptable sym­
metry group to a real subgroup of WSL(2, C). 

B. In order to prove (4.1) and find the functions in­
volved, use (2.9), (3.2)- (3.3), and (3.11): if u(q, t) is 
the time development of the initial conditions u(q) 
=u(q,O) then v(q,t)=JiOu(q,t) is the time development 
of v(q) = (J gu)(q): 

609 

v(q, t» = (JiOu)(q, t) =:: (Htv)(q) 

= (HJgu)(q) = «(ji(g,O Htg(t) u)(q) 

= «(jgu)(q, t..) 
=a-1 12 exp{i[(c/2a)q2 + (xla)q + iXji +Z']} 

Xu(qg(q, t), 4(t)), (4.2a) 

J. Math. Phys., Vol. 17, No.5, May 1976 

where a = a(t), •.. , z =z(t) and 

qg(q, t) = (qia) +y, h(fc) = [dh(t) + bJ/[a +eh(t)] (4.2b) 

with the function h(t) defined as in (3. 13a). The key step 
in (4. 2a) has been that of writing HJg = (j;Hr, i. e. , 
time development x canonical transform = geometriC 
transform x time development in fAt). The last member 
of (4. 2a) and (4. 2b) were obtained from (3. lla)-(3.11b). 

C. As a first illustration of (4.2) consider the case 
of the free particle, closely related to the heat equation, 
where the results are known 12,14: 

<={(a~et b~dt), (X,y,Z)} 
(4.3a) 

= (jg/lf ={ (~ a~l) (XYZ)H(~ -/), (O)} 

{( a -aJ) (-- --::;;} = c _ ct + a-I , x, y - xt, z, . 
Equation (4.3a) contains six independent simultaneous 
equations which yield 

a=a-et, c=e, x=x, y=y+xt, z=z 
and from (4. 2b) 

q= qg(q, t) =:: (q +xdt - xb)/(a - et) +y, 

t = [g(t) = (dt - b)/(a -ct). 

Hence, if u(q, t) is a solution of the free-particle 
Schrodinger equation, then so is 

V(q,t) = (jgu(q,t) 

= (a _ et)"1 12 

exp(i{(a- et)"l[eq2 +xq +h2(dt- b)] 

+hY+z}) 

u«q + xdt - xb)/(a - et) 

+y, (dt- b)/(a- et». 

(4.3b) 

(4.3c) 

(4.4) 

The physical meaning of each of the one-parameter 
subgroups in (4.4) can be readily ascertained when we 
put all others to their identity values. Thus y can be 
seen to represent coordinate translations (q - q + y), - b 
time translations (t - t - b), a =d-I space-time scale 
transformations (q - q/ a, t - tl a2), z phase multiplica­
tion (u - exp(iz )u), x Galilean transformations (q - q 
+ xt, u - exp(ixq)u), e conformal transformations (q - q/ 
(1- et), t- tl(l- et), u- (1- et)"112 exp{i[eq2/(1- et)]}u). 
The last two are not "inspectionally" obvious sym­
metries of the equation. 

If we further require that, under the transformation 
J, q and t remain real and u remains in L 2(R), the 
values of the parameters a, b, ••. ,z must be real. Thus 
the symmetry group of the free-particle Schrodinger 
equation is the six-parameter WSL(2,R) group. 

D. The results for the heat equation can be read off 
(4.4) when we replace t- 2it. It is convenient to define 
f3=iib, y=-2ie, ~=-2ix, s=-iz. Herewerequireq, 
t, and u to be real. In terms of the new variables, we 
can see that the symmetry group of the heat equation is 
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TABLE m. Action of the general group transformation g 
= {A, w} E WSL(2, C) on a function u(q, t), solution of HWu 
- iBtu for w = h, r ,lor f, as given by Eq. (4.2). 

w time transformation geometrical transformation 

h tanl = 
dtant - b a = (a cost -c sint)/ cost 
a -ctant = (d sint - b cost)/sint 

C = (c cost +a sint - a-I sint)/cost 

(x ,y) = (x ,y) 
cost sinl 

, Z=Z 
-sinl cost 

r tanhl= 
dtanht- b a = (a cosht - c cinht) / cosht 
a -ctanht = (d sinht - b cosht) /sinht 

c=(c cosht-a sinht 
+ a-I s inhl) / cosht 

(x ,y) = (x ,y) 
coshl sinht 

, Z=Z 
sinhl coshl 

1 
- dt- b a=a-ct, c=c, Z=Z t=--

a-ct b (x ,y) ={(x,y) +(-t,W) 
a 
c d 

+ (t, !t2)} 
1 t 
0 1 

f 
- dt-b a=a-ct, c=c, Z=Z 
t=--

a-ct 1 t (x,Y) = (x ,y) 
0 1 

given by the subgroup of WSL(2, C) represented by the 
matrices 

{(
a - 2i(3) ('·t .,.)1 

tiy d ' "2Z."y,ZbJ' (4.5a) 

with a, (3, ••• , s real. 32 

The operators which represent the canonical trans­
formation (4.5) in (2.8) will be bounded when 

a~O, (3?0, y?O, d?O, ~=O wheny=O. (4.5b) 

The transformations (4. 5a) with the restrictions (4. 5b) 
form a semigroup, the SL(2,R) part of which is identical 
with the HSL(2,R) semigroup introduced in Ref. 7. It 
lies on the same orbit-through complex transforma­
tions-as the semigroup of real transformations in 
SL(2,R) with nonnegative matrix elements. 33 It is here 
augmented by the Weyl group and can be seen to be a 
subsemigroup of (4. 5a) which preserves the positivity of 
the time displacements. 34 

E. The treatment of the four quantum Hamiltonians 
chosen in the last section as orbit representatives, 
follows the procedure of Eqs. (4. 2a, b). We give in 
Table III the expressions for the time and geometriC 
transformations as done in (4.2). It should be noted, 
though, that the physical transformations represented 
by the parameters a, b, •.. ,y differ from case to case. 

F. In solving a differential equation, we usually have 
to contend with boundary conditions uo(q, t) on the 
boundaries (3(q, t) = const. Similarity methods choose the 
transformation Jit) to leave these boundaries invariant: 
(3(q,t)=(3(q,t). We will now show that the separating co­
ordinates (v(q, t), t'(t)) of subsection III. G provide such 
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boundaries in the form v(q, t) = const. Consider an ex­
ample: Assume the transformation J;o in (4.3) is of the 
particular kind fi~~) = H~(t) as in (3. 4a). Then (4.3) 
tells us that q = q/(cosa - t sinal and t = (t cosa + sina)/ 
(cosa - t sinal. Taking the lead from the entries f-II of 
Tables I and II, we can verify that v = q(1 + t2t1l2 
=q{1 +(2t1/2 =const, while for t=tant' and t=tant', t' 
= i' + a simply. Hence, the family of hyperbolae q2 
=v2

(1 +t2
) for any v ER remains invariant under Ji~~). 

G. The general proof of this fact hinges on writing 
J ii~) = H~' (t) for some generating operator HW'. If now 
we are looking at the solution u(q, t) = H~ u(q), we should 
write Hf = (jtHf,' and look for the corresponding sep­
aration of variables {v(q,t),t'(t)} as done in (3.11). The 
action of H~(t) will thus be t' - i' + a, and leave u(q, t) 
as a family of invariant lines on the q-t plane. 

H. As for the inverse problem, if we know {v(q, I), 
t'(t)} to be system of coordinates where the operator 
H"' is separated by a second operator H W

' [see Eqs. 
(3.7), (3.11), and (3.12)]withamultiplier5(v,t), then 
v=v(q,t), 1'=t'(t) as given by (4.2b) will be the sep­
arating coordinates of H W by the operator gHW

' g-1 with 
multiplier 5(v,1). In order to see this, let Jit) [the two­
variable representation (4.1)-(4.2) of a transformation 
g associated with the time development H~l act on 
(3.11). The result of this action will still be a solution 
of (3.2) for H W

: 

J it) HfljJ';:' (q) 

= H~jg 1jJ~' (q) 

= exp{i[5(v,t) - ty(x - cay) +2' + ,\t']}a-1I2iJJ~' (v), (4.6) 

where all barred variables depend on q and t, while 
J g 1jJ( (q) is an eigenfunction of gHw'g-1. 

1. As an illustration, we can apply this relation to 
the separable solutions of the heat equation seen in 
subsections III. I and III. J. When the separating operator 
is Hh (see entries f-II in Table II with t - 2it), then" 
=q(l- 4t 2t l12 • Hence, when we use gHhg-! to separate, 
the corresponding variables are 

_ q+t(yy-d~)+(ay-(3~) 
v = [t2(y2 _ 4d2) + 2i (ay _ 4d(3) + (a2 _ 4(32) ]172 

- dt + (3 
1=-­([ + yl 

(4.7) 

with a, (3, •.• ,y as in (4.5). Now, the Hermite sep­
arating operator (3.15) is related to Hh through D=gHhf{-1 
Li.i=g;;! as defined below Eq. (3. 15a)l; hence, for f{ 
={(!i~)' (O)},a=l=d, y=-2, ~=O=:\'theseparating 
variables (4.7) become precisely those of (3. 15c), 
namely v =q(l- 4tt! 12. Conversely, proposing a form 
for V, we can find the group element which takes the 
separating operator to one of the four orbit representa­
tives. We must compare the proposed form with (4.7) 
and the corresponding expressions for the y, l, and f 
orbits, solving (nonlinear) algebraic equations for the 
parameters of g. If these equations are incompatible, 
the separating operator does not lie on the proposed 
orbit. If two operators are related through a similarity 
transformation in the symmetry group of the differential 
equation of a third, the variables they separate in the 
latter can be called equi1'alent in a general sense. "' 
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Hence, while in Sec. III we found the separating vari­
ables for any given operator in the algebra; here we 
have solved the converse problem. 

V. EQUATIONS CONTAINING TERMS IN q_2 

A. A class of operators containing terms in q-2 is 
amenable to a treatment parallel to the previous sec­
tions. The analysis is in fact simpler, and much of the 
groundwork has been done in Refs. 2 and 3, so only the 
general outline and conclusions will be presented. The 
operators we are refering to are 

1 ( d
2 

Jl 2) J 1 ="4 - aqr + ~ - q , (5.1a) 

J--.!:.. q-+-. (d 1) 
2- 2 dq 2' (5. 1b) 

1 ( d
2 

Jl 2) J 3 = 4" - aqr + qr + q , (5.1c) 

which, together with 11 close onto an 0(2) EB sl(2,R) al­
gebra as (2.6), the commuting 0(2) is the one generated 
by 11. The operators (5. 1) can be seen as the radial part 
of (2.5) for n-dimensional vectors Q and P in the space 
of angular momentum L, with Jl = (tn + L - 1)2 - t and 
subjected to a Similarity transformation with the factor 
Iql(n-n/2 in order to cancel the term [(n-l)/q]d/dq in 
p2. The operators (5.1) are densely defined and have 
self-adjoint extensions 36 for the ranges of Jl specified 
below, in L 2(R·). There is no underlying Weyl algebra 
here. 2 

Define now k through 

Jl = (2k - 1)2 - t, 2k = 1 ± (Jl + W 12 (5.2) 

so that the Casimir invariant for the algebra (5.1) can 
be seen to be k(1 - k). 

Exponentiating the algebra (5.1) to an 0(2)0 SL(2,R) 
group, we associate a realization through 2x 2 matrices 
as in (2.7). As the 0(2) part generated by 1 corre­
sponds to over-all phase transformations, it is rather 
trivial and we shall work henceforth with the SL(2,R) 
part only. The action of the SL(2,R) group onjE L2(R·) 
is 2,3.6.1 

[C(~ ~)j](q) = b-1 exp(i7rk)[ dql(qq')!l2 exp[(i/2b)(aq'2 +dq2)] 
o 

X J 2k_1 (qq '/b) j(q ') (5.3a) 

and, when b=O, we have the geometric transformation 

[C(~ a21)j](q) = I a 1-112 exp[(ica/21 a 12)q2]j (Ia I-lq), 

(5.3b) 

which, save for the absolute values, is identical with 
(2. 8b). The transformations for complex group param­
eters and the definitions of Hilbert spaces into which 
these transformations are unitary was detailed in Ref. 2. 

B. The adjoint action of SL(2,R) on the algebra is 
found exactly as in Sec. II. It is represented as in 
(2.11)-(2.13): 

where IINjkl1 is the 3 x 3 upper-left submatrix of (2.12). 
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The orbit structure of SL(2,R) is well known: there are 
three orbits corresponding to the sign of the invariant 
9 = 11~ - 1II - 11~. The orbit representatives are chosen to 
be 2Ja (9)0), 2J1 (9<0), andJ1 +J3 (9=0), corre­
sponding respectively to the Schrodinger Hamiltonians 
for harmonic oscillator plus centrifugal force, repulsive 
oscillator plus centrigural force, and pure centrifugal 
force. The relative strength of the oscillator and 
centrifugal parts can be varied through dilatation trans­
formations in SL(2,R) and the transformations leading a 
general operator K to one of the orbit representatives 
are calculated through the use of (2. 14b), (2. 15b), and 
(2. 16b) excluding the expressions for x,y, /14' and 85, 

For completeness, we list the eigenfunctions and 
spectrum of the orbit representatives 3: 

Harmonic Oscillator + JlI q2, Kh = 2J3, spectrum A 
=2(n+k), n=O,I,2, .,.: 

¢~(q) = [2n! /r(n + 2k) J' 12 exp(-l/2) q2k-l /2 L~2k-l )(q2). 

(5.4) 

Repulsive Oscillator + Jl/q2, KT = 2J1, spectrum A ER: 

¢~(q) = (27rqt1/2 exp(i7rk) exp(7rA/4) 2i~ 12 

x[r(k +hA)/r(2k)]Mi~/2.k_1I2(- ill, (5.5) 

where M"v is the Whittaker function. 2~ 

Pure Centrifugal, Jl/q2, KI =J1 +J3 , spectrum tA2, 

AER·: 

(5.6) 

These functions are orthogonal and complete for L 2(R·). 
It should be noted that the ¢~ are, up to a phase, func­
tions of Iql and in fact ¢~(ei·q)=exp[i1T(2k-I/2)]¢~(q). 
The operators (5.1) are invariant under q - - q. Thus, 
the analysis of the eigenfunctions for q E R and harmonic 
analYSis for functions in L 2(R) makes use of (5.4)- (5.6) 
with a few extra facts 3.36: 

(i) For 11 ~ ~ (repulsive centrifugal force), the oper­
ators (5.1) have unique self-adjoint extensions in L 2(R·) 
sothatk=t(1+[Jl+t]1I2)~1 and ¢r(O)=O. 

(ii) For ~ > Jl > 0 (repulsive), we have two square­
integrable solutions and ¢~(q) - q2k-1/2 at q - 0, one for 
kl = t(l + [Jl + t ]1/2), t < kl < 1, where the solutions are 
regular at the origin and one for k2 = t(l - [Jl + t J' 12), 

0< k2 < t, where the solutions are irregular, but still 
square-integrable. We thus have to impose an extra 
boupdary condition at q = O. (For example, if we have an 
infinite potential wall for q <' 0, only the first solutions 
are acceptable). In L2(R), the two families of solutions 
must be considered. 

(iii) At Jl = 0 the centrifugal "barrier" has disap­
peared, kl =~. and k2 = { represent the odd and even 
solutions, which become zero and constant as q - O. 
Their union gives back the spectrum and eigenvalues of 
the corresponding operators (2.5) on the whole of R. 

(iv) For - t < Jl < 0 (attractive centrifugal force), 
t < k{ < £ and t < k2 < t. Both solutions are regular at the 
origin. At Jl = - t they coalesce. 

(v) The centrifugal part cannot be more attractive 
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than JJ. = - t; otherwise, the k's become t ± ill (II real): 
the spectrum of Kh is no longer lower-bound and the 
functions belong to the principal series rather than the 
lower-bound "discrete" representations of SL(2,R). 

From these observations, eigenfunctions of any other 
operator K in s1(2, C) can be constructed as in II. J as 
a geometric transform of the eigenfunctions of their 
orbit representatives. 

C. When we come to analyze differential equations of 
the type 

Ku(q,t)=-i :tu(q,t) (5.7) 

with K in the algebra 0(2, C) EB sl(2, C) generated by (5.1) 
the time- evolution transforms associated with K can be 
constructed out of the basis (3. 4a, c, d) (the linear po­
tential does not appear here). Copying Sec. II. E we can 
describe the time evolution of a function, solution of 
(5.7), expanded in terms of eigenfunctions of an op­
erator K'. In particular the example II. E applies (re­
placing IjJ by <{» for K = 2J3 and K' =J1 +J3 with no change 
at all. Here we have three instead of the four cases of 
former sections and Tables I, II, and III on separating 
coordinates and multipliers apply here when we take out 
the l-rows and columns. The geometrical action of a is 
replaced by la I. 

Following the results of Sec. IV, we can see that the 
full invariance group of the class of differential equa­
tions (5.7) is the four-parameter group 0(2)0 SL(2,R) 
when the appropiate reality and square-integrability 
conditions are imposed. The illustration in subsection 
IV. C is valid for the Schrodinger equation with a JJ.lq2 
potential when we eliminate the variables x and y, and 
its invariant boundaries are found as in the ensuing 
discussion. 

VI. CONCLUSION 

A. First, we would like to compare our approach with 
that of the "kinematical" invariance groups of Niederer 
and Boyer. We have dealt with representations of 
WSL(2, C) on spaces of functions u(q) on the real line q. 
The time development of a system (3.2) is a particular 
one-dimensional subgroup of such transformations: 
u(q, t) = H t u(q). Then, we found that the action of 
WSL(2, C) on the space of functions of two variables 
could be written as u(q,t).!..v(q,t)=Jit)u(q,t) as in 
(4.1)-(4.2). Clearly J~t)= HJIfHil. If these trans­
formations are generated as J If(a) = exp(iaF) and J ~~~) 
= exp(iaF(t») , then also F(t) = HtFHi1, so that F and F(t) 
are the Schrodinger and Heisenberg pictures of the same 
operators, 37 while u(q, t) and u(q) are the corresponding 
wavefunctions. We have 

(6.1) 

B. It should be noticed that F(t) generates geometric 
transformations in q-t space, i. e., v(q, t) is a multi­
plier function times the function u of the transformed 
arguments 7j and t. Thus F(t) can also be realized as a 
first-order differential operator in q and t. Indeed, if 
now, whenever H appears as a summand in F(O we re­
place it by - ia/at in such a way that the resulting op-
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erator F[tJ contain no second-order derivative terms in 
q and F(O - F[t] = f(t){H +ialat), where f(t) is a func­
tion only of t which appears among the matrix elements 
in the representation of Ht through (2.12). We will have 
- [ia t , F Ctl ] = GCtl , where G[tJ is in the algebra and has 
Similarly H replaced by - ialat and no second-order 
derivative terms. Now, it is still true that [H,F[tl] 
= G(t) since H commutes with the H part in F( t). Hence, 
for some function g(t) which we can find in (2. 12), 

[H+ialat, FCtl]=G(O_GCtl=g(t)(H+ialat), (6.2) 

acting on the space of differentiable functions of q and t. 

Equation (6.2) can be recognized as the starting point 
for Niederer9 who proposed definite forms for H (free 
particle and harmonic oscillator), and Boyer, 10 who left 
H in the general form tp2 + V(Q) and then determined the 
possible two-variable first-order differential operators 
F Ctl satisfying (6.2). It was then found that only poten­
tials of the form studied here allowed such a kinemati­
cal invariance group. 38.39 A widel' class of time-depen­
dent operators, not necessarily polynomials in P and Q 

have been considered by Anderson, Wulfman, et al. 40 

C. BoyerlO pursued the study of (6.2) for n-dimen­
sional systems and found the symmetry algebra (and 
group) to be subgroups of W;~ (SO(n) 0 SL(2,R)), called 
the Schrodinger group. Our method appears applicable 
to quadratic operators of the type 

66 aljPjPj + 66 (3ij(pjQj +Q?j) 

+ 66YijQjQ j +6 0iQi + 6 EjP j + 11. (6.3) 

The symmetry algebra will be generated by the oper­
ators appearing in the summands and the generated 
group will be WSp(2n,R), complexified. This group con­
tains the Schrodinger group but cannot appear out of the 
starting equation (6.2) since the transformations in 
WSp(2n,R) which are not in the Schrodinger group are 
not geometric transformations in q-t space and hence 
are not representable as first-order differential op­
erators in these variables satisfying (6.2). 

D. Our analysis should reduce the examination of 
the symmetry group of quadratic Hamiltonians of the 
type (6.3) to the complete orbit analysis of WSp(2n,R) 
or of different real forms of its complex algebra. 41 

Presence of "centrifugal force barriers," radial or 
plane, would cut down the full symmetry and some of 
the more interesting cases up to three dimensions have 
been analyzed through separation of variables in the 
conventional way. 15.16.18 Further, one need not restrict 
oneself to L 2(R") spaces of functions, but use any dif­
ferentiable group coset manifold17 and look for finite- or 
infinite-dimensional subalgebras in the enveloping al­
gebra 42 of the group. Eventually, one would also like to 
extend the application of the global group method through 
matrix algebra (on an extended space, if possible), to 
other types of differential equations. 
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