The 2:1 anisotropic oscillator, separation of variables and symmetry group in Bargmann space

Charles P. Boyer and Kurt Bernardo Wolf
Centro de Investigación en Matemáticas Aplicadas y en Sistemas (CIMAS), Universidad Nacional Autónoma de México, México D. F., Mexico
(Received 3 March 1975)
We present a detailed analysis of the separation of variables for the time-dependent Schrödinger equation for the anisotropic oscillator with a $2: 1$ frequency ratio. This reduces essentially to the time-independent one, where the known separability in Cartesian and parabolic coordinates applies. The eigenvalue problem in parabolic coordinates is a multiparameter one which is solved in a simple manner by transforming the system to Bargmann's Hilbert space. There, the degeneracy space appears as a subspace of homogeneous polynomials which admit unique representations of a solvable symmetry algebra s_{3} in terms of first order operators. These representations, as well as their conjugate representations, are then integrated to indecomposable finite-dimensional nonunitary representations of the corresponding group S_{3}. It is then shown that the two separable coordinate systems correspond to precisely the two orbits of the factor algebra $s_{3} / u(1)$ [$u(1)$ generated by the Hamiltonian] under the adjoint action of the group. We derive some special function identitites for the new polynomials which occur in parabolic coordinates. The action of S_{3} induces a nonlinear canocical transformation in phase space which leaves the Hamiltonian invariant. We discuss the differences with previous works which present $s u(2)$ as the algebra responsible for the degeneracy of the twodimensional anisotropic oscillator.

1. INTRODUCTION

In this paper we will examine the quantum two-dimensional anisotropic harmonic oscillator with a 2:1 frequency ratio. This system, though particular, is interesting in two respects: First, the time-independent problem is known to separate in two coordinate systems, Cartesian and parabolic and, second, its energy levels exhibit a degeneracy pattern which has been attributed to a symmetry algebra. Both features will be shown to be related through the treatment of the problem in Bargmann space.

Winternitz et al. have shown ${ }^{1}$ that there is a one-toone correspondence between second-order differential operators which commute with quantum Hamiltonians H of the standard type [i. e., $\left.-\Delta+V\left(x_{1}, x_{2}\right)\right]$, and separable coordinate systems for the Schrödinger equation, that is, there exist functions $v_{1}\left(x_{1}, x_{2}\right), v_{2}\left(x_{1}, x_{2}\right)$ such that the time-independent Schrödinger equation separates into two differential equations, one in v_{1} and one in v_{2}. Reduced to a canonical form, these v 's can be made to correspond to one of the four orthogonal coordinate systems in two-space: Cartesian, polar, parabolic, or elliptic. The 2:1 anisotropic oscillator, in particular, was shown to separate in Cartesian and parabolic coordinates with the corresponding "separation" operators S_{C} and S_{P} commuting with H. Section 2 recapitulates these developments in the light of the general procedure of separation of variables ${ }^{2,3}$ involving the time, and shows that the time-dependent problem can be reduced to a study of the time-independent one. The wavefunctions of the system in parabolic coordinates are not known special functions.

In Sec. 3 we show that the introduction of Bargmann space ${ }^{4}$ provides a very convenient tool for finding the eigenfunctions and spectra of the pair S_{p} and H. The parabolic basis eigenfunctions are seen to be given in terms of new orthogonal polynomials whose coefficients are given by a three-term recursion relation. The
polynomials and their eigenvalues are tabulated up to the $n=15$ level. These coefficients also give the expansion of the parabolic basis eigenfunctions in terms of the Cartesian ones and vice versa as well as other special function identities.

In Sec. 4 we relate the polynomials and degeneracy pattern to the existence of a solvable symmetry group in Bargmann space. This group, or more accurately, its infinitesimal generators are found by looking for all first-order densely defined differential operators in Bargmann space which commute with the Hamiltonian. The representations we find are indecomposable nonunitary finite-dimensional representations of the symmetry group. We also discuss the relevance of the conjugate representations. Moreover, the orbit structure of the Lie algebra is analyzed and it is shown that the orbits relate to the two separable coordinate systems in the usual configuration space. We point out that this connection breaks down for any other rational frequency ratio.

The solvable symmetry group is a group of nonlinear canonical transformations of the coordinate-momentum space which are geometrical symmetries in Bargmann space. This is shown in Sec. 5. Finally, in Sec. 6 some conclusions are presented about the relations and differences between our and former work. ${ }^{5-7}$ These question the necessity of unitary representations and of $s u(2)$ in describing accidental degeneracy.

2. SEPARATION OF VARIABLES

Our first aim is to find all separable coordinate systems for the equation

$$
\begin{equation*}
U_{x_{1} x_{1}}+U_{x_{2} x_{2}}+i U_{t}-\left(4 x_{1}^{2}+x_{2}^{2}\right) U=0 \tag{2.1}
\end{equation*}
$$

where $U_{z} \equiv \partial U / \partial z$. The procedure that follows is quite analogous to Ref. 3 with only slight modifications due to the potential term. We will thus only give a rough sketch of the method used in deriving the result (2.5).

We look for all coordinate systems described by the change of variables

$$
\begin{equation*}
x_{1}=X_{1}\left(v_{1}, v_{2}, v_{3}\right), \quad x_{2}=X_{2}\left(v_{1}, v_{2}, v_{3}\right), \quad t=T\left(v_{1}, v_{2}, v_{3}\right) \tag{2.2}
\end{equation*}
$$

such that a solution of (2.1) is of the form

$$
\begin{equation*}
U\left(v_{1}, v_{2}, v_{3}\right)=\exp \left[i S\left(v_{1}, v_{2}, v_{3}\right)\right] V_{1}\left(v_{1}\right) V_{2}\left(v_{2}\right) V_{3}\left(v_{3}\right), \tag{2.3}
\end{equation*}
$$

and (2.1) reduces to three ordinary differential equations. The function $S\left(v_{1}, v_{2}, v_{3}\right)$ is called a multiplier and can be determined by the analysis. Moreover, the separation process ${ }^{3}$ always allows us to choose $t=T\left(v_{1}, v_{2}, v_{3}\right)=v_{3}$ in (2.2).

For the purpose of finding the separable coordinate systems of (2.1) it is useful to consider its symmetry group. The Lie algebra of this group was determined in Ref. 8, where the integrated group H_{2} (the two-dimensional harmonic oscillator group) has the structure H_{2} $\approx R_{1} \otimes W_{2}$, where R_{1} is the group of additive reals, W_{2} is the five-dimensional Weyl group in two-space and \otimes denotes the semidirect product. The group action given in terms of the one-parameter subgroups $\left(R_{1}\right.$ is generated by R and W_{2} by $B_{i}, P_{i}, i=1,2$, and E with $\left.\left[B_{j}, P_{k}\right]=i \delta_{j k} E \omega_{j}\right), \omega_{1}=2, \omega_{2}=1$, is
$\exp (i \tau R) f\left(x_{1}, x_{2}, t\right)=f\left(x_{1}, x_{2}, t+\tau\right)$,
$\exp (i \beta \cdot \mathbf{P}) f\left(x_{1}, x_{2}, t\right)=\exp \left[-i\left(4 \beta_{1} x_{1} \sin 4 t+2 \beta_{2} x_{2} \sin 2 t\right)\right.$

$$
\begin{align*}
& \left.+\beta_{1}^{2} \sin 8 t+\frac{1}{2} \beta_{2}^{2} \sin 4 t\right] \\
& \times f\left(x_{1}-\beta_{1} \cos 4 t, x_{2}-\beta_{2} \cos 2 t, t\right) \tag{2.4b}
\end{align*}
$$

$$
\begin{align*}
& \exp (i \boldsymbol{\alpha} \cdot \mathbf{B}) f\left(x_{1}, x_{2}, t\right) \\
& \quad=\exp \left[i\left(4 \alpha_{1} x_{1} \sin 4 t+2 \alpha_{2} x_{2} \sin 2 t\right)+\alpha_{1}^{2} \sin 8 t\right. \\
& \left.\quad+\frac{1}{2} \alpha_{2}^{2} \sin 4 t\right] f\left(x_{1}-\alpha_{1} \sin 4 t, x_{2}-\alpha_{2} \sin 2 t, t\right), \\
& \exp (\gamma E) f\left(x_{1}, x_{2}, t\right)=\exp (\gamma) f\left(x_{1}, x_{2}, t\right), \tag{2,4d}
\end{align*}
$$

where $f \in C^{\infty}, \tau, \alpha_{1}, \ldots, \gamma \in \mathbb{R}$. Now, by a straightforward calculation following the procedure of Ref. 3, it can be shown that the only separable coordinates with a nontrivial multiplier S (i. e., not a sum of functions of the individual variables) are those given precisely by the change of variables induced by the transformations of the symmetry group (2.4). Indeed, such transformations give rise to separable solutions $V_{1}\left(v_{1}\right), V_{2}\left(v_{2}\right)$ which satisfy the same ordinary differential equations with the usual separation in t, i. e., $T\left(v_{3}\right)=c \exp i E t$. Therefore, two separable coordinate systems which differ by a transformation of the type (2.4) are said to be equivalent. Hence, our problem reduces to the separation of the time-independent Schrödinger equation ${ }^{1}$ and we find only two inequivalent separable coordinates:
(i) Cartesian

$$
\begin{equation*}
x_{1}=v_{1}, \quad x_{2}=v_{2}, \quad t=v_{3}, \quad x_{1}, x_{2} \in \mathbb{R} ; \tag{2.5a}
\end{equation*}
$$

(ii) parabolic

$$
\begin{equation*}
x_{1}=\frac{1}{2}\left(v_{1}^{2}-v_{2}^{2}\right), \quad x_{2}=v_{1} v_{2}, \quad t=v_{3} . \tag{2.5b}
\end{equation*}
$$

$v_{1} \in \mathbb{R}, v_{2} \in \mathbb{R}^{+} ;$thus in what follows we consider the time-independent Schrödinger equation, viz.

$$
\begin{equation*}
H \psi=-\psi_{x_{1} x_{1}}-\psi_{x_{2} x_{2}}+\left(4 x_{1}^{2}+x_{2}^{2}\right) \psi=E \psi \tag{2.6a}
\end{equation*}
$$

obtained from (2.1) through

$$
\begin{equation*}
U\left(x_{1}, x_{2}, t\right)=\exp (i E t) \psi\left(x_{1}, x_{2}\right) \tag{2.6b}
\end{equation*}
$$

Winternitz and collaborators ${ }^{1}$ have characterized the two separable systems (2.5) of (2.6) by the two secondorder symmetry operators

$$
\begin{align*}
& S_{C}=-\partial_{x_{1} x_{1}}+4 x_{1}^{2} \tag{2.7a}\\
& S_{P}=x_{1} \partial_{x_{2} x_{2}}-x_{2} \partial_{x_{1} x_{2}}-\frac{1}{2} \partial_{x_{1}}+x_{1} x_{2}^{2} \tag{2.7b}
\end{align*}
$$

corresponding to (i) and (ii) above, respectively. Indeed, it can be shown that (2.7) are the only second-order operators which commute with the Hamiltonian H. Now, the solutions of (2,1) in the Cartesian coordinate system (2.5a) are characterized by the equations

$$
\begin{align*}
& H \psi^{c}=E \psi^{c} \tag{2.8a}\\
& S_{C} \psi^{c}=\mu \psi^{c} \tag{2.8b}
\end{align*}
$$

which give rise to the well-known eigenvalue problem for the one-dimensional harmonic oscillator with eigenfunctions normalized in the usual Hilbert space norm $L^{2}\left(\mathbb{R}^{2}\right)$ given by

$$
\begin{align*}
& \psi_{n_{1} n_{2}}^{C}\left(x_{1}, x_{2}\right) \\
& \quad=\left[2^{n_{1}+n_{2}-1 / 2} \pi n_{1}!n_{2}!\right]^{1 / 2} \exp \left[-x^{2}-\frac{1}{2} y^{2}\right] H_{n_{1}}\left(\sqrt{2} x_{1}\right) H_{n_{2}}\left(x_{2}\right), \tag{2.9a}
\end{align*}
$$

with eigenvalues
$E=4 n_{1}+2 n_{2}+3 \equiv 2 n+3, \quad n_{1}, n_{2}, n=0,1,2, \cdots, \quad \mu=4 n_{1}+2$.

Notice that the energy level labeled by n has degeneracy $[n / 2]+1$, where $[r]$ is the integer part of r.

The solution of (2,1) in parabolic coordinates (2.5b) are

$$
\begin{align*}
& H \psi^{P}=E \psi^{P} \tag{2.10a}\\
& S_{P} \psi^{P}=\lambda \psi^{P} \tag{2.10~b}
\end{align*}
$$

These equations give rise to $L^{2}\left(\mathbb{R}^{2}\right)$ solutions $\psi_{n l}^{P}\left(x_{1}, x_{2}\right)$ which are products of the form

$$
\begin{equation*}
\psi_{n t}^{P}\left(x_{1}, x_{2}\right)=\phi_{n l}\left(v_{1}\right) \phi_{n l}\left(i v_{2}\right) \tag{2.11}
\end{equation*}
$$

where $\phi(v)$ is a solution of the equation

$$
\begin{equation*}
\phi_{v v}+\left(2 \lambda+E v^{2}-v^{6}\right) \phi=0 \tag{2.12}
\end{equation*}
$$

We note that since the measure in parabolic coordinates is

$$
\begin{equation*}
d^{2} \mathbf{x}=d x_{1} d x_{2}=\left(v_{1}^{2}+v_{2}^{2}\right) d v_{1} d v_{2} \tag{2.13}
\end{equation*}
$$

and (2.12) depends on both λ and E, the eigenvalue problem is a (coupled) multiparameter one. However, we know the value of E from the Cartesian separation and we can use (2.10 b) to derive a recursion relation for the overlap functions between the two bases. Then, since the degeneracy for each n is $[n / 2]+1$, we look for the recursion relation to be cut off. Rather than implement this procedure here, in the next section we will analyze the system in Bargmann's Hilbert space where our problem reduces to a single Sturm-Liouville problem and the degeneracy of states appears simply as a
subspace of homogeneous polynomials. It is further noticed that (2.12) is the equation for an anharmonic oscillator with a $-\omega^{2} v^{2}+v^{6}$ potential, and can be related to the confluent Heun equation. ${ }^{9}$

Equations (2.19) also exhibit an interesting discrete symmetry: It is easily seen from (2.6a) and (2.7b) that under the parity transformation $x_{1} \rightarrow-x_{1}, H \rightarrow H$ while $S_{P} \rightarrow-S_{P}$; hence if $\psi_{m}^{P}\left(x_{1}, x_{2}\right)$ is a solution of the eigenvalue problem (2.10) with eigenvalues E and λ then $\psi_{n t}^{P}\left(-x_{1}, x_{2}\right)=\phi_{n l}\left(v_{2}\right) \phi_{n l}\left(i v_{1}\right)$ is also a solution with eigenvalues E and $-\lambda$. In addition, Eqs. (2.10) are invariant under $x_{2} \rightarrow-x_{2}\left(v_{1} \rightarrow-v_{1}\right)$ and the parity properties of the Cartesian basis (2.9a) are well known.

Note: Our Eq. (2.12) has been recently treated in an interesting work by Truong through the use of harmonic analysis on the Weyl group. [See T. T. Truong, a Weyl quantization of anharmonic oscillators, J. Math, Phys. 16, 1034 (1975).]

3. SOLUTION IN BARGMANN SPACE

In this section we shall show that the treatment of the anisotropic oscillator in Bargmann's Hilbert space of analytic functions ${ }^{4}$ allows a simple interpretation of the degeneracy pattern as well as a reduction for the parabolic coordinates to a simple Sturm-Liouville problem. ${ }^{10}$ For an oscillator of frequency ω we define ${ }^{11}$ out of the canonically conjugate operators \hat{x} and \hat{p} (with $[\hat{x}, \widehat{p}]=i \boldsymbol{I I}$),

$$
\begin{align*}
& \hat{x}=(2 \omega)^{-1 / 2}(\hat{\eta}+i \hat{\zeta}) \tag{3.1a}\\
& \hat{p}=(2 / \omega)^{-1 / 2}(i \hat{\eta}+\hat{\zeta}), \tag{3.1b}
\end{align*}
$$

so that $\hat{\eta}$ and $\hat{\zeta}$ also constitute a canonical pair $([\hat{\eta}, \hat{\zeta}]$ $=i$ I). Under (3.1), the Hamiltonian becomes

$$
\begin{equation*}
H_{\omega}=\hat{p}^{2}+\omega^{2} \hat{x}^{2}=2 \omega\left(i \hat{\eta} \hat{\zeta}+\frac{1}{2}\right) . \tag{3.1c}
\end{equation*}
$$

Upon introducing a scalar product over the complex plane \mathbb{C}

$$
\begin{equation*}
(f, g)_{\omega}=\omega^{1 / 2} \pi^{-1} \int_{\mathbf{c}} d^{2} \mu_{\omega}(\eta) f(\eta)^{*} g(\eta) \tag{3.2a}
\end{equation*}
$$

where

$$
\begin{equation*}
d^{2} \mu_{\omega}(\eta)=\exp \left[-\omega|\eta|^{2}\right] d^{2} \eta, \quad d^{2} \eta \equiv d \operatorname{Re} \eta d \operatorname{Im} \eta \tag{3.2b}
\end{equation*}
$$

f and g are analytic functions in η over \mathbb{C} of growth ($2, \omega / 2$), and completing with respect to the norm induced by (3.2) we obtain the Bargmann space \exists_{ω}. Bargmann has shown that the operators given by (3.1a, b, c) are self-adjoint in \exists_{ω} defined with the domains

$$
\begin{equation*}
D(O)=\left\{f \in \mathcal{F}_{\omega}: O f \in \mathcal{F}_{\omega}\right\}, \tag{3.3a}
\end{equation*}
$$

where O is one of the operators (3.1). Thus in 7_{ω} we have the representation

$$
\begin{equation*}
\hat{\eta} f(\eta)=\eta f(\eta), \quad \hat{\zeta} f(\eta)=-i \partial f(\eta) / \partial \eta \tag{3.3b}
\end{equation*}
$$

with the Hilbert space adjoint

$$
\begin{equation*}
\hat{\eta}^{\dagger}=i \hat{\xi} / \omega, \quad \hat{\xi}^{\dagger}=i \omega \hat{\eta} \tag{3.3c}
\end{equation*}
$$

The unitary mapping between $L^{2}(\mathbb{R})$ and \exists_{ω} is given by

$$
\begin{equation*}
\tilde{f}(\eta)=\left(\mathbf{A}_{\omega} f\right)(\eta)=\int_{\mathbf{R}} d x A(\eta, x) f(x) \tag{3,4a}
\end{equation*}
$$

with the inverse

$$
\begin{equation*}
f(x)=\left(\mathbf{A}_{\omega}^{-1} \tilde{f}\right)(x)=\int_{\mathbf{c}} d^{2} \mu(\eta) A(\eta, x)^{*} \tilde{f}(\eta) \tag{3.4b}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{\omega}(\eta, x)=\omega^{1 / 2} \pi^{-1 / 4} \exp \left[\omega\left(-\frac{1}{2} x^{2}+\sqrt{2} x \eta-\frac{1}{2} \eta^{2}\right)\right] \tag{3.4c}
\end{equation*}
$$

and $\tilde{f} \in \mathcal{F}_{\omega}, f \in L^{2}(\mathbb{R})$, and the integrals are understood to be in the sense of limit in the mean.

We can now build the space $7 \equiv \mathcal{F}\left(\mathbb{C}^{2}\right)$ with the measure $d \mu_{1}^{2} d \mu_{2}^{2}$ and the two-dimensional Hamiltonian which is the image under the unitary mapping $A \equiv \mathbf{A}_{2} \otimes \mathbf{A}_{1}$ of the Hamiltonian (2.6a) and the sum of two Hamiltonians (3.1c) with $\omega_{1}=2, \omega_{2}=1$. Hence in $子$ our Hamiltonian is

$$
\begin{equation*}
\tilde{H}=4 \eta_{1} \partial_{\eta_{1}}+2 \eta_{2} \partial_{\eta_{2}}+3 . \tag{3.5}
\end{equation*}
$$

Now the simple form of (3.5) allows us to immediately solve the two-dimensional eigenvalue problem

$$
\begin{equation*}
\tilde{H} \tilde{\psi}_{n}=E_{n} \tilde{\psi}_{n}, \quad \tilde{\psi}_{n}=\tilde{\psi}_{n}\left(\eta_{1}, \eta_{2}\right) . \tag{3.6}
\end{equation*}
$$

We find by the method of characteristics and the fact that $\tilde{H} \tilde{\psi}_{n} \in \mathcal{f}$ the general solution with (2.9b),

$$
\begin{equation*}
\tilde{\psi}_{n}\left(\eta_{1}, \eta_{2}\right)=\eta_{2}^{n} P_{n}\left(\eta_{1} / \eta_{2}^{2}\right), \tag{3.7}
\end{equation*}
$$

where P_{n} is a polynomial of degree [$n / 2$]. Hence the degeneracy of states in 7 makes its appearance by the simple fact that the solutions of (3.6) are homogeneous polynomials P_{n} of degree [$n / 2$]. This polynomial subspace p_{n} maps under the Bargmann transform \mathbf{A} given by (3.4) onto all $L^{2}\left(\mathbb{R}^{2}\right)$ solutions of the Schrödinger equation (2.6a) with fixed energy E_{n}. In the next section we will find a group of transformations [not $S U(2)$] which maps the polynomial subspace $p_{n} \subset \exists$ defined by (3.7) into itself. We also emphasize here that the above analysis is quite general and applies to any anisotropic oscillator whose ratio of frequencies is rational, although there will be no connection with separable coordinate systems.
In the Cartesian basis described by the self-adjoint ${ }^{4}$ operator

$$
\begin{equation*}
\widetilde{S}_{C}=\mathbf{A} S_{C} A^{-1}=4 \eta_{1} \partial_{\eta_{1}}+2, \tag{3.8a}
\end{equation*}
$$

along with (3.6) we obtain the orthonormal eigenfunctions

$$
\begin{equation*}
\tilde{\psi}_{n_{1} n_{2}}^{c}\left(\eta_{1}, \eta_{2}\right)=\left(n_{1}!n_{2}!\right)^{-1 / 2} 2^{n_{1} / 2} \eta_{1}^{n_{1}} \eta_{2}^{n_{2}} \tag{3.8b}
\end{equation*}
$$

with E given by (2.9b). Note since $n=2 n_{1}+n_{2}$, it follows that $\tilde{\psi}_{n_{1} n_{2}}^{c} \in p_{n}$. Moreover, under (3.4b) the eigenfunctions (3.8 b) map onto the usual harmonic oscillator eigenfunctions (2.9a).

For the parabolic coordinates we find the operator

$$
\begin{equation*}
\tilde{S}_{P}=\mathbf{A} S_{P} \mathbf{A}^{-1}=\sqrt{2} \eta_{1} \partial_{n_{2} \eta_{2}}+\eta_{2}^{2} \partial_{\eta_{1}} / \sqrt{2} . \tag{3.9}
\end{equation*}
$$

which is self-adjoint on the domain $D\left(\hat{\eta}_{1} \times \hat{\eta}_{2}^{2}\right)$ with the D 's given by (3.3). From the operator S_{P} in (2.6b) one expects in general upon inserting (3.1) that \widetilde{S}_{P} be a third order operator in \mathcal{F}. It is a pleasant feature of the mapping that the third order terms cancel. The eigenvalue problem for (3.9) on p_{n}, upon introducing in (3.7) the change of variables

$$
\begin{equation*}
z=\eta_{2}, \quad u=\eta_{1} / \eta_{2}^{2}, \tag{3.10a}
\end{equation*}
$$

yields the differential equation

$$
4 \sqrt{2} u^{3} P_{n t}^{\prime \prime}(u)+\left[-2 \sqrt{2}(2 n-3) u^{2}+1 / \sqrt{2}\right] P_{n t}^{\prime}(u)
$$

$$
\begin{equation*}
+\left[\sqrt{2} n(n-1) u-\lambda_{l}\right] P_{n l}(u)=0, \tag{3.10b}
\end{equation*}
$$

where we have labelled the eigenvalue λ of \tilde{S}_{P} through the index l in a fashion which will be described below. Expanding the polynomials $P_{n l}(u)$ as

$$
\begin{equation*}
P_{n l}(u)=\sum_{m=0}^{[n / 2]} p_{m}^{n l} u^{m} \tag{3.11}
\end{equation*}
$$

we find three-term recursion relation for the coefficients

$$
\begin{equation*}
\frac{1}{\sqrt{2}}(m+1) p_{m+1}^{n l}-\lambda_{I} p_{m}^{n l}+\sqrt{2}(2 m-n-1)(2 m-n-2) p_{m-1}^{n l}=0 . \tag{3.12}
\end{equation*}
$$

We remark that the coefficients $p_{m}^{n t}$ have been chosen to be real and such that $p_{0}^{n t}>0$. Equation (3.12) allows us to solve the eigenvalue problem for λ_{l} when we require that $p_{[\pi / 2]+1}^{n l}=0$. This problem is equivalent to diagonalizing a square tridiagonal matrix of dimension $[n / 2]+1$. The resulting eigenvalues λ_{l} can be labelled by the index l running from $-\frac{1}{2}([n / 2]+1)$ to $\frac{1}{2}([n / 2]+1)$ in integer steps and such that $\lambda_{l_{1}}<\lambda_{l_{2}}$ iff $l_{1}<l_{2}$. The motivation for such a labeling stems from the parity properties discussed at the end of the last section. Clearly the inversion $x_{1} \rightarrow-x_{1}$ implies $\eta_{1} \rightarrow-\eta_{1}$, or equivalently u $\rightarrow-u$; and again if under $\tilde{S}_{P}, \lambda_{1}$ is the eigenvalue of $\tilde{\psi}_{n 1}^{P}\left(\eta_{1}, \eta_{2}\right)$, then $-\lambda_{2}$ is the eigenvalue of $\tilde{\psi}_{n l}^{P}\left(-\eta_{1}, \eta_{2}\right)$; and if $P_{n t}(u)$ satisfied (3.10b) with $\lambda_{k}, P_{n i}(-u)$ will satisfy the same equation with $-\lambda_{l}$. Our labeling convention for λ_{l} then implies that $-\lambda_{l}=\lambda_{-l}$ and $P_{n,-l}(u)=P_{n i}(-u)$. The eigenvalues λ_{l} appear thus in symmetrical pairs. When $[n / 2]+1$ is even, the l 's are half-intergers, while when $[n / 2]+1$ is odd, the l 's are integers and $\lambda_{0}=0$ is among the eigenvalues. We point out that although the label l resembles a "magnetic" quantum number suggesting an su(2) symmetry algebra for the system, no such construction has been made.

The eigenvalues λ_{l} and the properly normalized coefficients $p_{m}^{n 1}$ for (3.11), (3.12) for the first 15 values of n have been computed and collected in Table I. We will refer to $P_{n l}(u)$ as parabolic polynomials. The entries of this table also give us the needed information about the expansion of the parabolic coordinate solutions in terms of the Cartesian basis, since from (3.7), (3.8b), and (3.11)

$$
\begin{align*}
\tilde{\psi}_{n l}^{P}\left(\eta_{1}, \eta_{2}\right) & =\sum_{m=0}^{\lfloor n / 2]} p_{m}^{n!} \eta_{1}^{m} \eta_{2}^{n-2 m} \\
& =\sum_{m=0}^{[n / 2]}\left[2^{-m} m!(n-2 m)!\right]^{1 / 2} p_{m}^{n!} \tilde{\psi}_{m, n-2 m}^{c}\left(\eta_{1}, \eta_{2}\right) . \tag{3.13}
\end{align*}
$$

Choosing $\tilde{\psi}_{m l}^{p}\left(\eta_{t}, \eta_{2}\right)$ to be normalized in 7 , we find

$$
\begin{equation*}
\sum_{m=0}^{〔 n / 2]}\left[2^{-m} m!(n-2 m)!\right] p_{m}^{n l} p_{m}^{n l^{\prime}}=\delta_{l, 1} \tag{3.14}
\end{equation*}
$$

The expansion inverse to (3.13) is easily obtained and reads
$\tilde{\psi}_{m, n-2 m}^{C}\left(\eta_{1}, \eta_{2}\right)=\left[2^{-m} m!(n-2 m)!\right]^{1 / 2} \sum_{i=-[n / 2]-1}^{[n / 2]+1} p_{m}^{n t} \tilde{\psi}_{n l}^{P}\left(\eta_{1}, \eta_{2}\right)$

Again from the orthonormality properties we obtain

$$
\begin{equation*}
2^{-m} m!(n-2 m)!\sum_{l=-[n / 2]-1}^{[n / 2]+1} p_{m^{\prime}}^{n t} p_{m}^{n l}=\delta_{m_{1} m^{\prime}} \tag{3.16}
\end{equation*}
$$

The solutions (3.10) of (3.11) are instrumental for the solutions (2.11), $\phi_{n i}(v)$, of (2.12) in the following manner: Transforming (3.10) to its standard form, we find the latter to be identical with (2.12) so that its solutions are

$$
\begin{equation*}
\phi_{n l}(v) \sim v^{n} \exp \left(-v^{4} / 4\right) P_{n l}\left(\left[2 \sqrt{2} v^{2}\right]^{-1}\right) \tag{3.17}
\end{equation*}
$$

upon demanding the correct asymptotic properties for $\widetilde{\psi}_{n l}^{P}$. It is emphasized that we have constructed polynomial solutions of the differential equation (2.12). The advantage of the Bargmann space treatment is now manifest: Through the unitary transform (3.4) we have reduced the coupled multiparameter eigenvalue problem (2.10) to the single Sturm-Liouville problem (3.10) whence upon transforming back and using (3.17), we have

$$
\begin{align*}
\psi_{n l}^{P}\left(v_{1}, v_{2}\right)= & c_{n l}\left(v_{1} v_{z}\right)^{n} \exp \left[-\frac{1}{4}\left(v_{1}^{4}+v_{2}^{4}\right)\right] P_{n l}\left(\left[2 \sqrt{2} v_{1}^{2}\right]^{-1}\right) \\
& \times P_{n 2}\left(-\left[2 \sqrt{2} v_{2}^{2}\right]^{-1}\right) \tag{3.18}
\end{align*}
$$

where $c_{n!}$ is the normalization coefficient with respect to the measure (2.14) given by

$$
\begin{equation*}
c_{n l}=\left(p_{[n / 2]}^{n l}\right)^{-2} \pi^{-1 / 2} 2^{n+0(n) / 4} \sum_{k=0}^{[n / 41} p_{2 k}^{n l}(-1)^{k} \frac{(2 k)!(n-4 k)!}{k!([n / 2]-2 k)!} \tag{3.19}
\end{equation*}
$$

where $\sigma(n) \equiv(-1)^{n}$ and can be calculated with the use of the Table I.

Writing the transform (3.4a) explicitly, we find the integral identity

$$
\begin{align*}
& \int_{-\infty}^{\infty} d v_{1} \int_{0}^{\infty} d v_{2}\left(v_{1}^{2}+v_{2}^{2}\right)\left(v_{1} v_{2}\right)^{n} \exp \left[-\frac{1}{2}\left(v_{1}^{4}+v_{2}^{4}\right)+\sqrt{2}\left(v_{1}^{2}-v_{2}^{2}\right) m_{1}\right. \\
& \left.\quad+\sqrt{2} v_{1} v_{2} \eta_{2}\right] P_{n 2}\left(\left[2 \sqrt{2} v_{1}^{2}\right]^{-1}\right) P_{n l}\left(-\left[2 \sqrt{2} v_{2}^{2}\right]^{-1}\right) \\
& \quad=\left[c_{n 1} \sqrt{2 / \pi}\right]^{-1} \exp \left[\eta_{1}^{2}+\frac{1}{2} \eta_{2}^{2}\right] \eta_{2}^{n} P_{n 2}\left(\eta_{1} / \eta_{2}^{2}\right) \tag{3.20a}
\end{align*}
$$

Equation (3.4b) yields

$$
\begin{align*}
& \iint_{\mathbb{C}} d^{2} \eta_{1} d^{2} \eta_{2} \eta_{2}^{2} P_{n l}\left(\eta_{1} / \eta_{2}^{2}\right) \exp \left[-2\left|\eta_{1}\right|^{2}-\left|\eta_{2}\right|^{2}-\eta_{1}^{* 2}\right. \\
& \left.\quad-\frac{1}{2} \eta_{2}^{* 2}+\sqrt{2}\left(v_{1}^{2}-v_{2}^{2}\right) \eta_{1}^{*}+\sqrt{2} v_{1} v_{2} \eta_{2}^{*}\right] \\
& \quad=\frac{1}{2} \pi^{3 / 2} c_{n l}\left(v_{1} v_{2}\right)^{n} P_{n l}\left(\left[2 \sqrt{2} v_{1}^{2}\right]^{-1}\right) P_{n l}\left(-\left[2 \sqrt{2} v_{2}^{2}\right]^{-1}\right) . \tag{3.20b}
\end{align*}
$$

Moreover, applying the unitary transform (3.4) to the expansions (3,13) and (3.15), we find the expansion formulae

$$
\begin{align*}
& \sum_{m=0}^{[n / 2]} p_{m}^{n l} H_{m}\left(2^{-1 / 2}\left[v_{1}^{2}-v_{2}^{2}\right]\right) H_{n-2 m}\left(v_{1} v_{2}\right) \\
& \quad=\pi^{1 / 2} 2^{n / 2-1 / 4} c_{n t}\left(v_{1} v_{2}\right)^{n} P_{n t}\left(\left[2 \sqrt{2} v_{1}^{2}\right]^{-1}\right) P_{n l}\left(-\left[2 \sqrt{2} v_{2}^{2}\right]^{-1}\right) \tag{3.21}
\end{align*}
$$

and
$\left(v_{1} v_{2}\right)^{n} \sum_{i=-[n / 21-1}^{[n / 23+1} p_{m}^{n l} c_{n l} P_{n l}\left(\left[2 \sqrt{2} v_{1}^{2}\right]^{-1}\right) P_{n l}\left(-\left[2 \sqrt{2} v_{2}^{2}\right]^{-1}\right)$
$=\left[\pi^{1 / 2} 2^{n / 2 \sim m-1 / 4} m!(n-2 m)!\right]^{-1} H_{m}\left(2^{-1 / 2}\left[v_{1}^{2}-v_{2}^{2}\right]\right) H_{n-2 m}\left(v_{1} v_{2}\right)$.

These formulas allowed us to calculate $c_{n l}$ in (3.19) by evaluating (3.21) for even n at $\mathbf{x}=0$ and for odd n,

TABLE I. Eigenvalues and eigenvectors for parabolic polynomials. The eigenvectors $p_{m}^{n, \pm l}$ for fixed n and l are listed from top to bottom as m runs from 0 to $[n / 2+1]$, respectively.

TABLE I. (continued)

Level		Eigenvalue	Eigenvectors $p_{m}^{n, \ldots l}$
$n=13$	$l=3$	± 24.82997	2.968235×10^{-6}
			$\pm 1.042292 \times 10^{-4}$
			1.366953×10^{-3}
			$\pm 8.356661 \times 10^{-3}$
			2.415046×10^{-2}
			$\pm 2.921621 \times 10^{-2}$
			9.984215×10^{-3}
	$l=2$	± 15.21229	4.902887×10^{-6}
			$\pm 1.054779 \times 10^{-4}$
			3.697447×10^{-4}
			$\pm 5.083554 \times 10^{-3}$
			-4.065197×10^{-2}
			$\pm 8.950889 \times 10^{-2}$
			-4.992728×10^{-2}
	$l=1$	± 6.932454	5.644911×10^{-6}
			$\pm 5.534254 \times 10^{-5}$
			-6.093177×10^{-4}
			$\pm 6.049697 \times 10^{-3}$
			7.107675×10^{-3}
			$\pm 1.155716 \times 10^{-1}$
			1.414589×10^{-1}
	$l=0$	0.000000	5, 582380×10^{-6}
			0.000000×10^{-6}
			-8.708512×10^{-4}
			0.000000×10^{-5}
			3.135064×10^{-2}
			0.000000×10^{-4}
			-2.090043×10^{-1}
$n=14$	$l=7 / 2$	± 27.80398	7.114271×10^{-7}
			$\pm 2.797386 \times 10^{-5}$
			4.204971×10^{-4}
			$\pm 3.049722 \times 10^{-3}$
			1.105699×10^{-2}
			$\pm 1.864007 \times 10^{-2}$
			1.158708×10^{-2}
			$\pm 1.178723 \times 10^{-3}$
	$l=5 / 2$	± 17.77729	1.220946×10^{-6}
			$\pm 3.069567 \times 10^{-5}$
			1.636458×10^{-4}
			$\pm 1.329819 \times 10^{-3}$
			-1.572227×10^{-2}
			$\pm 4.926638 \times 10^{-2}$
			-4.921069×10^{-2}
			$\pm 7.829590 \times 10^{-3}$

Level		Eigenvalue	Eigenvectors $p_{m}^{n,+l}$
	$l=3 / 2$	± 9.040977	$\begin{aligned} & 1.455154 \times 10^{-8} \\ \pm & 1.860541 \times 10^{-5} \\ - & 1.458948 \times 10^{-4} \\ \pm & 2.259073 \times 10^{-3} \\ - & 6.557908 \times 10^{-4} \\ \pm & 4.892627 \times 10^{-2} \\ & 1.108188 \times 10^{-1} \\ \pm & 3.466912 \times 10^{-2} \end{aligned}$
	$l=1 / 2$	± 2.273209	$\begin{array}{r} 1.273209 \times 10^{-6} \\ \pm 4.093117 \times 10^{-6} \\ -2.251448 \times 10^{-4} \\ \pm 6.014597 \times 10^{-4} \\ 9.648122 \times 10^{-3} \\ \pm 1.967606 \times 10^{-2} \\ -8.593878 \times 10^{-2} \\ \pm \\ 1.069288 \times 10^{-4} \end{array}$
$n=15$	$l=7 / 2$	± 30.88805	$\begin{array}{r} 1.647271 \times 10^{-7} \\ \pm 7.195660 \times 10^{-6} \\ 1.225688 \times 10^{-4} \\ \pm 1.036347 \times 10^{-3} \\ 4.576218 \times 10^{-3} \\ \pm 1.013316 \times 10^{-2} \\ 9.706253 \times 10^{-3} \\ \pm 2.666413 \times 10^{-3} \end{array}$
	$l=5 / 2$	± 20.46843	$\begin{array}{r} 2.929299 \times 10^{-7} \\ \pm 8.479361 \times 10^{-6} \\ 6.120959 \times 10^{-5} \\ \pm 2.912478 \times 10^{-4} \\ -5.474195 \times 10^{-3} \\ \pm 2.330407 \times 10^{2} \\ -3.579068 \times 10^{-2} \\ \pm 1.483719 \times 10^{-2} \end{array}$
	$l=3 / 2$	± 11.26606	$\begin{aligned} & 3.638824 \times 10^{-7} \\ \pm & 5.797598 \times 10^{-6} \\ - & 3.022984 \times 10^{-5} \\ \pm & 7.634970 \times 10^{-4} \\ - & 1.378486 \times 10^{-3} \\ \pm & 1.759614 \times 10^{-2} \\ & 6.602422 \times 10^{-2} \\ \pm & 4.972759 \times 10^{-2} \end{aligned}$
	$l=1 / 2$	± 3.470994	$\begin{array}{r} 3.701417 \times 10^{-7} \\ \pm \\ \pm .816924 \times 10^{-6} \\ -7.327036 \times 10^{-5} \\ \pm \\ \\ \\ 3.088482 \times 10^{-4} \\ \pm \\ \pm \\ -4.247904 \times 10^{-3} \\ \pm \\ \pm \end{array} 9.999263 \times 10^{-2} 0^{-2} \times 10^{-2}$

$\partial^{2} / \partial v_{1} \partial v_{2}$ of both sides at $\mathbf{x}=0$. We add that from (3.21) and (3.22) many $L^{2}\left(\mathbb{R}^{2}\right)$ expansions can be derived for the parabolic polynomials P_{n}. To conclude this section we give explicitly the parabolic polynomials for the first few n values:

$$
\begin{array}{ll}
n=0: & P_{00}(u)=1 \\
n=1: & P_{10}(u)=1 \\
n=2: & P_{2, \pm 1 / 2}(u)= \pm u+\frac{1}{2} \\
n=3: & P_{3, \pm 1 / 2}(u)= \pm u+1 / 2 \sqrt{3} \\
n=4: & P_{4, \pm 1}(u)=\frac{1}{\sqrt{106}}\left(10 u^{2} \pm 4 \sqrt{2} u+1\right), \\
& P_{4,0}=\frac{\sqrt{6}}{2}\left(-u^{2}+\frac{1}{12}\right) \tag{3.23e}
\end{array}
$$

$$
\begin{gather*}
n=5: \quad P_{5, \pm 1}(u)=\frac{1}{\sqrt{394}}\left(12 u^{2} \pm 8 u+1\right) \\
P_{5,0}=\frac{\sqrt{5}}{2}\left(-u^{2}+\frac{1}{20}\right)_{0} \tag{3.23f}
\end{gather*}
$$

When written in terms of the variables z, u as (3.10a) we can perform the z integral and obtain orthogonality for n as well as a weight function in u which depends on n. This weight function appears in terms of parabolic cylinder functions.

4. A SYMMETRY GROUP IN BARGMANN SPACE

Here we will show how the information of the previous section can be obtained by studying the group of geometrical symmetry transformations in Bargmann space. We look for all first order differential operators of the form

$$
\begin{equation*}
A=\sum_{i=1}^{2} a_{i}\left(\eta_{1}, \eta_{2}\right) \partial_{\eta_{i}}+b\left(\eta_{1}, \eta_{2}\right) \tag{4.1}
\end{equation*}
$$

which commute with the Hamiltonian (3.5), i.e., $[A, \tilde{H}]$ $=0$. If we further demand that all our symmetry operators A be densely defined in 7 then the functions a_{i} and b must be analytic functions of η_{1} and η_{2}, we find

$$
\begin{equation*}
A_{1}=\eta_{1} \partial_{\eta_{1}}, \quad A_{2}=\eta_{2} \partial_{\eta_{2}}, \quad A_{3}=\eta_{2}^{2} \partial_{\eta_{1}}, \quad A_{0}=\mathbf{1} \tag{4,2}
\end{equation*}
$$

with domains $D\left(A_{1}\right)$ and $D\left(A_{2}\right)$ given by (3.3) and $D\left(A_{3}\right)$ $=D\left(\eta_{1} \times \eta_{2}^{2}\right)$. When we disregard the central element A_{0} we find the three-dimensional solvable algebra ${ }^{12} s_{3}$ with Lie brackets

$$
\begin{equation*}
\left[A_{1}, A_{2}\right]=0,\left[A_{1}, A_{3}\right]=-A_{3},\left[A_{2}, A_{3}\right]=2 A_{3} \tag{4.3}
\end{equation*}
$$

It is easily seen that

$$
\begin{equation*}
\tilde{H}=4 A_{1}+2 A_{2}+3 A_{0} \tag{4,4}
\end{equation*}
$$

and so we have the structure $s_{3} \approx u(1) \oplus s_{2}$, where s_{2} is the two-dimensional algebra spanned by, say, A_{1} and A_{3}, and $u(1)$ is spanned by \widetilde{H}. Now on the space p_{n} of homogeneous polynomials the representation (4.2) of s_{3} acts on the normalized Cartesian basis in Bargmann space, calling $\widetilde{\phi}_{m}^{n} \equiv \tilde{\psi}_{m, n-2 m}^{c}$, as

$$
\begin{align*}
& A_{1} \tilde{\phi}_{m}^{n}=m \tilde{\phi}_{m}^{n} \tag{4.5a}\\
& A_{2} \tilde{\phi}_{m}^{n}=(n-2 m) \tilde{\phi}_{m}^{n} \tag{4.5b}\\
& A_{3} \tilde{\phi}_{m}^{n}=[2 m(n+2-2 m)(n+1-2 m)]^{1 / 2} \tilde{\phi}_{m+1}^{n} \tag{4.5c}
\end{align*}
$$

This action can be integrated to a representation of the solvable Lie group S_{3} as

$$
\begin{align*}
T(g(\alpha \beta \gamma)) f\left(\eta_{1}, \eta_{2}\right) & \equiv \exp \left(\alpha A_{1}+\beta A_{2}+\gamma A_{3}\right) f\left(\eta_{1}, \eta_{2}\right) \\
& =\exp \left(\alpha A_{1}\right) \exp \left(\beta A_{2}\right) \exp \left(\delta A_{3}\right) f\left(\eta_{1}, \eta_{2}\right) \\
& =f\left(e^{\alpha} \eta_{1}+e^{2 \beta} \delta \eta_{2}^{2}, e^{\beta} \eta_{2}\right) \\
& =e^{n \beta} \eta_{2}^{n} P_{n}\left(e^{\alpha-2 \beta} \eta_{1} / \eta_{2}^{2}+\delta\right) \tag{4,6a}
\end{align*}
$$

where $f \in P_{n}, \alpha, \beta, \gamma \in \mathbb{C}$, and

$$
\begin{equation*}
\delta=\gamma\left(e^{\alpha-2 \beta}-1\right) /(\alpha-2 \beta) \tag{4,6b}
\end{equation*}
$$

The transformations (4.6) form the group of geometrical symmetry transformations in Bargmann space. The group composition law is $g\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right) g\left(\alpha_{2}, \beta_{2}, \gamma_{2}\right)$ $=g\left(\alpha_{1}+\alpha_{2}, \beta_{1}+\beta_{2}, \gamma_{3}\right)$ where γ_{3} is related to δ_{3} through (4.6b) and $\delta_{3}=\delta_{2}+e^{\alpha_{2}-2 \beta_{2} \delta_{1}}$. This yields the representation matrices

$$
\begin{align*}
& D_{m^{\prime} m}^{n}(\alpha \beta \gamma) \equiv\left(\tilde{\phi}_{m^{\prime}}^{n}, T(g(\alpha \beta \gamma)) \tilde{\phi}_{m}^{n}\right) \\
& =e^{m^{\prime} \alpha} e^{(n-2 m) \beta}(\sqrt{2} \delta)^{m-m^{\prime}} \frac{1}{\left(m-m^{\prime}\right)!}\left(\frac{m!\left(n-2 m^{\prime}\right)!}{m^{\prime}!(n-2 m)!}\right)^{1 / 2} \tag{4.7}
\end{align*}
$$

where $0 \leqslant m^{\prime}, m \leqslant[n / 2]$ and the matrix is uppertriangular, δ being given by (4.6b). Now since A_{1} and A_{2} are self-adjoint on D given by (3.3), by choosing α, β pure imaginary, the representation of the Abelian subgroup generated by them defines a unitary representation on $\bar{子}$. Of course A_{3} is not Hermitean (symmetric) in \mathcal{F}, so its integrated group representation is not unitary. Moreover, $\exp \left(\delta A_{3}\right)$ is an unbounded operator in 7 , since functions of growth $(2,1)$ in η_{1} and $\left(2, \frac{1}{2}\right)$ in η_{2} are mapped onto functions of growth $(2,1)$ in η_{1} and $(4, \delta)$ in η_{2}. However, it can be seen easily from (4.6a)
that $T(g)$ maps P_{n} into itself and thus is densely defined on 7 . Using the binomial theorem and (4.6a), it follows that all polynomials p_{j} of degree $j \leqslant[n / 2]$ form an invariant subspace under s_{3}. The complement \bar{P}_{j} of P_{j} in P_{n} is not invariant under (4.6a). Thus the representation (4.6a) of s_{3} on P_{n} is indecomposable and nonunitary with dimension $[n / 2]+1$. This is consistent with a a theorem of Lie which states ${ }^{12}$ that all finite-dimensional representations of a solvable Lie group over \mathbb{C} are indecomposable. From the point of view of the Lie algebra (4.3) this means that we have only a lowering operator given by A_{3}. It can be seen how another representation of the same algebra s_{3} contains a raising operator: Indeed, consider the operators defined by

$$
\begin{equation*}
A_{1}^{\prime} \equiv-A_{1}, \quad A_{2}^{\prime} \equiv-A_{2}, \quad A_{3}^{\prime} \equiv A_{3}^{+}=2 \eta_{1} \partial_{\eta_{2} n_{2}} \tag{4.8}
\end{equation*}
$$

where $D\left(A_{3}^{\dagger}\right)=D\left(A_{3}\right)$. The primed operators (4.8) form a representation of s_{3} conjugate to that of (4.2). In fact, we easily find

$$
\begin{equation*}
A_{3}^{\prime} \widetilde{\phi}_{m}^{n}=[2(m+1)(n-2 m)(n-2 m-1)]^{1 / 2} \tilde{\phi}_{m+1}^{n} \tag{4.9}
\end{equation*}
$$

Since A_{3}^{\prime} is a second-order operator, its exponentiation will be represented through an integral kernel in Bargmann space. There is a striking analogy between this exponentiation and the development in time of the solutions of the heat equation。 ${ }^{13}$ Using this analogy, the general element of the conjugate representation of S_{3} can thus be found as

$$
\begin{align*}
T\left(g^{\prime}(\alpha \beta \gamma)\right) f\left(\eta_{1}, \eta_{2}\right) \equiv & \exp \left(\alpha A_{1}^{\prime}+\beta A_{2}^{\prime}+\gamma A_{3}^{\prime}\right) f\left(\eta_{1}, \eta_{2}\right) \\
= & \exp \left(\delta^{\prime} A_{3}^{\prime}\right) \exp \left(-\beta A_{2}\right) \exp \left(\alpha A_{1}\right) f\left(\eta_{1}, \eta_{2}\right) \\
= & \iint_{\mathbb{C}} d^{2} \mu_{1}\left(\eta_{1}^{\prime}\right) d^{2} \mu_{2}\left(\eta_{2}^{\prime}\right) \\
& \times K_{g^{\prime}(\alpha \beta \gamma)}\left(\eta_{1}, \eta_{2} ; \eta_{1}^{\prime}, \eta_{2}^{\prime}\right) f\left(\eta_{1}^{\prime}, \eta_{2}^{\prime}\right), \quad \text { (4. 10a } \tag{4.10a}
\end{align*}
$$

where $\delta^{\prime}=\gamma\left(e^{2 \beta-\alpha}-1\right) /(2 \beta-\alpha)$ and the integral kernel is

$$
\begin{equation*}
K_{g^{\prime}(\alpha \beta \gamma)}=\exp \left(2 e^{-\alpha} \eta_{1} \eta_{1}^{\prime *}+e^{-\beta} \eta_{2} \eta_{2}^{\prime *}+2 \delta^{\prime} e^{-2 \beta} \eta_{1} \eta_{2}^{\beta * 2}\right) \tag{4,10b}
\end{equation*}
$$

Finally, it is straightforward to see that the matrix elements of the representation (4.10) are the adjoints of the matrix elements (4.7) of the group S_{3}. However, it must be noted that if we try to embed the two representations (4.2) and (4.8) of the algebra s_{3} into a higherdimensional Lie algebra, we are led to an algebra of infinite dimension.

Now from the relations (4.5c) and (4.9) one can derive the recursion relation (3.12). Forming the inner product of $\left(\widetilde{S}_{p}-\lambda\right)$ from ($4.9 b$) between the Cartesian and parabolic bases, this yields

$$
\begin{align*}
\lambda\left(\tilde{\psi}_{n l}^{p}, \tilde{\phi}_{m}^{n}\right)= & {[m(n+2-2 m)(n+1-2 m)]^{1 / 2}\left(\tilde{\psi}_{n l}^{p}, \tilde{\phi}_{m}^{n}\right) } \\
& +[(m+1)(n-2 m)(n-2 m-1)]^{1 / 2}\left(\tilde{\psi}_{n l}^{p}, \tilde{\phi}_{m+1}^{n}\right) . \tag{4.11a}
\end{align*}
$$

Then upon defining

$$
\begin{equation*}
\left(\widetilde{\psi}_{n l}^{P}, \tilde{\phi}_{m}^{n}\right)=[(n-2 m)!(n-2 m+1) m!]^{1 / 2} 2^{-m / 2} p_{m}^{n l} \tag{4.11b}
\end{equation*}
$$

we regain (3.12). We thus could have made these calculations using the harmonic oscillator raising and lowering operator formalism in ordinary configuration
space; however, the analysis of the differential equations that was made previously requires specific Lie algebra models.

Another important consequence of the symmetry algebra is the correspondence between the separable coordinate systems (2.5) and the orbits of the factor algebra $s_{2} \approx s_{3} / u(1)$ under the adjoint action of S_{3}. An easy calculation shows that we have essentially two orbits:

$$
\begin{equation*}
\text { (i) } \alpha A_{1} \text { and (ii) } A_{3} \text {. } \tag{4.12}
\end{equation*}
$$

As discussed previously, A_{1} is a self-adjoint operator on 7 ; in fact, from (3.8a) we have $A_{1}=\frac{1}{4} \widetilde{S}_{C}-\frac{1}{2}$. Thus orbit (i) describes the Cartesian basis. In constrast, the operator A_{3} is not Hermitian in 7 . However, by considering the Hermitian part of A_{3}, i. e. , $\frac{1}{2}\left(A_{3}+A_{3}^{+}\right)$, we find the self-adjoint operator $\tilde{S}_{p}=2^{-1 / 2}\left(A_{3}+A_{3}^{+}\right)$. Thus orbit (ii) describes the parabolic basis and we have found the correspondence between the two orbits (4,12) of the symmetry algebra and the two separable coordinate systems (2.5). It can also be remarked that the preceeding description of the symmetry algebra also carries over to the case of any anisotropic two-dimensional oscillator whose frequency ratio is $k: 1(k$ integer). What does not carry over is the connection with separation of variables, and the reason clearly is that for any other ratio of frequencies the operator A_{3}^{\dagger} is higher than second order, giving rise to a higher than second order operator for not only the analog of \tilde{S}_{p} but also of S_{p}.

5. CANONICAL TRANSFORMATIONS INDUCED BY THE SYMMETRY GROUP ACTION

In this section we want to show explicitly that the S_{3} group action induces a canonical transformation in the Bargmann phase space and point out some of its characteristics. Consider the action of $\exp \left(\alpha A_{1}\right)$ and $\exp \left(\beta A_{2}\right)$; these produce dilatations of the canonical operators $\hat{\eta}_{i}, \hat{\zeta}_{1}$, i.e.,$\hat{\eta}_{1} \rightarrow e^{\alpha} \hat{\eta}_{1,} \hat{\zeta}_{1} \rightarrow e^{-\alpha} \hat{\zeta}_{1}$ under the first one and $\hat{\eta}_{2} \rightarrow e^{\beta} \hat{\eta}_{2}, \hat{\zeta}_{2} \rightarrow e^{-\beta} \hat{\eta}_{2}$ under the second one. It is clear that they preserve the canonical commutation relations $\left[\hat{\eta}_{j}, \hat{\delta}_{k}\right]=i \delta_{j k} 1$ and the form of the Hamiltonian (3.5). The adjoint group action of $\exp \left(\gamma A_{3}\right)$ gives

$$
\begin{align*}
& \hat{\eta}_{1} \rightarrow \hat{\eta}_{1}^{\prime}=\exp \left(\gamma A_{3}\right) \hat{\eta}_{1} \exp \left(-\gamma A_{3}\right)=\hat{\eta}_{1}+\gamma \hat{\eta}_{2}^{2}, \tag{5.1a}\\
& \hat{\eta}_{2} \rightarrow \hat{\eta}_{2}^{\prime}=\hat{\eta}_{2}, \quad \hat{\zeta}_{1} \rightarrow \hat{\zeta}_{1}^{\prime}=\hat{\zeta}_{1}, \tag{5.1b}\\
& \hat{\zeta}_{2} \rightarrow \hat{\zeta}_{2}^{\prime}=\hat{\zeta}_{2}-2 \hat{\eta}_{2} \hat{\zeta}_{1}, \tag{5.1c}
\end{align*}
$$

which can be similarly checked to preserve the canonical commutation relations and the form of the Hamiltonian. Thus S_{3} can be said to induce a canonical transformation ${ }^{11,14,15}$ in the η-space which, moreover, is a nonlinear point transformation, as $\hat{\eta}_{i}^{\prime}$ is only a function of the $\hat{\eta}_{i}$ and the group element. The translation to ordinary description of phase space can be made through (3.1) and seen to mix the configuration and momentum components. The transformation (5,1) is not in general a unitary transformation since as was seen in (4.6), $\exp \left(\gamma A_{3}\right)$ is not unitary.

The action of the conjugate representation of S_{3} can be obtained through adjunction from (5.1) and similar considerations apply as a canonical transformation. It is not a point transformation, however.

By looking at the transformations (5.1) it is seen that two new operators appear, namely

$$
\begin{equation*}
A_{4}=\eta_{2}^{2}, \quad A_{5}=\eta_{2} \partial_{n_{1}} \tag{5.2}
\end{equation*}
$$

The generators of s_{3} together with (5.2) and the fivedimensional Heisenberg-Weyl algebra w_{2} form a solvable dynamical noninvariance algebra of dimension ten, with the structure $s_{10} \approx s_{5} \oplus w_{2}$ where s_{5} is a fivedimensional solvable algebra with basis A_{1}, \ldots, A_{5} and w_{2} is an ideal in s_{10}. Similarly, one can construct the conjugate representation from the Hilbert space adjoint operators. The algebra s_{10} can be integrated to the corresponding group on a dense invariant subspace of 7 . This group is a Lie subgroup of the pseudogroup of all canonical transformations. ${ }^{14}$

6. DISCUSSION ON SYMMETRY GROUPS AND ACCIDENTAL DEGENERACY

The degeneracy pattern for the anisotropic oscillator has usually been attributed ${ }^{5-7,15}$ to the group $S U(2)$. We feel, however, that the role of this $S U(2)$ is still not well understood since in contradistinction to the isotropic oscillator case, the formal Lie algebra su(2) for the anisotropic oscillator cannot be written in terms of finite-order differential operators in Hilbert space. The generators of $s u(2)$ are written in terms of shift operators which are well defined over the finite-dimensional subspaces; however, their extension to a dense subspace of Hilbert space seems to have been overlooked. Moreover, in order to obtain a unitary irreducible representation ${ }^{7,15}$ of the group $S U(2)$ on one of the finitedimensional subspaces, a new norm must be introduced. This is the meaning of the factors containing the number operator and modulo numbers: One has to rescale the basis functions so that they form a properly normalized $S U(2)$ basis, for they do not do so in the ordinary norm. As a consequence, the representations are nonunitary in the usual Hilbert space norm.

Second, when we follow the procedure of Refs. 5 and 7 for n-dimensional anisotropic oscillators ($n>2$), the group $S U(n)$ does not in general give a full account of the degeneracy of the system, that is, representations are in general reducible, in fact, completely reducible. This occurs already in the $n=3$ case and constitutes the major failure for $S U(n)$ as the symmetry group explaining the accidental degeneracy.

Thirdly, the choice of the group $S U(2)$ [$U(2)$ including the action of the Hamiltonian] is not unique. In Ref. 7 this choice was dictated in order to find the quantum counterpart of a classical canonical transformation which maps the general anisotropic oscillator onto the isotropic oscillator whose geometrical symmetry group in Bargmann space is $U(2)$. It is of interest to study the former system on its own, since the two quantum problems are not unitarily equivalent.

The generators of the solvable group S_{3} on the other hand, are all the first order symmetry operators in Bargmann's description of phase space. They are thus the generators of all the geometrical symmetry transformations in Bargmann space, and in this sense they are unique. While the representations are reducible,
they cannot be decomposed into irreducible parts, i_{e} e., they are indecomposable. We can find no fundamental reason why, when explaining accidental degeneracy through a symmetry group, one should exclude nonunitary indecomposable representations. Clearly, completely reducible representations should be excluded. It is thus of interest to consider the n-dimensional generalization of the geometrical symmetry group discussed above.

To sum up, the connection between accidental degeneracy and symmetry groups seems to be still an open question. In this context one should understand the role played by the infinite-dimensional Lie algebras of symmetry transformations and its corresponding Lie pseudogroup. Perhaps more immediate is the possibility of finding, for all systems with discrete spectra exhibiting accidental degeneracy, a Hilbert space á la Bargmann such that its group of geometrical symmetry transformations explains the accidental degeneracy. Work in this direction is currently in progress.

ACKNOWLEDGMENTS

The results of Table I were obtained in collaboration with Dr. Victor Guerra (CIMAS). We would like to thank Professor Marcos Moshinsky for his interest in our work.
${ }^{1}$ P. Winternitz, Ya. A. Somorodinskii, M. Uhliř, and I. Friš, Yad. Fiz. 4, 625 (1966) [Sov. J. Nucl. Phys. 4, 444 (1967)].
${ }^{2}$ E.G. Kalnins and W. Miller Jr., J. Math. Phys. 15, 1728 (1974).
${ }^{3}$ C. P. Boyer, E.G. Kalnins and W. Miller Jr., J. Math. Phys. 16, 499 (1975).
${ }^{4}$ V. Barmann, Commun. Pure Appl. Math. 14, 187 (1961); 20, 1 (1967).
${ }^{5}$ Yu. N. Demkov, Zh. Exp. Theor. Fiz. 44, 2007 (1963) [Sov. Phys. JETP 17, 1349 (1963) I; L. A. I''kaeva, Vestnik Leningrad Univ. 22, 56 (1963); H. V. McIntosh, J. Math. Phys. 11, 870 (1970); H.V. McIntosh, "Symmetry and Degeneracy" in Group Theory and Its Applications (Academic, New York, 1971), Vol. 4.
${ }^{6}$ I. Vendramin, Nuovo Cimento A 54, 190 (1968); G. Maielia and G. Vilasi, Lett. Nuovo Cimento 1, 57 (1969).
${ }^{7}$ J.D. Louck, M. Moshinsky, and K.B. Wolf, J. Math. Phys. 14, 692 (1973).
${ }^{8}$ C. P. Boyer, Helv. Phys. Acta 42, 589 (1974).
${ }^{9}$ A. Lemieux and A.K. Bose, Ann. Inst. Henri Poincaré, 10A, 259 (1969).
${ }^{10} \mathrm{C}$. P. Boyer, E.G. Kalnins, and W. Miller Jr., J. Math. Phys. 16, 512 (1975).
${ }^{11}$ K. B. Wolf, J. Math. Phys. 15, 1295 (1974).
${ }^{12} \mathrm{~N}$. Jacobson, Lie Algebras (Wiley Interscience, New York, 1962).
${ }^{13}$ D. V. Widder, Duke Math. J. 29, 447 (1962).
${ }^{14} \mathrm{~K}$. B. Wotf, "The Heisenberg-Weyl Ring in Quantum Mechanics" in Group Theory and Its Applications, edited by E. Loebl (Academic, New York, 1975), Vol. III.
${ }^{15}$ P. Kramer, M. Moshinsky, and T.H. Seligman, "Complex Extentions of Canonical Transformations in Quantum Mechanics" in Group Theory and Its Applications, edited by E. Loebl (Academic, New York, 1975), Vol. III.

