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We present a detailed analysis of the separation of variables for the time-dependent Schriidinger equation 
for the anisotropic oscillator with a 2: 1 frequency ratio. This reduces essentially to the time-independent one, 
where the known separability in Cartesian and parabolic coordinates applies. The eigenvalue problem in 
parabolic coordinates is a multiparameter one which is solved in a simple manner by transforming the system 
to Bargmann's Hilbert space. There, the degeneracy space appears as a subspace of homogeneous 
polynomials which admit unique representations of a solvable symmetry algebra S3 in terms of first order 
operators. These representations, as well as their conjugate representations, are then integrated to 
indecomposable finite-dimensional non unitary representations of the corresponding group S3' It is then shown 
that the two separable coordinate systems correspond to precisely the two orbits of the factor algebra S3/ u (I) 
[u(\) generated by the Hamiltonian] under the adjoint action of the group. We derive some special 
function identitites for the new polynomials which occur in parabolic coordinates. The action of S3 induces a 
nonlinear canocical transformation in phase space which leaves the Hamiltonian invariant. We discuss the 
differences with previous works which present su(2) as the algebra responsible for the degeneracy of the two­
dimensional anisotropic oscillator. 

1. INTRODUCTION 

In this paper we will examine the quantum two-dimen­
sional anisotropic harmonic oscillator with a 2 : 1 fre­
quency ratio. This system, though particular, is in­
teresting in two respects: First, the time-independent 
problem is known to separate in two coordinate sys­
tems, Cartesian and parabolic and, second, its energy 
levels exhibit a degeneracy pattern which has been at­
tributed to a symmetry algebra. Both features will be 
shown to be related through the treatment of the prob­
lem in Bargmann space. 

Winternitz et al. have shown! that there is a one-to­
one correspondence between second-order differential 
operators which commute with quantum Hamiltonians 
H of the standard type [i. e., - <l + V(xj, X2)], and 
separable coordinate systems for the Schrodinger equa­
tion, that is, there exist functions vt(x!,xz), VZ(Xj,X2) 

such that the time-independent Schrodinger equation 
separates into two differential equations, one in v! and 
one in V2' Reduced to a canonical form, these v's can be 
made to correspond to one of the four orthogonal co­
ordinate systems in two-space: Cartesian, polar, 
parabolic, or elliptic. The 2 : 1 anisotropic oscillator, 
in particular, was shown to separate in Cartesian and 
parabolic coordinates with the corresponding "separa­
tion" operators Sc and Sp commuting with H. Section 2 
recapitulates these developments in the light of the gen­
eral procedure of separation of variablesz•3 involving 
the time, and shows that the time-dependent problem 
can be reduced to a study of the time-independent one. 
The wavefunctions of the system in parabolic coordi­
nates are not known special functions. 

In Sec. 3 we show that the introduction of Bargmann 
space4 provides a very convenient tool for finding the 
eigenfunctions and spectra of the pair Sp and H. The 
parabolic basis eigenfunctions are seen to be given in 
terms of new orthogonal polynomials whose coefficients 
are given by a three-term recursion relation. The 
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polynomials and their eigenvalues are tabulated up to 
the n = 15 level. These coefficients also give the expan­
sion of the parabolic basis eigenfunctions in terms of the 
Cartesian ones and vice versa as well as other special 
function identities. 

In Sec. 4 we relate the polynomials and degeneracy 
pattern to the existence of a solvable symmetry group 
in Bargmann space. This group, or more accurately, 
its infinitesimal generators are found by looking for all 
first-order densely defined differential operators in 
Bargmann space which commute with the Hamiltonian. 
The representations we find are indecomposable non­
unitary finite-dimensional representations of the sym­
metry group. We also discuss the relevance of the con­
jugate representations. Moreover, the orbit structure 
of the Lie algebra is analyzed and it is shown that the 
orbits relate to the two separable coordinate systems in 
the usual configuration space. We point out that this 
connection breaks down for any other rational frequency 
ratio. 

The solvable symmetry group is a group of nonlinear 
canonical transformations of the coordinate-momentum 
space which are geometrical symmetries in Bargmann 
space. This is shown in Sec. 5. Finally, in Sec. 6 
some conclusions are presented about the relations and 
differences between our and former work. 5-7 These 
question the necessity of unitary representations and of 
su(2) in describing accidental degeneracy. 

2. SEPARATION OF VARIABLES 

Our first aim is to find all separable coordinate sys­
tems for the equation 

(2.1) 

where u.= au /az. The procedure that follows is quite 
analogous to Ref. 3 with only slight modifications due to 
the potential term. We will thus only give a rough 
sketch of the method used in deriving the result (2. 5). 
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We look for all coordinate systems described by the 
change of variables 

XI ",X1(VI,V2, VS), X2 ",X2(Vb V2, V3), t= T(v!> V2, V3), 

(2.2) 

such that a solution of (2.1) is of the form 

U(vt> vz, v3) '" exp(iS(vh vz, V3)]VI (vi) VZ(V2)VS(VS), (2.3) 

and (2.1) reduces to three ordinary differential equa­
tions. The function S(v1> v2, V3) is called a multiplier 
and can be determined by the analysis. Moreover, the 
separation processs always allows us to choose 
t = T(v h vz, V3) = v3 in (2.2). 

For the purpose of finding the separable coordinate 
systems of (2.1) it is useful to consider its symmetry 
group. The Lie algebra of this group waS determined in 
Ref. 8, where the integrated group H2 (the two-dimen­
sional harmonic oscillator group) has the structure H2 
"'R 1'9 Wz, where R I is the group of additive reals, W2 
is the five-dimensional Weyl group in two-space and Xl 

denotes the semidirect product. The group action given 
in terms of the one-parameter subgroups (R 1 is gen­
erated by Rand Wz by B j , PI> i = 1, 2, and E with 
(Bj>Pk]=iojkEw j ), w1 c=2, w2=1, is 

exp(i TR)f(XI , Xz, t) = f(xj, xz, t + T), (2.4a) 

exp(ij3· P)f(xj, X2, t) = exp[ - i(4f3 jxj sin4t + 2f3zxz sin2t) 

+ f3i sin8t + 1 ~ sin4 t l 
xf(xj - {3j cos4t, Xz - f3z cos2t, f), 

(2.4b) 

exp(iQ" B)f(xl> Xz, t) 

= exp[i(4atxj sin4t + 2a2x2 sin2t) + aI sin8t 

+ ~Q'~ sin4t]f(xl - O!I sin4t, Xz - O1Z sin2t, t), (2.4c) 

exp(yE)f(xhXZ' t) =exp(y)f(Xl,X2, t), (2.4d) 

where fEC oo
, T, 0!1' •.. ,y E JR. NOW, by a straightfor­

ward calculation following the procedure of Ref. 3, it 
can be shown that the only separable coordinates with a 
nontrivial multiplier S (i. e., not a sum of functions of 
the individual variables) are those given precisely by 
the change of variables induced by the transformations 
of the symmetry group (2.4). Indeed, such transforma­
tions give rise to separable solutions VI (Vj)' V2(V2) 
which satisfy the same ordinary differential equations 
with the usual separation in t, i. e., T(V3) '" c expiEt. 
Therefore, two separable coordinate systems which dif­
fer by a transformation of the type (2.4) are said to 
be equivalent. Hence, our problem reduces to the 
separation of the time-independent Schrooinger equa­
tion1 and we find only two inequivalent separable 
eoordinates: 

(i) Cartesian 

(2.5a) 

(ii) parabolic 

XI '" ~(vI - v~), X2 = V1V2, t = v3' (2.5b) 

VI E JR, V2 E JR+; thus in what follows we consider the 
time-independent Schrodinger equation, viz. 
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Hi)! = - 1Ji"1"1 - 1/!"2"2 + (4xi + x~)i)! = Ei)!, 

obtained from (2.1) through 

U(x!> xz, t) = exp(iEt)i)!(xj, X2). 

(2.6a) 

(2.6b) 

Winternitz and collaborators1 have characterized the 
two separable systems (2.5) of (2.6) by the two second­
order symmetry operators 

Sc = - a"I"1 + 4xI, (2. 7a) 

Sp =Xl 0>"2>"2 - X2 0"j"2 - -1-0"1 +xlxL (2.7b) 

corresponding to (i) and (ii) above, respectively. Indeed, 
it can be shown that (2.7) are the only second-order 
operators which commute with the Hamiltonian H. Now, 
the solutions of (2.1) in the Cartesian coordinate sys­
tem (2. 5a) are characterized by the equations 

Hi)!c = Ei)!c, (2.8a) 

(2. Bb) 

which give rise to the well-known eigenvalue problem 
for the one-dimensional harmonic oscillator with eigen­
functions normalized in the usual Hilbert space norm 
L 2 (JR2) given by 

i)!;ln2 (x 1> X2) 

= [2ni+nz-j /21Tnl! n2! r(/2exp[ - x2 - tl]Hn/f2xl)Hn2 (xz), 

(2.9a) 

with eigenvalues 

E=4nl+2nz+3=2n+3, n1>nz,n=O,1,2,"', !J.= 4nl+ 2. 

(2.9b) 

Notice that the energy level labeled by n has degeneracy 
[n/2] + 1, where Irl is the integer part of r. 

The solution of (2.1) in parabolic coordinates (2. 5b) 
are 

H~=Ei)!P, 

Spi)!P=A~. 

(2. lOa) 

(2. lOb) 

These equations give rise to L 2(JR2
) solutions fn'/(X1> X2) 

which are products of the form 

fn'1 (xi> X2) = ¢nl (vl)¢nl (iV2), 

where ¢(v) is a solution of the equation 

¢vv + (2;\ + Ev2 - 1)6)¢ = O. 

(2.11) 

(2. 12) 

We note that since the measure in parabolic coordinates 
is 

(2.13) 

and (2.12) depends on both ;\ and E, the eigenvalue 
problem is a (coupled) multiparameter one. However, 
we know the value of E from the Cartesian separation 
and we can use (2. lOb) to derive a recursion relation 
for the overlap functions between the two bases. Then, 
since the degeneracy for each n is I n/21 + 1, we look for 
the recursion relation to be cut off. Rather than im­
plement this procedure here, in the next section we will 
analyze the system in Bargmann's Hilbert space where 
our problem reduces to a single Sturm-Liouville prob­
lem and the degeneracy of states appears simply as a 
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subspace of homogeneous polynomials. It is further 
noticed that (2. 12) is the equation for an anharmonic 
oscillator with a - W 2V 2 + v6 potential, and can be related 
to the confluent Heun equation. 9 

Equations (2.19) also exhibit an interesting discrete 
symmetry: It is easily seen from (2.6a) and (2. 7b) that 
under the parity transformation Xl - - Xl> H - H while 
Sp - - Sp; hence if l/!,;,(Xt>X2) is a solution of the eigen­
value problem (2.10) with eigenvalues E and A then 
Ij!;f;(- xl> X2) = cf>n' (v2)cf>n,(ivl) is also a solution with eigen­
values E and - A. In addition, Eqs. (2. 10) are invariant 
under x2 - - x2 (VI - - VI) and the parity properties of 
the Cartesian basis (2.9a) are well known. 

Note: Our Eq. (2.12) has been recently treated in an 
interesting work by Truong through the use of harmonic 
analysis on the Weyl group. [See T. T. Truong, a Weyl 
quantization of anharmonic oscillators, J. Math, Phys. 
16, 1034 (1975).] 

3. SOLUTION IN BARGMANN SPACE 

In this section we shall show that the treatment of the 
anisotropic oscillator in Bargmann's Hilbert space of 
analytic functions 4 allows a simple interpretation of the 
degeneracy pattern as well as a reduction for the 
parabolic coordinates to a simple Sturm-Liouville 
problem. 10 For an oscillator of frequency w we definel1 

out of the canonically conjugate operators x and p (with 
[x,p]=in), 

x = (2w t 1 /2(~ +it) 

p = (2/wt1 /2(i~ + t), 

(3.1a) 

(3. Ib) 

so that ~ and t also constitute a canonical pair ([~, t] 
=in). Under (3.1), the Hamiltonian becomes 

(3.1c) 

Upon introducing a scalar product over the complex 
plane a: 

(f,g)., =W
1

/
2

1T-
1 fe tP/l.,(71)f(71)*g(71), (3.2a) 

where 

d2/l",(71) = exp[ - w 17112] d271, d2T/ =d ReT/ d ImT/, (3. 2b) 

f and g are analytic functions in T/ over a: of growth 
(2, w/2), and completing with respect to the norm in­
duced by (3. 2) we obtain the Bargmann space] "'. 
Bargmann has shown that the operators given by 
(3. la, b, c) are self-adjoint in]., defined with the 
domains 

D(O)={jE].,: OfE].,}, (3.3a) 

where 0 is one of the operators (3.1). Thus in] '" we 
have the representation 

~f(T/) = T/f(T/) , tf(71) = - iof(T/)/oT/, (3.3b) 

with the Hilbert space adjoint 

(3.3c) 

The unitary mapping between L 2(1R) and] '" is given by 

1(T/) = (A,.,j)(T/) = fit dxA(71,X)f(x) (3.4a) 

with the inverse 
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f(x) = (A:}j)(x) = fe tP /l (T/)A(T/, X) *1 (T/) (3.4b) 

where 

A",(T/, x) = wi /2 1T-I /4 exp[w(- ix2 + 12X71- hJ2)], (3.4c) 

andf E]"" fEL 2(1R), and the integrals are understood 
to be in the sense of limit in the mean. 

We can now build the space] =] (0;2) with the measure 
diJ.idjJ.~ and the two-dimensional Hamiltonian which is 
the image under the unitary mapping A=A2®At of the 
Hamiltonian (2. 6a) and the sum of two Hamiltonians 
(3. lc) with WI = 2, W2 = 1. Hence in] our Hamiltonian is 

11 = 4711°'1 + 2712°'2 + 3. (3. 5) 

Now the simple form of (3.5) allows us to immediately 
solve the two-dimensional eigenvalue problem 

(3.6) 

We find by the method of characteristics and the fact 
that ii~nE] the general solution with (2. 9b), 

(3.7) 

where Pn is a polynomial of degree [n/2]. Hence the 
degeneracy of states in] makes its appearance by the 
Simple fact that the solutions of (3.6) are homogeneous 
polynomials Pn of degree [n/2]. This polynomial sub­
space Pn maps under the Bargmann transform A given 
by (3.4) onto all L 2(JR2) solutions of the Schrodinger 
equation (2. 6a) with fixed energy En. In the next sec­
tion we will find a group of transformations [not SU(2)] 
which maps the polynomial subspace Pne] defined by 
(3.7) into itself. We also emphasize here that the above 
analysis is quite general and applies to any anisotropic 
oscillator whose ratio of frequencies is rational, al­
though there will be no connection with separable co­
ordinate systems. 

In the Cartesian basis described by the self-adjoint4 

operator 

(3. Sa) 

along with (3.6) we obtain the orthonormal eigenfunctions 

-;i,c (11 11) = (n I..,. I )-1 /22nl /2."nl.,,"2 
'l'nl"2 l> 2 1··-l· "I ·,2 • (3. Sb) 

with § given by (2. 9b). Note since n = 2nj + n2, it follows 
that zP:; n E Pn. Moreover, under (3.4b) the eigenfunc­
tions d3.2Sb) map onto the usual harmonic oscillator 
eigenfunctions (2.9a). 

For the parabolic coordinates we find the operator 

- -1 Tn 2 / S p = ASpA = v 2711°'2'2 + T/2 0'1 12. (3. 9) 

which is self-adjoint on the domain LJ(~t X~~) with the 
D's given by (3.3). From the operator Sp in (2. 6b) one 
expects in general upon inserting (3.1) that Sp be a third 
order operator in]. It is a pleasant feature of the 
mapping that the third order terms cancel. The eigen­
value problem for (3.9) on Pn, upon introducing in (3.7) 
the change of variables 

(3. lOa) 

yields the differential equation 
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(3. lOb) 

where we have labelled the eigenvalue A of Sp through 
the index 1 in a fashion which will be described below. 
Expanding the polynomials Pnl (u) as 

(n /2] 

Pnl(U) = 0 p';;um, 
m::O 

we find three-term recursion relation for the 
coefficients 

(3.11) 

1 
12 (m + l)P';;+l - AlP';; + i2(2m - n - 1)(2m - n - 2)p~I_1 = O. 

(3.12) 

We remark that the coefficients t>';; have been chosen to 
be real and such that p,// > O. Equation (3.12) allows us 
to solve the eigenvalue problem for AI when we require 
that M~/2]+l = O. This problem is equivalent to diagonal­
izing a square tridiagonal matrix of dimension [n/2) + 1. 
The resulting eigenvalues Al can be labelled by the index 
I running from - ~([n/21 + 1) to ~([n/2) + 1) in integer 
steps and such that All < AI2 iff II <: 12, The motivation 

for such a labeling stems from the parity properties 
discussed at the end of the last section, Clearly the in­
version Xl - - Xl implies 1)1 - - 1)1' or equivalently u 
- - u; and again if under Sp, AI is the eigenvalue of 
~~!(111' 112)' then - Al is the eigenvalue of /f!::Z(-1)u 112); and 
if Pnl(u) satisfied (3. lOb) with AI> P n/ (- u) will satisfy 
the same equation with - AI' Our labeling convention for 
Al then implies that - Al =A_I and Pn,_/(U)=Pnl(-u). The 
eigenvalues AI appear thus in symmetrical pairs. When 
[n/2) + 1 is even, the l's are half-intergers, while when 
[n/2)+1 is odd, the l's are integers and Ao=O is among 
the eigenvalues. We point out that although the label 1 
resembles a "magnetic" quantum number suggesting an 
su(2) symmetry algebra for the system, no such con­
struction has been made. 

The eigenvalues AI and the properly normalized co­
efficients P';; for (3.11), (3.12) for the first 15 values 
of n have been computed and collected in Table I. We 
will refer to Pnl (u) as parabolic polynomials. The en­
tries of this table also give us the needed information 
about the expansion of the parabolic coordinate solutions 
in terms of the Cartesian basiS, since from (3.7), 
(3.8b), and (3.11) 

(n/2] 
;;,p ( ) _ :0 pnl m n-2m 
'+'nl 1)11 1)2 - moO m 1)11)2 

(n /2] 

:0 [2-mm! (n - 2m)! 11 /2pr;,;1P;,n_2m(1)11 1)2)' 
moO 

Choosing 1J!,;1 (1)1,1)2) to be normalized in J, we find 
(n /2 J o [2-mm! (n- 2m)! ]p~lp';;' = °1,1" 
m=Q 

(3. 14) 

The expansion inverse to (3. 13) is easily obtained and 
reads 

[n /2]+1 

~~n-2m(1)I' 1)2) = [2-mm! (n - 2m)! ]1/2 6 P';;~/(1)b 1)2) 
1=-[./2)-1 

(3.15) 

Again from the orthonormality properties we obtain 
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[n /2]+1 

2-mm! (n - 2m)! ~ p';;.p';; = 0"" m" 
I=-[n /2J-l 

(3.16) 

The solutions (3.10) of (3.11) are instrumental for the 
solutions (2.11), 1>nl(v), of (2. 12) in the following man­
ner: Transforming (3.10) to its standard form, we find 
the latter to be identical with (2. 12) so that its solutions 
are 

(3. 17) 

upon demanding the correct asymptotic properties for 
1J!,;l' It is emphasized that we have constructed poly­
nomial solutions of the differential equation (2. 12). The 
advantage of the Bargmann space treatment is now 
manifest: Through the unitary transform (3.4) we have 
reduced the coupled multiparameter eigenvalue prob­
lem (2.10) to the single Sturm-Liouville problem (3.10) 
whence upon transforming back and using (3.17), we 
have 

</(z (v" v 2 )= Cnl (V 1V 2)" exp[ - Hvi + V~)]Pnl ([2V2vn-1) 

XPnl(-[2.f2v~]-I), (3.1S) 

where cnl is the normalization coefficient with respect 
to the measure (2.14) given by 

c =(pnz )-21T-l/22.",Cn)/4 [n13 1 
pnl(-lY' (2k)!(n-4k)! 

nl [n/ 2 1 k=O 2k k! ([n/2) - 2k)! 

(3.19) 

where a(n) '" (- 1)" and can be calculated with the use of 
the Table I. 

Writing the transform (3. 4a) explicitly, we find the 
integral identity 

f.: dV 1 j~~ dv2(vi + V~)(V1V2)n exp[ - t{v; + vV+ i2(vi - vn7h 

+ f2V1V21)2]P"1 ([2f2v~]-' )Pnz (- [2f2v~]-I) 

Equation (3.4b) yields 

I it d21)1 (f'l1)21J"zPnl (1)t!1J;)exp[ -2/111 12 -111212 -1)i 2 

- t1)~2 + i2(vi - v~)1)i + V2v1v21);) 

= ~1T3 /2CnZ (V1V2)" Pnl ([2f2v~]-1 )Pnl (- [212v;1-1), 

(3.20b) 

Moreover, applying the unitary transform (3.4) to the 
expansions (3,13) and (3,15), we find the expansion 
formulae 
rn /21 

6 pnlH (2-1/2[V 2 _v2])H (v v) 
m=O m m 1 2 n--2m 1 2-

= 1T' /22n /2-1 /4Cnl (V 1V21' P
nl 

([212vi]-I)Pnl (_ [2i2v~]-I) 

(3,21 ) 

and 
[n 121+1 

(V IV 2)" 6 p;:'ICnlPnl ([2i2vir)Pnl (- [2f2v~]"I) 
I =-[n /21-1 

= [1T1/ 22n /2-m-l /4m ! (n - 2m)! ]-IHm(2-1/2[vi - vmHn_2m(V,V2). 

(3,22) 

These formulas allowed us to calCulate cnl in (3.19) by 
evaluating (3.21) for even n at X= 0 and for odd n, 
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TABLE 1. Eigenvalues and eigenvectors for parabolic polynomials. The eigenvectors pr:,:±1 for fixed nand 1 are listed from top to 
bottom as m runs from a to [n/2+1], respectively. 

Level Eigenvalue Eigenvectors Level Eigenvalue Eigenvectors 
\.1 p':,.,±1 pr:,:±1 

11=2 l = 1/2 ± 1.414214 5. 000 000 Xl 0-1 n=10 1= 5/2 ± 16.61347 1.704169 Xl 0-4 

± 1. 000 000 ± 4.003944 x10-3 

11=3 1 = 1/2 ± 2.449490 2.886751 x10-1 3.169879 xl(j2 
± 9. 877367 Xl 0-2 

± 1. 000 000 
1.046898 Xl 0-1 

n=4 1=1 ± 4.000000 1. 250000 xl 0-1 ± 1. 782333 Xl 0-2 

± 7.071 068 xlO-l 
5.000000 x10-1 1 = 3/2 ± 8.353982 2.447240 Xl 0-4 

1.020621 Xl 0-1 ,± 2.891216 x10-3 
1=0 0.000000 -4.946480x10-3 

O. 000 000 xlO-4 ± 1.274183 x10· t 
-1. 224745 - 3.021 387 Xl o-t 

n= 5 1 = 1 ± 5.656854 5.103104 xI0-2 ± 1. 022 969 Xl o-t 
± 4.082483 Xl 0-1 

l = 1/2 ±2.050659 2.210312 xlO-4 
6.123724 xIO-t 

± 6.410059x10-4 

1 = 0 0.000000 5. 590170 X10-1 -1.896333 Xl 0-2 

± 4.226254 Xl 0-2 
0.000000 Xl 0-4 

2.538089 Xl o-t 
-1. 118 034 ± 3.500729 Xl o-t 

11=6 1= 3/2 ± 7.538754 1. 863 390 Xl 0-2 
n=l1 1= 5/2 ± 19.22960 4.608940 x10-5 

± 1. 986636 Xl 0-1 
± 1.253390 x10-3 

5.000000 Xl 0-1 
1.197299 Xl 0-2 

± 1. 875 925 Xl 0-1 
± 4.837152 x10·2 

1 = 1/2 ± 1. 779658 1. 863 390 Xl 0-2 7.743018 Xl 0-2 

± 4.689812 x10-2 ± 3.416695 Xl 0.2 

- 5. 000 000 Xl 0-1 
l = 3/2 ± 10.48809 6.979429 Xl 0-5 

± 7.946545 XI0-t 
± 1. 035217 Xl 0-3 

11= 7 1 = 3/2 ± 9.579208 6.332 529 XI0-3 - O. 000 000 Xl 0-5 

± 4. 969040 xl0-2 
± 8.578707 xlO-2 

-1.842569 x10·t 
3.151144 Xl 0-1 

± 1.490712 X10·1 
± 2.791290 x10-1 

1 = 1/2 ±2.870326 7.688005 xI0-3 l = 1/2 ± 3.197242 7.436786 Xl 0-5 

± 3.362605 Xl 0-4 
± 3.120757 x10·2 

- 7.420250 x10·3 
- 2.595565 xIO-l 

± 2. 732426 xl 0-2 
± 7.673 029 XlO-t 

1.249380 x10-1 

n= 8 1=2 ± 11. 78082 2.008449 Xl 0-3 ± 3.315 776 x10~ 

± 3.346196 Xl 0-2 
n=12 l=3 ± 21. 97026 1.193308 Xl 0-5 

1.662 750 Xl o-t 
± 3.707685 Xl 0-4 

± 2.541743 XlO-t 
4.184 841 XI 0-3 

6.102406X10~ 
± 2.109578x10-2 

1=1 ±4.605675 2.518940 Xl 0-3 4.668927 xI0-2 
± 1.640688 Xl 0-2 ± 3.698379 X10-2 

- 8. 762 825 Xl 0-2 4. 761253 x10~ 
± 5.183905 x10-1 

l=2 ± 12.78129 1.890156 Xl 0-5 
- 3.183 528 x10-1 

± 3.416546 x10-4 

1 = 0 0.000000 2.010 905 x10-3 5.927794 x10-4 

0.000000 x10-4 ± 1.692769 x10-2 

-1.126107 x10-1 - 9. 309182 x10-2 

O. 000 000 Xl 0-4 ± 1.334035 Xl0-1 

6.756639 x10-1 - 2. 952 144 Xl 0-2 

n= 9 l=2 ±14.12795 6.007569 xI0-4 1=1 ± 5.093752 2.029600 Xl 0.5 

± 1. 2 00309 xlO-2 ± 1.462053 xI0-4 

7.665598 Xl 0-2 - 2.152 465 x10-3 

± 1. 744409 Xl 0-1 ± 1. 394 086 Xl 0-2 

- 3. 791902 xIO-t 3.416276 Xl 0-2 

1 = 1 ± 6.356178 8.200552 x10-4 ± 2. 179 504 xl 0-1 

± 7.371471 Xl 0-3 1. 21 0 221 X10·1 

-2.591292 x10-2 1=0 0.000 000 1.626302 x10-5 

± 2. 840449 x10-1 
O. 000 000 Xl 0-5 

-3.791902 xIO-l - 2.146 719 XIO-3 
l=O 0.000000 8.300199 Xl 0-4 0.000 000 X10-5 

0.000000 X1o-3 - 6. 010 814 Xl 0-2 

- 5. 976143 xIO-2 0.000 000 Xl 0-5 
0.000000 Xl 0-4 - 2. 404 325 xlO-1 
5.976143 Xl 0-1 (continued) 
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TABLE I. (continued) 

Level Eigenvalue 

n= 13 1 = 3 ± 24.82997 

1=2 ± 15.21229 

1 = 1 ± 6.932454 

1 = 0 0.000000 

n=14 1=7/2 ±27.80398 

l= 5/2 ± 17.77729 

Eigenvectors 
fl'm±l 

2.968235 x10- G 

± 1. 042 292 Xl 0-4 

1. ~66 953 xl 0-3 

± 8.~56661 XlO-3 

2.415046 Xl 0-2 

± 2.921621 xI0-2 

9.984215 XlO.J 

4.902887 XlO-1i 
± 1. 054 779 Xl 0-4 

3.697447 Xl 0-4 

T ::.. 083 554 Xl O.J 
- 4. 065197 Xl 0-2 

± 8.950889 x10-2 

- 4. 992728 Xl 0-2 

5.644911 XlO- 1i 

± 5.534254 X1 0-" 
- 6. 093177 x10-4 

± 6.049697 XlO- 3 

7.107675 xl0-3 

± 1.155716 Xl 0-1 

1.414589 Xl 0-1 

5. 582 380 Xl 0-1; 

0.000 000 XlO- 1i 

- 8. 708 512 xl0-4 

0.000000 Xl 0-\ 
3.135064 Xl 0-2 

0.000000 x10-4 

- 2. 090 043 x10-1 

7.114271 XlO-7 
± 2.797386 XI0-\ 

4.204971 x10-4 

± ~. 049 722 XlO-3 
1.105699 x10-2 

± 1. 864 007 Xl 0-2 

1. 158 708 Xl 0-2 

± 1.178723 xI0-3 

1. 220 946 x10-u 

± 3.069567 xl 0-" 
1. 636458 Xl 0-4 

± 1. 329 819 Xl 0-3 

-1. 572 227 Xl 0-2 
± 4.926638 Xl 0-2 

- 4. 921069 XI 0-2 

± 7.829590XI0-3 

il 2/iJv 1ilv2 of both sides at x=O. We add that from (3.21) 
and (3 0 22) many L 2(JR2) expansions can be derived for 
the parabolic polynomials Pn I' To conclude this section 
we give explicitly the parabolic polynomials for the 
first few n values: 

2220 

n=O: Poo(u) = 1, 

n= 1: PlO(u) = 1, 

n=2: P2,±1/2(U)=±U+~, 

n=3: P 3,±1/2(U)=±U+ 1/2)3, 

n=4: P 4,±1(U)= ~ (10u2 ±4-J2u+ 1), 

.f6( 2 1) P4,o= -2- -u + 12 , 
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(3023a) 

(3. 23b) 

(3.23c) 

(3.23d) 

(3.23e) 

Level Eigenvalue 

l- 3/2 ± 9.040977 

1=1/2 ±2.273209 

1=7/2 ± 30.88805 

1=5/2 ±20.46843 

1 =:l/2 ± 11. 266 06 

1 ~ 1/2 ± 3.470994 

Eigenvectors 
pr:J±1 

1. 455154 Xl O-Ii 
± 1.860541 xlO-' 
-1.458948 x10-4 

± 2.259073 Xl 0-' 
- 6. 557 908 Xl 0-4 

± 4. 892 627 Xl 0-2 

1.108188 Xl 0-1 

± 3.466912 Xl 0-2 

1. 273 209 x10-r. 
± 4.093117 XlO-1i 
- 2. 251 448 Xl 0-4 
± 6.014597XlO-4 

9.648122 XlO-3 

± 1.967606 x 10-2 

- 8. 593 878 Xl 0-2 
± 1. 069288 X10-4 

1. 647271 XlO-7 

± 7.195660 x1o- Ii 

1. 225 688 x10-4 

± 1. 036 347 x10-3 

4.576218 x10-3 

± 1. 013 316 Xl 0-2 

9.706253 xlO-3 

"2.666413 x10-3 

2.929299 Xl 0-7 

± 8.479361 Xl a-Ii 
6.120959 xlO- 5 

T 2.912478 xlO- 4 

- 5.47419:> Xl 0-3 

±2. 330407 xIO~ 
- .1.579068 Xl 0-2 

± 1. 483 71 9 Xl 0-2 

3.638824 Xl 0- 7 

± 5. 797 598 Xl o-r. 
- 3. 022 984 X10-\ 
" 7. 634 970 Xl 0-4 

-1. 378486 Xl 0-' 
± 1. 759 614 Xl 0-2 

6.602422 x10-2 

± 4.972 759 x10-2 

::l. 701417 Xl 0-7 

± 1. 816 924 Xl 0-(; 
- 7.327036 x10-5 

± ::l. 088482 Xl 0-4 

3.650857 Xl 0-3 

± 1. 247 904 Xl 0-2 
-4.090263 Xl 0-2 

± 9. 999164 xl 0-2 

n=5: P 5 ±1(U)= ~ (12u2±81l+1), 
, v 394 

15( 21) P5,O= -2- -u + 20 0 
(3023f) 

When written in terms of the variables z,u as (3. lOa) 
we can perform the z integral and obtain orthogonality 
for n as well as a weight function in 11 which depends on 
n. This weight function appears in terms of parabolic 
cylinder functions o 

4. A SYMMETRY GROUP IN BARGMANN SPACE 

Here we will show how the information of the previous 
section can be obtained by studying the group of geomet­
rical symmetry transformations in Bargmann space o We 
look for all first order differential operators of the form 
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2 

A = 6 a i (1)u 1)2) On. + b(1)u 1)2) 
i:! ' 

(4.1) 

which commute with the Hamiltonian (3.5), i. e., [A, il] 
= O. If we further demand that all our symmetry opera­
tors A be densely defined in J then the functions a l and 
b must be analytic functions of 1)1 and 1)2' we find 

A1=1)lon, Az=1)20n, A3=1)~On' Ao=l, (4.2) 
1 2 1 

with domains 'o(Al) and 'o(A2) given by (3.3) and 'o(A 3) 
=1)(-'11 x1)D. When we disregard the central element 
Ao we find the three-dimensional solvable algebra12 83 
with Lie brackets 

[A 1O A 2 ]=0, [A u A 3 ]=-A3 , [A 2 ,AJ=2A 3 • (4.3) 

It is easily seen that 

(4.4) 

and so we have the structure 83 "'u(1)EB82, where 82 is 
the two-dimensional algebra spanned by, say, Al and 
A 3 , and u(l) is spanned by ii. Now on the space Pn of 
homogeneous polynomials the representation (4.2) of 83 
acts on the normalized Cartesian basis in Bargmann 
space, calling ¢':,,=~~,n-2m' as 

A 1¢':,.=m¢':,., 

A 2 ¢';,,= (n - 2m)¢':", 

A 3¢':" = [2m(n + 2 - 2m)(n + 1 - 2m)]1/2¢':,,+I' 

(4.5a) 

(4.5b) 

(4.5c) 

This action can be integrated to a representation of the 
solvable Lie group S3 as 

T(g( QI By»j(1)u 1)2) = exp( aA 1 + i3A 2 + yA 3)(1)10 1)2) 

= exp(QlA 1) exp(i3A2) exp(M 3)f(1)u 1)2) 

= j(e"'1)l + e 2Il(1)i, e ll1)2) 

= enll1)~p n (e "'-21l1) J 1)~ + 0) 

where j E Pn , QI, (3, YE 0:, and 

0= y(e",-21l -l)/(QI- 2(3). 

(4.6a) 

(4.6b) 

The transformations (4.6) form the group of geometrical 
symmetry transformations in Bargmann space. The 
group composition law is g(Qlu (31' Y1)g(Ql2' (32' Y2) 
=g(Ql1 + Ql2' (31 + (32' Y3) where Y3 is related to 03 through 
(4.6b) and 03 =: 02 + e"'2-21l 201 • This yields the representa­
tion matrices 

Il'".'m(QI(3y) = (¢':"., T(g(QI(3y)¢':,.) 

_ em'''e(n-2m)!l(V2o)m-m' 1 (m! (n - 2m')! )1/2 
- (m -m')! m'!(n-2m)! ' 

(4.7) 

where 0 ~ 111', 111 ~ [n/2] and the matrix is upper­
triangular, ° being given by (4.6b). Now since Al and 
A2 are self-adjoint onD given by (3.3), by chOOSing 
QI, f3 pure imaginary, the representation of the Abelian 
subgroup generated by them defines a unitary represen­
tation on J. Of course A3 is not Hermitean (symmetric) 
in J, so its integrated group representation is not uni­
tary. Moreover, exp(oA) is an unbounded operator in 
J, Since functions of growth (2, 1) in 1)1 and (2, t) in 1)2 
are mapped onto functions of growth (2,1) in 7)1 and 
(4,0) in 1)2' However, it can be seen easily from (4.6a) 
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that T(g) maps Pn into itself and thus is densely de­
fined on J. USing the binomial theorem and (4.6a), it 
follows that all polynomials P. of degree j ~ [n/2] form 

} -
an invariant subspace under 83 , The complement Pj of 
Pj in Pn is not invariant under (4.6a). Thus the repre­
sentation (4.6a) of S3 on Pn is indecomposable and non­
unitary with dimension [n/2] + 1. This is consistent with a 
a theorem of Lie which states12 that all finite-dimen­
sional representations of a solvable Lie group over 0: 
are indecomposable. From the point of view of the Lie 
algebra (4.3) this means that we have only a lowering 
operator given by A 3 • It can be seen how another repre­
sentation of the same algebra 83 contains a raising 
operator: Indeed, consider the operators defined by 

(4.8) 

where D (AD =,0 (A 3 ). The primed operators (4.8) form 
a representation of 83 conjugate to that of (4.2). In fact, 
we easily find 

A;¢;:' =: [2(111 + l)(n - 2m)(n - 2m _1))1/2 ¢ ""...1' (4.9) 

Since A; is a second-order operator, its exponentiation 
will be represented through an integral kernel in Barg­
mann space. There is a striking analogy between this 
exponentiation and the development in time of the solu­
tions of the heat equation. 13 Using this analogy, the 
general element of the conjugate representation of S3 
can thus be found as 

T(g'(QI(3y»j(1)u 1)2)=exp(QlA~ + i3A~+ yA;)(1)u 1)2) 

= exp(o' AU exp(- i3A2) exp(QlA1)(1)u 1)2) 

= I It azJll(1)Od2Jl2(1)~) 
XKg.(",~)(1)H 1)2; 1);, 1)~)f(1)~, 1)~), (4. lOa) 

where 0' = y(eZIl -", - 1)/(2 (3 - QI) and the integral kernel is 

Kg.(",~) = exp (2e-"1)I1)~* + e-ll1)21)~* + 2o' e-21l1)11)~*2). 

(4. lOb) 

Finally, it is straightforward to see that the matrix ele­
ments of the representation (4.10) are the adjoints of 
the matrix elements (4.7) of the group S3' However, it 
must be noted that if we try to embed the two repre­
sentations (4.2) and (4.8) of the algebra 83 into a higher­
dimensional Lie algebra, we are led to an algebra of 
infinite dimension. 

Now from the relations (4. 5c) and (4.9) one can 
derive the recursion relation (3.12). Forming the inner 
product of (Sp - A) from (4. 9b) between the CarteSian 
and parabolic bases, this yields 

A(~, ¢':,,)= [men + 2 - 2m)(n + 1 - 2m)]1/2(~1> ¢':,,) 

+ [em + 1)(/1 -2m){n -2 m _l)]l / Z(!p,;1> ¢':,,+1)' 

(4.11a) 

Then upon defining 

<1(1) ¢':,.l= [en -2m)! (n - 2m + 1)m! p/22-m/2p,;; , 

we regain (3.12), We thus could have made these cal­
culations using the harmonic oscillator raising and 
lowering operator formalism in ordinary configuration 
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space; however, the analysis of the differential equa­
tions that was made previously requires specific Lie 
algebra models. 

Another important consequence of the symmetry 
algebra is the correspondence between the separable 
coordinate systems (2.5) and the orbits of the factor 
algebra S2 "'s3/u(l) under the adjoint action of S3' An 
easy calculation shows that we have essentially two 
orbits: 

(i) aAl and (ii) A 3 • (4.12) 
As discussed previously, Al is a self-adjoint operator 
on J; in fact, from (3. Sa) we have Al = t ~c - t. Thus 
orbit (i) describes the Cartesian basis. In constrast, 
the operator A3 is not Hermitian in J. However, by 
conSidering the Hermitian part of A 3, i. e., t(A3 +A;), 
we find the self-adjoint operator Sp= 2-1I2 (A3 +A;). 
Thus orbit (ii) describes the parabolic basis and we 
have found the correspondence between the two orbits 
(4.12) of the symmetry algebra and the two separable 
coordinate systems (2.5). It can also be remarked that 
the preceeding description of the symmetry algebra also 
carries over to the case of any anisotropic two-dimen­
sional oscillator whose frequency ratio is k : 1 (k in­
teger). What does not carryover is the connection with 
separation of variables, and the reason clearly is that 
for any other ratio of frequencies the operator AI is 
higher than second order, giving rise to a higher than 
second order operator for not only the analog of Sp but 
also of Sp' 

5. CANONICAL TRANSFORMATIONS INDUCED 
BY THE SYMMETRY GROUP ACTION 

In this section we want to show explicitly that the S3 
group action induces a canonical transformation in the 
Bargmann phase space and point out some of its charac­
teristics. Consider the action of exp(aA I ) and exp(.BA2 ); 

these produce dilatations of the canonical operators 
;j, lj, i. e., ~I - ect~H ~l - e-"'~l under the first one 
and ii2 - ea~2' ~2 - e-aii2 under the second one. It is 
clear that they preserve the canonical commutation 
relations [ii j , ~kJ = io jk1 and the form of the Hamiltonian 
(3.5). The adjoint group action of exp(yA 3 ) gives 

iiI -~; = exp(yA3)nI exp( - yA3 )= iiI + y1j~, 

ii2-ii~=1j2' ~l-t;=~l> 
~2 - ~;= ~2 - 2~2L 

(5.1a) 

(5.1b) 

(5.1c) 

which can be Similarly checked to preserve the canoni­
cal commutation relations and the form of the Hamil­
tonian. Thus S3 can be said to induce a canonical trans­
jormationll

,I4,IS in the 1)-space which, moreover, is a 
nonlinear point transformation, as ~; is only a function 
of the ii j and the group element. The translation to 
ordinary description of phase space can be made 
through (3.1) and seen to mix the configuration and 
momentum components. The transformation (5.1) is not 
in general a unitary transformation since as was seen 
in (4.6), exp(yA3 ) is not unitary. 

The action of the conjugate representation of S3 can 
be obtained through adjunction from (5.1) and similar 
considerations apply as a canonical transformation. It 
is not a point transformation, however. 
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By looking at the transformations (5.1) it is seen that 
two new operators appear, namely 

(5.2) 

The generators of S3 together with (5.2) and the five­
dimensional Heisenberg-Weyl algebra W z form a 
solvable dynamical noninvariance algebra of dimension 
ten, with the structure SlO "=S5 -Bwz where S5 is a five­
dimensional solvable algebra with basis Au •. • ,As and 
W z is an ideal in s 10' Similarly, one can construct the 
conjugate representation from the Hilbert space adjoint 
operators. The algebra SID can be integrated to the cor­
responding group on a dense invariant subspace of J. 
This group is a Lie subgroup of the pseudo group of all 
canonical transformations. 14 

6. DISCUSSION ON SYMMETRY GROUPS AND 
ACCIDENTAL DEGENERACY 

The degeneracy pattern for the anisotropic oscilla­
tor has usually been attributed5- 7.15 to the group SU(2). 
We feel, however, that the role of this SU(2) is still not 
well understood since in contradistinction to the isotro­
pic oscillator case, the formal Lie algebra su (2) for the 
anisotropiC oscillator cannot be written in terms of 
finite-order differential operators in Hilbert space. The 
generators of su(2) are written in terms of shift opera­
tors which are well defined over the finite-dimensional 
subspaces; however, their extension to a dense sub­
space of Hilbert space seems to have been overlooked .. 
Moreover, in order to obtain a unitary irreducible rep­
resentation7

,15 of the group SU(2) on one of the finite­
dimensional subspaces, a new norm must be introduced. 
This is the meaning of the factors containing the num­
ber operator and modulo numbers: One has to rescale 
the basis functions so that they form a properly nor­
malized SU(2) baSiS, for they do not do so in the 
ordinary norm. As a consequence, the representations 
are nonunitary in the usual Hilbert space norm. 

Second, when we follow the procedure of Refs. 5 and 
7 for n-dimensional anisotropic oscillators (n> 2), the 
group SU(n) does not in general give a full account of 
the degeneracy of the system, that is, representations 
are in general reducible, in fact, completely reducible. 
This occurs already in the n = 3 case and constitutes the 
major failure for SU(n) as the symmetry group ex­
plaining the accidental degeneracy. 

Thirdly, the choice of the group SU(2) [U(2) including 
the action of the Hamiltonian] is not unique. In Ref. 7 
this choice was dictated in order to find the quantum 
counterpart of a classical canonical transformation 
which maps the general anisotropic oscillator onto the 
isotropic oscillator whose geometrical symmetry group 
in Bargmann space is U(2). It is of interest to study the 
former system on its own, since the two quantum prob­
lems are not unitarily equivalent. 

The generators of the solvable group S3 on the other 
hand, are all the first order symmetry operators in 
Bargmann's description of phase space. They are thus 
the generators of all the geometrical symmetry trans­
formations in Bargmann space, and in this sense they 
are unique, While the representations are redUCible, 
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they cannot be decomposed into irreducible parts, i.e., 
they are indecomposable. We can find no fundamental 
reason why, when explaining accidental degeneracy 
through a symmetry group, one should exclude non­
unitary indecomposable representations, Clearly, com­
pletely reducible representations should be excluded. It 
is thus of interest to consider the n-dimensional gener­
alization of the geometrical symmetry group discussed 
above. 

To sum up, the connection between accidental de­
generacy and symmetry groups seems to be still an 
open question, In this context one should understand the 
role played by the infinite-dimensional Lie algebras of 
symmetry transformations and its corresponding Lie 
pseudogroup. Perhaps more immediate is the possibil­
ity of finding? for all systems with discrete spectra ex­
hibiting accidental degeneracy, a Hilbert space a la 
Bargmann such that its group of geometrical symmetry 
transformations explains the accidental degeneracy, 
Work in this direction is currently in progress, 
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