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The purpose of this article is to present a detailed analysis on the quantum mechnical level of the 
canonical transformation between coordinate-momentum and number-phase descriptions for systems 
possessing an s i (2,R) dynamical algebra, specifically, the radial harmonic oscillator and 
pseudo-Coulomb systems. The former one includes the attractive and repulsive oscillators and the free 
particle, each with an additional "centrifugal" force. while the latter includes the bound, free and 
threshold states with an added "centrifugal" force. This is implemented as a unitary mapping­
canonical transform-between the usual Hilbert space L 2 of quantum mechanics and a new set of 
Hilbert spaces on the circle whose coordinate has the meaning of a phase variable. Moreover, the 
UIR's D t of the universal covering group of S L (2,R) realized on the former space are mapped 
unitarily onto the latter. 

1. INTRODUCTION 

In this series of articles we have explored the ques­
tion of canonical transformations in classical mechanics 
and their translation to quantum mechanics as unitary 
mappings between Hilbert spaces. These mappings have 
been given the general name of canonical transforms. 
In Ref. 1 we considered the set of (complex) linear 
transformations of phase space which preserved the 
Heisenberg algebra of coordinate and momentum varia­
bles (resp. operators) in classical (resp. quantum) 
mechanicS, while in Ref. 2, upon examining the radial 
part of such an n-dimensional transformation, we found 
that the translation to quantum mechanics could be 
implemented asking for the preservation of a radial 
sl(2, R) '" su(1, 1) '" so(2, 1) algebra built out of the n­
dimensional underlying Heisenberg algebra. In this 
paper we will develop the unitary representation 
(canonical transform) of the transformation which can 
be formulated as follows. 

Consider a classical system possessing an sl(2,R) 
dynamical algebra. This means in our context that (i) 
there exist three quantities 2j(r,Pr), i = 1,2,3 (where r 
and Pr are canonically conjugate variables: {r,Pr} = 1) 
which under the Poisson bracket operation exhibit the 
sl(2, R) Lie bracket relations 

{jj,22}=-23, {22,23}=21' {j3,21}=22, (1.1) 

and such that (ii) the Hamiltonian H of the system be­
longs to the algebra, i. e., it can be written as a linear 
combination of the 2j(r,Pr)' Now, through SL(2, R) 
group transformations, we can always redefine the 
basis of the algebra so that H coincides with one of the 
three orbit representatives given by 23,21, or 21 + 23 
corresponding, respectively, to elliptic, hyperbolic, 
or parabolic orbits. In each one of these cases we can 
define as action and phase variables, 

P<b = 23, 1> =arctan{Jh/91), 

Pc = 21> t = arctanh (22/23) , 

P~ = 21 + 23, ~ = 22/(21 + 23), 

(1. 2a) 

(1. 2b) 

(1. 2c) 

and in each of these cases one can verify that (1. 1) im­
plies that QI and p" (QI = ¢, t, ~) are canonically con­
jugate variables ({a,p,,}=1). The mapping (r,Pr) 
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- (a,p,,) is a canonical transformation in the classical 
sense since the Heisenberg algebras are preserved, 
i. e., {r,Pr}=1 {QI,p,,}=1, between the configuration 
and phase descriptions. The purpose of this article is 
to explore the quantum mechanical formulation of such 
canonical transformations. We shall see that the trans­
lation is possible when the Hamiltonian takes the stand­
ard from tp; + V(r) and the generators 2j (r,Pr) are up­
to-second order functions of Pr' In this case (1. 1) gives 
a set of coupled differential equations which severely 
restrict the types of potentials which can be considered, 
and in fact the possible realizations of the algebra (1. 1) 
are essentially reduced to 

21 = t(P;'- r2 +gr-2) = t(p2 _ r2 +g 1 r 1-2), 

22 =trPr=h·p, 

23 = t(p;'+r2 +gr-2) = t(P2 +r2 +g 1 r 1-2), 

(1.3a) 

(1. 3b) 

(1. 3c) 

with arbitrary g, where rand p are n-dimensional vec­
tors. The systems which can be described in this case 
are the attractive and repulsive harmonic oscillators 
and the free particle, all with an arbitrary additional 
"centrifugal" potential, corresponding to the elliptic, 
hyperbolic, and parabolic orbits mentioned above. 

By quantization of (1. 3) we mean the construction of 
self-adjoint operators on the usual Hilbert space of 
Lebesgue square-integrable functions L 2(Rn). This 
procedure is unique3,4 for (1. 3) and yields an sl(2,R) 
algebra of operators Ij(r, ar) under the commutator 
bracket, self-adjoint in the "radial" space L 2(0,00). We 
will show in this article that we can perform a unitary 
mapping of L 2(0,00) onto Hilbert spaces H; (to be de­
scribed below) where the operators POl defined in (1. 2) 
are realized as - ia/aQi. The difficulties of giving a 
meaning in quantum mechanics to (1. 2) can be seen 
clearly for the harmonic oscillator case (1. 2a) to stem 
from the following problems: (0 The operator - ia/a¢ 
is required to have a discrete spectrum which is in­
compatible with the existence of a phase operator "$" 
such that [$'P<bl = ll. (ii) When the operator P<b is real­
ized as - ia/a¢ on L 2(_7T, 7T), its spectrum turns out 
not to be positive-definite. The methods of treating 
these (and the related problem of angular momentum 
and angle observables) difficultieso,6 have been through 
replaCing the phase operator with some closely related 
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ones, e. g., Toeplitz operators1 such as sincp and coscp, 
and/or constructing a representation of the Heisenberg 
algebra which cannot be integrated to the group. 6 

In our construction, Hilbert spaces are constructed 
so that P", is a self-adjoint operator represented by 
- ia/ao: with the appropriate spectrum. The phase 
variable 0: retains the meaning of an underlying space. 
Its operator realization (multiplication by 0:) is not 
Hermitean. The sl(2, R) algebra and group representa­
tions are preserved and take the place of the Heisenberg 
algebra and Weyl group respectively in the definition 
and determination of the quantum canonical transforma­
tion corresponding to (1. 2), as a unitary mapping be­
tween Hilbert spaces. The integral transform realiza­
tion of such a mapping is the associated canonical trans­
form. Furthermore, the unitary mapping is implement­
ed for the pseudo-Coulomb system with the classical 
generators8-.10 

K1 = Hr(p2 -1) +g'r-1], 

K2=r·p, 

K3 =Hr(p2+1)+g'r-11, 

(1.4a) 

(1. 4b) 

(1. 4c) 

by establishing the connection of this system with the 
harmonic oscillator. Although the complete dynamical 
groups for the two systems are different (the symplectic 
group Sp(n, R) for the oscillator and O(n, 2) for the Cou­
lomb system), the representations of the SL(2, R) sub­
group are isomorphic ally related and appear to playa 
fundamental role in both systems. 

The developments presented here have a group­
theoretical significance of their own: On the algebra 
level, we connect the realization of the sl(2, R) algebra 
generators on the line, as second-order differential 
operators, with their realization as first-order ones 
on the circle. On the group level, we relate the action 
of SL(2, R)-the universal covering group of SL(2, R)­
as conformal transformations of the circle with its non­
local action on the line. 

In Sec. 2 we construct the Hilbert spaces H; where 
p", has the required properties and its unitary mapping 
to L 2(0, 0Cl). In Sec. 3 we relate the bound, free and 
threshold Coulomb systems with the three harmonic 
oscillator systems (1. 2). In the Appendix we establish 
the connection between our spaces H; and the spaces of 
analytic functions on the diskl1 - 13 and half-plane14 used 
for the description of the 8l(2, R) D; unitary irreducible 
representations (VIR's). 

2. THE HARMONIC OSCILLATOR SYSTEMS AND 
THE CIRCLE 

A. Elliptic case 

We begin with the quantum Hamiltonian for the n­
dimensional harmonic oscillator with an extra "cen­
trifugal" potential of strength g 

where 'i72 is the n-dimensional Laplacian and 0'" 1'2 

(2.1) 

= I r21 < 00. Since we are interested in the radial part of 
H only, we separate (2.1) and its eigenfunctions into 
their radial and angular variables and write in place of 
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the angular part of (2.1) its well-known eigenvalues 

A=-L(L+n-2), L=0,1,2,"', (2.2) 

viz. 

NOW, the usual measure in n-dimensional radial con­
figuration spaces is r n

-
1 dr; however, to facilitate our 

calculations, we can make the similarity transforma­
tion H-r<n-1) !2Hr-<n-j} !2, which brings the measure to 
simply dr with the corresponding formal differential 
operator 

13 ", '}r < n-j} /2 Hr-<n-j} /2 = H - orr + r2 + [(2k - 1)2 - t Vr2}, 

(2.4a) 

where 

(2.5) 

Now, for k ~ 1, the spectral analysis of (2. 4a) is well 
known15 and there is a unique self-adjoint extension such 
that the normalized eigenvectors are 

l/4(r) = [2N!/r(N + 2k)]1 /2e-r2 /2r2k-1 /2 L ~k-j)(r2), 

where 

I 31/4(r) = (N+k)l/4(r), N=0,1,2,"', 

(2.6a) 

(2.6b) 

and where L~"')(z) are the associated Laguerre poly­
nomials. 16 In the case that (2k - 1)2 < 1, both solutions 
to the eigenvalue problem for 13 are square-integrable 
in the neighborhood of r = 0, and we must implement an 
additional boundary condition there. In this article we 
are interested in exploring the eigenvalue problems for 
13 whose spectra are bounded from below corresponding 
to the discrete series of representations D; of SL(2, R). 
This corresponds, for the spectral analysis of Is with 
t '" k < 1, to implementing two different boundary condi­
tions which yield {i);'}.} and {i);:;:+1} separately as complete 
sets of orthonormal eigenvectors. The second set can 
be described equivalently by extending the range of k 
to ° < J? < 1. Indeed the richer structure displayed in this 
interval has been noticed by Sally13 and Montgomery and 
O'Raifertaigh. 11 Other boundary conditions correspond­
ing to different self-adjoint ext~sions of 13 give rise 
to the supplementary series of SL (2, R). 

We complete the Lie algebra of 5£(2, R) by adding the 
generators10, 18-20 

11 = H- 2rr- 1'2 + [(2k -1)2 - t]/r2
}, 

12 = - ti(rily + t). 

(2.4b) 

(2.4c) 

It is straightforward to verify that (2.4) satisfy the 
well-known commutation relations 

(2.7a) 

and 

(2.7b) 

The common invariant domain where the operators 
(2.3) as well as the Lie products (2.7) are densely 
defined is taken as {fE L 2(0,00) : {!:fE L 2(0, 0Cl)}. Further­
more, as discussed previously, the generators (2.4) 
can be integrated20 to a unique unitary representation of 
SL(2, R), For the general element of SL(2, R) 
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g=(: :)ESL{2,R), ad-bc=1. (2.8a) 

SL{2, R) is defined from the universal covering group of 
the compact subgroup SO(2). Explicitly, for the matrix 

COS2W sm2W ( . I) 
( 

1 • 1 ) 

1 1 - exp - 1W 3 
- sin2w COS2W ' 

(2.8b) 

we now allow - 00 < W < 00. The other one-parameter sub­
groups are, with their corresponding representations, 

( 
coshiO' SinhiO') (' I) 

1 1 - exp - 10' 1 
sinh2 0' cosh20' ' 

(2.8c) 

where 0 <S 0' < 00 and 

(2.8d) 

Associated with a general element of SL (2, R) with b * 0 
we have the group action2•10,21 

(Tgf)(r) 

= [b [-I exp('F ilTk sgnb) Ia ~ dr'{rr,)1 /2 

xexP(;b (ar,2 +dr») J2k_1( ~;:)f(r')' (2.9) 

wherefEL 2(0,00) andgESL(2,R). The integral is 
understood to be in the sense of limit in the mean. 
Equation (2. 9) can be extended to the entire range of 
the parameter W in (2. 8b) and thus to the whole univer­
sal covering group SL(2, R) through exp(- 2ilTI3) 

= exp(- 2ilTk). When b = 0, we have the local action 

(2.10) 

We mention here that the ordinary (g = 0) n-dimen­
sional oscillator of angular momentum L belongs to the 
UIR of SL(2, R) with k = iL +tn, i. e., D~ /2+n/4. For 
n = 3, the oscillator states are spanned by the direct 
sum of UIR's Da /4 Ell D; /4 Ell . . .. For the case n = 1 
(g = 0) the situation is somewhat different: The differen­
tial operator (2.4a) is no longer Singular at the origin 
and the O(n) rotational symmetry represented by the 
quantum number L is replaced by the two-element group 
C2 of reflections, whose two representations are given 
by L = 0 and 1 in (2.2). The corresponding SL(2, R) 
UIR's are Di/4 and D3/4 corresponding to even and odd 
functions respectively. 

We shall now construct a unitary isomorphism of the 
Lie algebra sl(2, R) and covering group 5£(2, R) rep­
resentations on L 2 (0,00) onto the corresponding algebra 
and group representations on the circle SI with a suit­
ably defined inner product. Our realization for the Lie 
algebra sl (2, R) on SI is the algebra of formal differen­
tial operators11• 12 

I3=-i2"" 1"=e,,i"'(-i2rp±k), (2.11) 

where I± ==11 ± iI2 and 11>12,13 satisfy (2.7). For the dis­
crete series of UIR's D; (k ~ i) of SL(2, R), the in­
finitesimal generators satisfy the well-known relations 

13g!, = mg!" (2. 12a) 

I+g!,= ,9m[m(m+1)+k(1-k)]1/2g!,+1, (2. 12b) 
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1_g!, = _1_ [m(m - 1) +k(1- k)]i /2g!,_1' 
,9m_l 

(2. 12c) 

where l,9m I = 1, on a normalized set of basis vectors 
{g" J with the spectrum m = k, k + 1, ... , thus I_g! = O. 
Putting 

(2. 13a) 

one can see after a straightforward calculation that 

"Ym(k) = [r(m + k)/r(2k)r(m - k + 1)]1/2 

with ,9m = 1. 

(2. 13b) 

We will now construct an inner product on SI. This 
can be done by demanding that the {i< J form an ortho­
normal basis; however, we prefer to derive our inner 
product in the manner of Refs. 1 and 2, which elucid­
ates the type of functions we are working with. We 
write down a general bilinear functional on a "nice" 
space of functions on SI and require the operators (2.11) 
to be Hermitean. It is easy to see that this inner prod­
uct cannot be of the usual type for L 2(SI), {f,g) 
=f~.d¢f(¢)*g(¢) unless k=i+ip with p real. This is the 
principal series of UIR's of SL(2,R). Since we are 
treating the discrete series D; this is not in general 
the case (except for Di /2). 

Now from the outset it is clear that we are dealing 
with multivalued representations, where the multi­
valuedness is determined by the real number k ~ i. We 
therefore consider the space J k of infinitely differentia­
ble functions on SI such that f(¢ + 2lT) = exp(2lTik)f(¢). 
Furthermore, consider the space if!(] k) of continuous 
linear functionals22 on] k 

O{f) == (O,!) = lsi d¢'O(¢, ¢')f(¢'). 

We can define the inner product 

{fl,h)k= (ft> 0{f2) 

= f lsi d¢ d¢'O(¢, ¢')f1 (¢)*f2(¢'). 

(2.14) 

(2.15) 

The O(¢, ¢') can be determined from the hermiticity 
conditions for the generators (2,11). First, demanding 
the hermiticity of 13, i. e., (I3,!1,!2)k = {fl' I3h)k, we find 
the conditions 

O(¢, ¢') = O(¢ - ¢'), O(¢ + 2lT) = exp(2lTik)0(¢). (2. 16) 

Now any fE]k can be expanded uniformly in a Fourier 
series, 

~ 

f(¢)=exp(ik¢) 6 an(2lTt1/ 2 exp(in¢), (2,17) 
n=_oo 

and, by applying to it the lowering and raising operators 
I± it is clear that] k is reducible since the subspace of 
functions]; with Fourier coefficients an = 0 for n nega­
tive is invariant under the action of (2.11). The space 
]k is not completely reducible, however, but the re­
striction of the Lie algebra representation (2.11) to 
]; is irreducible. 

For any fl,!2 E]; consider the hermiticity conditions 

(2.18) 

A straightforward calculation involving integrations by 
parts yields the condition 
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I J~1 d¢ d¢'it (¢ )*e i <l>'f2 (¢')[i(e i8 - l)n8 + (k - l)(e i8 + l)n] 

= 0. (2.19) 

where e -= ¢ - ¢' and n8 = dn/ de. One is tempted to set 
the term in brackets in the integrand equal to zero and 
solve the result2;ng differential equation. Upon doing so, 
the solution is n (e) = c (1 - cos e)k-l. We can verify that 
the Fourier expansion (2.17) of n contains only negative­
n partial wave coefficients and thus is a member of 
iI>(];), where); is the complement of]; in]k' Hence 
(It, a(h» = ° for any fl,j2 E]; and such a solution is 
worthless to us. 

By inspecting (2.17) a bit closer it is seen that the 
vanishing of the terms in the square bracket of (2.19) 
is only a sufficient condition for the vanishing of the 
integral. Indeed, (2. 17) is satisfied if the term in 
square brackets is orthogonal to exp (i ¢ ')f2 (¢') E] ;+1' 
So a necessary and sUfficient condition for (2.17) to 
hold is 

i[exp(ie) -1]n8 + (k - 1)[exp(ie) + l]n = w(e) +c exp(ike), 

(2.20) 

where W(e)E iI>(j;) and c is a constant. Since any mem­
ber of iI>();) is useless to us as an inner product for 
]; we discard w (e) and look for a solution n E iI> (];) of 

i[ exp(ie) - 1 ]n8 + (k - 1)[ exp(ie) + l]n = c exp(ike). (2.21) 

When we propose as a solution of (2.21) a series of the 
kind (2.17) with coefficients wm we find this provides 
two independent solutions: One, for n ~ 0, yields the 
recursion wn =won!/(2k)n in terms of the independent 
constant wo, while the second one, for n < 0, yields the 
rec;..ursion in terms of w_l' The latter series gives rise 
to n and we thus discard it. The former series is thus 
our solution n E iI> (J Z) and, choosing Wo = 1/ 47T2 , 

n(e)-= 6 Am(l?)exp(irne) 
m=k 

1 .;. N! ['(k N) ] 
= -4 2 L.J (2'-) exp 1 + e 7T N=O "N 

= 4~2 exp(ike)F(I, 1; 2k; exp(ie». (2.22) 

This series16 converges absolutely for k> 1, condition­
ally for 1- < k '" 1 (excluding e = 0, 27T,' .. ), and for k =.~ 
it diverges on SI. In the last case appropriate limiting 
arguments must be used in order to evaluate the double 
integral (2. 15). For 0< k < ~ the series (2.22) can still 
define a scalar product even though the series 
diverges. 13 Comparing the coefficients in (2. 13) and 
(2.22), we find the important relation 

(2.23) 

which quarantees that {g!J is an orthonormal set under 
the scalar product (2.15). Equation (2.23) would have 
defined Am(k) in the series (2.22) had we decided to find 
n from the requirement that t~} form under (2.15) an 
orthonormal baSis. 

Now consider the inner product (2.15). We have for 
any fl'/2 c];, after some integrations, 

00 

Ul,j2h = 0 a;;'b mAm(1?), 
m=k 

(2.24) 
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where am and bm are the ordinary Fourier coefficients 
for fl andh respectively. We find from (2.22), for 

k > ~ and m = k + N, N nonnegative integer, that ° 
< 47T2Am(k) < 1 and Am(k) - ° as m - ° while 47T2Am(~) = 1. 
Thus the norm 

00 00 

0< Ilfllk-= (f,jh = 6 lam 12Am(k) '" 6 lam 12 
m=k m=k 

00 

'" 6 lam 12 < 00 m=_OO 
(2. 25a) 

is dominated by the Hardy-Lebesgue norm22 H2 as well 
as L 2(_ 7T, 7T). The members of H2 are the boundary val­
ues almost everywhere on SI of functions analytic in the 
unit disc I z I < 1 completed with respect to the norm 

(2. 25b) 

Thus, for k = t closure gives the Hilbert space H2. 
Notice also that when 0< k < ~ the first inequality in 
(2. 25a) is reversed; nevertheless the norm Iltllk is de­
fined by its series. Norms of this type were discussed 
by Sally13 and are related to certain reproducing kernel 
spaces. 

Using (2.23) and (2.24) we have 
00 

(fl,j2)k = ~ (fbltm)k(ltm,h)k (2.26) 

for fl,j2 E];. Indeed, from (2.25) we can extend (2.26) 
to all functions it,j2 E H2. Now H2 is not closed with re­
spect to the norm Iltllk' but by adjoining the limit points 
we obtain a Hilbert space which we denote by H;. The 
connection between the Hilbert spaces H; and those of 
analytic functions on the disc will be ellaborated upon 
in the Appendix. 

Some further interesting properties of the linear 
functional n(J) defined by the kernel (2.22) can be seen 
by viewing n as a Hermitean operator on L 2(_ 7T, 7T). It 
annihilates alljE)Z and hence all members of L 2(_ 7T, 7T) 
which are limits of such]. For k > ~ it is compact (com­
pletely continuous) and hence self-adjoint with eigen­
values Am(k). Gel'fand and collaborators14 have used 
such operators (for k = 1, %, 2,"') to describe equiva­
lences between representations labeled by k and - k + 1. 

Another linear functional in iI>(J;) which can be ex­
tended to all of HZ is the reproducing functional given by 
the formal series 

00 

K(¢, ¢') = 6 i:,,(¢)K:,.(¢')* 
m=k 

= exp[ik(¢ - ¢')](1- exp[i(¢ - ¢,)])-2k. (2.27) 

Clearly this series diverges at ¢ = ¢', but nevertheless 
defines a continuous linear functional on];, viz., 

f(¢) = 1 lsi d¢" d¢'n(¢" - ¢')K(¢, ¢")f(¢'). (2.28) 

We will now construct a unitary mapping which maps 
L 2(0,00) onto H; and the infinitesmial generators (2.4) 
onto (2.11) and conversely. The statement that the Hil­
bert space 1I; maps unitarily onto L 2(0,00) and converse­
ly is almost trivial, since all separable Hilbert spaces 
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are unitarily equivalent. We see easily that L 2(0,00) r:;Z2 

r:; H;, where [2 denotes the space of generalized Fourier 
coefficients {c N}, N = 0, 1, 2, ... , such that L;;=o 1 C N IZ < 00. 
We have for any 1/JE L z(O, 00) 

~ 

I}!(r) = 6 cNl/fJ.(r), 
N=O 

(2.29) 

where {1J!t} are given by (2.6) and convergence is in the 
mean. Thus (I}!, I}!) = L;;=o 1 C N 12 < 00. But from (2.22) for 
any {CN}E [z we have anfEH; such that 

~ 

f(¢) = 6 CN,~.N(¢) 
N=O 

converges in the mean and hence (f,f)k = '1';=0 1 eN I
Z 

= (I}!, I}!). 

(2.30) 

It is clear that the above statements are if and only if 
statements with the only proviso that both iJ!(r) andf(¢) 
are defined up to sets of measure zero. It is now a sim­
ple task to construct this mapping explicitly as 

(AI}!)(¢)=l.i.m. lo~drA(¢,r)l}!(r) 

for I}!E L z(O, 00), where 
~ 

A(¢, r) = ~ rl(¢)l/fJ.(r)* 
N=O 

= [2/r(2k111 IZr 2k-112 exp(ik¢ )[1- exp(i¢)l-Zk 

(2.31) 

x exp[ (rZ/2)(e i <l> + 1) /(ei<l> - 1) J. (2.32) 

This kernel is singular at ¢ = 0, which in an intuitive 
sense is offset by the strong convergence in the H; 
norm. The inverse mapping is given by 

(A-1f)(r) = l.i. m. 1 Is1 d¢ d¢' n(¢ - ¢')A(¢, r)*f(¢'), 

(2.33) 

for any f E H;. We stress that the unitary transformation 
kernel A(¢, r) is a unitary representation in quantum 
mechanics of the classical canonical transformation 
(1. 2a). This is what we call a unitary canonical 
transform. 

Now the important consequence of the unitary map­
pings (2.31) and (2.33) is that the group representa­
tions, or equivalently the Lie algebra representations 
(2.4) and (2. 11) are unitarily equivalent. A straightfor­
ward computation shows that the operators 1. = 11 ± iIz in 
the representation (2.4) satisfy the Lie algebra identi­
ties (2.12). Then using (2.31)-(2.33) and a simple in­
tegration by parts yields the desired results. The do­
main of the Lie algebra products is mapped onto each 
other and as a subspace of [2 is given by all {c N} E [2 such 
that '1:=k m 4 1 eN 12 < 00. Furthermore, the SL(2, R) group 
representation on H; can be obtained from (2. 9) and 
(2.31) by Ug=AT.A-1 yielding explicitly 

(Ugf)(¢) = 11 + y* exp(- i¢) 1-2k(1 - I y 12)k 

xf(exp(iw) [ y + exp(i¢ )V[l + y* exp(i¢ )]), 

(2.34) 
for fEH;. Here we have used the SU(1, 1) variables de­
fined from (2.8a) as 

Q=t[a+d+i(c-b)l, )3o=t[a-d-i(b+c)], 

y = )3/ Q, W = 2 arg Q'. 

(2.35) 
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We mention that the representation (2.34) is equivalent 
to the representation lr(g, k) of Sally if we replace in 
(2. 5. 5) of Ref. 13 the complex variable z by its bound­
ary e i <I> and perform the similarity transformation 
exp(ik¢)Ugexp(- ik¢). For the connection between the 
representations described in this section and the usual 
treatment on the unit disc!11, the reader is referred to 
the Appendix. 

We now pass to the description of a basis where a 
noncompact subgroup generator is diagonal. 23 As is 
well known, there are three orbits in the Lie algebra 
sl(2, R) under the adjoint action of the group SL(2, R). 
One of these orbits (the elliptic one) gives rise to the 
basis described previously (i. e., 13 is diagonal). We 
proceed to give a brief description of the remaining 
two cases. 

B. Parabolic case 

In this case an orbit representative of the generators 
(2.4) is given by the radial free Hamiltonian 

11 +13 = H - 0rr+ [(2k - 1)2 -tVr2}. (2.36) 

The eigenvalue problem thus gives rise to the general­
ized orthonormal eigenfunctions 

with eigenvalues h 2. We also mention that an orbit 
representative which is Simpler but with no physical 
meaning is 13 - 11 = tr2. The relation between the two is 
given by exp(irrI3)(I3 + 11) exp( - irri3) = 13 - 11. We em­
phasize that harmonic analysis 21,24 in terms of the latter 
is simpler than in terms of the former. Nevertheless, 
it is the former we are interested in, because of its 
physical meaning. 

Our unitary mapping (2.31) can be extended in the 
usual way to operate on a suitable space of generalized 
functions22 containing the eigenfunctions (2.37). This 
means that the generalized eigenfunctions have a mean­
ing as the kernel of a particular transform (in this case 
the well-known Hankel transform) when applied to any 
if!E L 2(0,00), In this sense then the basis elements (2.37) 
are mapped unitarily onto generalized eigenfunctions 
,!/'s(q;) of the operator 11 +13 realized on the circle. In 
terms of the realization (2.11) we find 

(2.38) 

This operator becomes more transparent under the 
stereographic projection of the circle onto the real line 
given by 

~=tant¢, -rr""¢<rr, -""<~<co. (2.39) 

First we note that the space J; on 81 maps onto the 
space (called again J;) of infinitely differentiable func­
tions which decrease at infinity as ~-2k (see the Ap­
pendix). The multivaluedness of functions on 51 implies 
definite phase properties for the corresponding func­
tions of ~ as ~ - ± 00, This is specified by chOOSing the 
principal branch of lnz to correspond to the range 
- rr "" ¢ < rr, so that 

exp(ik¢)o=ex.pfkln~- ~)",(io- ~)k. 
\' z+~ 1+~ 

(2,40) 

Then (2.38) in the ~-space realization becomes 
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(2.41) 

The generalized eigenfunctions of (2.41) then have the 
form of a multiplier times the Fourier transform 
kernel with the phase inherited from the unitary map­
ping (2.31). Actually it is a simple calculation to ob­
tain the eigenfunctions directly by applying (2.31) to 
the orthonormal basis functions (2.37), viz. 

~ 

~ (t/» = (A~ )(t/» = 6 gt+/«t/> )(1f/k, <ts), (2. 42a) 
N=O 

where (<JI'N' <ts) are the overlap functions between the 
canonical basis (2.6) and the parabolic basis (2.37). 
These overlap functions become trivial to calculate if 
we transform the <ts to a point on the orbit where 13 - 11 
= ty2 is diagonal with generalized eigenfunctions ~(r) 
=exp(i7rk)1i(r- sL We find 

(lJ/'N, <ts) = (exp(i7TI3}iJ1'N, exp(i7TI3)<ts) 

= (exp(i7TN +k)<JI'N'~) = exp(- i7TN)<JI'N(S)*. (2. 42b) 

Hence, the properly normalized (including phase) gen­
eralized eigenfunctions on the circle are, uSing (2.32), 

~(t/» = exp (i7Tk)A(t/> -7T, s). (2. 42c) 

This calculation shows the close connection between the 
unitary mapping of L 2(0,00) onto H~ and the parabolic 
basis. m terms of the ~-space realization we find the 
form 

~(t/>(m = [r(2k) ]-1 12(ts)2k-1/2(1 + ~2)k exp(~s2 ~). 

(2. 42d) 

It is readily checked that these functions are eigenfunc­
tions of (2.41) with eigenvalues is2• Actually, since 
s2 ~ 0, this is the half-space Fourier transform which 
is in complete accord with the fact, as discussed in the 
Appendix, that the members f(~) E H~ in the ~-space 
realization are the boundary values of functions few) 
analytic in the upper half-plane Imw> 0 with Rew = ~. 

C. Hyperbolic case 

In this case an orbit representative is given by the 
generator 11 which is one-half the Hamiltonian for the 
repulsive harmonic oscillator. The eigenvalue problem 
is 

(2. 43a) 

However, a much simpler orbit representative is given 
by the generator 12 with the relation 

exp(i7TiI3)I2 exp(- hiI3) = 11, 

The eigenvalue problem for 12 is 

I2~(r) = iv~(r), (2. 43b) 

with normalized generalized eigenfunctions given by the 
well-known Mellin transform kernel 

(2.44) 

with - 00 < v < 00. Using (2.9) to transform these func­
tions to the corresponding basis functions for 11, we 
find 

~(r) = (27Trt1/2 exp(i7Tk) exp(iTTv)2iV /2 

x [r(k + ~v)/r(2k) ]Miv /2.k-1 /2(- ir2), (2.45) 
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where M/v/2.k_112(z) is a Whittaker function. 16 We wish 
to effect the mapping of the functions (2.45) to the gen­
eralized eigenfunctions on S1. These will be eigenfunc­
tions of the operator 

11 = - i(cost/>otp - k sint/», (2.46) 

which satisfy (2. 43a). Again, using the stereographic 
projection given by 

s=tan[i(t/>+h)], -fi7T~t/><i7T, (2.47) 

we can write (2.46) as 

(2.48) 

Now the unnormalized generalized eigenfunctions of 
(2.48) which satisfy (2. 43a) are (e + 1)k S-kS!V /2, where 
s+ = s for s> 0 and 0 for s < 0, while L = - s for s < 0 and 
o for s> O. The correct normalization and phase for 
these eigenfunctions can be determined from the map­
ping (2.31). Alternatively, following the same procedure 
as in the parabolic case, we can write the eigenfunc­
tions on the circle in terms of the Mellin transform of 
A, viz. 

!!v(t/» = (27Tr1 / 2 10 ~ dr A(t/> + h, r)r iv -1 12. 

mtegrating this expression, we find explicitly 

~(t/» = exp[ =F ti7T (2k + iv)] exp(i7Tk )2 /v /2-12-1( 7Tr(2k) ]-1/2 

(2.49) 

x r(k + ~v){sin[i(t/> + i7T)]}-2k I tan[i(t/> + iTT)] I k+lv 12, 

(2.50) 

where =F is taken for - i7T < t/> < hand - h < t/> < - i7T 
respectively. In terms of the variable s the eigenfunc­
tions are 

~(t/> (s» = exp[ =F ti7T (2k + iv)] exp(i7Tk )2/v /2-k-1[ 7T r(2k )]-1/2 

xr(k + ~v)(S2 + 1)k I s I Iv/2-12. (2.51) 

We remark that in the process of evaluating the integral 
(2.49) we have evaluated the more difficult integral of 
A(t/>, r) in (2.32) with the Whittaker basis functions 
(2.45). This demonstrates the power of the group the­
oretical approach in obtaining special functions rela­
tions and is in the spirit of Refs. 21 and 24, where 
more difficult integrals are obtained. One further point 
is that the multiplicity of the hyperbolic decomposition 
for the representations D~ is one in contradisti~tion to 
multiplicity two for the principal seriesl1• 23 of SL(2, R). 
This is apparent in the L 2(0,00) realization, but in S1 it 
is deeply hidden in the nonlocal measure. For example, 
from (2. 51) one is led to think that the multiplicity is 
two-one Mellin transform for each half-axis. How­
ever, as discussed in the Appendix, the Hilbert space 
H: in the s-space realization consists of boundary val­
ues of functions few) analytic in the upper half-plane 
Imw> 0 with Rew = s; hence, one can relate the two ap­
parently independent Mellin transforms by using 
Cauchy's integral formula. 

3. THE PSEUDO-COULOMB SYSTEM 

The Hamiltonian for the n'-dimensional Coulomb sys­
tem with an extra centrifugal force of strength g' is 
given by 

(3.1) 
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where r = 1 r I. It is to be noted that (3.1) is relevant in 
the relativistic Coulomb problem. 25 The standard trickS 
for introducing the sl (2, R) Lie algebra is essentially to 
turn the standard eigenvalue problem for the energy 
(3.1) into an eigenvalue problem for the charge q by 
multiplying (3.1) by r, viz., 

(~p2 _ Er + tg'r-l - q)<1>(r) = 0. (3.2) 

Then upon introducing the Lie algebra generators 

Kl = Ur(p2 - 1) +g'r-l ], (3.3a) 

(3.3b) 

(3.3) by the pair p,P p' Furthermore, if r,P r is a 
canonical pair then P,Pp is a canonical pair only when 
E is constant. Again, turning the problem around, we 
can start with p,Pp as a canonical pair obtaining r,Pr as 
one only for constant E. This is the pseudo-Coulomb 
problem, and it is this problem which can be mapped 
canonically by a simple point transformation onto the 
multidimensional harmonic oscillatorl O. 26 and hence onto 
the circle SI through the analysis of the preceeding sec­
tion. Nevertheless, this group-theoretical treatmentS 
of the hydrogen atom has had remarkable success in 
calculating transition amplitudes, form factors, etc. K2 = r· p - i(n' - 2) = rP r - i(n' - 2), 

K3 = Ur(p2 + 1) + g'r-l
], (3.3c) Rewriting the operators (3.3) in terms of the variables 

Eq. (3.2) can be written as 

[(t - E)K3 + (t + E)Kl - q ] <1> (r) = 0. 

p,Pp defined in (3.8), we see that (3.4) becomes the dif­
ferential equation for the radial part of <1>( p) which we 

(3.4) denote by q;(p), 

A. Elliptic orbit (bound states) 

There are three different solutions to (3.4) depending 
on which orbit the operator (3.4) lies. The case E < ° 
gives rise to the bound state solutions of the H atom, 
while for E> ° and E = ° one finds the scattering and 
threshold solutions. For E < 0, the automorphism 
exp(ieI2) called "tilting" by Barut and Kleinert, S where 

E+t IEI-t ) 
tanhe= E_l = IEI+l' (3.5 

2 2 

transforms (3.4) into 

[(- 2E)1/2K3 - q ]<I?(r) = 0, 

where <I;'(r) = exp{ieI2)<1> (r). 

(3.6) 

Now we could insert (3. 3c) into (3. 6) and find the 
standard differential equation; however, we already 
know that for the UIR D; of SL(2, R) the spectrum of K3 
is simply In = k + N. Thus we have 

q=(-2E)1/2{k+N), 1'1=0,1,2,"', (3.7a) 

where 

2k = 1 + [(n' + 2L' - 2)2 + 4g1 ]1/2 , L 1 = 0, 1, 2, •.. , 

(3.7b) 

[Note the difference between (3. 7b) and (2.5)]. Turning 
Eq. (3. 7a) around as an eigenvalue problem for E, we 
find the usual (at least for integer k, i. e. , g' = 0) result 

(3.7c) 

It is this interpretation of (3.6) as an eigenvalue prob­
lem for E which suggests the name pseudo-CoulomblO 

for Eq. (3.4) and the Lie algebra (3.3). Indeed, the 
transition between the two prcblems is canonical only 
for fixed E, as can be seen from the transformation of 
the coordinate r under the "tilting" operation 

(3.8a) 

and thus it is seen that <I?(r) = <1>(P). Moreover, by using 
(3. 3b) the canonical conjugate variable to r,Pn trans­
forms as 

(3.8b) 

It is emphasized that what we have shown here is that 
the "tilting" operation of Barut and Kleinert is equiv­
alent to the replacement of rand Pr in the generators 
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H - po pp- {n' -1)0 p - (A' - g')p-l + pJq;{p) = Inq;(p), 

(3.9a) 

where as before In = k + 1'1 and is related to E through 
(3.7a), and, as in (2.2), 

A'=-L'{L1+n'-2), LI=0,1,2,···. (3.9b) 

Now again the spectral analysis of (3. 9) with the proper 
boundary condition on q;(p) yields the allowed values of 
In as 

(3.10) 

where we have introduced k in (3. 7b). Equation (3. 9a) 
can now be turned into the analog of Eq. (2.6) with an 
operator Hermitean with respect to the measure rip 
(pE [0,00» through a similarity transformation mapping 
functions as q;(p) -I)!'(p) =pnI2-1q;(p) and operators as 
Ki - Kf = pn 12-1K iP-n I 2-1, viz., 

K 31)!'!r{p) = ml)!'N(p), 

K3 = t[ - po pp - a p + p + (k - t)2p-l], 

I)!~(p) = [2N!/r(2k +N)]1(2pk-1I2e-PL~k-1>(2p), 

and similarly for the operators (3. 3a, b): 

Kf = t[- pOpp- op- p + (k - t)2p-l], 

K~=-i(pop+h 

(3.lIa) 

(3. lIb) 

(3.lIc) 

(3. lId) 

(3. lIe) 

It is to be noted that the ordinary (g' = 0) nl-dimen­
sional pseudo-Coulomb problem with angular momentum 
V has k = L' + t(n l 

- 1) and thus belongs to the UIR 
D~'+(n'-1>/2 of SL(2,R). For /11=3, the bound states of the 
system belong to the direct sum DiEP DzEB' ". 

We can now establish the link with the harmonic oscil­
lator system. Indeed, if we take Eqs. (2) 4a), (206a), 
and (2.6b) and effect the following' 

(i) A change of variable p = '~r2 as suggested by the 
classical analogue (1. 5); we obtain an operator (resp. 
eigenstates) Hermitean (resp. orthogonal) with respect 
to the measure dr = (2pr1/2 rip by simply following the 
chain rule for the derivatives. 

(ii) A similarity transformation I)!(p) - if,I(P) 
= (2ptI/41)!(p) and I j - K> (2pt1l4Ij(2p)1/4 takes us to 
eigenstates (resp. operators) which are identical with 
(3.lIc) [resp. (3. lIb)] when 
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(iii) We identify by p and P~ respectively. Under the transformation 

g=4g', L=2L', n=2n'-2. (3. 12) (3. 16) we have 

Implementing this transformation, the spectrum-gen­
erating algebra of the pseudo-Coulomb system is ob­
tained from the operators (2. 4a, c) yielding precisely 
the operators (3.11d, e). We see that the ordinary 
(g' = 0) n' -dimensional pseudo-Coulomb system of angu­
lar momentum L' belongs to the UIR Di'+(n'_I) /2 = Di /2+n /4 

of SL(2, R). Thus, for example, the states of the three­
dimensional Hydrogen atom (n' = 3, L' = 0,1,2, ... ) are 
mapped onto the even-angular momentum states of the 
lour-dimensional harmonic oscillator27 (n = 4, L 
= 0, 2, 4,· .. ) with the representation given by DiEB D'2 
ttl· •.• We emphasize that the condition (3. 12) and hence 
the mapping between the two systems is not a necessary 
one. Other possible mappings of the Hamiltonians were 
discussed in Ref. 26. Our choice (3. 12) has the ad­
vantages of associating extra centrifugal potentials with 
each other as well as mapping states of zero angular 
momentum onto states of zero angular momentum. 
For n' = 2, n = 2, the mapping is the one described in 
Ref. 10. 

A similar analysis can be effected for the two non­
compact orbits. 

B. Parabolic orbit (threshold states) 

As the energy here is constant (zero), this is the only 
truly canonical mapping between the real Coulomb sys­
tem and the system (2.4). In this case (3.4) becomes 
simply 

[t(K3 +Kl ) - q]cI>(r) = 0, 

where, from (3.3), 

K3 +Kl =rp2 +g'r-l . 

(3.13) 

(3.14) 

Implementing the necessary similarity tranSformations 
which led to Eqs. (3.11) and replacing the variables r 
by p and Pr by Pp , the corresponding generator becomes 

(3.15) 

Making again the simple change of variables as well as 
the Similarity transformation (ii) and the identification 
(3.2), we find precisely the operator for the radial free 
particle (3. 26) with the generalized eigenfunctions 

</J'~(p) = sl !2J2k _l (s(2p)1 /2). (3.16) 

We mention here that in complete analogy with the 
parabolic orbit in Sec" 2 the harmonic analysis in terms 
of the operator Ks - Kf = P is much simpler. 

C. Hyperbolic orbit (scattering states) 

The case E> 0 gives rise to the Coulomb scattering 
states. 9 Now Eq. (3.4) can be brought to the eigenvalue 
problem for Kl by the "tilting" operator exp(iBK2), 

where now 

E+t IEI+t. 
tanh B = -- = -:'-::0-:---7 

E-t IEI-t' 
(3.17) 

and we arrive at 

(3.18) 

which again is equivalent to the replacement of rand P; 
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p=(2E)I/2r , pp=(2Erl/2Pn (3.19) 

in lieu of (3.8). Again it is emphasized that for calcula­
tion purposes it is much easier to deal with K2 
= exp(- hiK3)Kl exp(t1TiK3) and the corresponding Mellin 
transform. Here we simply write down the eigenfunc­
tions of the operator Kf [(3. lld)] obtained from (2.45) by 
the point and similarity transformations (i) and (ii) de­
scribed above with the identification (3. 12), viz. , 

~'e(P) = (21Trl /2 exp(i1rk) exp(irrv)2 iV /2 r~(;t;v) (2pt l /2 

XMiv / 2,k_l/2(- 2ip). (3.20) 

We have shown that the spectrum-generating algebra 
so(2, 1) '" su(l, 1) '" sl(2, R) [as well as its universal cover­
ing group SL(2, R)] for the pseudo-Coulomb problem 
maps unitarily onto the radial harmonic oscillator sys­
tem and thus through the composition maps onto the 
circle SI. It is emphasized that this rotor has a nonlocal 
scalar product in order to preserve the positive 
definiteness of the bound-state spectrum. A similar 
situation can be found in the original work of Barut and 
Kleinert, 9 and Fronsdal, 8 where a nonlocal scalar prod­
uct appears on the Fock sphere to insure a unitary 
representation of the SO(4, 2) group, or equivalently the 
SO(2, 1) subgroup. Since we have singled out the latter 
by studying the radial problem, the symmetry group 
SO(4) does not appear here. It should be mentioned that 
the stereographic projection of the circle SI can be 
related to the radial pseudo-Coulomb problem through 
a traIlsform with a Fourier type kernel. The connection 
of this with the momentum space and the embedding in 
the Fock sphere will be studied elsewhere. 
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APPENDIX 

We shall relate here the representation theory of 
SL(2, R) on the circle SI as presented in Sec. 2 to the 
better known representation of the discrete series on 
the unit disc as described by Bargmannl1 for single­
valued UIR's of SL(2, R), by Sally13 for the multivalued 
UIR's and Gel'fandl4 for single-valued representations 
on the complex upper half-plane. 

Let IE J;; then we can expand I together with all its 
derivatives in a Fourier series with positive partial 
waves as 

"" 
I(n)(cf» = exp(ik¢) 6 a'J, exp(iNcf». 

N=O 
(Ala) 

Moreover, for z =or exp(icf» with r ~ 1, 

"" 
l(n)(cf»O? exp(ikcf».0 a'J,rN exp(iNcf» 

N=O 

(Alb) 
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and hence the series 
00 

g(z) '" 6 a"z" 
N=O 

(A2) 

defines an analytic function whose radius of convergence 
is greater than 1. Thus for every fE]; we can associate 
a function...,ff analytic in a region Ril containing the closed 
unit disc m = {z E C : Iz 1 "" I} such that exp(- ik¢ )f(¢) is the 
boundary value of g(z) as 1 z 1 - 1, and conversely, for 
every analytic function g in Rg~iii we can construct the 
uniformly converging series (AI). Following Barg­
mann, 11 we equip the space of analytic function on the 
open disc with the inner product 

(A3) 

and the norm Ilgll. = (g,g)1/2 < 00. The r integral is 
understood to be in the sense of limit in the mean. Now 
if gl,g2 are analytic on all ofm, we can write a Cauchy 
integral representation 

1 f g(zl)dz l 
g(z)=-. 1 

2m 1"'1=1 z - Z 
(A4) 

Substituting (A4) into (A3) and performing the rand ¢ 
integrals, we find 

with f; (¢) = exp(ik¢) limlzl ~lgi(Z) and rl(¢ - ¢/) given 
precisely by (2.22). However, since the norms (A3) 
and (2.15) are equivalent on];, mean convergence in 
one is the same as mean convergence in the other, and 
so the space of functions analytic inm with finite norm 
(A3) is a realization of the Hilbert space HZ. The mem­
bers of H~ on SI are the boundary values almost every­
where of analytic functions in/J1 with finite norm (A3). 
Moreover, as demonstrated by Bargmann!! and Sally, 13 

mean convergence in HZ implies pointwise convergence 
of analytic functions in m. 

We can easily express the Lie algebra generators 
(2.8) and group representation (2.34) on/J1 by replacing 
exp(i¢) by z. Then the mapping (2.31) is a mapping 
from L 2(0,00) to the H; realization on the disc. This 
mapping was mentioned previously by Bargmann28 and 
studied in detail by Sally. 13 

The well-known conformal mapping of the unit disc 
/J1 onto the upper half-plane C+ ={u' E C: 1m/./' > o} is the 
analog of the mapping (2.39). Explicitly, for z E C we 
write 

i- 10 
Z=--

i + ll' ' 

.1- z 
Z('=z--

1 +z 0 

(A6) 

Then it is easy to see that Iz I < 1 implies Imu' > 0; 
moreover, the boundary I z I = 1 of /J1 maps onto the real 
line 1m/./' = 0 including the point at infinity. Thus (A6) 
defines a homeomorphism of the closed unit disc iii onto 
!!.'Ie one-point compactification of the upper half-planel4 

C+ = {IV E C: Im2D ~ o}u {oo}. Under this mapping the scalar 
product (A3) becomes 
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(A7a) 

where 

(A7b) 

As a result f is analytic in C+(C.) when g is analytic in 
m @. Moreover, analyticity of g E7fj and therefore of 
f E C + implies the condition at infinity 

f(1I') - I U! 1-2 •• (A8) 
Iwl ~<:lO 

The realization of]; on C + is the space of all functions 
analytic in C + satisfying the condition (A8). The realiza­
tion of HZ on C+ is the space of all functions analytic in 
C+ with finite norm Ilfll. = (j,f)kl2 given from (A7a), and 
HZ is the completion of]; with respect to this norm. 
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